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Abstract

The problem of reducing energy consumption is dominating the design of several real-

time systems, from battery-operated embedded devices to large clusters and server farms.

These systems are typically designed to handle peak loads in order to guarantee the timely

execution of those computational activities that must meet predefined timing constraints.

However, peak load conditions rarely happen in practice, and systems are underutilized

most of the time.

Modern microprocessors allow to balance computational speed versus energy consump-

tion by dynamically changing operating voltage and frequency. This technique is called

Dynamic Voltage Scaling (DVS). On real-time systems, however, if this technique is not

used properly, some important task may miss its timing constraints. The goal of the op-

erating system scheduler becomes, thus, to select not only the task to be scheduled, but

also the processor operating frequency in order to reduce the energy consumption while

meeting real-time constraints.

This thesis is the result of three years of research on the Resource Reservation and

Energy-Aware Scheduling topics. The main contributions of this thesis can be summarized

as follows. We study the problem of energy minimization from an analytical point of view

and we propose a novel result in the real-time literature which integrates the concept of

probabilistic execution time within the framework of energy minimization. In particular,

we find the optimal value of the instant of frequency transition and of the speed assign-

ment in a two-speed scheme where probabilistic information about task execution times

is known. Unlike similar results presented in the literature so far, the optimal values are

found using a very general model for the processor that accounts for the idle power and

for both the time and the energy overheads due to voltage/frequency transition.

This thesis also includes a study about the Resource Reservation technique [104]. In

particular, we investigate some anomalies in the schedule generated by the CBS [6] and

GRUB [76, 75, 77] algorithms and we propose a novel algorithm, called HGRUB [11], which

maintains the same features of CBS and GRUB but it is not affected by the problems

described.

Finally, we develop a novel energy-aware scheduling algorithm called GRUB-PA which,

unlike most algorithms proposed in the literature, allows to reduce energy consumption on



real-time systems consisting of any kind of task — i.e., hard and soft, periodic, sporadic

and even aperiodic tasks. The effectiveness of the algorithm is validated through the

formal proof of its main properties and through a series of comparisons with the state of

the art of energy-aware scheduling algorithms using an Open Source simulator.

Last but not least, we describe a working implementation of the GRUB-PA algorithm in

a real test-bed running the Linux operating system and we present a series of experiments

to show that the algorithm actually reduce the energy consumption of the system.
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Introduction

The number of embedded systems operated by battery is increasing in several application

domains [70], from Personal Digital Assistants (PDAs) to autonomous robots, laptop

computers, smart phones and sensor networks [35]. The problem of reducing the energy

consumed by these systems has become a key design issue, since they can only operate on

the limited battery supply. Many of these systems, in fact, are powered by rechargeable

batteries and the goal is to extend as much as possible the autonomy of the system.

Battery lifetime is a critical design parameter for such devices, directly affecting system

size, weight and cost. Battery technology is improving rather slowly and cannot keep up

with the pace of modern digital systems. Thus, reducing the energy consumed by these

devices is the only way to prolong their lifetime.

In recent years, as the demand for computing resources has rapidly increased, even

real-time servers and clusters are facing energy constraints [71, 27]. In fact, the growth of

computational speed in current digital systems is mostly obtained by reducing the size of

the transistors and increasing the clock frequency of the main processor. Since the power

consumption is related to the operating frequency, the net effect is a growth of the energy

demand and (as a side effect) of the heat generated [99, 63, 81]. Conventional computers

are currently air cooled, and manufacturers are facing the problem of building powerful

systems without introducing additional techniques such as liquid cooling [71, 24]. Cooling

is a complex phenomenon that cannot be modelled accurately by a simple model [62,

114]. Heat dissipation directly affects the packaging and cooling solutions for integrated

circuits. With power densities increasing due to increasing performance demands and

tighter packing, proper cooling becomes even more challenging.

Clusters with high peak power need complex and expensive cooling infrastructures to

ensure the proper operation of the servers. Not surprisingly, a significant portion of the

energy consumed is due to the cooling devices, which may consume up to 50 percent of

the total energy in small commercial servers [71, 90]. Thus, electricity cost represents a

significant fraction of the operation cost of data centers [24, 27]. For example, a 10kW rack

consumes about 10MWh a month (including cooling), which is at least 10 percent of the

operation cost [20], with this trend likely to increase in the future. Clearly, good energy

management is becoming important for all servers. To better understand the impact of
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techniques for reducing power consumption in high-end servers, consider the cost savings

that can be obtained by reducing the energy consumed in large web server farms, in terms

of air conditioning and cooling systems: reducing the energy consumed by the computing

components would impact on the energy consumed by the cooling devices and, in the end,

on the total cost of the system.

In order for all these systems to be active for long periods of time, energy consumption

should be reduced to an absolute minimum through energy-aware techniques. For this

reason, the current generation of microprocessors [93, 131, 58, 57, 59, 60, 55] allow the

operating system to dynamically vary voltage and operating frequency to balance com-

putational speed versus energy consumption. This technique is called Dynamic Voltage

Scaling (DVS) [99] and is used by many energy-aware scheduling policies already proposed

in the literature [112, 98, 18, 101, 141].

In real-time systems and time-sensitive applications, however, if this frequency change

is not done properly, some important task may miss its timing constraints. The problem

is even more difficult considering that in practice most systems consist of a mixture of

critical (i.e., hard) and less critical (i.e., soft) real-time tasks. For these reasons, develop-

ers typically design these systems so that they provide the highest computational power

in any circumstance, in order to guarantee the timely execution of those computational

activities that must meet predefined timing constraints. However, peak load conditions

rarely happen in practice, and system resources are underutilized most of the time. For

example, server loads often vary significantly depending on the time of the day or other

external factors. Researchers at IBM showed that the average processor use of real servers

is between 10 and 50 percent of their peak capacity [27]. Thus, much of the server ca-

pacity remains unused during normal operations. These issues are even more critical in

embedded clusters [138], typically untethered devices, in which peak power has an impor-

tant impact on the size and the cost of the system. Examples include satellite systems

or other mobile devices with multiple computing platforms, such as the Mars Rover and

robotics platforms. Some studies have observed that the actual execution times of tasks

in real-world embedded systems can vary up to 87 percent with respect to their measured

worst case execution times [134].

We believe that the advantages of DVS can be exploited even in real-time systems,

through a careful identification of the conditions under which we can safely slow down

the processor speed without missing any predefined timing constraint. This way, the

reduction of the power consumption does not affect the timely execution of important

computational activities. In particular, an energy-aware scheduling algorithm can exploit

DVS by selecting, at each instant, both the task to be scheduled and the processor’s

operating frequency.

This thesis is the result of three years of research on the Resource Reservation and
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Energy-Aware Scheduling topics. We focus on algorithms for uniprocessor systems, since

the lack of optimal scheduling algorithms for real-time multiprocessors makes the problem

of creating energy-aware algorithms with high efficiency very difficult.

The main contributions of this thesis can be summarized as follows. We start by

studying the problem of energy minimization from an analytical point of view. We propose

a novel result in the real-time literature which integrates the concept of probabilistic

execution time within the framework of energy minimization. In particular, we find the

optimal value of the instant of frequency transition (i.e., transition point) and of the speed

assignment in a two-speed scheme where probabilistic information about task execution

times is known. Through this study we show that saving energy while still meeting real-

time constraints is actually possible. Unlike similar results presented in the literature so

far, the optimal values are found using a very general model for the processor that accounts

for the idle power and for both the time and the energy overheads due to voltage/frequency

transition. Our result represents a net improvement over the sub-optimal mechanism used

in the DVS-EDF algorithm proposed by Zhu et al. [43, 141].

This thesis also includes a study about the Resource Reservation technique [104]. In

particular, we investigate some anomalies in the schedule generated by the CBS [6] and

GRUB [76, 75, 77] algorithms and we propose a novel algorithm, called HGRUB [11], which

maintains the same features of CBS and GRUB but it is not affected by the problems

described.

Then, starting from the GRUB algorithm proposed by Lipari and Baruah [76, 75, 77],

we develop a novel energy-aware scheduling algorithm called GRUB-PA which, unlike most

algorithms proposed in the literature, allows to reduce energy consumption on real-time

systems consisting of any kind of task — i.e., hard and soft, periodic, sporadic and even

aperiodic tasks. With this algorithm we show that saving energy while meeting real-time

constraints is possible even in presence of a mixture of hard and soft real-time tasks. The

effectiveness of the algorithm is validated through the formal proof of its main properties

and through a series of comparisons with the state of the art of energy-aware scheduling

algorithms using the RTSim 0.3 [96, 4] scheduling simulator.

Last but not least, we describe a working implementation of the GRUB-PA algorithm in

a real test-bed running the Linux operating system and we present a series of experiments

to show that the algorithm actually reduce the energy consumption of the system.

The main results of this thesis have been already published at several conferences [111,

112, 110, 107, 78, 11] and on the IEEE Transactions on Computers journal [113], and have

been accepted for publication on a special issue of the International Journal of Embedded

Systems (IJES) journal [26].

This thesis is organized as follows. In Chapter 1, we introduce definitions and char-

acteristics concerning real-time systems as well as the scheduling model that will be used
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throughout the rest of this thesis. The interested reader can refer to Appendix A for

an overview of some working implementations of real-time operating systems (RTOSs)

based on Linux. In Chapter 2, we describe some architectural aspects concerning the DVS

technique for CMOS circuits. Then, we propose a taxonomy of energy-aware scheduling

algorithms and we provide an overview of the state of the art of the algorithms proposed

in the real-time literature. In Chapter 3, we study the problem of energy minimization

from an analytical point of view, finding the optimal values of transition point and speed

assignments when probabilistic information about task execution times is known. The op-

timal values are found using a very general model for the processor that accounts for idle

power and for both the time and the energy overheads due to voltage/frequency transition.

In Chapter 4, we recall some concepts about the Resource Reservation technique [104] and

we propose the GRUB and HGRUB algorithms that effectively solve some drawbacks of

the original Constant Bandwidth Server (CBS) algorithm [6]. These algorithms will then

be used as basis for our energy-aware scheduling algorithm GRUB-PA, presented in Chap-

ter 5, which reduces energy consumption on real-time systems consisting of hard and soft,

periodic, sporadic and aperiodic tasks. Finally, in Chapter 6 we state our conclusions,

providing an overview of the ongoing and future work.
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Chapter 1

Real-Time Systems

This chapter introduces basic terminology, definitions and notation concerning real-time

systems as well as the scheduling model that will be used throughout the rest of this

thesis. The interested reader can refer to Appendix A for an overview of some existing

implementations of real-time systems based on Linux.

1.1 Introduction to Real-Time Systems

Real-time systems are “systems in which the correctness depends not only on the logical

result of the computation, but also on the time at which the results are produced” [125, 116].

Thus, a system can be defined real-time if “it produces the results within a finite and

predictable interval of time”, which is not necessarily the fastest time possible.

The system controlling the speed of a train is an example of real-time system: once an

obstacle has been detected, the action of activating the brakes must be performed within

a maximum delay, otherwise the train will crash on the obstacle. Keeping the previous

example in mind, a real-time system can be more precisely defined as follows:

Definition 1 [32] A real-time system is a computing system in which computational ac-

tivities must be performed within predefined timing constraints.

Typically, a real-time system is a controlling system managing and coordinating the

activities of some controlled environment (see Figure 1.1). The real-time system acquires

information about the environment through some sensors [35], and controls the environ-

ment using actuators. The adjective “real” means that the clock of the environment and

the clock of the real-time system are synchronized. The environment creates some events,

and the real-time control system must respond to these events within a finite and pre-

dictable period of time. The interaction is bidirectional, and is characterized by timing

correctness constraints: the control — i.e., the reaction to internal or external events —

must be done within finite and pre-established delays. Since a real-time system must
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Environment

Real−time control

Event (Re) action

Figure 1.1: Real-time control system.

provide guarantees about its response times, it must have a predictable and deterministic

timing behaviour.

Notice that the concept of “real-time” is not synonymous of “fast”: having the re-

sponse of the system within the timing requirements is sufficient. The objective of fast

computing is to minimize the average response time of a given set of tasks. The objective

of real-time computing, instead, is to meet the individual timing requirements of each

task. Rather than being fast (which is a relative term), the most important goal in real-

time system design is predictability — that is, the functional and timing behaviour of the

system must be as deterministic as necessary to satisfy system specifications. This deter-

minism allows to provide timing guarantees about the evolution of the environment. The

fastness of the system (i.e., a low latency) remains in any case a desirable feature, since

it allows to respond in a short time to events that need immediate attention [116] — fast

computing is helpful in meeting stringent timing specifications, but it does not guarantee

any predictability.

In the last decades, real-time systems have started to be used in different areas of

everyday life. Nowadays, real-time capabilities can be found in several electronic devices,

from simple PDAs for audio and video streaming to complex critical systems for the con-

trol of nuclear power plants. Examples of use of a real-time system include the control

of laboratory experiments, car engines, nuclear power plants, chemical stations, flight

systems, space shuttle and aircraft avionics, robotics and rocket systems [126, 32, 116].

Real-time systems are also widely used in many areas of telecommunications and multi-

media, to guarantee timely execution of applications and proper Quality of Service (QoS)

to end-users.
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1.2 Design Issues

Although in the last decades, a strong mathematical theory has been successfully developed

to model and formalize the behaviour of a real-time system [126, 32, 79], sometimes the

development of such systems is still done in empirical ways, using heuristic assumptions.

In other cases, the real-time system is sized according to the worst case scenario, resulting

in a partial utilization of the available resources (e.g., the processor).

Some designers consider that a fast enough system is always able to respond in time.

If an infinitely fast computer was available, we would not have any real-time problem,

because the system would be capable of immediate response to any event, regardless

of the current workload. However, even if advances in hardware technology will likely

exploit faster processors to improve system throughput, this does not mean that timing

constraints will be automatically met. Moreover, we must consider that the greater is the

computational power provided by the hardware, the greater is the amount of resources

needed. The amount of available computational power, in fact, affects many different

aspects of the system, like the cost, the size, the energy consumption, the heat and noise

produced and the fault robustness. For instance, the growth of computational power

in current microprocessors is mostly obtained by reducing the size of the transistors in

order to increase the clock frequency. This leads to both greater power consumption and

greater heat production. Heat dissipation directly affects packaging and cooling solutions

for integrated circuits, which, in turn, affect the size and the cost of the whole system.

This problem is critical especially in the field of “embedded” systems. These are special-

purpose computers part of larger systems or machines that may not be of electronic kind

(think, for instance, to the embedded system controlling an automotive engine). Typically,

an embedded system is expected to work without human intervention, and it is housed

on a single microprocessor board with the programs stored in ROM. In these systems,

there is the need of reducing the resources used by the system as much as possible —

brute force techniques do not scale to meet the requirements of guaranteeing real-time

constraints on embedded devices. For instance, the development of operating systems for

embedded devices starting from those for higher level architectures has often collided with

the limited number of available resources. In an embedded system, the trade-off between

the provided computational power and the amount of resources needed is very important.

In particular, parameters like cost, size and energy consumption are decisive factors for

the actual usability of such systems. Notice that the cost and the size are often conflicting

goals, since the development of smaller devices is typically more expensive. Moreover,

in embedded real-time systems there is the intrinsic trade-off between the importance to

pursue such aims, and the need to have enough computational power to guarantee the

real-time constraints.

Hence, it is very important to improve the efficiency by restricting the amount of re-
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sources needed to the minimum possible value. During the last decades several formal ap-

proaches have been proposed to formalize the behaviour of a real-time system exactly [31].

However, they have been seldomly used in the design of real systems.

Currently, real-time system design is mostly ad hoc. This does not mean, however,

that a scientific approach is not possible: most good science grew out of attempts to

solve practical problems. For instance, the first flight of the space shuttle was delayed, at

considerable cost, because of a timing bug that arose from a transient processor overload

during system initialization [125]. The development of a scientific basis for verifying that

a design is free of such bugs is clearly necessary.

1.3 Real-Time Operating Systems

Typically, a real-time system is implemented as a set of concurrent tasks that are exe-

cuted on a Real-Time Operating System (RTOS). Each task represents a computational

activity that needs to be performed according to a set of constraints. The objective of the

RTOS is, thus, to manage and control the assignment of the system resources (e.g., the

microprocessor) to the tasks in order to meet such constraints.

Definition 2 [3] A real-time operating system (RTOS) is an operating system capable of

guaranteeing the timing requirements of the tasks under its control through some hypothesis

about their behaviour and a model of the external environment.

“RTOS” is a generic term for a set of operating systems providing some kind of support

for real-time applications. There is a wide range of RTOSs, from the small and simple

system that fits in few kilobytes of memory and can run on simple processors, to the

high-end RTOS providing full graphical user interface and requiring several megabytes of

RAM and powerful processors (with MMU, protected mode, etc.).

A real-time system should be flexible enough to react to a highly dynamic and adaptive

environment, but at the same time it should be able to avoid resource conflicts so that

timing constraints can be predictably met. The environment may cause any unpredictable

combination of events to occur, but the real-time system should be carefully built in order

to predict the possibility of meeting timing constraints at any time during execution.

Desirable features of a RTOSs are the co-existence of normal and real-time tasks, low

latency, and fault tolerant mechanisms [6, 48, 9, 8, 32]. Appendix A explains how these

goals can be achieved in Linux in order to create a real-time operating system.

1.4 Real-Time Tasks

Real-time scheduling involves the allocation of system resources to tasks in such a way

that certain predefined timing requirements are met. Scheduling has been probably the
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most widely researched topic in the real-time literature [126].

Definition 3 [126] A real-time task is an executable entity of work which is characterized,

at least, by a worst case execution time and a timing constraint. It denotes a generic

scheduling entity, that can correspond to either a thread or a process on a real operating

system.

Depending on the type of application, different timing constraints (like the jitter on

the initial or the finishing time of execution) can be defined. A typical constraint is the

deadline, which is the instant of time the task’s execution is required to be completed. A

real-time task must complete before its deadline, otherwise the results could be produced

too late to be useful. The deadline is the only timing constraint that we will consider

throughout this thesis.

Typically, real-time tasks have a cyclic structure in which they execute some code and

then they block waiting for a timer or for a particular event. For this reason, real-time

tasks can be well modelled by thinking each task as consisting of a sequential stream of

“jobs”.

Definition 4 [126] A job is an instance of a real-time task.

The job is the unit of work, scheduled and executed by the operating system. We

say that a job arrives when the task unblocks (i.e., when the task becomes ready for

execution), and that the job ends when the task blocks. Jobs of the same task must be

executed sequentially — i.e., the concurrent execution of jobs of the same task is not

possible.

Typically, tasks have variable execution times between different jobs. The execution

time, in fact, depends on several factors like input data, current state of cache and pro-

cessor pipeline, etc. As an example, consider the two branches of a typical if-then-else

statement, which may have very different computation times.

There are many real-time applications in which the worst-case scenario happens very

rarely, but its duration is much longer than the average case. Some studies have observed

that the actual execution times of tasks in real-world embedded systems can vary up to 87

percent with respect to their measured worst case execution times [134]. An algorithm with

highly variable computation time is the decoding of a MPEG frame, where the execution

time depends on the data contained in the frames.

The problem of variable execution times is typically handled in the real-time literature

by defining a parameter of the task called Worst Case Execution Time (WCET), which

represents the maximum possible value that the computation times of task’s jobs can

assume. Another parameter, called Worst Case Execution Cycles (WCEC), represents the
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Figure 1.2: Distribution of execution times of decoding the Star Wars movie.

maximum possible processor cycles required by the task instances, and is typically used

when dealing with processors having dynamic speed.

Computing the exact value of the WCET of a task consists on computing the execution

time of all the possible paths that the program may follow, then selecting the path with the

maximum execution time. This computation is possible only in principle. In practice, the

problem is intractable even for deterministic programs: the presence of caches, pipelines,

DMA and branch prediction makes the problem of computing a constant execution time

very difficult. In fact, although these mechanisms reduce the average execution time of

a task, they make much more difficult the estimation of worst case execution times [32].

Moreover, the worst case path may never happen in practice (because not possible). Thus,

the value estimated for the WCET in practice is affected by large errors (typically, more

than 20 percent [32]). Therefore, an interesting property of the scheduling discipline is

the ability of reclaiming resources used by tasks that execute less than their worst case

requirements. As we will see in Chapter 5, our scheduling algorithm, GRUB-PA, has such

interesting feature.

A more complete and precise information about the behaviour of a dynamic compu-

tational activity like a real-time task is the probability density function (p.d.f.) derived

by experimental data. Figure 1.2 shows the probability density function of the execution

time of the job decoding a frame of the Star Wars movie [32]. The x axis shows the de-

coding time (expressed in microseconds) whereas the y axis shows the probability density

function. In Chapter 3, we will study the problem of reducing energy consumption in

real-time systems where probabilistic information about execution times is known.
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Figure 1.3: A GANNT chart describing the parameters of a generic job τi,k.

1.5 Scheduling Model

We consider the processor as the only resource shared by a set of real-time tasks, reducing

the scheduling problem to the choice of a possible assignment of the tasks to the pro-

cessor. Furthermore, we restrict our attention to preemptive uniprocessor systems, with

the assumption that processing is fully preemptible at any point. Thus, at any instant of

time, the running task is the highest priority active task in the system. If a low priority

task is in execution and a higher priority task becomes ready for execution, the former is

preempted and the processor is given to the new arrival. This assumption is realistic on

modern operating systems like Linux which, with the advent of the 2.6 kernel series, has

become a fully preemptive OS [82] (refer to Appendix A.4.1 for more details).

We consider a system comprised of n real-time tasks τ1, τ2,..., τn. We refer to this set

of tasks as the task set τ = {τ1, ..., τn}. Each task τi is a sequential stream of jobs (or

instances) τi,1, τi,2, τi,3, ..., where τi,j becomes ready for execution (“arrives”) at time ri,j

(ri,j ≤ ri,j+1 ∀i, j), and requires a computation time equal to ci,j units of time. Real-time

tasks can be well described through a GANNT chart (see Figure 1.3) having an horizontal

time axis for each task. The assignment of jobs to the processor is represented by filled

rectangular boxes drawn along the axes. Typically, capital letters are used to represent

absolute values in time, whereas small letters are used for relative values.

In particular, a job τi,k is characterized by the following parameters:

Definition 5 (Release time) The release (or activation) time ri,k is the instant of time

at which the job becomes ready for execution (because it has been activated by some event

or condition).

In the GANNT chart the release time is typically represented by an upward arrow (see

Figure 1.3).

Definition 6 (Start time) The start time si,k is the time at which the job starts its

execution for the first time (i.e., the first time the processor is assigned to the job).
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Figure 1.4: A GANNT chart describing a sequence of jobs τi,k belonging to the same task
τi.

Definition 7 (Finishing time) The finishing (or completion) time fi,k is the time at

which the job actually completes its execution.

Definition 8 (Relative deadline) The relative deadline Di,k is the interval of time

job’s execution is required to be completed with respect to its release time. Typically, this

is a constant value equal for all the jobs belonging to the same task, and it is called task

relative deadline Di.

Definition 9 (Absolute deadline) The absolute deadline di,k is the absolute instant of

time by which job’s execution must complete. The deadline is successfully met if and only

if fi,k ≤ di,k, otherwise it is missed. The job deadline di,j is computed based on the relative

deadline: di,j = ri,j + Di,j.

In the GANNT chart the deadline is typically represented by a downward arrow (see

Figure 1.3).

Definition 10 (Computation time) The computation time ci,k is the time required by

the processor to complete job’s execution without interruption.

Definition 11 (Response time) The response time ρi,k is the time elapsed from the job

release time to the finishing time (ρi,k = fi,k − ri,k).

We assume that, for each task, the jobs are executed in FIFO order — i.e., τi,j+1 can

start execution only after τi,j has completed. A GANNT chart describing a sequence of

jobs belonging to the same task is shown in Figure 1.4.

A task τi is characterized by the following parameters.

Definition 12 (Worst case execution time) The worst case execution time (WCET)

of task τi is the worst (i.e., maximum) computation time required by all its instances:

Ci = max
k≥0
{ci,k} (1.1)

Definition 13 (Worst case response time) The worst case response time of task τi is

the worst (i.e., maximum) response time required by all its instances:

ρi = max
k≥0
{ρi,k} (1.2)
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1.6 Task Periodicity

Real-time tasks can either be activated by a timer at predefined instants of time or by

the occurrence of a specific event or condition [32]. In the former case, an important

characteristic of the task is given by the regularity of its activations (i.e., the release times

of its jobs) which allows to distinguish between periodic and aperiodic tasks.

Definition 14 Periodic tasks are tasks that are activated (released) at regular intervals

of time. In particular, a task τi is said to be periodic if

ri,k+1 = ri,k + Ti ∀k ≥ 1 (1.3)

where Ti is the task period. The deadline, if not otherwise stated, corresponds to the end

of the period.

Typically, periodic tasks have a regular structure, consisting of an infinite cycle, in which

the task executes a computation and then suspends itself waiting for the next periodic

activation. A typical periodic task has the following structure:

void * PeriodicTask(void *arg)

{

<initialization>;

<start periodic timer, period = T>;

while (cond) {

<read sensors>;

<update outputs>;

<update state variables>;

<wait for next activation>;

}

}

A typical characteristic of a periodic task set is a parameter called utilization, which is

defined as follows

U =
n
∑

i=1

Ci

Ti
(1.4)

and represents the computational workload requested by the task set to the processor,

assuming that each job executes for its worst-case execution time. This value is typically

used to evaluate the schedulability of the task set (see Section 1.9).

Another class of real-time tasks, very similar to periodic tasks, is called sporadic and

waits for aperiodic events.

Definition 15 [126] Sporadic tasks are real-time tasks that are activated irregularly with

some known bounded rate. The parameter Ti denotes the minimum (rather than exact)
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separation between successive jobs of the same task, and is called minimum interarrival

time:

ri,k+1 ≥ ri,k + Ti ∀k ≥ 1 (1.5)

A typical sporadic task has the following structure:

void * SporadicTask(void *)

{

<initialization>;

while (cond) {

<computation>;

<wait event>;

}

}

Finally, there is a class of real-time tasks for which it is not possible to set even

a minimum interarrival time between two consecutive jobs. This kind of tasks, called

aperiodic, does not have any particular timing structure, and typically responds to events

that occur rarely (e.g., a state change) or that happen with an irregular structure (e.g.,

burst of packets arriving from the network).

Definition 16 [126, 32] Aperiodic tasks are real-time tasks which are activated irregularly

at some unknown and possibly unbounded rate. For this kind of tasks, the release time of

the job τi,k+1 is greater than or equal to that of the previous job τi,k:

ri,k+1 ≥ ri,k ∀k ≥ 1 (1.6)

1.7 Hard and Soft Real-Time Tasks

An inherent characteristic of real-time tasks is that the specification of their requirements

includes timing information. A real-time task must complete before its deadline, other-

wise the results could be produced too late to be useful. In safety critical applications,

for instance, a deadline miss could result in serious consequences for the system. The

importance of meeting timing constraints divides tasks into two classes: Hard and Soft

real-time tasks.

Hard real-time tasks are those critical activities whose deadlines can never be missed,

otherwise a critical system failure can compromise the functionality of the system: failure

in meeting timing constraints is a fatal fault and it is as much an error as a failure in the

value domain. In particular, a task can be defined as hard real-time when “a deadline miss

has the potential to be catastrophic” [29] — i.e., the consequences are incommensurably

greater than any benefits provided in absence of failure. This kind of task is typically used

to control or monitor some physical device, and a missed deadline may cause catastrophic
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consequences. For this reason, hard real-time systems cannot compensate some deadline

miss in the worst case with a good performance in the average case, and need an a-priori

study to ensure that all deadlines will be met under any possible conditions.

Hard real-time systems are designed under worst-case scenarios, by making pessimistic

assumptions on system behaviour and on the external environment. This approach allows

system designers to perform off-line analysis to guarantee that the system will be able

to achieve the desired performance in all operating conditions that have been predicted

in advance. However, the consequence of such worst-case design methodology is that

high predictability is achieved at the price of a very low efficiency in resource utilization.

Low efficiency means more memory and more computational power which, in turn, affect

system costs [31].

Hard real-time tasks are needed in a number of application domains, including automo-

tive, air-traffic, avionics, industrial, chemical, nuclear, safety-critical and military controls.

Examples of hard real-time systems operated by batteries or by solar cells are autonomous

robots operating in hazardous environments, like those sent by NASA for exploring the

surface of Mars.

In most large real-time systems, not all computational activities are really hard or

critical. For soft real-time tasks, the timing constraints are important but not critical,

and the system will still work correctly if some deadline is occasionally missed (it does

not compromise the functionality of the system, but there is some kind of degradation

of the performance perceived by the user). Typically, the number of missed deadlines

is related to the Quality of Service (QoS) provided by the application: a deadline miss

does not compromise the correctness of the system, but its QoS degrades. An example

is a real-time system guaranteeing a fixed QoS to each user accessing a shared resource.

Typical requirements on soft real-time tasks are:

• no more than x consecutive missed deadlines;

• no more than x missed deadlines in an interval of time ∆T ;

• the deadline miss ratio (i.e., percentage or total missed deadlines over the total

number of deadlines) not exceeding a certain threshold;

In addition, with respect to hard real-time systems, these systems often operate in more

dynamic environments, where tasks can be created or canceled at run-time, or task pa-

rameters can change from one job to the other.

Typical examples of soft real-time systems are multimedia (e.g., virtual-reality, interac-

tive computer games, home-theaters, audio and video streaming) and telecommunication

applications. In the last years, we noticed an incredible growth of interest in supporting

multimedia applications (e.g., audio and video streaming) on general-purpose operating
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systems. These applications are characterized by implicit, but not critical, timing con-

straints, which must be satisfied to provide the desired QoS. A classical example of soft

real-time task is an MPEG player. The typical frame rate of a video is 25 Frame Per

Second (FPS). If some frame is displayed with a little delay, the user may not even be able

to perceive the effect. If frames are skipped or displayed too late, however, the distur-

bance becomes evident. Avoiding any delay may involve a costly hardware. Using a soft

real-time task, instead, makes possible to allow some occasional delay without affecting

the quality perceived by the user.

The distinction between hard and soft real-time systems is useful for a general discus-

sion but, in practice, many real systems consist of a mixture of hard and soft real-time

tasks. The objective is to guarantee that all hard real-time tasks will always complete

before their deadlines and, at the same time, to maximize the QoS provided by soft real-

time tasks. Clearly, respecting the timing constraints in such hybrid systems is even more

difficult. The problem of mixing hard and soft real-time tasks can be efficiently solved by

using the Resource Reservation framework [84, 85, 87, 86] that will be introduced in Chap-

ter 4. In Chapter 5, we will present a novel energy-aware algorithm called GRUB-PA able

of scheduling both hard and soft, periodic, sporadic and even aperiodic tasks respecting

the timing constraints of each running application.

1.8 Other Constraints

Besides timing constraints (like the deadlines), many further constraints can be defined

for real-time tasks executing on a RTOS. In particular, in real RTOSs we often find the

following kinds of constraints [31]:

- Precedence constraints. Depending on the specific application, it may be not

possible to run the tasks in an arbitrary order (consider, for instance, an assembly

line). Therefore, task precedence constraints need to be taken into account. A task τi

is said to precede another task τj if τj can only start execution after τi has completed

its computation. This kind of constraints can be effectively expressed through a

DAG 1.

- Constraints on shared resources. Real-time tasks may require access to certain

resources other than the processor, such as I/O devices, networking, data structures,

files. When different tasks must access the same resource, it is important to keep

the shared resource in a consistent state. If a task is interrupted while it is using

a resource, in fact, the resource may remain in an inconsistent state. To solve this

1A Direct Acyclic Graph (DAG) is a pair G = (T, P ) where the vertices in T are tasks and the edges
in P represent the precedence constraints. An edge (τi, τj) means that task τi must be completed before
task τj can start execution.
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problem the tasks must access the resource in mutual exclusion, so that at one time

no more than one task has the permission to use the resource.

The implementation of mutual exclusion policies in real-time systems is difficult

because it can lead to a problem known in the literature as priority inversion [117].

This undesired phenomenon creates unbounded delays in the real-time schedule, so

that some important task may miss its deadlines.

A priority inversion happens when a high priority task waits for the lock held by a

low priority task, which, in turn, has been preempted by a task with intermediate

priority. Thus, the high priority task must wait the completion of both the interme-

diate priority task (which is blocking the low priority task) and the low priority task

(which holds the lock on the shared resource). Waiting for an unbounded time, the

high priority task may miss its deadline.

Priority inversion is one of the most critical problems in the development of soft-

ware for real-time systems. An example of priority inversion occurred during the

Pathfinder mission on Mars. In the operating system (VxWorks) a hidden semaphore

shared between two tasks with different priorities was used to protect a pipe. Thus,

the higher priority task missed its deadline whenever the task with lower priority

was preempted by a task with intermediate priority [105].

The Priority Inheritance and Priority Ceiling protocols, first proposed by Sha et

al. [117], solve the problem of unbounded priority inversion [136]. The idea is that

the low priority task inherits the priority of the high priority task while holding the

lock, preventing the preemption by medium priority tasks. In the Priority Ceiling

protocol, for instance, a priority ceiling is assigned to each semaphore, which is equal

to the priority of the highest priority task that may use the semaphore. Before any

task τi enters a critical section, it must first obtain the lock on the semaphore S

guarding the critical section. If the priority of the task τi is not higher than the

highest priority ceiling among all semaphores currently blocked by the other tasks,

then the lock on S is denied and the task τi blocked. When a task τi blocks higher

priority tasks, it automatically inherits the highest priority of the tasks that it is

currently blocking. When τi exits a critical section, it resumes the priority that it

had before entering the critical section. Finally, a task τi not attempting to enter

critical sections can only preempt tasks having lower (inherited or assigned) priority.

We have described these two kind of constraints for completeness. However, we will

consider timing constraints (in particular, the deadline) as the only constraint in our

scheduling model because we consider the processor as the only resource shared among

our real-time tasks and we do not impose any precedence order among tasks.



16 CHAPTER 1. REAL-TIME SYSTEMS

1.9 Taxonomy of Scheduling Algorithms

The real-time scheduling theory addresses the problem of guaranteeing timing constraints

in real-time systems.

Definition 17 A scheduling algorithm A is an algorithm that for each instant of time

t, selects a task to be executed on the processor among the ready tasks. The scheduling

algorithm, applied to a specific task set τ = {τ1, ..., τn}, generates a schedule σA(t), which

is a possible assignment of the processor to the jobs.

A scheduling algorithm should be designed in such a way that the timing behaviour of

the system is understandable, predictable and maintainable. Scheduling techniques can

be classified according to several important characteristics [50] like:

- Adaptation: the ability of the scheduler to detect and adapt to any change in the

application behaviour [7];

- Predictability: the ability to analyze the run-time behaviour by, for instance,

estimating task’s response time and verifying the timing constraints;

- Complexity: the volume of computation required to make scheduling decisions

(e.g., O(n), O(nlogn), O(n2), and so on).

According to these properties, real-time scheduling algorithms can be distinguished

into:

- Static or dynamic priority. A static priority, also called Fixed Priority (FP),

algorithm assigns static priorities to the tasks off-line, but schedules them at run-

time. The schedule itself is not fixed, but the priorities that drive the schedule

are fixed [126]. Static algorithms require prior knowledge about the properties of

the system, but yield little run-time overhead. Rate Monotonic (RM) and Dead-

line Monotonic (DM) are examples of FP algorithms for periodic tasks where the

priorities are assigned according to tasks periods and to relative deadlines, respec-

tively [116].

Another important class of scheduling algorithms is the class of dynamic priority

algorithms, where the priority of a task is computed at run-time and can change

during task execution. Dynamic priority algorithms are typically more flexible than

static priority ones but may suffer of some drawback, like domino effects in case of

overload. Static priority algorithms, instead, are typically more predictable. The

most important (and analyzed) dynamic priority algorithm is Earliest Deadline First

(EDF) [79], where the highest priority is given to the task with earliest deadline —

i.e., the priority of the job is inversely proportional to its absolute deadline.
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- Preemptive or non-preemptive. In preemptive schemes, a low priority task may

be suspended if a higher priority task is available for execution. Alternatively, in

non-preemptive approaches, once started, each task finishes its execution without

interruption from other tasks. Clearly, preemptive schemes are more flexible, but

they also introduce some time overhead due to context switches. Intermediate ap-

proaches, like deferred preemption, exist to avoid preemption during critical time

intervals.

- Centralized or distributed. Centralized algorithms are typically used in (uni-

or multi-processor) systems with shared memory, where the communication over-

head is negligible. Distributed algorithms, instead, are used in distributed systems

where communications take a considerable time, which has to be considered during

feasibility analysis.

1.10 Schedulability tests

The goal of system designers is to prove that all tasks (or, at least, a sufficient percentage

of them) meet their deadlines.

Definition 18 A task set τ is said to be schedulable by the algorithm A if, in the gen-

erated schedule σA(t), every job starts at or after its release time and completes before its

deadline:

ri,j ≤ fi,j ≤ di,j ∀i, j (1.7)

In this case, the generated schedule is said to be feasible.

Definition 19 A task set τ is said to be schedulable if there exist some algorithm that

produces a feasible schedule.

Definition 20 [126] A scheduling algorithm A is optimal if every task set that is schedu-

lable by another algorithm is schedulable also by algorithm A.

This definition of optimality is the typical one used in real-time scheduling [126, 32].

Definition 21 A schedulability test for the algorithm A is an algorithm that, given a

task set τ = {τ1, ..., τn}, returns YES if and only if the task set is schedulable by A.

For periodic tasks, a schedulability test is typically based on the parameter UA
lub (which

stands for “utilization least upper bound”), which is an intrinsic characteristic of the

scheduling algorithm A: if the total utilization U does not exceed the bound (i.e., U ≤
UA

lub), then it is guaranteed that the task set is schedulable by the algorithm A. When

UA
lub < U ≤ 1, instead, the task set may or may not be schedulable by the algorithm.
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Notice that no existing algorithm can schedule task sets having U > 1, since it means that

they are asking for more than 100 percent of processor usage.

In particular, for Rate Monotonic we have that [116]

Ulub = n(21/n − 1) (1.8)

therefore, for large values of n, we have that

lim
n→∞

Ulub = 0.69 (1.9)

This means that under Rate Monotonic the timing constraints are guaranteed only if the

utilization is below a value which is rather far from the optimal total utilization (i.e.,

U = 1).

An important result in the real-time literature is the theorem stating that for the EDF

algorithm Ulub = 1 [79]. This implies the optimality of the EDF algorithm: if a task

set is schedulable using some algorithm, then it is schedulable also by EDF. In fact, if

U ≤ 1, then the task set is schedulable by EDF, otherwise the task set is not schedulable

by any algorithm. In particular, notice that EDF can schedule all task sets that can be

scheduled by fixed priority algorithms, but not vice versa. Energy-aware algorithms are

typically based on dynamic priorities because they need to exploit system resources up to

100 percent.

1.11 Summary

In this chapter, we introduced the real-time scheduling theory. We explained why such

theory is important, and why fast computing cannot guarantee the respect of timing

constraints in any circumstance. Moreover, we provided the definitions, the notation and

the scheduling model that will be used throughout the rest of this thesis.

In the next chapter, we will see how real-time and energy-saving objectives can be

pursued at the same time through the use of energy-aware real-time scheduling algorithms.



Chapter 2

Energy-Aware Scheduling

In this chapter, we describe some architectural aspects concerning the Dynamic Voltage

Scaling (DVS) technique for CMOS digital circuits. Then, we propose a taxonomy of

energy-aware scheduling algorithms and we provide an overview of the state of the art of

the algorithms proposed in the literature so far.

2.1 Energy Constrained Systems

The booming market share of embedded systems (like PDAs, autonomous robots, smart

phones, sensor networks [35] and so on) has promoted energy efficiency as a major design

goal [70]. Many of these systems, in fact, are powered by rechargeable batteries and the

goal is to extend the autonomy of the system as much as possible. Battery lifetime is a

critical design parameter for such devices, directly affecting system size, weight and cost.

Battery technology is improving rather slowly and cannot keep up with the pace of modern

digital systems.

In recent years, as the demand for computing resources has rapidly increased, even

real-time servers and clusters are facing energy constraints [71, 27]. In fact, the growth of

computational speed in current digital systems is mostly obtained by reducing the size of

the transistors and increasing the clock frequency of the main processor. As we will show

in the next sections, power consumption is related to the operating frequency. Thus, the

net effect is a growth of the energy demand and (as a side effect) of the heat generated [99,

63, 81]. Clusters with high peak power need complex and expensive cooling infrastructures

to ensure the proper operation of the servers and manufacturers are facing the problem

of building powerful systems without introducing additional techniques such as liquid

cooling [71, 24]. Moreover, cooling, and hence temperature, is a complex phenomenon

that cannot be modelled accurately by a simple model [62, 114].

In order for these devices to be active for long periods of time, energy consumption

should be reduced to an absolute minimum through energy-aware techniques. At the same
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time, however, it is important to guarantee the timing constraints of the real-time appli-

cations. Many of these devices, for instance, use a soft real-time computation to ensure a

proper Quality of Service (QoS) in telecommunications or in multimedia applications.

Irani et al. [62] wrote a general survey about the current research on several algorithmic

problems related to power management (cooling of microprocessors included).

One of the most energy consuming resources in both embedded and high-end machines

is the main microprocessor. For this reason, modern processors usually support several

operating states with different levels of power consumption [93, 131, 58, 57, 59, 60, 55].

These operating states can be broadly categorized as

- active, in which the processor continues to operate, but possibly with reduced per-

formance and power consumption. Processors might have a range of active states

with different frequencies and power characteristics;

- idle, in which the processor is not operating. Idle states vary in both power con-

sumption and latency for returning the processor to an active state.

2.2 Dynamic Voltage Scaling

2.2.1 CMOS Microprocessors

Nowadays, most digital devices are implemented using Complementary Metal Oxide Semi-

conductor (CMOS) circuits. Power consumption of this kind of circuits can be modelled

accurately with simple equations [63, 99, 50, 70]. Like in other kind of circuits, in CMOS

circuits power consumption can be splitted in two main components:

PCMOS = Pstatic + Pdynamic (2.1)

where Pstatic and Pdynamic are the static and dynamic components of power consumption,

respectively.

In the ideal case, CMOS circuits do not dissipate static power (i.e., Pstatic = 0) since,

in steady state, there is no open path from source to ground. In reality, bias and leak-

age currents through the MOS transistors cause a static power consumption which is a

(usually) small portion of the total power consumed by the circuit.

Dynamic power consumption in CMOS circuits is dissipated during the transient be-

haviour (i.e., during switches between logic levels). Every transition of a digital circuit

consumes power, because every charge or discharge of the digital circuit’s capacitance

drains power. Dynamic power consumption is equal to

Pdynamic =
M
∑

k=1

Ck · fk · V 2
DD (2.2)
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Figure 2.1: Normalized power consumption of well-known microprocessors.

where M is the number of gates in the circuit, Ck is the load capacitance of the gate gk,

fk is the switching frequency of gk per second, and VDD is the supply voltage.

If we assume that the dynamic component is the most dominant one [70], we can

associate a power consumption

PCMOS ∝ f · V 2
DD (2.3)

to the clock frequency f of the microprocessor, as done in [50, 99, 63]. Although not exact,

this is the most used model in the real-time literature for the evaluation and the comparison

of energy-aware scheduling algorithms and, if not otherwise stated, it is the model that

we will assume throughout this thesis. In Figure 2.1, we show the normalized value of the

power consumption of some well-known industrial microprocessors. The resulting values

have been obtained by applying Equation 2.3 to the values taken from the processors

datasheets [130, 131, 58, 57, 59, 60, 56].

Notice that, although the static power is today about two orders of magnitude smaller

than the total power, the typical chip’s leakage power increases about five times each

generation, and it is expected to significantly affect, if not dominate, the overall energy

consumption in integrated circuits. Even if leakage power can be substantially reduced by

cooling, this model of the power consumption may be not suitable for next-generations

microprocessors [50]. For this reason, in Section 3.2.1, we will introduce a general model

for the processor power consumption which considers each mode as a separate entity, and

does not assume any relationship among the energy consumption of each level.
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2.2.2 Processor Speed

For many applications, the microprocessor is the bottleneck of the system and the main

used resource, therefore the assumption that the speed of the running task corresponds

to the speed of the processor is quite natural. Thus, when considering the relationship

between the microprocessor frequency and the task computation time, we can make the

(worst-case) assumption that the number of processor cycles required by the task is con-

stant (i.e., independent of the processor speed α) and that a change of the processor

frequency does not affect the worst case execution cycles (WCEC) of the task. This

assumption is also justified by the experiment described in Section 5.4.2, showing some

experimental results on a real test-bed embedded system.

However, if we want a more accurate model of the system, we must consider that the

processor is not the only resource involved in the computation: even very simple appli-

cations need to access some peripheral (like memory, disk, network card, etc.) through

an external bus. Bus frequencies generally diverge from internal processor frequencies,

and they do not scale at the same rate as processor does. Since bus access time often

limits the performance of data-intensive applications, running the task at reduced proces-

sor frequency has a limited impact on performance. This makes the assumption of the

task speed corresponding to the processor speed a worst-case model. In particular, this

assumption holds only for systems where the memory latency can scale with processor

frequency (mainly, systems with on-chip memory). In contrast, for a system where the

memory latency does not scale with processor frequency (systems with dynamic memory

and memory hierarchies), the WCEC of a task does not remain constant when the pro-

cessor frequency scales. In these systems, in fact, there is a constant access latency for

memory references, and an increase of the processor frequency increases the number of

cycles required to access the memory. Of course, this effect can be relieved using good

caches. However, even if we do not assume perfect caches, it is possible to extend the

model accounting for the total number of cache misses for the task.

Recently, some frequency models to express WCEC bounds as parametric terms whose

components are frequency-sensitive parameters have been proposed in the literature [115,

25]. In these models, cycles are interpreted in terms of the processor frequency, whereas

memory accesses are expressed in terms of the memory latency overhead due to the external

bus speed. Essentially, the execution time Ci of task τi is splitted into two components:

Cα
i =

Ci

α
+ mi (2.4)

where α is the processor speed (expressed in cycles per second, and typically comprised

between 0 and 1), Ci (expressed in processor cycles) scales with the clock frequency, and

mi (expressed in seconds) does not scale.
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Clearly, the amount of computation time that varies with the processor frequency

depends on the particular task and can be different for tasks running on the same system.

This more accurate model has been described for completeness, but it will not be used

in the rest of this thesis. In fact, we are not interested in an accurate model of the task

speed, but rather in a comparative analysis among different energy-aware algorithms.

2.2.3 The DVS Technique

From Equation 2.3, it follows that reducing VDD is the most effective way to lower the

power consumption. This technique is known as Dynamic Voltage Scaling (DVS). Many

modern processors [93, 131, 58, 57, 59, 60, 55] can dynamically lower the voltage to reduce

the power consumption. Unfortunately, a reduction of the power supply voltage causes an

increase of the circuit delay. In turn, the propagation delay restricts the clock frequency

of the microprocessor: the processor can operate at a lower supply voltage, but only if the

clock frequency is reduced to tolerate the increased propagation delay. Thus, in most cases,

when reducing the supply voltage it is necessary to lower also the operating frequency

(i.e., the microprocessor speed). As a consequence, all tasks will take more time to be

executed. In real-time systems, if this frequency change is not done properly, the timing

requirements of the application cannot be respected. Therefore, the advantages of the

DVS technique can be exploited in real-time systems only after a careful identification

of the conditions under which we can safely slow down the processor without missing

any deadline (for hard real-time tasks) or missing a limited number of deadlines (for soft

real-time tasks). This way, the reduction of the power consumption does not affect the

timely execution of important computational activities. In particular, an energy-aware

scheduling algorithm can exploit DVS by selecting, besides the task to be scheduled, also

the processor’s operating frequency at each instant of time. The problem becomes more

difficult in systems with a combination of hard and soft, periodic and aperiodic real-time

tasks.

Real-time systems with variable speed are still described using GANNT charts as

shown in Figure 2.2. This figure is similar to Figure 1.3, with an additional vertical y

axis which represents the current speed of the processor. Thus, the height of the filled

rectangular box representing the assignment of the job to the processor specifies the speed

at which the job itself is executed. The speed of the processor is typically represented

using the α symbol [98, 43, 25]. For an explanation of the parameters shown in the figure,

refer to Section 1.5.

Timeliness and energy efficiency are often seen as conflicting goals. Thus, when de-

signing a real-time system, the first concern is usually time, leaving energy efficiency as a

hopeful consequence of empiric decisions. However, some papers presented in the real-time

literature [17, 18, 112, 141] have shown that both goals can be achieved at design time.
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Figure 2.2: A GANNT chart describing the generic job τi,k on a DVS processor.

Notice that the power consumption scales linearly with the frequency and quadratically

with the voltage — i.e., reducing frequency and voltage together reduces energy per oper-

ation quadratically, but only decreases performance linearly. An important consequence is

that the minimal energy consumption is obtained by running the task at the lowest uniform

speed that allows to meet the deadlines [63, 98]. In fact, the convexity of the power/speed

curve implies that maintaining a constant speed α is better than switching between two dif-

ferent speeds across α. We refer to this speed α as the optimal speed. In practice, however,

processors provide only a finite number of discrete speeds [93, 131, 58, 57, 59, 60, 55], and

the optimal speed may not be available on a certain processor. When the optimal speed

is not available, it has to be approximated with one of the existing values. To prevent any

deadline miss, the processor speed is set equal to the closest discrete speed higher than

the optimal value. This solution, however, causes a waste of energy, especially when the

number of available speeds is small. The increase of energy consumption is called energy

quantization error, and has been studied by Saewong and Rajkumar [109]. Ishihara and

Yasuura [63] have proved that when a processor offers a limited set of speeds, using the

two speeds which are immediately neighbors to the optimal speed minimizes the energy

consumption. Again, this is a consequence of the convexity of the power/speed curve.

Notice that DVS architectures may also have inefficient operating frequencies [109], which

exist when the power/speed curve is not convex (i.e., running the task at higher frequen-

cies reduces the energy consumption). The precise definition of inefficient frequencies will

be given in Section 3.2.1. A simple online tool for inefficient frequency elimination has

been provided in [132]. Removal of inefficient operating frequencies is the first step in any

DVS application.

With the advent of variable speed processors, scheduling acquired the new dimension

of processor speed. Classic real-time scheduling techniques can now be adapted to address

both timing and energy through efficient selection of processor speed. For instance, we have

measured [111] that using both a variable speed processor and a good real-time algorithm

it is possible to save up to 38 percent of the total energy consumed by an embedded system

without missing any deadline. The experiment will be described in Section 5.4.2.
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2.2.4 Overheads

One issue that must be taken into careful consideration is the overhead of changing fre-

quency. Changing frequency is not “free”, as the processor needs some transitory time to

adjust to the new frequency. The duration of this transitory is variable, and varies a lot

from processor to processor. For example, on the Intel PXA250 [58, 57] it can go up to

500µsec. Even though in many soft real-time applications this can be considered negligi-

ble, it should not be ignored. We will show how to account for this delay in Sections 3.2.1

and 5.2.4.

It is also undeniable the presence of an energy overhead at every frequency switch.

This overhead depends on the particular kind of processor the algorithm is running on,

and it is quite difficult to estimate and measure. In Section 3.2.1, we will introduce a

general model for the processor power consumption which accounts for this overhead. In

Section 5.2.4, we will also devise a technique to limit the number of switches in an interval

of time, therefore limiting the maximum amount of energy spent for switching frequency.

2.3 A Taxonomy of Energy-Aware Scheduling Algorithms

Recently, many energy-aware algorithms have been proposed in the literature to exploit

voltage variable processors [112, 98, 18, 101, 141]. In these algorithms, the scheduler,

in addition to selecting the executing task, selects also the operating microprocessor fre-

quency. The problem becomes more difficult in systems with a combination of hard and

soft, periodic and aperiodic real-time tasks. For this reason, most algorithms focus only

on one kind of task (typically, hard periodic real-time tasks), avoiding the more difficult

case of the co-existence of different kinds of task in the same system. In practice, however,

many real systems consist of a mixture of hard and soft real-time tasks. We will present

an energy-aware algorithm capable of handling both kinds of tasks in Chapter 5.

We now present a possible taxonomy of energy-aware scheduling algorithms, which

resembles the one proposed by Kim et al. [65]. Remind that this thesis focuses on energy-

aware scheduling algorithms for uniprocessor systems. The multiprocessor case, in fact, is

much more complex and includes several variants: processors may be homogeneous (e.g.,

SMPs) or heterogeneous (e.g., computer network), the RTOS may have task migration or

may not, etc. Moreover, the lack of optimal scheduling algorithms for real-time multipro-

cessor systems makes the problem of creating energy-aware algorithms with high efficiency

even more difficult. Our proposed taxonomy is summarized in Figure 2.3.

Energy-aware algorithms can be divided into static and dynamic techniques [110, 113],

depending on the scaling decisions be taken off-line or on-line, respectively. Notice that

static is synonym of off-line, whereas dynamic is synonym of on-line, respectively. In fact,

in the former case, the operating system statically chooses the processor speed off-line,
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Figure 2.3: Taxonomy of energy-aware scheduling algorithms.

regardless of the run-time behaviour of tasks. In the latter case, instead, the system

chooses the processor speed dynamically at run-time. This is the typical notation used in

the real-time literature [25, 12, 13, 115, 18, 108].

2.3.1 Static Techniques

Sometimes the system is not fully utilized even if all real-time tasks have a computation

time equal to their worst-case requirement. On EDF, for instance, this happens when the

total utilization U in less than one. In this case, a static “slack” time is present in the

system and it can be identified statically in order to reduce the energy consumption by

reducing the processor speed.

Static techniques [139, 98, 109, 80, 25, 52] are typically applied to periodic tasks, and

make use of off-line parameters, such as periods and worst case execution cycles (WCECs)

to select the appropriate processor voltage/frequency to be used. In this techniques, the

computation of the processor speed is made off-line. Thus, since the worst-case parameters

may differ significantly from the actual values, these techniques save less energy than

dynamic schemes. However, the static strategies are very effective when the parameters

do not vary significantly.

Static techniques can be further divided into four classes, depending on when the

processor speed is changed. These classes are: maximum constant speed, fixed task speed,

stochastic methods and path-based methods.

Maximum constant speed

In this first class of methods, a single constant speed is computed off-line and assigned to

execute all tasks until the task set changes. This speed is defined as the lowest possible
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clock speed that guarantees the feasible schedule of a task set [121]. This technique is also

called “Fixed System Voltage Assignment”.

With this approach, there is no additional overhead for voltage switching at run-time.

However, since the timing constraints of all tasks must be satisfied, the clock frequency

must be the worst case highest clock frequency needed by the task set, which may result

in less energy saving compared to other approaches.

Fixed Task Speed

This second class of static methods is sometimes called “Fixed Task Voltage Assignment”

and belongs to the class of Inter-Task Scaling techniques [65], meaning that the processor

speed is not fixed but statically assigned on a task-by-task basis (i.e., based upon task’s

parameters) before system execution. In other words, given a set of periodic tasks, the

algorithm assigns a possibly different clock frequency to each individual task. The assign-

ments are still computed off-line, and are fixed until the task set changes. Since the task

schedule is periodic, the voltage schedule obtained by this method is also periodic and can

be stored in a table. With respect to fixed system voltage assignment, this technique con-

sumes an additional overhead to scale the processor frequency to the proper value during

a context switch.

Some of these methods propose to assign a different speed to each task [109]. Some

others adopt a more general scheme, where the speed switching instants are more freely

chosen and, typically, occur at the activation/deadline of some job [139, 80].

The major drawback of this approach, which actually prevents its use in real-world

applications, derives from the tight relationship established between the task schedule

and the power management scheme. If, for some reason, some task activation is lost or

delayed, the entire speed assignment is affected, resulting in a potential domino effect on

the other tasks in the system, and some deadline may be missed. In this sense, such a

speed assignment scheme is fragile because it is affected by the misbehaviour of a task.

Running always at a fixed speed is a more robust design practice, because it avoids this

potential problem.

Stochastic method

This method belongs to the class of Intra-Task Scaling techniques [65] meaning that the

processor speed is adjusted within an individual task boundary (i.e., within the execution

of a single job).

This method is based on the idea that it is better to defer some work in the hope that

the current job will have an execution time less than the worst case requirement. Thus,

if the task finishes earlier than its WCET, the high speed may never be needed. The
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method starts task execution at a low speed, and accelerates the processor speed during

task execution. The clock speed is raised at specific time instances, until the job finishes.

Theoretically, if the probability density function of the task execution time is known

in advance, the optimal speed schedule can be computed [49].

Path-based methods

These methods belong to the Intra-Task Scaling techniques as well [65]. In the path-

based methods, the processor frequency is set based on a predicted reference execution

path, such as the Worst Case Execution Path (WCEP). Consider the two branches of a

typical if-then-else statement, which may have very different computation times. If the

application deviates from the longest execution path, then the operating frequency can be

lowered to reduce the energy consumption.

The locations for possible speed transition inside the program can be identified using

static program analysis [119] or execution time profiling [69].

2.3.2 Dynamic Techniques

In most applications, the probability of a task requiring an amount of run-time equal to

its WCET is very low [110]. Some studies have observed that the actual execution cycles

of real-world embedded tasks may vary up to 87 percent with respect to their measured

WCETs [134]. Dynamic techniques take advantage of early job completions, and have

been the topic of much recent research [98, 18, 141, 109, 101, 112].

When a task executes less than its worst case requirement, a dynamic “slack” time is

created as difference between the actual schedule and the worst case scenario. Whereas

static techniques are only capable of reclaiming static slack time, dynamic algorithms can

reclaim dynamic slack time as well, resulting in a greater amount of energy saved — this

additional time can be exploited by the dynamic algorithm to change the schedule at

run-time and further reduce the processor speed [33].

Dynamic methods can exploit information about the run-time behaviour of tasks,

which may be very far from the pessimistic assumptions required at design time. For this

reason, they theoretically allow to reduce energy consumption by a longer amount than

static schemes.

Dynamic algorithms are typically based on slack reclaiming. Most algorithms use at

least one of the following slack estimation techniques.

Stretching to NTA

This simple method to estimate the dynamic slack time consists in computing the Next

Time Arrival (NTA), which is the release time of the next job. Suppose that at time to
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the job τi,j is scheduled for execution. If at such time, NTA is later than (to + WCETi),

then the execution of τi,j can be “stretched” up to NTA (i.e., the processor speed can be

lowered so that the execution of τi,j in the worst case completes exactly at the NTA). This

permits to reduce the processor frequency in the interval of time [to,NTA], as shown in

Figure 2.4.

Processor
Speed

Processor
Speed

NTANTA toto to + WCETi

tt

τi,j

τi,j

Figure 2.4: The Stretching to NTA technique.

Slack stealing

The basic idea of this method is that when a task completes its execution earlier than

its worst case requirement, the following tasks can use the slack time. Typically, tasks

only reclaim the slack time of higher priority tasks to avoid computationally expensive

algorithms [65].

Utilization updating

This technique estimates the current required utilization at any instant of time [65]. When-

ever such utilization changes, the processor frequency is changed accordingly. The main

advantage of this method is the simple implementation. In fact, it does not make any

assumption on task duration, and waits the task completion to know the exact execution

time. Then, it changes the processor speed according to this information.

Prediction methods

If the real-time scheduler knew in advance that a task would complete execution before its

worst case execution time, it would exploit this information to further reduce the power

consumption. Thus, this class of techniques makes decisions in advance, before current

instances of tasks have completed. Typically, these algorithms try to defer some work

in the hope that the current instances will execute less than the worst case scenario.

Obviously, a right prediction allows to considerably reduce the energy consumption (i.e.,

more than using techniques that make decisions only at completion times). However,

when the predicted behaviour is distant from reality, some undesired side effect (such as
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a deadline miss in soft real-time systems or an increase of the energy consumption) may

occur.

Many algorithms try to predict the duration of the current task instance based on some

task’s characteristics such as average execution time. This decision typically depends on

the behaviour of the previous instances of the task. The prediction mechanism can be

very simple (like keeping the average execution time of each task) or more complex (like

exploiting probabilistic information and feedback controllers [68, 67, 141, 39]). The success

of this class of methods relies on predicting the task behaviour correctly. For this reason,

the use of richer task set information may enhance the effectiveness of the DVS. One

important performance metric of these mechanisms is given by the capacity of adapting

to ever-changing workloads as fast as possible.

2.4 State of the Art

We now present a description of the current state of the art of energy-aware scheduling

algorithms presented in the real-time literature so far. A comparison among some of the

algorithms presented here can be found in [120, 65]. The interested reader can refer to

the original papers for the full description of the algorithms.

Irani et al. [62] wrote a brief general survey about current research and open problems

in power management techniques. Their work includes several research fields, like real-time

systems, cooling infrastructures and power reduction to one or more system components.

In particular, they formalize power management issues as algorithmic optimization prob-

lems.

2.4.1 Power Management Points

Concerning path-based methods, Mossé et al. introduced the concept of Power Manage-

ment Points (PMPs) [92] which are pecies of code that manage information about the

execution of program segments (e.g., if-then-else branches) to make decisions about

how to change the processor speed.

AbouGhazaleh et al. [12, 13] then focused on compiler-inserted PMPs and studied the

effect of different overheads on both time and energy when using such mechanism. In

fact, there may be cases where the energy consumption exerted by the overhead of select-

ing and setting a new speed overwhelms any energy savings of a speed setting algorithm.

They proposed an analytical model and a theoretical solution for choosing the optimal

granularity of PMPs in a program. Their results are validated through a series of ex-

periments with SimpleScalar [5], a system software infrastructure used to build modeling

applications for program performance analysis, detailed microarchitectural modeling, and

hardware-software co-verification.
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2.4.2 The PM-Clock Algorithm

In the context of static algorithms, Saewong and Rajkumar [108] provided an algorithm

to find the optimal constant speed assignment for fixed priority real-time tasks [109].

They also proposed the voltage-scaling PM-Clock algorithm for hard real-time systems

using fixed-priority (i.e., Rate Monotonic or Deadline Monotonic) schedulers. The clock

frequency of the processor to execute a periodic task is assigned during the admission

control, and it is fixed until the task set changes. Frequencies are assigned to tasks in such

a way that the frequency assigned to a task is greater than or equal to that assigned to a

lower priority task. The authors proved that the algorithm is optimal in the sense that it

consumes the minimum energy among all possible fixed clock frequency assignments.

Finally, they proposed a dynamic clock frequency assignment algorithm, called Dy-

namic PM-Clock, which minimizes energy consumption when tasks execute less than their

worst case execution times. The algorithm detects the early completion of tasks instances

and makes use of the additional slack time by reducing the processor speed.

2.4.3 The RTDVS Algorithms

Pillai and Shin [98] proposed three different algorithms for periodic hard real-time tasks.

The first algorithm is a static (off-line) algorithm based on the Maximum Constant Speed

technique (i.e., the algorithm selects the minimal constant speed which allows to meet all

the deadlines for the given task set). They derived the optimal algorithm under EDF and

proposed a near-optimal algorithm under Rate Monotonic. In the rest of this thesis, we

will refer to this static algorithm using the name RTDVS-Static.

They also proposed two dynamic algorithms, called Cycle-Conserving and Look-Ahead,

respectively, to take into account the slack time. The Cycle Conserving algorithm assumes

the worst-case at release time and executes at a high frequency until the task completes,

and only then it reduces operating frequency and voltage. This algorithm may need to

dynamically reduce frequency on each task completion, and to increase frequency on each

task release.

The last algorithm (RTDVS-Look Ahead) has a smarter implementation. It defers

as much work as possible, setting the processor frequency to the minimum value which

ensures that all future deadlines will be met. It may require to run at higher frequencies

later to complete all the deferred work in time. However, if tasks tend to use much less

than their worst-case execution times, the peak execution rates for deferred work may

never be needed. All these algorithms have been proposed for both Rate Monotonic and

Earliest Deadline First schedulers.
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2.4.4 The DRA Algorithms

Aydin et. al. [17, 18] proposed the DRA algorithm based on EDF for reclaiming the slack

time. The algorithm permits to schedule periodic tasks in a hard real-time environment,

reducing the energy consumption without missing any deadline. In particular, the DRA

scheme consists of a basic algorithm and of two extensions.

The basic algorithm (DRA-Standard) consists on an on-line speed adjustment mecha-

nism which dynamically reclaims slack time not used by tasks that have completed without

consuming their worst-case workload. The amount of slack time is computed through a

queue of tasks (called α-queue) ordered by the earliest deadline. The queue is used to

compute the earliness of tasks when they are dispatched. At any time it contains informa-

tion about tasks that would be active (i.e., running or ready) at that time in the canonical

schedule Scan. Scan is the static optimal schedule in which every instance presents its

worst-case workload and the processor runs at the constant speed α = max{αmin, Utot},
where αmin is the lowest available processor speed and Utot is the worst case system uti-

lization according to EDF. At time t, this queue contains information about all instances

τi,j such that ri,j ≤ t ≤ di,j and whose remaining execution time is greater than 0. At

dispatch time, the algorithm computes the earliness of tasks and adjusts the processor

speed according to this value.

The “One Task” extension (DRA-OTE) further slows down the processor speed when

there is only one task in the ready queue and its worst-case execution time (under the

current speed) does not extend beyond the next event.

The “Aggressive” extension (DRA-AGGR), instead, speculatively assumes that the

current and future instances of tasks will most probably present a computational demand

lower than the worst case requirements. Hence, it tries to reduce the speed of the running

task by deferring all the work above a certain threshold, which is set according to the

average workload. The algorithm adopts an aggressive approach based on reducing the

speed of the running task under certain conditions to a level which is even lower than the

one suggested by the basic algorithm and the One Task extension. However, when the

worst case scenario happens, the algorithm must increase the processor speed to guarantee

the feasibility of future jobs.

Notice that the original papers [17, 18] contain some mistakes in the description of

the algorithm. We contacted the authors highlighting such issues, thus they published a

technical report to fix the errors [16].

2.4.5 Algorithms by Shin and Kim

Shin and Kim [118] proposed a static and a dynamic algorithm for real-time systems with

both periodic and aperiodic tasks. The idea is to handle the aperiodic tasks through a

dedicated server, and to let the algorithm select the operating speeds of both the periodic
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tasks and the dedicated server.

In particular, the dynamic algorithm can use fixed priority or EDF [79] policy, while the

dedicated server can be a Deferrable Server [73] or a Total Bandwidth Server [124]. Using

the stretching to NTA mechanism and some existing energy-aware algorithms (including

a modified version of the DRA [17, 18, 16] algorithm) they reclaim the slack time for both

periodic and aperiodic tasks.

2.4.6 The DVVST Algorithm

Recently, Qadi et. al. [101] presented the DVSST algorithm that schedules sporadic hard

real-time tasks reclaiming the unused bandwidth to lower the processor frequency. This

algorithm is based on the Utilization Updating technique. The basic idea is to keep track

of the total bandwidth used by all active sporadic tasks with a variable U : when a sporadic

task is activated, U is increased by Ui (the task’s utilization, Ui = Ci

Ti
), and at the task’s

deadline the bandwidth is decreased by Ui. The processor frequency is set depending on

the value of U . The algorithm is not able to reclaim the spare bandwidth that is due to

tasks with variable execution time. Indeed, in the case of periodic tasks, the algorithm

maintains a constant speed, regardless of tasks executing less than their WCET. As we

will see in Chapter 5, our algorithm GRUB-PA, instead, explicitly reclaims the spare

bandwidth of tasks that execute less than the worst case and, therefore, is able to reclaim

spare time in the case of both periodic and sporadic tasks.

2.4.7 Prediction Mechanism by Kumar and Srivastava

Kumar and Srivastava [68, 67] proposed a prediction mechanism for fixed-priority schedul-

ing of soft periodic tasks. The real-time scheduler maintains a history table which specifies

the probability distribution of the actual execution time of each task. For each task the

history table contains n slots, where the ith slot specifies the number of times that the

value of the execution time has been comprised in the range ( i−1
n ·WCET , i

n ·WCET ) —

i.e., the number of jobs whose execution time has been comprised in this interval.

Once a job finishes execution, the prediction mechanism computes the percentage of

the WCET used by the job and then increments the corresponding slot of the history

table. When dispatching a job, the scheduler predicts the actual execution time of the

job as the expected value of the probability distribution. If a job misses its deadline, then

the execution time is assumed to be the WCET of the task, and it is stored in the history

table.

The algorithm is a soft real-time one, with a trade-off between the amount of energy

saved and the number of missed deadlines.
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2.4.8 The DVS-EDF Algorithm

Zhu et al. [43, 141] proposed a novel approach combining feedback control with DVS

schemes targeting hard real-time systems with dynamic workload. The method integrates

a DVS scheduler and a feedback controller within the EDF scheduling algorithm.

The algorithm is called DVS-EDF and divides the execution of each task’s instance

into two portions (see Figure 2.5). The objective is to provide the average number of cycles

Cavg in the first portion, exploiting frequency scaling. The second part at the maximum

processor speed αmax ensures that the deadline is met even when the instance requires a

number of cycles equal to the worst case value.

Processor
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αmax

αL

Cavg

T

f

Figure 2.5: The energy management scheme of DVS-EDF.

Notice that this scheme is equivalent to apply the scheme by Ishihara et al. [63] with

average time for the first part and rely on the WCET for the total time.

The mechanism is based upon a comparison between the actual schedule and the worst

case (called maximal) schedule (i.e., the schedule produced by EDF when the execution

time of every job is equal to the WCET). To decrease the complexity of computing the

amount of slack time in the schedule, the algorithm uses the slack passing technique,

introducing an idle task in the maximal schedule. The WCET and the period of the idle

task are chosen in such a way that the total utilization of the task set is equal to 100

percent.

The control is done using a PID continuous feedback controller. A PID controller con-

sists of three different elements — namely, proportional, integral and derivative controls.

The proportional control influences the speed of the system of adapting to errors. The

integral control is used to adjust the accuracy of the system through the introduction of an

integrator on past errors histories. The derivative control is used to increase the stability

of the system.
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Figure 2.6: The PACE scheme.

2.4.9 PACE Algorithms

Lorch and Smith [81] proposed the Processor Acceleration to Conserve Energy (PACE)

model. This is a static stochastic model that increases speed as the task progresses in

continuous speed processors (see Figure 2.6). The original model proposed by Lorch and

Smith is not very general: it considers only a well-defined power function (i.e., energy

per cycle proportional to the speed square) and does not account for the overhead during

voltage transition.

Xu et al. [137] reviewed the original model making the extension to the case of discrete

speeds and general power functions. Furthermore, they took into account idle power and

speed change overhead. The proposed algorithm is called Practical PACE (PPACE).

None of the above papers dealt with optimal speed transition instants, and it is not

clear how an optimal sequence of transition points can be found. In the original paper

the authors proposed a heuristic to select a “good” sequence of transition points, but they

only justified it under the condition of continuous speed [81]. In the second paper, the

problem of optimal transition points is said to be “still an open problem beyond the scope

of the paper” [137].

An attempt to consider stochastic information in energy reduction problems has been

made also by Gruian [49, 50]. The paper addresses energy-aware scheduling of hard real-

time tasks on fixed priority (i.e., Rate Monotonic or Deadline Monotonic) schedulers, using

stochastic data at both task and task-set levels. However, this study addresses the case

in absence of transition overheads and with a specific power function.

2.4.10 Algorithm by Pouwelse et al.

Some work on soft real-time scheduling has been done by Pouwelse et al. [99, 100]. They

presented a study of power consumption and energy-aware scheduling applied to mul-
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timedia streaming. However, the technique is based on heuristics and cannot provide

guarantees to hard real-time tasks.

2.5 Summary

In this chapter, we discussed how the speed of a CMOS processor can be slowed down

in order to reduce its energy consumption. We explained the need of an energy-aware

real-time scheduling algorithm to guarantee real-time constraints when using the DVS

technique. We also proposed a taxonomy of the scheduling algorithms proposed in the

literature so far, which is very similar to the one proposed by Kim et al. [65]. Finally,

we described the state of the art as well as the most used techniques to reduce energy

consumption in the algorithms proposed so far.

In the next chapter, we will explain how to exploit probabilistic information about

task execution time to reduce energy consumption. We will find the optimal solution for

the basic case of two processor speeds, extending the sub-optimal algorithm proposed by

Zhu et al. [43, 141].



Chapter 3

Optimal Speed Assignment for

Probabilistic Execution Times

As we have seen in Section 2.4.8, Zhu et al. [43, 141] proposed a two-speed scheme in

the DVS-EDF algorithm. Their scheme is equivalent to apply the scheme by Ishihara et

al. [63] with average time for the first part and rely on the WCET for the total time. The

scheme is sub-optimal, and consists on providing the average number of cycles in the first

portion, running the second portion at the maximum processor speed to guarantee hard

real-time constraints.

In this chapter, we extend their approach, providing a novel result in the real-time

literature. We study the problem of energy minimization from an analytical point of

view, integrating the concept of probabilistic execution time within the framework of

energy minimization. In particular, we find the optimal values of the instant of frequency

transition (i.e., transition point) and speed assignments when probabilistic information

about task execution times is known. The optimal values are found using a very general

model for the processor that accounts for idle power and for both the time and the energy

overheads due to voltage/frequency transition. We also show how these results can be

applied to some significant cases.

The results shown in this chapter have been already presented at a conference about

power-aware real-time computing [110] and have been accepted for publication on a special

issue of the International Journal of Embedded Systems (IJES) journal [26].

3.1 Towards a probabilistic model for energy minimization

A major weakness in the approach used when designing most of the energy-aware schedul-

ing algorithms is due to the set of assumptions, often not realistic, which are made to

simplify the solution. Besides ignoring the energy consumed by the processor when it is

idle, these methods often neglect also the delay due to a frequency transition, preventing
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thus the application of research results to real-world systems. In some approaches [69, 88]

such a delay has been considered in the processor model, but only dynamic techniques

aimed at reducing the slack time have been developed. For this reason, we have formulated

a general model for the processor [25, 110, 26], which takes into account both time and

energy overheads due to voltage transition.

In real-time systems, any energy-aware policy acting on the processor speed must take

timing constraints into account, to guarantee the timely execution of all computational

activities. As we have seen in the introduction, hard real-time systems are typically

designed to handle peak loads for safety reasons. However, peak load conditions rarely

happen in practice, and the system resources are underutilized most of the time. For

example, server loads often vary significantly depending on the time of the day or other

external factors, and the average processor use is between 10 and 50 percent of the peak

capacity [27, 107]. These issues are even more critical in embedded systems [138], where

the actual execution times of tasks can vary up to 87 percent with respect to their measured

worst case execution times [134]. This suggests that a striking energy reduction can be

achieved by enriching DVS policies with a more detailed information on the required

workload — i.e., the use of a richer task information may enhance the effectiveness of

DVS.

Recently, the discipline of probabilistic timing analysis has significantly advanced [30,

44], and today there exist tools that can provide the probability density function (p.d.f.)

of task’s execution times [23]. Basically, these tools partition the task code into basic

blocks, which are sequential instructions between two consecutive conditional branches.

The duration of each block depends on the processor status (e.g., caches, pipeline stages,

out-of-order execution, etc.) and it can be modeled by a random variable. The p.d.f.

of the whole task can be extracted by combining the information of every block. This

information can then be exploited to reduce energy consumption.

In this chapter, we show how to integrate the concept of probabilistic execution time

within the framework of energy minimization. We show how probabilistic information

about task’s execution times can be exploited to reduce the energy consumed by the

processor without missing timing constraints. Optimal speed assignments and transition

points are found using a very general model that accounts for processor idle power and

for both time and energy overheads due to frequency transitions. We also show how these

results can be applied to some significant examples.

3.2 Energy management scheme

We focus on the problem of reducing the energy consumed by a hard real-time task τi on a

variable speed processor, following a methodology similar to the one by Zhu et al. [43, 141].
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Other existing energy-aware algorithms [81, 137] have been deployed starting from this

simple scheme, since it constitutes a good starting point for more complex analysis.

In our model, task τi has period and deadline both equal to T . The number of processor

cycles required by the task is modelled by a random variable whose p.d.f. is fC(c). The

maximum possible number of cycles needed by τi is Cmax. Since the task is hard real-time,

Cmax cycles must be available in [0, T ] whenever the task needs them.

If the number of required cycles in [0, T ] was known in advance, it has been shown [63,

99] that using a constant speed during task execution would minimize the energy con-

sumed assuming a continuous speed processor. In fact, the convexity of the power/speed

curve implies that maintaining a constant speed α is better than switching between two

different speeds across α. When the processor offers a limited set of speeds, using the

two speeds which are immediately neighbors to the optimal speed minimizes the energy

consumption [63].

In our scheme, it is not possible to compute the optimal constant speed α because the

actual number of cycles required by the current instance of τi is not known in advance.

In this case, a common technique adopted in the literature [18, 141, 98, 81, 137] is based

upon the idea that the current instance of τi will request much less than its WCEC Cmax.

We apply this technique by splitting task execution into two parts, as shown in Fig-

ure 3.1. In the first part, the processor runs at a lower speed αL to reduce the energy

consumed in the average case. In the second part, instead, the processor runs at a higher

speed αH in order to provide up to Cmax cycles even in the worst case. The idea is that,

if a task tends to use much less than its WCEC, the second part, which consumes more

energy, may never be needed. When the worst-case condition occurs, instead, the speed

increase guarantees the completion of all the deferred work within [0, T ].
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Figure 3.1: The energy management scheme used throughout Chapter 3.
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The idea of deferring work has been widely used in the literature to create several

energy-aware algorithms [98, 18, 141]. However, most of these techniques follow intuitive

ideas (such as providing the average execution cycles in the first part [141]) to simplify

the solution, and do not study the problem of optimal values for speed assignments and

transition instants from an analytical point of view.

In the rest of this chapter, instead, we will show how it is possible to analytically find

the best processor speeds for the first and the second parts of the scheme presented in

Figure 3.1 as well as for the transition instant. We will find such optimal values using a

very general model for the processor, which accounts for idle power and for both the time

and the energy overheads due to voltage/frequency transition. All the simulations in this

chapter have been computed using the Matlab environment [129].

3.2.1 Processor model

As we have explained in Section 2.2, in CMOS circuits, the energy consumption due

to dynamic switching dominates the energy lost by leakage currents, and the dynamic

portion of energy consumption is modelled by well known polynomial relationships [36, 53].

However, as the integration technology advances, it is expected that the leakage will

significantly affect, if not dominate, the overall energy consumption in integrated circuits

(ICs) [61, 103, 50, 28]. Very recently, some work addressed the issue of scheduling a real-

time application while reducing the leakage power as well [102]. Moreover, an important

fraction of the consumed energy depends on the memory. It has been shown [99] that, at

low frequencies, the energy consumption is dominated by the memory, whereas at high

frequencies it is dominated by the processor core.

All these remarks have led us to formulate a general model for the processor energy

consumption [25, 110, 26]. The processor is characterized by a set M = {Λ1,Λ2,Λ3, . . .}
of operating modes.

Each mode Λk = (αk, pk, ok, ek) is described by four parameters:

• αk is the processor speed in mode Λk, measured as number of cycles per second;

• pk is the power consumed in mode Λk when running at speed αk, measured in Watts;

• ok is the time overhead needed to enter mode Λk, measured in seconds;

• ek is the energy overhead spent in the switch to the mode Λk, measured in Joule.

For the sake of simplicity, we assume that ok and ek only depend on mode Λk and

neither on the mode the processor was operating before (i.e., the previous processor mode),

nor on the processor status. We make this assumption in our model to keep the problem

tractable analytically. In fact, we are interested in the optimal solution in a closed form (if

any). Notice that AbouGhazaleh et al. [12, 13] formulated a model where the overheads
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depend also on the previous processor mode. Their model, however, is used to solve a

different class of energy minimization problem. Also, we consider only efficient speeds

meaning that

∀Λi,Λj αi ≤ αj ⇒
pi

αi
≤ pj

αj
. (3.1)

In fact, if this condition is not true for some Λi and Λj, then the mode Λj would be always

more efficient than the mode Λi. In this case the mode Λi is said to be an inefficient

mode. Notice that the “efficiency” of the processor mode is not affected by the value of

the energy and time overheads, but only by the convexity of the power/speed curve (i.e.,

we only consider the efficiency of running at that mode). Inefficient operating frequencies,

thus, can be easily removed from the set of available frequencies [109, 132].

Notice that this model is very general, since it is suitable for both continuous and

discrete speed processors. If the processor can vary its speed continuously, then the set

M is composed by infinite modes; on the other hand, if the processor has only discrete

operating modes then the set M will be finite.

Finally, we suppose that the processor has one idle operating mode denoted by ΛI . The

processor enters idle mode ΛI when all the computation required by the task is completed.

When running in idle mode, the processor does not provide any useful computation (i.e.,

αI = 0). Notice that existing processors have several idle modes presenting different

features. Taking into account only one idle mode ΛI , however, constitutes a good starting

point for considering more complex processors.

3.3 Optimal speed assignment

For our purposes, a speed assignment is optimal when it minimizes the average energy

consumed. Given the p.d.f. of the task computation time fC(c), the expected energy

consumption Eavg can be computed as
∫ +∞

−∞
E(c)fC(c) dc, where E(c) denotes the energy

consumed when the task executes for c cycles. The optimal values of the parameters occur

where the partial derivatives of Eavg are equal to zero.

Table 3.1 contains the glossary and the notations used throughout this chapter.

3.3.1 Average Energy Consumption

In this section, we compute the average energy consumption, based on the probabilistic

information of the task execution time. The optimal values for speed assignments and

transition instants will be computed in Section 3.3.2 starting from this result.

The energy consumed by the processor can be split into two separate contributions:

the active energy EA, consumed when executing the task τi, and the idle energy EI ,

consumed when the task has terminated and the processor has entered mode ΛI . Since
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Symbol Explanation

Λk the kth processor operating mode
αk speed when running in Λk mode
pk power consumption when running in Λk mode
ok the time overhead to enter the Λk mode
ek the energy overhead to enter the Λk mode
ΛL the low speed operating mode
ΛH the high speed op. mode, entered after the speed switch
ΛI the idle op. mode, entered when the task has finished
T the task period and deadline

Cmax the worst-case execution cycles
Cavg the average execution cycles

Cx amount of cycles provided before the mode switch from ΛL to ΛH

Q instant when switching from ΛL to ΛH

fC(c) the probability density function (p.d.f.) of the execution cycles
FC(c) the cumulative distribution function (c.d.f.) of the exec. cycles
GC(c) =

∫ c

0
fC(x)dx. A property of GC(c) is that GC(Cmax) = Cavg

γ(x) = GC(x) + x(1− FC(x)), auxiliary function used to compact the expressions
EA(c) active energy (consumed in modes ΛL, ΛH) when executing c cycles
EI(c) idle energy (consumed in mode ΛI) when executing c cycles
Eavg

A
average active energy

Eavg
I

average idle energy
Eavg average total (active+idle) energy

Table 3.1: Glossary and notations used throughout Chapter 3.

these two terms must be added, they can be considered separately. First, let us compute

the value of the active energy.

Let αL and αH be the lower and the higher processor speeds, respectively. The period

of the scheme is T . The number of processor cycles required by the task τi in each period

is modelled by a random variable whose p.d.f. is fC(c), and the maximum number of

cycles is Cmax. This amount of cycles must be guaranteed in each period because the task

is subject to a hard real-time constraint. Our goal is to find the optimal values for the

two speed levels αL and αH and the instant of time Q when to switch.

Let Cx be the number of cycles provided while running at αL, as shown in Figure 3.1.

Let also be c the actual number of cycles required by the current instance of τi, and f the

finishing time of the task. We distinguish two different cases:

1. if c ≤ Cx, then the task terminates before the speed switch, and we expect f ≤ Q;

2. otherwise, if c > Cx, then we need to run at speed αH to provide the required cycles

and we expect f > Q + oH .

We consider the two cases separately.

In the first case (c ≤ Cx), the finishing time is

f = oL +
c

αL
(3.2)
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and the active energy consumed in one period T is

EA = eL + pL (f − oL) = eL +
pL

αL
c. (3.3)

On the other hand, when Cx < c ≤ Cmax, we have

f = Q + oH +
c− Cx

αH
(3.4)

and the energy consumption is

EA = eL +
pL

αL
Cx + eH +

pH

αH
(c− Cx). (3.5)

The overall behaviour of the energy consumption as function of the number of cycles c is

reported in Figure 3.2. Notice that, due to the assumption of Equation 3.1, the slope pH

αH

is greater than pL

αL
.

Cmax

eL

eH

c

Cx

EA

pL

αL

pH

αH

Figure 3.2: The active energy EA vs. the computation time c

Equations 3.3 and 3.5 provide the active energy EA consumed when the number of

cycles is c. Since the number of cycles is a random variable with p.d.f. fC(c), then the

energy consumed is a random variable as well. Our goal is to minimize the expectation

Eavg
A of the random variable EA, whose value is

Eavg
A =

∫ Cx

0

EA fC(c) dc +

∫ Cmax

Cx

EA fC(c) dc

=

∫ Cx

0

(

eL +
pL

αL
c

)

fC(c) dc +

∫ Cmax

Cx

(

eL +
pL

αL
Cx + eH +

pH

αH
(c− Cx)

)

fC(c) dc

= eL +
pL

αL
GC(Cx) +

(

eH −
(

pH

αH
− pL

αL

)

Cx

)

(1− FC(Cx)) +
pH

αH
(Cavg −GC(Cx))

= eL + eH(1− FC(Cx)) +
pH

αH
Cavg −

(

pH

αH
− pL

αL

)

(GC(Cx) + Cx(1− FC(Cx)))
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where we set

FC(x) =

∫ x

0

fC(c) dc GC(x) =

∫ x

0

c fC(c) dc.

For compactness, if we also set

γ(x) = GC(x) + x(1− FC(x)), (3.6)

the average active energy Eavg
A consumed in a period can be written as

Eavg
A = eL + eH(1− FC(Cx)) +

pL

αL
γ(Cx) +

pH

αH
(Cavg − γ(Cx)) (3.7)

Notice that GC(Cmax) is equal to Cavg, by definition. For this reason, we always have

0 ≤ γ(x) ≤ Cavg for all x.

Accounting for the idle power Equation 3.7 takes into account only the energy

consumed when the processor is running the task. We now evaluate the contribution EI

to the energy consumed by the processor after the task has terminated. This contribution

is

EI = eI + pI(T − f − oI)

where eI and oI are the energy and time overheads to enter the idle mode, respectively,

and f is the finishing time of the task.

From the previous Equations 3.2 and 3.4, which established the relationship between

the required number of cycles and the finishing time f , we can express EI as function of

the number of cycles c. Hence, we have

EI =







eI + pI(T − oL − c
αL
− oI) if c ≤ Cx

eI + pI(T − oL − Cx

αL
− oH − c−Cx

αH
− oI) if c > Cx

(3.8)

Similarly as done for the active power consumption, we calculate the average con-

sumption of idle energy by integrating Equation 3.8 with the p.d.f. fC(c) of the number
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of cycles.

Eavg
I

=eI + pI

(

T − oL − oI −
∫ Cx

0

c

αL

fC(c) dc−
∫ Cmax

Cx

(

Cx

αL

+ oH +
c− Cx

αH

)

fC(c) dc

)

=eI +pI

(

T− oL− oI−
∫ Cmax

0

(

Cx

αL

+ oH +
c− Cx

αH

)

fC(c) dc

+

∫ Cx

0

(

Cx

αL

+ oH +
c− Cx

αH

− c

αL

)

fC(c) dc

)

=eI + pI

(

T− oL− oI−
Cx

αL

− oH−
Cavg − Cx

αH

+

(

Cx

αL

− Cx

αH

+ oH

)

FC(Cx)

+

(

1

αH

− 1

αL

)

GC(Cx)

)

=eI + pI

(

T − oL − oI − oH(1− FC(Cx))− Cavg

αH

−
(

1

αL

− 1

αH

)

γ(Cx)

)

where we used the definition of γ(x) given in Equation 3.6. We can write Eavg
I in a more

compact form as

Eavg
I = eI + pI

(

T − oL − oI − oH(1− FC(Cx))− Cavg − γ(Cx)

αH
− γ(Cx)

αL

)

(3.9)

Finally, if we add Equation 3.7 and Equation 3.9 we find that

Eavg = eL + eI + pI(T − oL − oI) + (eH − pIoH)(1− FC(Cx))

+
pL − pI

αL
γ(Cx) +

pH − pI

αH
(Cavg − γ(Cx)) (3.10)

Equation 3.10, which extends Equation 3.7 to the case of idle power, is a new result in

the literature and an original contribution of this thesis. It expresses the average energy

consumption as function of the probability density of the task execution cycles, taking

also into account the idle power and the overheads.

Now an essential remark is in order. Equation 3.10 can be obtained from Equation 3.7

by the following substitution

ẽL = eL + eI + pI(T − oL − oI) ẽH = eH − pIoH

p̃L = pL − pI p̃H = pH − pI

Hence, we can say that, in our model, the idle power can be taken into account by a simple

adjustment of the operating modes. For this reason, unless specified differently, in the rest

of the paper we will consider only Equation 3.7.
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3.3.2 Finding the minimum energy consumption

Equation 3.7 is valid for processors with discrete as well as continuous operating modes.

Taking into account discrete operating modes requires the evaluation of the energy con-

sumed by all the mode pairs. The problem then becomes to find the optimal pair with

the lowest total energy consumption. The complexity of this evaluation process is O(m2),

where m is the number of available efficient operating modes.

For processors with continuous operating modes, instead, it is possible to analytically

find the optimal values for speed assignments and transition instant. We know that no

existing processor can vary its frequency with continuity. In fact, all processors that

support DVS provide a set of operating modes, each one characterized by a value of

frequency and voltage [131, 57, 59, 60, 55]. However, many significant contributions in the

literature [18, 98, 141, 112] assume a continuous speed because if the processor speed levels

are very close each other, then this approximation is very close to reality. Obviously, if the

optimal speed is not available, it has to be approximated with the closest discrete speed

higher than the optimal one. In this case, there is an increase of energy consumption,

called energy quantization error, that has been studied by Saewong and Rajkumar [109].

In the continuous model, we assume that

• all operating modes Λk require the same time overhead o and energy overhead e.

Formally, we have that ∀k ek = e, ok = o;

• the speed α varies within [0, αmax], where αmax is the maximum speed allowed by

the processor;

• the power consumption at speed α is modelled by the function p(α). Typically, the

power function p(α) is a polynomial [36]. However, as stated earlier, it is expected

that the power/speed relationship may differ from the ideal polynomial function [50].

For this reason we model this relationship by a generic function p(α).

Differently from the case of discrete operating modes, in the case of continuous op-

erating modes we can find the conditions of minimum energy consumption (i.e., optimal

transition instant and speed levels) starting from Equation 3.7.

The speeds (αL, αH) can be expressed as function of Cx and Q, as follows

αL =
Cx

Q− o
αH =

Cmax − Cx

T −Q− o
. (3.11)

These equalities follow directly from the adopted energy management scheme as shown

in Figure 3.1. In the remainder of this chapter, we will develop the energy management

scheme using Cx and Q as our free variables.
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It is very insightful to plot the quantity Eavg on a plane (Cx, Q). Figure 3.3 shows the

3-D surface of Eavg, when we assume that the execution cycles are uniformly distributed

in [2, 10], the period T is 2 and the power function is p(α) = k α3.

Cx

Q

log(Eavg)

Figure 3.3: Eavg for uniform execution times.

Another example is presented in Figure 3.4, which shows the level curves of the quantity

Eavg as function of Cx and of Q. In the plot, we assumed an exponential p.d.f. with average

value Cavg = 0.2929, a period T equal to 1 and a power function p(α) = k α3.

C
x

Q

0 0.2 0.4 0.6 0.8 1
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Figure 3.4: Level curves of Eavg for exponential p.d.f.



48 CHAPTER 3. OPTIMAL SPEED ASSIGNMENT FOR PROBABILISTIC EXECUTION TIMES

The minimum occurs at the center of the white region for a value of Cx greater than

Cavg.

The minimum of Equation 3.7 can be found analytically by calculating the partial

derivative of Eavg with respect to the variables (Cx, Q). Let p′H = dp
dα(αH) and p′L =

dp
dα(αL). We have:

∂Eavg

∂Cx
=− e fC(Cx)−

(

p′H −
pH

αH

)

Cavg − γ(Cx)

Cmax − Cx
− pH

αH
γ′(Cx)

+

(

p′L −
pL

αL

)

γ(Cx)

Cx
+

pL

αL
γ′(Cx) (3.12)

where we used the property that, from Equation 3.11, it follows:

αL
′ =

∂αL

∂Cx
=

1

Q− o
=

αL

Cx
=⇒αL

′

αL
=

1

Cx

αH
′ =

∂αH

∂Cx
= − 1

T −Q− o
= − αH

Cmax − Cx
=⇒αH

′

αH
= − 1

Cmax − Cx

An equivalent property can also be found for the differentiation with respect to Q. In

fact, we have

∂αL

∂Q
= −Cx

Q2
= −αL

2

Cx
=⇒αL

′

αL
2

= − 1

Cx

∂αH

∂Q
=

Cmax − Cx

(T −Q− o)2
=

αH
2

Cmax − Cx
=⇒αH

′

αH
2

=
1

Cmax − Cx

(3.13)

Now we complete the analysis of the function Eavg by computing ∂Eavg

∂Q , which can be

greatly simplified thanks to Equation 3.13. Notice that, differently from Equation 3.12, in

the next equation αL
′ and αH

′ denote ∂αL

∂Q and ∂αH

∂Q , respectively.

∂Eavg

∂Q
= (p′HαH − pH)

Cavg − γ(Cx)

Cmax − Cx
− (p′LαL − pL)

γ(Cx)

Cx
(3.14)

Equations 3.12 and 3.14 are the components of the gradient ∇Eavg. From functional

analysis, we know that the minimum satisfies the condition ∇Eavg = 0. Once the optimal

(Cx, Q) is found, then the constraint αH ≤ αmax must be checked. In fact, if it is violated,

it means that the global minimum would result in a too high value of αH . In this case,

from the Kuhn-Tucker conditions, we know that the minimum occurs when αH = αmax,

which means that

Cmax − Cx

T −Q− o
= αmax ⇒ αL =

Cx αmax

αmax(T − 2o)− Cmax + Cx
(3.15)
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From Equation 3.7, substituting αH with αmax and αL with the expression of Equa-

tion 3.15, we find Eavg as function of the unique variable Cx. The minimal energy solution

is found by applying classical techniques of functional analysis of one-variable functions.

3.4 Examples

After the main equations for the general case are found, we show how they can be applied

to find the optimal (Cx, Q) in some significant examples.

When considering continuous speed levels, a common assumption is that the relation-

ship between the power consumption p and speed α is

p(α) = k αn

for some k, n. The typical value of n is 3. However, we keep the general form as long as

the math is tractable. In these hypothesis, the gradient can be simplified as follows:



































∂Eavg

∂Cx
=− e fC(Cx)−k

((

(n− 1)
Cavg− γ(Cx)

Cmax −Cx
+ γ′(Cx)

)

αH
n−1

−(n− 1)

(

γ(Cx)

Cx
+ γ′(Cx)

)

αL
n−1

)

∂Eavg

∂Q
=k (n− 1)

(

αH
n Cavg − γ(Cx)

Cmax − Cx
− αL

n γ(Cx)

Cx

)

In order to find the conditions of minimum energy, we have to set both the gradient

components equal to zero. The math is greatly simplified by assuming no overhead (e = 0

and o = 0). If we do so, by setting ∇Eavg = 0, we finally find that the pair (Cx, Q)

minimizing the average energy Eavg must satisfy Equations 3.16.



















(n− 1) γ(Cx) + Cxγ′(Cx)

(n− 1) (Cavg − γ(Cx)) + (Cmax − Cx)γ′(Cx)

(

Cmax

Cx
− 1

)(

Cavg

γ(Cx)
− 1

)

=
T

Q
− 1

(

Cmax

Cx
− 1

)n−1( Cavg

γ(Cx)
− 1

)

=

(

T

Q
− 1

)n

(3.16)

For their importance, in the rest of the chapter we will refer to the Equations 3.16 with

the name of minimum stochastic energy equations. Once we know n and the probability

density fC(c), Equations 3.16 can be solved to obtain the pair (Cx, Q) that minimizes the

energy consumption.
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3.4.1 Uniform Density

Let us now assume a uniform density between Cmin and Cmax. It means that

fC(c) =







1
Cmax−Cmin

if Cmin ≤ c ≤ Cmax

0 otherwise

and also, when Cmin ≤ c ≤ Cmax,

FC(c) =
c− Cmin

Cmax − Cmin
GC(c) =

c2 − Cmin
2

2(Cmax −Cmin)
.

The function γ(c), defined in Equation 3.6, and its derivative are, respectively,

γ(c) =
−c2 + 2cCmax − Cmin

2

2(Cmax − Cmin)
γ′(c) =

Cmax − c

Cmax − Cmin

In this case, the minimum energy can be simply found by properly substituting γ(Cx)

and γ′(Cx) in the minimum stochastic energy equations (3.16). To simplify and compact

them, it is very convenient to normalize the cycles Cx and Cmin with respect to Cmax.

Hence, we set x = Cx

Cmax
and a = Cmin

Cmax
.
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Figure 3.5: The optimal number of cycles in case of uniform density and polynomial power
function.

When n = 2, after a long algebraic manipulation, we find that the minimum point is
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the solution of the polynomial

3x2 − (2 + a2)x2 + a2 x + a4 = 0

Since the admissible solution x must be within [a, 1], due to the fact that Cmin ≤ Cx ≤
Cmax, we find that the only admissible solution is

xopt =
1 +
√

1 + 3 a2

3
. (3.17)

In the same way, if we assume a more realistic power function with n = 3, the polyno-

mial to be solved becomes

4x5 − (10 + 4 a2)x4 + (5 + 12 a2)x3 − (5 a2 + 2 a4)x2 − a4 x + a6

whose only admissible solution in [a, 1] is

xopt =
5−
√

5 +
√

2
√

5(3 −
√

5)− 8(1 −
√

5) a2

8
(3.18)

From both Equations 3.17 and 3.18 it is possible to see that, under the conditions of

this example, the optimal value is always greater than Cavg. Figure 3.5 shows the optimal

value in both cases. On the x axis we showed the Cmin

Cmax
ratio, whereas the y axis represents

the optimal number of cycles Cx provided before the processor mode switch (normalized

with respect to Cmax).

Notice that the closer is Cmin to Cmax, the closer is Cx to Cavg (therefore the improve-

ment over the solution proposed by Zhu et al. [141] becomes smaller). In particular, when

Cmin = Cmax, the task has a computation time Cx = Cmin = Cmax. In this case, the

two schemes are equivalent because the task has a deterministic behaviour and the actual

number of cycles required by the task is known.

For any other value of Cmin, however, our solution allows to save more energy than the

sub-optimal solution proposed by Zhu and Mueller [141] (i.e., setting Cx equal to Cavg):

providing Cavg cycles at speed αL, in fact, would increase the average energy consumed in

the period with respect to using our solution.

The actual number of cycles (i.e., the value of the Cmin

Cmax
ratio) depends by the particular

task and there are not typical values. However, some studies have observed that the actual

execution times Cx of tasks in real-world embedded systems can vary up to 87 percent

with respect to their measured worst case execution times Cmax [134].
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3.4.2 Exponential Density

The probability density considered in the previous section is very simple and it allows

to compute the exact pair (Cx, Q) that minimizes the average energy consumption. We

consider now a more sophisticated density fC(c) that better captures the characteristics

of real execution times. Without loss of generality, we normalize the number of cycles by

Cmax so that the possible values of cycles are in [0, 1]. As done before we set a = Cmin

Cmax
.

We consider the following exponential p.d.f.:

fC(c) =







1
K eβc(1− c)(c − a) if c ∈ [a, 1]

0 otherwise
(3.19)

where K is a proper constant such that
∫ 1

a fC(c)dc = 1. The presence of β allows to alter

the symmetry of the density. In fact, for negative values of β the density shifts to the left,

meaning that values closer to Cmin are more likely to happen. On the other hand, positive

values of β means that execution cycles closer to Cmax occur more frequently. Figure 3.6

shows the shape of some possible functions.
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c

fC(c)

Figure 3.6: Exponential probability density functions.

Unfortunately, when dealing with exponential densities, the minimal energy (Cx, Q)

pair can only be found by numerical approximation. We investigated the effect of the

p.d.f. asymmetry onto the solution. The result is quite interesting. In Figure 3.7 we plot

the ratios Cx

Cavg
and Q

T , assuming a = Cmin

Cmax
= 0.2. The line above (i.e., Cx

Cavg
) represents

the percentage of cycles executed in the first part with respect to the average number of

cycles. The line below (i.e, Q
T ) represents the mode switch instant Q with respect to the

task period T .
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Figure 3.7: The optimal (Cx, Q) pair as function of the symmetry for exponential p.d.f.

A first result, also noticed for uniform density, is that the optimal Cx is always greater

than Cavg. This fact is evidenced by the black curve which is always above 1. We also

highlight that for big positive values of β (meaning that values closer to Cmax are more

likely to occur), Cx tends to Cavg.

3.4.3 Impact of the overheads

In this experiment, we evaluate the impact of the energy overhead e and the time over-

head o on the energy consumed. For this purpose, we fix the p.d.f. fC(c) equal to the

exponential density with β = −50 (we already explained the meaning of this parameter in

Section 3.4.2), and the power function p(α) = α3. Then, we vary the time overhead o and

the energy overhead e and, for each value, we compute the average energy consumption

Eavg.

The results are plotted in Figures 3.8 and 3.9. As expected, increasing the overheads

results in an increase of the energy consumed.

The particular value β = −50 is just an example, and it does not affect the shape of

the plot. We can show, in fact, that different values of β lead to similar (i.e., increasing)

curves. The shapes are not identical because the value of β affects the value of Cavg which,

in turn, affects the value of Eavg.

3.4.4 Idle power

As remarked at the end of Section 3.3.1, the energy consumed during the idle operating

mode ΛI can be taken into account by adjusting properly the parameters of the two modes
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Figure 3.8: Impact of the time overhead o on the average energy consumption using an
exponential p.d.f. with β = −50 and a cubic power function.
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Figure 3.9: Impact of the energy overhead e on the average energy consumption using an
exponential p.d.f. with β = −50 and a cubic power function.

ΛL and ΛH .

In this section we evaluate the impact of the power pI consumed during the idle mode

on the optimal values of the speed switch. In the experiments, the p.d.f. is set equal to

the exponential density and the power function is assumed to be cubic. In Figures 3.10,

3.11 and 3.12 we plot the results.

The increase of the average finishing time favg shown in Figure 3.10 is justified by the

fact that the processor consumes energy during the idle mode ΛI as well. To not waste

energy, it is more convenient to stay in active mode for a longer time by deferring the
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Figure 3.10: Impact of the idle power on the finishing time using an exponential p.d.f.
and a cubic power function.
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Figure 3.11: Impact of the idle power on the speed αL using an exponential p.d.f. and a
cubic power function.

average finishing time favg. Thus, the higher is the value of PI , the higher is the average

finishing time favg (i.e., the shape is monotonically non-decreasing). This is confirmed by

our experimental simulations using the Matlab environment [129].

Clearly, as the average finishing time favg increases, it is possible to lower the speeds

αL and αH , as confirmed by Figures 3.11 and 3.12.
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Figure 3.12: Impact of the idle power on the speed αH using an exponential p.d.f. and a
cubic power function.

3.5 Summary

In this chapter we showed that reducing energy consumption while still meeting real-

time constraints is actually possible. In particular, deferring the work is a very effective

technique when the actual number of cycles is unknown in advance.

We proposed a very general model for the processor that accounts for the idle power and

for both the time and the energy overheads due to frequency transitions. We also computed

the optimal values for the speed assignments and the transition instant within our energy

management scheme. Our scheme is an improvement of the sub-optimal mechanism used

in the DVS-EDF algorithm proposed by Zhu et al. [43, 141] (i.e., applying the scheme by

Ishihara et al. [63] with average time for the first part and rely on the WCET for the total

time).

We also studied how the overhead and the idle power affect the optimal values. Very

interestingly, we showed that, in our model, the power consumed during the idle operating

mode can be easily taken into account by adjusting the active operating modes of the

processor.

Finally, we showed how our results can be applied to some significant cases (namely,

uniform and exponential densities).

In the next chapter we will introduce the Resource Reservation technique, that will be

used as basis for the development of our energy-aware scheduling algorithm, GRUB-PA,

presented in Chapter 5.



Chapter 4

Resource Reservations

Since the GRUB-PA algorithm presented in Chapter 5 is based on the Resource Reser-

vation framework (in particular, on the GRUB algorithm), we now recall some concepts

about this technique and we briefly describe the original GRUB algorithm. The interested

reader can refer to the original papers [76, 75, 77] for a more detailed presentation of the

original algorithm.

During this chapter, we will also investigate some anomalies in the schedule generated

by the CBS [6] and GRUB [76, 75, 77] algorithms and we will propose a novel algorithm,

called HGRUB [11], which maintains the same features of CBS and GRUB but it is not

affected by the problems described.

Throughout this chapter, we will assume that the processor speed is set to the max-

imum and is not changed. Then, in the next chapter, we will show how it is possible to

extend the GRUB algorithm to exploit DVS.

4.1 An introduction to Resource Reservations

We are interested in developing an energy-aware scheduling algorithm that can handle

both hard and soft, and periodic, sporadic and aperiodic tasks. The problem of mixing

hard and soft real-time tasks can be efficiently solved by using the Resource Reservation

framework [104, 39]. The basic idea behind the Resource Reservation technique consists

on reserving a fraction of the processor time to time-sensitive applications through real-

time scheduling. The mechanism works as follows. Each real-time task τi is assigned an

abstract entity called server characterized by a maximum budget Qi and a period Pi, the

interpretation being that the task can use the processor for at least Qi units of time every

period Pi. In particular, the server current budget qi is a value comprised between zero

and Qi which measures the amount of remaining processor time that the task τi can use

during the current period Pi. Notice that the server period Pi may differ from the task

period Ti depending on the needs of the system designer — the server acts as a periodic
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task having WCET = Qi and period Pi, regardless of the task served by the server, that

can be periodic, sporadic or aperiodic.

The goal of the system-wide scheduler is then to schedule run-time resources in such a

way that each server is guaranteed a certain (quantifiable) level of service, with the exact

guarantee depending upon the server parameters. That is, the server parameters represent

its contract with the system, and the system global scheduler is obliged to fulfil its part of

the contract by providing the level of service contracted [76].

Many server algorithms for both fixed priority (e.g. Polling Server, Deferrable Server,

Sporadic Server) and dynamic priority schedulers (e.g., Constant Bandwidth Server, Con-

stant Utilization Server, IRIS) [72, 122, 124, 6] have been proposed in the literature.

Typically these algorithms differ in the way the budget is replenished and priorities and

deadlines are updated. When the tasks execute less than expected, the remaining slack

time can be used to reduce the response time of soft aperiodic tasks. Techniques for using

this slack time are usually referred to as reclamation techniques. Examples of such recla-

mation techniques for resource reservation under dynamic scheduling have been already

proposed [76, 33].

4.1.1 Temporal isolation

Multiprogrammed computer systems are expected to execute several tasks concurrently.

When some (or all) of these tasks correspond to real-time applications, it is important

that the underlying scheduling policy has the following features:

1. Each individual task should be guaranteed a certain level of service, and

2. There should be effective isolation among tasks — a misbehaving task should not be

able to cause an unacceptable degradation in performance in other (well-behaving)

tasks.

All resource reservation algorithms provide the temporal isolation property: the tempo-

ral behaviour of each task (i.e., its ability to meet its deadlines) is isolated from the rest of

the system and it is not affected by the behaviour of the other tasks. If a task misbehaves

and requires a large execution time, it cannot monopolize the processor. Thanks to the

temporal isolation property, each task executes as it were on a slower dedicated processor,

so that it is possible to provide real-time guarantees on a per-task basis. Such property is

particularly useful when mixing hard and soft real-time tasks on the same system.

More formally, a Resource Reservation RSVi on a resource R for a task τi is described

by the tuple (Qi, Pi), meaning that the task is reserved the resource R for a time Qi every

period Pi. Qi is also called maximum budget of the reservation, and Pi is called reservation

period. As stated in Chapter 1, we are considering the processor as the only resource R
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allocated to the real-time tasks. Furthermore, we restrict our attention to preemptive

uniprocessor systems.

4.1.2 Qualitative comparison with Proportional share

As introduced in the previous section, the utilization of the reservation Ui = Qi

Pi
represents

the percentage of resource that we want to reserve to the task τi, whereas the reservation’s

period Pi represents the temporal granularity of the reservation.

Resource reservations present similarities with other classes of scheduling algorithms,

like proportional share algorithms (EEVDF [127], WF2Q [21], etc.) or p-fair [51]. Such

algorithms usually fix a scheduling quantum for the whole system, and then assign each

task a weight wi. Each task receives a percentage of service proportional to

wi
∑

j∈Active wj
. (4.1)

There are many differences between resource reservations and these scheduling tech-

niques. The goal of proportional share algorithms is to emulate a fluid allocation system,

like the Generalized Processor Sharing (GPS) [97], as close as possible. More formally,

these algorithms bound the lag — i.e., the maximum difference in the service provided

by the actual system and the ideal fluid system. The objective of resource reservations,

instead, is to provide real-time execution (i.e., completion before deadline) to hard and

soft real-time tasks.

Another objective of proportional share systems is to fairly distribute the bandwidth

to all tasks in proportion to their weight. In other words, the allocation specification

is always a relative parameter, and not absolute. Instead, fairness is not a concern for

Resource Reservation algorithms.

In proportional share systems, each task is assigned a single parameter, the weight,

whereas the scheduling quantum is a global system parameter. Therefore, in such systems,

the temporal granularity is a system-wide property. Resource Reservations, instead, assign

to each task two parameters, Qi and Pi, respectively. In particular, it is possible to assign

a different temporal granularity to each application, depending on its needs.

Typically, the additional degree of freedom of real-time systems allows to provide more

guarantees about tasks timing constraints while decreasing the number of preemptions [11].

Assigning the values Qi and Pi to each task in the system is not easy, of course.

However, it is important to highlight that this thesis focuses on the scheduling algorithm,

and not on the policies for dynamically assigning and modifying the scheduling and the

reservation parameters. Many papers deal with heuristic algorithms and feedback control

schemes for adapting the scheduling parameters to the need of the application [10, 95, 141,

39, 7]. We prefer to keep the scheduling algorithm separate from such policies because we
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firmly believe that the problem of selecting the server parameters is a higher level problem

that depends on the characteristics of the application.

4.1.3 The CBS class of schedulers

The first example of a Resource Reservation algorithm was the CPU Capacity Reserve

proposed by Mercer and Tokuda [85]. According to this algorithm, each task is assigned

a budget qi that is decreased during task execution. The processor is scheduled according

to Fixed Priority and a task is allowed to execute only when its budget is greater than

zero. The budget is periodically recharged to Qi every Pi units of time. This is basically

the behaviour of the Deferrable Server (DS) algorithm [128], where each task is served by

a dedicated server. Unfortunately, aperiodic activations and deactivations can break the

reservation behaviour, as shown in [9].

The Constant Bandwidth Server (CBS) algorithm [6] is an algorithm belonging to

the class of aperiodic servers with dynamic priorities. It derives inspiration from the

service mechanisms proposed in the Dynamic Sporadic Server (DSS) [124, 47] and the

Total Bandwidth Server (TBS) [123, 124], and uses dynamic priorities to correctly cope

with dynamic aperiodic arrivals.

A limit of some aperiodic servers with dynamic priorities is that they rely on the knowl-

edge of execution times of served aperiodic tasks. In some cases, though, the execution

time of a task is unknown, or extremely variable from an instance to another (consider, for

example, a MPEG player). In these cases, the use of a hard real-time system to manage

this kind of applications would be unsuitable for two reasons:

• First, the worst case execution time (WCET) of the job could be much higher than

its average execution time. Since the guarantees for hard real-time tasks are given

on the basis of the WCET (and not on the basis of the average execution time),

this kind of applications could cause an enormous waste of resources. In fact, the

system is sized according to the WCET of each real-time task, and this leads to a

very partial utilization of the performance that it could offer.

• Second, it is difficult to provide an exact evaluation of the WCET. The fact that the

real-time guarantees depend on the evaluation of the WCET of each job, makes the

hard real-time system weak respect to some mistake in this evaluation. If a job does

not respect the evaluated execution time, another task could miss its deadline.

In the CBS algorithm, each task τi is scheduled through a server, which is characterized

by the parameters Qi and Pi described above and by two variables: the current budget qi

and a scheduling deadline ds
i . The current budget qi measures the processor time consumed

by the task τi in the current period. It is comprised between 0 and Qi, and periodically

recharged to Qi. The scheduling deadline, ds
i , is used to keep all active servers ordered
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in an Earliest Deadline First (EDF [79]) queue. The server with the earliest deadline is

selected to be executed. One peculiarity of the CBS algorithm is the rule for recharging

the budget when it is “depleted” (i.e., it reaches zero):

• When the budget qi is depleted and the task has not completed its execution yet,

the budget is immediately recharged, the server scheduling deadline is postponed

to ds
i = ds

i + Pi, and the EDF queue is reordered. If, after postponing the server

deadline, the server is still the earliest deadline server, the task continues to execute,

otherwise the task is preempted. This behaviour is known as soft reservation.

CBS is not affected by the previous problem because it does not rely on an evaluation

of the WCET. In fact, as soon as the task tries to execute more than its WCET, the

budget of its server reaches zero, and the server deadline is postponed. Thus, the server

may no longer be the earliest-deadline one. In this case, the scheduler preempts the task

in execution and assigns the processor to the task served by the earliest deadline server.

4.1.4 Algorithms based on CBS

Over the past years, many algorithms based on the original CBS algorithm have been

proposed. Here, we just describe those that are more closely related to our work. To

better classify them, let first introduce two important characteristics of the algorithms:

• An algorithm implements hard reservations [104] if, when the server budget is de-

pleted, the task is suspended until the next replenishment time. Notice that this

rule is the opposite of the soft reservation rule of CBS (i.e., the server continues to

execute until it is not the earliest deadline server anymore).

• An algorithm implements reclamation if it is able to reclaim the excess bandwidth

from other servers executing less than their allocation, and/or by other unallocated

bandwidth in the system.

The CASH (CApacity SHaring [34]) algorithm adds reclamation to the CBS by using

a queue of budgets. When a task completes, the excess budget (and the corresponding

server deadline) is inserted in a queue of budgets ordered by server deadlines (the CASH

queue). A server is allowed to use all excess budgets from the queue with a deadline less

than the current server deadline. CASH is able to reclaim only the excess bandwidth from

servers handling periodic tasks, and it is very effective for hard and soft real-time tasks,

but it cannot be used (at least in its current form) in systems with aperiodic tasks and

where tasks can dynamically enter and leave the system.

The IRIS (Idle-time Reclaiming Improved Server [83]) algorithm adds the hard reser-

vation property to CBS and uses such property to perform reclaiming. The idea is that,

when the processor becomes idle, then it is possible to anticipate the replenishment time
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of all servers. The algorithm is very simple and effective, but it might suffer from an

excessive number of context switches, as briefly explained in Section 4.3.3.

The BEBS algorithm [19] is very similar to the IRIS algorithm. In addition to IRIS,

BEBS dynamically modifies reservation periods and budgets to adapt the reservations to

the needs of the applications.

4.1.5 Issues with CBS

The original CBS algorithm has been designed to allow scheduling mixtures of hard real-

time, soft real-time and non real-time tasks so that the real-time tasks are not penalized by

the other tasks running in the system. Due to the dynamic nature of many applications,

it can happen that during some intervals of time a task requires more than the reserved

resources (leading to a transient overload). In this situation, the original CBS will let

the served task execute even for more than the reserved time (if such time is not used by

other reservations), but to do so it will have to postpone its scheduling deadline. In the

original paper [6] it is shown how the CBS can recover from a transient overload if there are

intervals of time when the task requires less than the reserved time. However, experience

with real systems showed that the time needed to recover may be too long [7, 39].

To understand in which conditions the original CBS behaviour can be suboptimal,

consider two processor-intensive tasks τ1 and τ2 served by two servers with the same

period, as shown in Figure 4.1. If the two tasks are activated simultaneously, the CBS

guarantees that each of the two tasks gets the proper share of the processor in every

interval of time.

τ 1

τ 2

t

t

1

2

P  = 4ms
1

1

2

Q  = 1ms

P  = 4ms

Q  = 3ms
2

Figure 4.1: The “Greedy Task” problem of CBS.

However, if τ1 is activated at time t1 and τ2 is activated at time t2 >> t1, accord-

ing to the CBS rules, τ1 is scheduled without interruptions in the interval [t1, t2]. As a

consequence, the scheduling deadline ds
1 is postponed many times and can soon assume

a large value. This phenomenon is known as “deadline aging”. When τ2 is activated, its

scheduling deadline ds
2 is much smaller than ds

1, and τ2 is continuously scheduled for a

long interval of time, until the two scheduling deadlines ds
1 and ds

2 are comparable. As

a consequence, τ1 is not executed for a large interval of time. After that, the schedule
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continues as expected and the processor is fairly shared between the two tasks. In the

following, we will refer to this problem as the “Greedy Task” problem.

Intuitively, the problem is related to the fact that the task τ1, starts consuming its

future reservation, even if there is not other task executing. When τ2 is activated, τ1 has

consumed much of its future reserved share, and so it cannot use the processor until the

task τ2 “catches up”.

This issue is similar to the problem of the fairness of the WFQ algorithm, highlighted

in [22, 21] — similarly to WFQ, the original CBS algorithm only cares about respecting

deadlines, but allows the task to execute “too early”. As noted by Bennet and Zhang [22],

there are situations (for example, hierarchical scheduling) in which a better fairness is

needed. Such an issue was addressed by the WF2Q algorithm by introducing the worst-

case fairness property [21].

4.2 The GRUB Algorithm

We now present the GRUB (Greedy Reclamation of Unused Bandwidth) algorithm [76,

75, 77] that will be used as basis for our energy-aware algorithm. GRUB, in turn, is based

on the CBS algorithm [6], but it effectively solves the Greedy Task problem.

Several server-based schedulers (CBS included), can offer performance guarantees

somewhat similar to the ones offered by GRUB. However, GRUB has an added feature

that is not to be found in many of the other schedulers — an ability to reclaim unused

processor capacity (“bandwidth”) that is not used because some of the servers may have

no outstanding jobs awaiting execution.

The GRUB algorithm is very general and does not assume the knowledge of tasks

periodicity. More formally, the algorithm makes the following assumptions:

• The arrival times of the jobs (the ri,js) are not known a priori , but are only revealed

on-line during system execution. Hence, GRUB’s scheduling strategy cannot require

knowledge of future arrival times. This assumption will hold also in our energy-aware

scheduling algorithm based on GRUB, described in Chapter 5. Notice that many

energy-aware algorithms for periodic task sets (like DRA [17, 18, 16] or RTDVS [98])

exploit the knowledge of future arrival times to simplify the solution.

• The exact execution requirements ci,j are also not known beforehand: they can only

be determined by actually executing τi,j to completion.

The objective is to find a scheduling algorithm with the following properties:

• Provide timely service to hard and soft real-time tasks. In other words, it must

provide the same guarantees as the CBS algorithm.
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• Maximize the throughput. More specifically, the scheduler should never idle the

processor when there is some active task; moreover, it should avoid unnecessary

preemptions and context switches.

• Handle any kind of task — periodic, sporadic and aperiodic tasks. Of course, to be

able to do schedulability analysis (i.e., to guarantee that all deadlines will be met),

the designer must know the minimum interarrival times and the worst-case execution

times of the tasks. However, if these values are not known, the designer can assign

a certain amount of processor bandwidth to each task. GRUB, in fact, provides the

temporal isolation feature: each task can be analyzed and guaranteed in isolation

— i.e., without making any assumption on the other tasks in the system.

• The design of the original GRUB algorithm was driven by the interest in integrating

the scheduling methodology based on Resource Reservation with traditional real-

time scheduling — in particular, the goal was the design of a scheduler being a mi-

nor variant of the classical Earliest Deadline First (EDF) scheduling algorithm [79].

Therefore, the scheduling strategy was required to be as similar to EDF as possi-

ble. In particular, this rules out the use of scheduling strategies based upon “fair”

processor-sharing, such as GPS [97] and its variants.

4.2.1 Formal model of the GRUB algorithm

In this Section, we introduce the models and the notation that will be used in the rest of

the thesis.

Server Model

We consider a system comprised of n servers S1, S2, . . . , Sn. Each server Si is characterized

by two parameters, (Ui, Pi), where Ui is the server bandwidth and Pi is the server period.

The server bandwidth Ui represents the fraction of the total processor utilization assigned

to the task modelled by the server — i.e., Ui = Qi

Pi
.

We restrict our attention to systems where all of these servers execute on a single shared

processor (without loss of generality, this processor is assumed to have unit processing

capacity) — we therefore require the sum of the processor shares of all the servers to be

no more than one; i.e.,
(

n
∑

i=1

Ui

)

≤ 1 .

GRUB Variables

For each server Si in the system, algorithm GRUB maintains two variables: a deadline

ds
i and a virtual time Vi. Initially, these variables are both initialized to zero. Intuitively,
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Figure 4.2: State transition diagram of GRUB.

the value of ds
i at each instant is a measure of the priority that GRUB accords server

Si at that instant, and it is used to select which server is executing on the processor —

GRUB essentially implements the EDF algorithm among all active servers. The value of

the virtual time Vi at any instant is a measure of how much of the reserved bandwidth

the server has already consumed at that time. Algorithm GRUB will attempt to update

the value of Vi in such a manner that, at each instant in time, server Si has received the

same amount of service that it would have received by time Vi if executing on a dedicated

processor of capacity Ui. The meaning of these variables will be clearer later.

Server states

At any instant in time during run-time, each server Si is in one of three states: Inactive,

ActiveContending, or ActiveNonContending. The initial state of each server is Inactive.

Intuitively, at time to a server is in the ActiveContending state if it has some jobs awaiting

execution at that time; in the ActiveNonContending state if it has completed all the jobs

that arrived prior to to, but in doing so has “used up” its share of the processor until

beyond to (i.e., its virtual time is greater than to); and in the Inactive state if it has no

jobs awaiting execution at time to, and it has not used up its processor share beyond to.

At each instant in time, from among all servers that are in the ActiveContending state,

algorithm GRUB chooses for execution (the next job of) the server Si, whose deadline

parameter ds
i is the smallest. If there are no ActiveContending servers, then the processor

is idled. While (a job of) Si is executing, its virtual time Vi increases (the exact rate of

this increase will be specified later); while Si is not executing Vi does not change.

Algorithm rules

Certain (external and internal) events cause a server to change its state (see Figure 4.2).
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1. If server Si is in the Inactive state and a job τi,j arrives (at time-instant ri,j), then

the server variables are updated as follows

Vi ← ri,j

ds
i ← Vi + Pi

and server Si enters the ActiveContending state.

2. If at any time the virtual time becomes equal to the deadline (Vi == ds
i ), then the

deadline parameter is incremented by Pi:

ds
i ← ds

i + Pi

and the server remains in the ActiveContending state. Notice that this may cause Si

to be no longer the earliest-deadline active server, in which case it may yield control

of the processor to an earlier-deadline server.

3. When a job τi,j−1 of Si completes (notice that Si must then be in the ActiveCon-

tending state), the action taken depends upon whether the next job τi,j of Si has

already arrived.

a) If so, then the deadline parameter ds
i is updated as follows:

ds
i ←− Vi + Pi ,

and the server remains in the ActiveContending state.

b) If there is no job of Si awaiting execution, then server Si changes state, and

enters the ActiveNonContending state.

4. For a server Si in ActiveNonContending state it is required that Vi > t at any instant

t. If this is not so (either immediately upon transiting into this state, or because time

has elapsed but Vi does not change for servers in the ActiveNonContending state),

then the server enters the Inactive state.

5. If a new job τi,j arrives while server Si is in the ActiveNonContending state, then the

deadline parameter ds
i is updated as follows:

ds
i ←− Vi + Pi ,

and server Si returns to the ActiveContending state.

6. There is one additional possible state change — if the processor is ever idle, then all

servers in the system return to their Inactive state.
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Incrementing Virtual Time

It now remains to specify how the virtual time Vi of a server Si changes when a job of Si

is executing. Let us first consider incrementing Vi at a rate 1/Ui:

d

dt
Vi =

{

1
Ui

if (a job of ) Si is executing,

0 otherwise
(4.2)

— intuitively, executing Si for one unit of time is equivalent to executing it for 1/Ui units

of time on a dedicated processor of capacity Ui, thus we are updating Vi accordingly.

When Vi is updated as above (i.e., at a rate 1/Ui while Si is executing, and not at

all the rest of the time), algorithm GRUB is very similar to the CBS algorithm by Abeni

and Buttazzo [6], and performance guarantees similar to the ones proved for CBS can be

proved for algorithm GRUB as well. However, recall that one of the motivations driving

the design of algorithm GRUB is being able of reclaiming processor bandwidth that may

remain unused because some servers are in the Inactive state, and the goal of making

efficient use of this reclaimed bandwidth. In using excess processor bandwidth, though,

we must be very careful to not end up using any of the future capacity of currently inactive

servers, since we cannot have any idea about when such servers will become active again.

Thus, algorithm GRUB maintains an additional global variable, called total system

utilization, which, at each instant in time, is equal to the sum of the bandwidths Ui of the

active servers:

U =

n
∑

i=1

Si 6=Inactive

Ui

where n is the number of servers in the system. This variable is initialized to zero and

is updated every time a server enters or exits from state Inactive. In particular, when Si

exits from state Inactive U is increased by Ui, whereas when Si enters state Inactive it is

decreased by Ui.

Let [t, t + ∆t) denote an interval of time during which U does not change, and during

which (a job of) Si is executing. We assign the excess processor bandwidth during this

interval — an amount equal to ∆t · (1−U) — to server Si. Consequently, Si has used an

amount equal to

(∆t−∆t · (1− U)) = ∆t · U (4.3)

of its own reserved processor bandwidth during this interval; equivalently, its virtual time

Vi should increase by an amount equal to ∆t·U
Ui

. Therefore, the rule for updating the virtual

time of every server, is as follows:

d

dt
Vi =

{

U
Ui

if (a job of ) Si is executing,

0 otherwise
(4.4)
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The rate of increase of the virtual time is proportional to the current total bandwidth

of the active servers, and is automatically adjusted depending on the current system load.

Observations The virtual time is an important variable as it gives a measure of the

progress that a server task has done. Algorithm GRUB provides an abstraction of “slower

processor”: the task served by a server Si with bandwidth Ui executes as it were executing

on a dedicated slower processor with a minimum speed equal to Ui times the speed of the

real processor.

Let us make a simple example to explain the way the algorithm updates the virtual

time. Consider a server S1 with bandwidth U1 = 0.25 and period P1 = 20msec. If the

system is fully utilized (i.e., the total system bandwidth U is equal to 1), then Equation 4.4

tells us that the virtual time is increased at a rate of 1/0.25 = 4. By looking at the

algorithm rules, we see that the server executes for P1/4 = 5msec before the server deadline

is postponed.

In general, the bandwidth U1 can be computed using some rule of thumb, or by per-

forming a careful analysis of the application code. For our purposes, in this example, we

assume that 5msec are enough to complete task’s jobs in most cases.

However, suppose that, for some interval of time, the total system utilization U goes

down to 0.75. Then, server S1 can execute more than 5msec every period, because we

can reclaim the spare bandwidth. According to Equation 4.4, the virtual time is increased

at a rate of 0.75/0.25 = 3. Therefore, if U is equal to 0.75 for the entire duration of the

period P1, server S1 can execute for up to P1/3 = 6.66msec within the period.

Thus, if our task sometimes requires more than 5msec to complete, it can take ad-

vantage of the reclaimed bandwidth and still execute inside the period boundary. This

property can help us in setting the server bandwidth U1 to a lower value for soft real-time

tasks. For example, we can decide to set U1 equal to the average bandwidth required by

the task, and try to exploit the reclamation property of GRUB to dynamically get more

bandwidth. Algorithm GRUB ensures that our application will take advantage of the

spare bandwidth and execute more than U1P1 whenever possible. This property of GRUB

is called “reclamation”, because we are giving the spare bandwidth to the needing servers.

4.2.2 Performance guarantees

The following theorems formally state the performance guarantees that can be proved for

algorithm GRUB vis à vis the behaviour of each server when executing on a dedicated

processor. For proofs of the following theorems, see the papers by Lipari et al. [76, 75].

Lemma 1 At all times and for all servers Si during run-time, the values of the variables
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Vi and ds
i maintained by algorithm GRUB satisfy the following inequalities:

Vi ≤ ds
i ≤ Vi + Pi (4.5)

Theorem 2 Given a set of servers S1, . . . , Sn, with
∑n

i=1 Ui ≤ 1, then all servers execute

within their deadlines, regardless of the served tasks. More formally, at each instant t,

∀i = 1, . . . , n ds
i ≥ t.

Theorem 3 Suppose that job τi,j would begin execution at time-instant Ri,j , if all jobs

of server Si were executed on a dedicated processor of capacity Ui. In such a dedicated

processor, τi,j would complete at time instant Fi,j
def
= Ri,j +(ci,j/Ui), where ci,j denotes the

execution requirement of τi,j. If τi,j completes execution by time-instant fi,j when GRUB

is used, then it is guaranteed that

fi,j ≤ Ri,j +

⌈

(ci,j/Ui)

Pi

⌉

· Pi . (4.6)

From the previous inequality, it follows that fi,k < Fi,k + Pi. Thus, the period Pi

represents the granularity of the time from the point of view of the server: by using

algorithm GRUB, every job finishes at most Pi time units later than the completion time

on a dedicated slower processor (the smaller is the value of Pi, the closer is the virtual

time to the real time).

Moreover, the GRUB algorithm is able to serve hard real-time periodic tasks without

any deadline miss, as stated by the following theorem.

Theorem 4 ([75]) Let τi be a hard real-time periodic task with worst-case execution time

Ci and period Ti. If task τi is assigned a server Si with bandwidth Ui ≥ Ci

Ti
and period

Pi = Ti, then no deadline of τi will be missed.

The interested reader can refer to the paper by Lipari et al. [76] for an evaluation

of the algorithm GRUB and for a comparison with the CBS algorithm through a set of

experiments. Here we just report that the schedules generated by Algorithm GRUB tend

to have fewer context-switches than schedules generated by the CBS bandwidth-allocation

scheme [76].

4.3 Coping with short periods

A problem presented by both the CBS and the GRUB algorithms occurs in presence of

servers with different periods (see Figure 4.3). As discussed in Section 4.1.2, the server

period is a measure of the “granularity” of the reservation — i.e., how often a task (or

an application) is allocated the reserved budget. However, when the difference between
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Figure 4.3: The “Short Period” problem of CBS and GRUB.

reservations’ periods is too high it often happens that short period servers are not scheduled

often enough, causing unexpected execution patterns. Again, this problem is related to

the soft reservation rule of the CBS (inherited also by GRUB). When a short period

reservation is depleted, the scheduling deadline is postponed but it might still remain the

shortest one. Hence, the served task continues to execute for several server instances, as if

it was served by a reservation with a longer period. In the following, we will refer to this

problem as the “Short Period” problem.

4.3.1 The HGRUB algorithm

The Short Period problem can be effectively solved by adding Hard Reservation [104]

to the original GRUB algorithm. In the original algorithm, when the virtual time of a

running server becomes equal to the deadline, the server remains in the ActiveContending

state and the server deadline parameter is incremented of Pi. To address the Short Period

problem, we can add a further state, called Depleted and change the state transition 2

(see Figure 4.2) as follows:

2.a If at any time the virtual time of a server in ActiveContending state becomes equal

to the deadline (Vi == ds
i ), then the server enters the Depleted state

2.b If at any time the virtual time of a server in Depleted state becomes equal to the

current time (Vi == t), then the deadline parameter is incremented by Pi:

ds
i ← ds

i + Pi

and the server enters the ActiveContending state.

We call the modified algorithm HGRUB (Hard GRUB). The new state transition

diagram is shown in Figure 4.4.

4.3.2 Formal properties of HGRUB

We now prove some interesting properties about the HGRUB algorithm. First, we define

an ideal kind of task as follows.
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Figure 4.4: State transition diagram of HGRUB.

Definition 22 A cpu-intensive task is a task that is continuously active and that never

blocks (i.e., it continuously requires some computation from the processor).

Scientific computation programs are typical examples of such cpu-intensive tasks. The

goal of the scheduler for these tasks is to fairly allocate the processor time to all tasks, so

that they can all progress concurrently. Clearly, this is only an ideal definition, since tasks

(especially, real-time tasks) usually do block waiting on certain conditions (e.g., data from

memory). However, the notion of cpu-intensive tasks allows us to prove some interesting

properties of the HGRUB algorithm.

In the next Theorems we will provide an upper bound for the execution time of a

cpu-intensive task in a system scheduled using HGRUB.

Theorem 5 Consider a set of HGRUB servers, each one serving a cpu-intensive task. If

the system workload does not change (i.e., if no server enters in or exits from the Inactive

state), a server (Ui, Pi) can execute at most for a time equal to Pi
Ui

U inside a period

[kPi, (k + 1)Pi] with k ∈ N.

Proof: Consider the generic period [0, Pi] of the server. At the beginning of the

period, Vi = t = 0 and the current deadline is set equal to ds
i = Pi.

During execution, the virtual time is updated as follows:

d

dt
Vi =

U

Ui

The server enters the Depleted state when Vi = ds
i , and it remains in such state until

the time is equal to Vi (i.e., until the end of the period).

Since the workload does not change in [0, Pi], U is constant and the condition Vi = ds
i

occurs after an execution time ∆T given by

(ds
i − 0) =

U

Ui
∆T
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Then, we have

∆T =
Ui

U
ds

i =
Ui

U
Pi

Thus, the server enters the Depleted after a time ∆T and cannot execute for more than

such time.

2

Theorem 6 Consider a set of HGRUB servers, each one serving a cpu-intensive task,

and an instant of time to. If the system workload does not change (i.e., if no server enters

in or exits from the Inactive state), a server can execute at most for a period of time equal

to ⌊ to
Pi
⌋PiUi

U before its scheduling deadline ds
i is postponed beyond to.

Proof: From Theorem 5, every time that the server executes for PiUi

U , it enters the

Depleted state, and its scheduling deadline is postponed by Pi.

Consider the interval of time [0, to]. When t = 0 the scheduling deadline is set to

ds
i = Pi. After an execution time equal to ⌊ to

Pi
⌋PiUi

U the deadline of the server is postponed

⌊ to
Pi
⌋ times, each time of an amount equal to Pi.

Therefore, after an execution time equal to ⌊ to
Pi
⌋PiUi

U , the deadline is postponed at least

to ⌊ to
Pi
⌋Pi + Pi ≥ to.

2

In the next Theorem we provide a lower bound for the execution time of a cpu-intensive

task in a system scheduled using HGRUB.

Theorem 7 Consider a set of HGRUB servers, each one serving a cpu-intensive task. If

the system workload does not change (i.e., if no server enters in or exits from the Inactive

state), each server Si executes at least for a time PiUi

U in a period [kPi, (k + 1)Pi] with

k ∈ N.

Proof: Consider the interval of time [0, Pi]. When t = 0, the scheduling deadline ds
i

of server Si is set equal to Pi.

From Theorem 6, a generic server Sj with period Pj can execute at most for ⌊Pi

Pj
⌋PjUj

U

before its scheduling deadline is postponed beyond Pi (i.e., before Si is given higher priority

than Sj).

If we consider all servers, Si has the highest priority at most after a time equal to

∑

k 6=i

⌊ Pi

Pk
⌋PkUk

U

At this time, the amount of time that Si can execute before its scheduling deadline is

equal to

Pi −
∑

k 6=i

⌊ Pi

Pk
⌋PkUk

U
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This value is greater or equal to

Pi −
∑

k 6=i

(
Pi

Pk
)Pk

Uk

U
= Pi −

Pi

U

∑

k 6=i

Uk =
Pi

U
(U −

∑

k 6=i

Uk) = Pi
Ui

U

This is at least the amount of time that Si can execute before its deadline.

2

Using the results of the previous Theorems (i.e, upper and lower bounds) we can now

specify the exact amount of execution time guaranteed to a cpu-intensive task scheduled

by HGRUB.

Theorem 8 Consider a set of HGRUB servers, each one serving a cpu-intensive task. If

the system workload does not change (i.e., if no server enters in or exits from the Inactive

state), a task executes exactly for a time PiUi

U in the server period [kPi, (k + 1)Pi] with

k ∈ N.

Proof: It follows directly from Theorems 6 and 7.

2

This result can be exploited, in turn, to prove that the scheduled generated by HGRUB

for cpu-intensive tasks does not have any idle time (i.e., the processor always executes some

task).

Theorem 9 Consider a set of HGRUB servers, each one serving a cpu-intensive task. If

the system workload does not change (i.e., if no server enters in or exits from the Inactive

state), the resulting schedule does not have any idle time.

Proof: Consider the hyperperiod

∆T = LCMk{Pk}

where Pk is the period of the server Sk.

Since each server executes a cpu-intensive task, Theorem 8 states that within ∆T it

executes for a time equal to Uk

U ∆T .

If we consider all servers, the processor utilization in ∆T is

∑

k

Uk

U
∆T =

∆T

U

∑

k

Uk = ∆T

Therefore, there are not idle times.

2

Notice that this theorem does not assume any particular value for U or Ui. It only

assumes that servers serve only cpu-intensive tasks, which, by definition, are always active

(therefore, the value of U is constant).
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Finally, it can be proved that HGRUB is a fair algorithm, meaning that it shares the

reclaimed processor time fairly among servers serving cpu-intensive tasks.

Theorem 10 Consider a set of HGRUB servers, each one serving a cpu-intensive task. If

the system workload does not change (i.e., if no server enters in or exits from the Inactive

state), the exceeding processor time is given to servers proportionally to their bandwidths

(i.e., fairness).

Proof: Consider again the hyperperiod ∆T = LCMk{Pk}. If the generic server Si

executed exactly with a bandwidth Ui, then it would execute for Ui∆T in an interval of

time equal to ∆T .

If we consider all N servers, the spare processor time to be divided among them is

tspare = ∆T −
∑

i

Ui∆T = (1− U)∆T

Theorem 8 states that within the hyperperiod ∆T each server Si executes for a time
Ui

U ∆T . Therefore, the amount of exceeding time that the generic server Si has executed

is equal to
Ui

U
∆T − Ui∆T = (

Ui

U
− Ui)∆T =

Ui

U
(1− U)∆T =

Ui

U
tspare

This means that the exceeding processor time tspare has been given to each server Si

proportionally to its bandwidth Ui.

2

4.3.3 Considerations about HGRUB

In this section, we discuss the properties of the HGRUB algorithm, compared to other

similar algorithms.

Reclamation Similarly to algorithm GRUB, Algorithm HGRUB reclaims unused band-

width from tasks (or applications) using less than reserved as well as from free bandwidth

in the system. This is done through the rule for updating the budget while the server

is executing. When a server executes for ∆t units of time, the CBS algorithm (and all

other variations like IRIS), update the server budget as qi = qi−∆t, while the GRUB and

HGRUB algorithm update the server budget as qi = qi −∆t ∗ U , where U ≤ 1 is the sum

of the servers that are not in the Inactive state.

In general, this leads to less preemptions than other reclaiming algorithms like IRIS,

BEBS and CASH. In particular, IRIS performs reclamation through identification of idle

times, but the average number of preemptions of IRIS is higher than with GRUB. In fact,

when IRIS reclaims the unused bandwidth, there is a context switch at most every Ci, due

to the hard reservation rule. When GRUB performs the reclamation, instead, the server
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budget is increased and set equal to Ci

U . Thus, if U is less than 1, the server can execute

for a longer time before experiencing a context switch.

Support for hierarchical applications As explained by Lipari et al. [77], hierarchical

scheduling requires the hard reservation feature to work properly.

As a concrete example, consider a system based on CBS with two real-time tasks, τ1

and τ2, with guaranteed bandwidth U1 and U2, respectively. Suppose that task τ1 has two

internal threads, τ1
1 and τ2

1 , with guaranteed bandwidth U1
1 and U2

1 (i.e., U1
1 + U2

1 = U1).

Finally, suppose that thread τ1
1 is currently not active while thread τ2

1 is cpu-intensive.

Therefore, task τ1 is always active and ready for execution: any time it receives the

processor, it executes the internal thread τ2
1 (because τ1

1 is currently not active) and its

server deadline is postponed according to the CBS rule. However, when thread τ2
1 wakes

up, it cannot execute immediately because the deadline of its server has been postponed

by the execution of τ1
1 (i.e., deadline aging).

A hard reservation server like HGRUB can be safely used for solving this kind of

problem and implementing a hierarchical scheduling strategy [11].

Complexity and performance The HGRUB algorithm has the same complexity of

algorithm CBS. As a matter of fact, the main practical difference between HGRUB and

CBS is the use of an additional timer for keeping track of the replenishment time (tran-

sition 2.b), and the rule for updating the budget. The complexity of CBS is O(n log n),

where n is the maximum number of active servers at any time. This is because at some

time t the algorithm could have to handle at most n transitions, and each transition can

require a queueing operation in a ordered queue of server descriptors, which in turns has

a complexity of log n. Remind that similar proportional share algorithms have the same

complexity.

Also, HGRUB presents very good performance compared to other algorithms because

it is a work-conserving algorithm and it is possible to use different temporal granularities

for different servers.

Fairness Finally, note that HGRUB is not “fair” in distributing the excess bandwidth

across tasks different than cpu-intensive ones. In some pathological cases, in fact, it may

happen that all the excess bandwidth is given to one single server. However, in long

intervals of time, if tasks are independent from each other, the bandwidth is distributed

to tasks in proportion to their bandwidth. Although this is only a statistical evidence, it

may be enough for most cases.
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4.4 Summary

In this chapter we introduced the idea behind the Resource Reservation technique, which

provides the temporal isolation property. We described the GRUB algorithm, which adds

reclaiming to the original CBS algorithm. We explained how GRUB is capable of schedul-

ing both hard and soft, and periodic, sporadic and aperiodic real-time tasks on the same

system. Finally, we provided some considerations about the schedule produced by GRUB

and we proposed the HGRUB algorithm as possible solution to the “Short Period” prob-

lem.

In the next chapter we will present our energy-aware real-time scheduling algorithm,

GRUB-PA, based on the GRUB algorithm.



Chapter 5

The GRUB-PA Algorithm

In Chapter 4, we have introduced the Resource Reservation technique and we have de-

scribed the GRUB algorithm [76, 75, 77].

In this chapter, we will modify GRUB for energy-aware scheduling. The novel algo-

rithm is called GRUB-PA (Greedy Reclamation of Unused Bandwidth—Power Aware).

Like GRUB, our energy-aware algorithm is based on the Resource Reservation frame-

work, therefore it can support both hard and soft real-time tasks. Moreover, unlike most

energy-aware algorithms, GRUB-PA is able to deal with periodic, sporadic and even ape-

riodic tasks. Of course, to be able to do schedulability analysis, the designer must know

the minimum interarrival times and the worst-case execution times of the tasks. However,

since our algorithm provides temporal isolation, each task can be analyzed and guaranteed

in isolation — i.e., without making any assumption on the other tasks in the system.

Notice that, since GRUB reclaiming and Hard Reservation behaviour are orthogonal

properties, the extensions that we will discuss for the GRUB can be done to HGRUB as

well.

The results shown in this chapter have been already presented at some conferences [111,

112] and have been published on the IEEE Transactions on Computers journal [113].

5.1 Introduction

Intuitively, the problem of reclaiming the spare bandwidth is similar to the problem of

energy-aware scheduling. We can divide both problems into two parts. The first part

consists on identifying the spare bandwidth (or the slack time) in the system, whereas the

second part consists on deciding how to use the spare bandwidth. The first part of the

problem is common to both the bandwidth reclamation and the energy-aware scheduling

problems. The second part, instead, differs radically: in the reclamation problem, the

goal is to use the spare time to anticipate the execution time of aperiodic tasks, whereas

in the energy-aware scheduling problem the goal is to lower the processor frequency as
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much as possible. We believe that many reclamation algorithms can be used as energy-

aware schedulers by modifying their “second part”. In this chapter, we modify GRUB for

energy-aware scheduling following the previous idea.

Processor Model

We assume that the tasks are executed on a single processor with a variable operating

frequency. Many energy-aware algorithms make the assumption of continuous frequency

scaling, even though no existing processor can vary its frequency with continuity. In fact,

all processors that support DVS provide a set of operating modes, each one characterized

by a value of frequency and voltage [130, 131, 55, 56, 58, 57, 59, 60].

We assume that the processor can provide M frequencies, φ1, . . . , φM , in increasing or-

der. A supply voltage VDD−1, . . . , VDD−M and a normalized processor “speed” U1, . . . , UM

are associated to each frequency, again in increasing order, with UM = 1. The computa-

tion times of the tasks are relative to the maximum operating speed, UM = 1, and they

vary linearly with the processor speed: therefore, if a job executes for ci,j units of time

when the processor speed is 1, it executes for ci,j/Uk when the processor speed is set equal

to Uk. It is important to note that we are implicitly assuming that the execution time of

a task varies linearly with the processor frequency. In Section 5.4.2 this assumption will

be validated experimentally on a real embedded system for audio applications.

One issue that must be taken into careful consideration is the overhead of changing

frequency. Changing frequency is not “free”, as most processors need some time to adjust

to the new frequency. The duration of this transitory is variable, and varies a lot from

processor to processor. For example, on the Intel PXA250 it can go up to 500µsec [58, 57].

Even though in many soft real-time applications this can be considered negligible, it should

not be ignored. We will show how to account for this delay in the GRUB-PA algorithm

in Section 5.2.4.

The presence of an energy overhead at every frequency switch is undeniable as well.

This overhead depends on the particular kind of processor the algorithm is running on,

and it is quite difficult to estimate and measure. Hence, we decided to not explicitly take

into account this energy overhead in this model. However, in Section 5.2.4 we will devise

a technique to limit the number of switches in an interval of time, therefore limiting the

maximum amount of energy spent for switching frequency.

5.2 Algorithm GRUB-PA

As first step, let us assume that the processor speed can be varied continuously, from a

maximum speed factor of 1 (i.e., the processor works at its maximum speed) to a minimum

of 0 (i.e., processor halted), and that the time to change speed is negligible. We will relax



5.2. ALGORITHM GRUB-PA 79

these simplifying assumptions in Sections 5.2.3 and 5.2.4.

As explained previously, GRUB maintains a global variable U that is the sum of the

bandwidths of all servers that are not in the Inactive state. The key idea is that, if we set

the speed factor of the processor to be equal to U , no server will miss its deadline. This idea

is similar to the one on which the DVSST algorithm [101] is based (refer to Section 2.4.6

for a description of the algorithm). However, GRUB-PA updates the variable U in a more

effective way, allowing additional power saving also in the case of periodic tasks, as shown

in Section 5.2.1.

The original GRUB algorithm can be divided into two different parts: a set of rules

for identifying the spare bandwidth (1 − U), and a set of rules for reassigning the spare

bandwidth. The second part can be adapted for energy-aware scheduling. In practice, if

the processor is not fully utilized (U < 1) the exceeding bandwidth (1 − U) can be used

in two ways:

1. To execute the active servers for a longer time, so that they can execute faster and

finish earlier. This is the “reclamation” property, and it is the original goal for which

the GRUB algorithm was designed.

2. To slow down the processor. Each active server will execute for a longer time, but

at a slower speed. The net effect is that its performance is not degraded (i.e., the

number of processor cycles guaranteed to the server remains the same).

The reclamation rule in GRUB is given by the following Equation:

d

dt
Vi =

{

U
Ui

if (a job of ) Si is executing,

0 otherwise

Thus, the increment in the virtual time depends on the amount of bandwidth actually

used in the system. This rule can also be used in the energy-aware part to automatically

adapt the server bandwidth to the new frequency. Moreover, we need an additional rule

that sets the processor speed equal to U whenever a server goes in (or leaves) the Inactive

state.

Hence, in the new GRUB-PA algorithm, state transitions 1 and 4 (see Figure 5.1) are

modified as follows:

1. When a job τi,j arrives at time instant ri,j, the following variables are updated:

Vi ← ri,j

ds
i ← Vi + Pi

U ← U + Ui

Moreover, the processor speed is set equal to U .
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Figure 5.1: State transition diagram of GRUB.

4. When a server is in the ActiveNonContending state and Vi = t, then the server goes

in the Inactive state and the system utilization is updated as follows:

U ← U − Ui

Moreover, the processor speed is set equal to U .

5.2.1 An example

In this section, we present a complete example showing how the GRUB-PA algorithm

updates the processor speed depending on the bandwidth of the active servers. Consider

a system consisting of two tasks. Task τ1 is a sporadic task with minimum interarrival

time T1 = 8 and computation time varying between 2 and 4. This task is assigned a server

with U1 = 0.5 and P1 = 8. The second task, τ2, is a periodic task with period T2 = 10 and

constant execution time equal to 5. τ2 is assigned a server with U2 = 0.5 and P2 = 10.

Suppose that the first job of task τ1 arrives at time t = 0 requesting 2 units of com-

putation time; the second job of τ1 arrives at time t = 12 with computation time equal

to 3. The resulting schedule is shown in Figure 5.2. As usual, the upward arrows denote

the arrival times, while the downward arrows denote the deadlines. The plot under the

schedule reports the variations of variable U during system evolution. In this case, we

assume that deadline ties are broken in favor of the task with a lower index. However, in

general ties can be broken arbitrarily.

Initially, all servers are active, so U = 1 and the processor speed U is set equal to 1.

At time t = 0, task τ1 is selected to execute, since the deadline of the server ds
1 = 8 is the

earliest server deadline. The task executes until t = 2, when it completes. At this time,

the virtual time is V1 = 2/U1 = 4, so the server goes into the ActiveNonContending state.

Then, task τ2 starts executing, and it executes for 2 time units until t = 4. At this time,

the first server changes state from ActiveNonContending to Inactive: the total bandwidth
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Figure 5.2: An example of schedule produced by GRUB-PA.

of all active servers is decreased to U = U−U1 = 0.5, so the processor speed can be slowed

down to U = 0.5. Then, task τ2 can continue executing at half the speed. However, its

virtual time V2 is also increased at half the speed: for each unit of execution, the virtual

time will now increase at a rate of dV2 = dt U
U2

= dt. Therefore, task τ2 can now execute

for 6 units of time, which correspond to 3 more units of the execution time at maximum

speed, and complete just by the deadline at 10. However, at time t = 10 another job of

task τ2 arrives, so the second server remains in the ActiveContending state and τ2 resumes

execution at half the speed.

At time t = 12 the second job of τ1 is activated. The server becomes ActiveContending

and U = U + U1 = 1. Therefore, the processor speed is again raised to U = 1 and task τ1

can start executing (as it is the one with the earliest server’s deadline).

Notice that the mechanism used by the GRUB-PA algorithm is very similar to the one

used by the DVSST algorithm [101]: they both use a global variable U to set the processor

speed. However, there is a difference in the instant when the variable is updated. The

DVSST algorithm does not keep track of the actual execution time of the tasks. Therefore,

it can only subtract the bandwidth of a completed task at task’s deadline. In the example

above, even if task τ1 completes by time t = 2, the DVSST algorithm must wait until

time t = 8 to lower the processor speed. Instead, algorithm GRUB-PA can anticipate

this time at t = 4 as it explicitly takes into account the fact that task τ1 has executed

less than expected. The GRUB-PA algorithm always anticipates this time with respect to

algorithm DVSST, resulting in a larger amount of saved energy.

The difference in the setting of the processor speed made by the two algorithms in

this particular example is shown in Figure 5.2. The schedule is represented using the

typical GANNT chart. The assignment of a task to the processor is represented by a filled

rectangular box, where the height of the box (i.e., vertical axis) represents the processor

speed at which the task is executed. The oblique lines represent the difference in processor
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speed between GRUB-PA and DVSST.

5.2.2 Properties of GRUB-PA

In this section, we formally prove that Theorem 2 (stating that all GRUB servers execute

within their deadlines, regardless of the served tasks) is valid for the algorithm GRUB-PA

as well. First, we define an ideal algorithm GPS-PA (which stands for Generalized Proces-

sor Sharing - Power Aware) that allocates the processor in proportion to the bandwidths

Ui of the active tasks.

Definition 23 Algorithm GPS-PA is a fluid algorithm [97] that adjusts the processor

frequency and allocates the processor to tasks according to the following rules:

• The processor speed is set equal to the sum of the utilization of all active tasks;

• For every interval ∆t, the processor is allocated to all active tasks in proportion to

their utilization.

Clearly, GPS-PA is an ideal algorithm and cannot be implemented in practice, since it is

impossible to allocate any infinitesimally small interval ∆t to different tasks in proportion

to their utilizations. GPS-PA will be used only as a reference algorithm for GRUB-PA.

GPS-PA has the following interesting properties.

Lemma 11 Under algorithm GPS-PA, under the constraint that the sum of the utiliza-

tion of all tasks is upper bounded by 1, all jobs will complete exactly at time Fi,j =

max(Ri,j, Fi,j−1) +
ci,j

Ui
.

Proof: At all times, GPS-PA sets the processor speed equal to the sum of the

bandwidths of all active tasks U . Thus, the processor is allocated to each task in proportion

to its bandwidth. The rate of execution of task τi is constant and equal to

Ri =
U · Ui

U
= Ui.

Therefore, the finishing time Fi,j of job τi,j does not depend on the presence of other tasks

in the system, and each task executes as it was on a slower dedicated processor of constant

speed Ui. The finishing time of the first job of task τi is Fi,0 =
ci,0

Ui
. Any successive job of

τi starts at the latest time between the finishing time of the previous job and its arrival

time. Hence, the lemma is proved.

2

Now, we divide each job in one or more subjobs, each one of maximum length Ui · Pi.

• A job τi,j with ci,j ≤ Ui · Pi is transformed into a subjob τi,j(1), with the same

execution time, the same arrival time, and deadline di,j(1) = ri,j + Pi;
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• A job τi,j with ci,j > Ui · Pi is divided into K =
⌈

ci,j

UiPi

⌉

subjobs τi,j(1), . . . , τi,j(K).

All subjobs have execution time ci,j(k) = Ui · Pi, except the last one, which can be

shorter. Each subjob is assigned an arrival time and a deadline: the first subjob is

assigned an arrival time equal to the arrival time of the original job, and a deadline

di,j(1) = ri,j + Pi. The following ones are assigned arrival times and deadlines as

follows:

ri,j(k) = di,j(k − 1) di,j(k) = ri,j(k) + Pi

Corollary 12 For each subjob, Fi,j(k) ≤ di,j(k).

Proof: This splitting operation does not influence the behaviour of algorithm GPS-

PA. Therefore, the corollary trivially follows from Lemma 11.

2

At this point, we will show that the schedule generated by algorithm GPS-PA can be

“transformed” into the schedule generated by GRUB-PA maintaining certain important

properties. The transformation is done by following a well-known technique described by

Coffman and Denning [37, Chapter 3]. First we transform the schedule generated by GPS-

PA into a non-fluid schedule. Then, we transform this second schedule into the schedule

generated by GRUB-PA.

Definition 24 (Job Transformation) Let σf (t) be the schedule generated by GPS-PA.

It is a function with multiple values: for every time t, σf (t) is the set of executing subjobs,

that coincides with the set of active subjobs.

Now, we generate a function σi(t) in the following way. For every t, let [t1, t2] be

a maximal interval containing t, in which σf (t) is constant and no subjob completes in

(t1, t2)
1. It follows that, either a subjob completes in t2, or a subjob is activated in t2. Let

x be the number of jobs active in (t1, t2).

Then, we divide interval [t1, t2] into x subintervals, one for each active subjob τi,j(k),

each one of length (t2 − t1) · Ui. Then, function σi(t) assumes value τi,j(k) in the corre-

sponding subinterval.

Moreover, in the new schedule the processor frequency is changed at the same instants

as in schedule σf (t).

By construction, the finishing times of any subjob in σi(t) is not greater than the

finishing times of the same subjob in σf (t). Therefore, the following corollary is trivially

proved.

Corollary 13 No subjob misses its deadline in schedule σi(t).

Lemma 14 GRUB-PA changes frequency at the same instants of time as GPS-PA.

1As usual, symbols [] denote a closed time interval, and symbols () denote an open time interval.
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Proof: In GPS-PA, frequency is updated at arrival times of the jobs Ri,j or at the

finishing times Fi,j . At each instant t, the virtual time Vi(t) in GRUB-PA corresponds

to the instant of time in the GPS-PA in which the task has received the same amount of

service as in the GRUB-PA.

GRUB-PA changes the U (and possibly the frequency) when the task arrives (i.e.,

V (t) = t) or when the task goes into the Inactive state (again, V (t) = t). In the first case,

we have V (t) = Ri,j = t. In the second case, we have V (t) = t = Fi,j. Hence, the lemma

is proved.

2

Finally, the last step of our demonstration is to transform the schedule σi(t) into the

schedule generated by GRUB-PA.

Theorem 15 Server Si never misses its deadline. In other words, at any instant t, the

server deadline is always greater than t.

Proof: We use a well-known technique by Dertouzos [41], originally used for proving

the optimality of EDF. Given a feasible schedule σi(t) as obtained by the technique de-

scribed in Definition 24, by the optimality of EDF, with an exchange procedure, we can

obtain a feasible schedule σ(t) in which the subjobs are scheduled in EDF order. Notice

that the deadlines of the subjobs are equal to the deadlines of the servers as assigned

by GRUB-PA. Therefore, the schedule is the same as obtained by GRUB-PA, as GRUB

essentially performs EDF on the subjobs.

Since σ(t) is feasible, the theorem follows.

2

Thus, for the GRUB-PA algorithm too it is guaranteed that no server will miss its

deadlines. In other words, the change of processor speed introduced in GRUB-PA (see

Section 5.2 ) does not affect the guarantees that have been proved for the GRUB algorithm

in Chapter 4.

5.2.3 Discrete frequencies

No existing processor can vary its frequency with continuity. All processors that support

DVS provide a discrete set of frequencies [131, 58, 57, 59, 60, 56, 55]. Correspondingly,

we can set some “thresholds” on the values of the total system bandwidth. Suppose that

the processor supports M different frequencies φ1, . . . , φM . We can compute U1, . . . , UM

different values of the bandwidth. If U(t) is comprised in (Uk, Uk+1] for some k, then the

processor frequency is set equal to φk+1.

It is easy to see that, by using this simple approach, the properties of the GRUB-PA

algorithm continue to hold. In fact, the actual speed of the processor is always set to a

value Uk+1 greater than or equal to the theoretical desired bandwidth U .
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Unfortunately, the net effect of this approach is that some energy is wasted as the

desired frequency is always approximated by a higher frequency. One possibility would

be to apply a technique similar to the one proposed by Ishihara et al. [63]. It consists in

alternating between the two frequencies φk and φk+1 so that the average utilization is equal

to the desired utilization. If the requested bandwidth is constant over an interval [t1, t2],

it is possible to compute an instant t1 < t′ < t2 so that in interval [t1, t
′] the processor

frequency is set equal to φk+1 and in interval [t′, t2] the processor frequency is set equal

to φk. The original technique was devised as an off-line algorithm for periodic tasks with

constant execution time. This idea has also been recently proposed by Bini et al. [25] in the

context of static DVS. Their methodology consists in computing the minimum theoretical

processor speed that, if constantly applied to the system, makes the task set schedulable.

Then, if the corresponding frequency is not available in the set of processor frequencies,

the methodology selects two available frequencies that will be alternated in a duty cycle.

Applying such methodology to our model is not trivial. In GRUB-PA, tasks may be

periodic or aperiodic and the system dynamically varies the value of U at instants of times

that cannot be predicted a-priori. In particular, it is not possible to know how long the

system will maintain a certain value of U . Therefore, only a clairvoyant algorithm can find

the optimal way of alternating the two frequencies φk and φk+1. Nevertheless, it is possible

to approximate the previous technique in a conservative way, for example by dividing the

time line into intervals of arbitrary length and applying the previous technique. Since we

always start with the highest frequency, we are guaranteed that in case the bandwidth

changes, no deadline will be missed. The smaller are such intervals, the more precise is

the approximation. However, the overheads in terms of time and energy of additional

frequency switches need to be carefully considered. We are currently investigating the

possibility of finding such suboptimal algorithm for the above problem.

From a practical point of view, observe that the waste of energy is less evident as the

number of available processor frequencies increases. Some modern processors provide a

large number of combinations voltage/frequencies (the Transmeta Crusoe TM5800 [131],

for instance, has seven possible frequencies) and, therefore, the difference between desired

frequency and actual frequency can be very little.

As a final consideration, it is important to note that the GRUB-PA algorithm, as well

as GRUB, is able to reclaim spare capacity for soft real-time tasks. Suppose that the

processor speed is set equal to Uk+1, while the actual bandwidth is U < Uk+1. Then,

the difference Uk+1−U is automatically accounted by the algorithm as spare bandwidth,

and reclaimed for the tasks that need to execute more than their assigned bandwidth.

The spare bandwidth is assigned entirely to the currently executing server (in this sense,

GRUB-PA is a “greedy” algorithm).
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5.2.4 Overhead

Since most processors need some time to adjust to a new frequency, it is important to

avoid limit situations in which the processor keeps changing its frequency up and down,

because this would completely trash the system.

For example, suppose that a task with a very low bandwidth is activated and de-

activated very often. If the total utilization is close to one threshold value Uk, every

activation would cause an increase of the frequency, and every de-activation would cause

a decrease in the frequency.

To avoid these situations, when the total system bandwidth U goes over one of the

thresholds Uk, we immediately increase the processor frequency because we do not want

to risk a hard real-time task to miss its deadline. When a decrease of the total system

bandwidth U goes below one of the thresholds Uk, instead, we do not change the frequency

immediately. In fact, in case of a short temporary decrease of the bandwidth, we could

end up changing the frequency very often up and down. Therefore, when U goes below a

threshold, we set a timer. If the timer expires and U is still below the threshold then we

lower the frequency. Otherwise, if U goes above the threshold again, we cancel the timer.

This way, we limit the number of frequency switches.

We now explain how it is possible to account for the delay of frequency/voltage switch-

ing through a proper tuning of system’s parameters. Let δ be the maximum time the

processor takes to switch frequency. Suppose that we want a timer expiration interval

equal to ∆ (i.e., every ∆ we want a maximum of two frequency switches, one to go down

and another one to go up). In the worst-case, this accounts for a bandwidth reduction of
2δ
∆

. Therefore, we can admit new servers up to a total bandwidth of 1 − 2δ
∆

and set the

processor speed to U + 2δ
∆

.

As anticipated in the previous sections, we decided to not consider the energy spent

during a frequency switch. In particular, we do not account for this energy overhead in the

simulation model presented in the next section. Instead, the presence of this overhead has

been automatically accounted for in our experimental results (see Section 5.4.2). In fact,

the total energy consumed by our test-bed also comprises the energy due to frequency

changes.

5.3 Evaluation of the algorithm

We evaluated our algorithm through a set of comparisons with different energy-aware

algorithms proposed in the literature. In particular, we chose to compare our algorithm

with the DRA algorithm, proposed by Aydin et al. [17, 18, 16], with the EDF version of

the RTDVS algorithms, proposed by Pillai and Shin [98], and with the DVSST algorithm,

proposed by Qadi et al. [101]. Refer to Section 2.4 for a detailed description of these
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Frequency Voltage Normalized Normalized
(MHz) (V) speed power

consumption

100 MHz 0.85 25% 11%

200 MHz 1 50% 30%

300 MHz 1.1 75% 54%

400 MHz 1.3 100% 100%

Table 5.1: Operating parameters for the Intel Xscale PXA250 processor.

algorithms.

To compare the algorithms, we used a simulation environment called RTSim (which

stands for “Real-Time system SIMulator”) [96, 4], release 0.3. RTSim is a collection of pro-

gramming libraries written in C++ for simulating and analyzing real-time control systems.

In this tool, a simulation is a C++ program that must be linked to an appropriate library

of components which includes schedulers, task models, etc. RTSim started as an academic

project, and it has been used primarily for experimenting with new scheduling algorithms

and solutions. For this reason, it contains, already implemented, many scheduling algo-

rithms proposed in the literature. The tool is released as Open Source (under the GNU

General Public License (GPL)), to give researchers a common simulation platform for

comparing the performance of new scheduling algorithms. For our purposes, we extended

the processor components of RTSim, to include models of processors with varying speed.

Moreover, we implemented the new energy-aware schedulers (namely, DRA, RTDVS and

DVSST).

In particular, we modelled the power consumption of both an Intel Xscale PXA250 [58,

57] processor, using four different operating frequencies, and a Transmeta Crusoe TM5800

processor [131], using seven operating frequencies. Tables 5.1 and 5.2 show the operating

parameters for these models of processors. From the values contained in the tables it is

possible to notice that in both cases the greater is the processor speed, the greater is its

energy consumption, following a convex power/speed curve as discussed in Section 2.2.3.

An important consequence is that the minimal energy consumption is obtained by setting

the processor speed most uniform as possible [63, 98] — i.e., maintaining a constant speed

α is better than switching between two different speeds across α.

The power consumption model chosen in the simulations is very simple but effective

and it consists of associating a power consumption to each processor frequency according

to Equation 2.3. It is the model most used in the literature so far for the evaluation and

comparative analysis of energy-aware scheduling algorithms [98, 17, 18, 101].
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Frequency Voltage Normalized Normalized
(MHz) (V) speed power

consumption

300 MHz 0.8 30% 11%

433 MHz 0.875 43% 20%

533 MHz 0.95 53% 28%

667 MHz 1.05 67% 44%

800 MHz 1.15 80% 63%

900 MHz 1.25 90% 83%

1000 MHz 1.3 100% 100%

Table 5.2: Operating parameters for the Transmeta Crusoe TM5800 processor.

5.3.1 Comparison with DRA and RTDVS

We compared our algorithm GRUB-PA with the DRA [17, 18] and the RTDVS [98] al-

gorithms. For the DRA algorithms, we compared GRUB-PA with the basic algorithm,

as well as with both its extensions (for the aggressive one, we chose the AGGR1 policy

described in [18]). For the RTDVS algorithms, we made the comparison against the EDF

versions, since they are more similar to the GRUB-PA algorithm.

To compare the algorithms, we performed two different kinds of simulations. We

followed the same methodology of Aydin et al. [18]. For GRUB-PA, we generated a server

for each task, with Pi equal to the task period Ti, and Ui equal to the ratio WCET/Pi,

so that, according to Theorem 4, no task ever misses its deadline.

Let WCET and BCET indicate the worst-case and the best-case execution times,

respectively. In the first set of simulations, we fixed a constant WCET/BCET ratio for

each task, while the average workload varied from 10 percent to 70 percent. Notice that

the value 70 percent corresponds to a WCET equal to the task period. We did not use

higher values for the average workload because we were interested in a comparison between

the energy consumption of the algorithms, and not between the number of deadline misses

in case of overload.

For each value of the workload, we simulated 100 different task sets, each one consisting

of 15 different periodic tasks with randomly generated periods. The results are shown in

Figures 5.3 and 5.4 for a WCET/BCET ratio equal to two, and in Figures 5.5 and 5.6

for a ratio equal to four. The simulations have been performed for both the Intel Xscale

PXA250 (Figures 5.3 and 5.5) and the Transmeta Crusoe TM5800 (Figures 5.4 and 5.6).

The second test measured the amount of power consumption with a constant aver-

age workload (50 percent) and a variable WCET/BCET ratio. For each value of the

WCET/BCET ratio we ran 100 simulations using different task sets, again each set con-

sisting of 15 tasks.
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Figure 5.3: Energy consumption with WCET/BCET ratio equal to two on a PXA250.
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Figure 5.4: Energy consumption with WCET/BCET ratio equal to two on a TM5800.
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Figure 5.5: Energy consumption with WCET/BCET ratio equal to four on a PXA250.
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Figure 5.6: Energy consumption with WCET/BCET ratio equal to four on a TM5800.
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Figure 5.7: Energy consumption with constant average workload on a PXA250.
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Figure 5.8: Energy consumption with constant average workload on a TM5800.
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The confidence intervals obtained during the simulations have not been shown since

they were very small (in all simulations, all algorithms presented a 99 percent confidence

interval less than one unit of the normalized value of the energy consumption).

From all simulations, it is possible to conclude that GRUB-PA shows performance

similar to the other algorithms. In particular, for values of the average utilization less

than 50 percent, GRUB-PA shows performance better than most of them. Among all

algorithms, RTDVS-Look Ahead proposed by Pillai and Shin [98] presented the lowest

average energy consumption. However, GRUB-PA has very similar performance compared

to RTDVS-Look Ahead. Moreover, it is important to point out that, unlike DRA and

RTDVS, GRUB-PA does not assume a hard real-time periodic task model, and it can be

applied to both hard and soft, periodic, sporadic or even aperiodic tasks.

Notice that the worst performance has been shown by RTDVS-Static which, being a

static algorithm, is not able of dynamically reclaim the slack time. Moreover, notice that

worse algorithms are more sensitive to the discretization of processor frequencies because

their dynamic reclamation is worse than dynamic reclamation of the better algorithms.

5.3.2 Comparison with DVSST

We also compared GRUB-PA against the DVSST algorithm proposed by Qadi et al. [101],

since it is an algorithm that assumes a sporadic task model. Refer to Section 2.4.6 for a

description of the algorithm.

In each simulation run, we generated eight sporadic tasks with minimum interarrival

times Ti randomly chosen between 1,000 and 10,000 and with actual interarrival time

uniformly distributed between Ti and Ti ∗ 1.1. Each task has a variable computation

time, with a 20 percent of variation over the central value. In each experiment, the sum

Umax of the maximum bandwidth requested by all tasks is constant. Finally, Umax is

varied between 10 percent and 90 percent. The results for the PXA250 and the TM5800

processors are shown in Figures 5.9 and 5.10, respectively.

As it is possible to see, the DVSST algorithm is much more sensitive to the discretiza-

tion of processor frequencies with respect to GRUB-PA, due to the lack of reclamation of

early tasks’ completions. The irregularity of the pattern for DVSST decreases as the num-

ber of available discrete frequencies increases, as it can be noticed by comparing Figure 5.9

with Figure 5.10. As expected, GRUB-PA presents an improvement up to 40 percent with

respect to DVSST.

5.4 Implementation and experimental results

We implemented GRUB-PA in the Linux operating system in the context of the OCERA

(“Open Components for Embedded Real-time Applications”) project, funded by the Euro-
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Figure 5.9: Energy consumption with variable average workload on a PXA250.
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Figure 5.10: Energy consumption with variable average workload on a TM5800.
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pean Commission in the Fifth Framework programme (IST-35102). Our implementation

is available as Open Source code [9, 106, 111, 112, 39] . The main objective of this project

was the design and implementation of a library of free software components for embed-

ded real-time systems. These components have been used to create flexible (supporting

a wide variety of applications), configurable (scalable from a small to a fully featured

system), robust (fault-tolerant and with high performance) and portable (adaptable to

several hardware and software configurations) systems.

We modified the scheduling policy of Linux 2.4.18. Since we wanted to limit as much

as possible the modifications to the standard Linux scheduler, the real-time scheduler has

been developed as a loadable kernel module [38]. A small patch (called “Generic Scheduler

Patch”) applied to the Linux kernel exports the necessary symbols and the relevant events

to the real-time scheduler. The interface to the scheduler has been exported through

the standard sched setscheduler() system call, adding a new scheduling policy, and

extending the structure sched param.

The real-time scheduler needs to know all the relevant events regarding the processes in

the system (i.e., process creation, termination, blocking and unblocking). For this reason,

the patch exports some hooks that are used to intercept the interesting scheduling events:

- block hook is invoked when a task is blocked, so that the scheduler understands that

the current job has finished execution.

- unblock hook is invoked when a task is unblocked, so that the scheduler is informed

of the arrival of a new job.

- fork hook is invoked when a new task is created through a fork() and a pointer to

the task is passed as parameter.

- cleanup hook is invoked when a task is terminated, so that the scheduler can free the

internal resources concerning the task.

- setsched hook is invoked when the system calls sched setscheduler() or sched set

param() are called by the user.

All the hooks, except setsched hook, have a parameter that is a pointer to the struc-

ture task struct of the corresponding task.

The patch inserts a new field called private data in the task struct data structure,

of type void*. It is a pointer used by our scheduler to access the private real-time data

of every task — in our case, a pointer to the server handling the task. If necessary,

the scheduler must set this field to the appropriate data structure during the fork hook.

When the module is removed, it must ensure that all tasks have their private data set

to NULL.



5.4. IMPLEMENTATION AND EXPERIMENTAL RESULTS 95

Figure 5.11: Intrinsyc Cerfcube.

Our dynamically loadable scheduler modifies the task priority, raising the selected

task to the maximum priority, and then calls the standard Linux scheduler. Based on the

information received by the hooks, our scheduler selects which task has to be executed and

sets its policy to SCHED FIFO or SCHED RR and the rt priority to the maximum real-time

priority + 1. Then, it invokes the Linux scheduler. In practice, the Linux scheduler acts as

a dispatcher for our external real-time scheduler. Thus, the modifications to the standard

Linux scheduler are minimal.

Notice that, in this implementation, the scheduling algorithm does not assume any

periodic behaviour of the task. As a matter of fact, the scheduler only intercepts the

blocking/unblocking events of a task, and it is task’s responsibility to implement a periodic

behaviour, if required. Thus, our scheduler is able to serve any kind of task, from non-

periodic legacy Linux processes to periodic soft real-time tasks. An in-depth description

of the implementation can be found in [111].

5.4.1 Test-bed

We tested GRUB-PA on a Intrinsyc CerfCube 250 architecture (see Figure 5.11). It con-

sists of 32 MB Flash ROM, 64 MB SDRAM, and a Ethernet 10/100 Mbps. The processor

is the Intel PXA250 [58, 57] described in Figure 5.12. It is a superpipelined 32 bits RISC

processor based on the Intel Xscale micro-architecture. This processor permits a on-the-fly

switch of the clock frequency and a sophisticated power consumption management.

In particular, the processor can be in one of the following states:

1. Turbo Mode: the processor core works at the peak frequency.

2. Run Mode: the processor core works at its “normal” frequency. In this mode, it is

assumed that the processor frequently accesses external memory, so it is convenient

for it to work at a frequency lower than the Turbo Mode frequency.
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Figure 5.12: Intel PXA250 block diagram.
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The register in which it is possible to select the clock frequency is called CCCR (Core

Clock Configuration Register) and can be found at the address 0x41300000. The CCCR

register manages the core clock frequency which the memory controller clock and the DMA

clock depend upon. In this register, the following parameters are specified:

- Frequency multiplier from the quartz frequency to the memory controller (L)

- Frequency multiplier from the memory frequency to the processor frequency in Run

Mode (M)

- Frequency multiplier from the processor frequency in Run Mode to the processor

frequency in Turbo Mode (N)

The value of L is chosen depending on the constraints of the external memory and

it is usually constant, while the values of M and N can change in order to change the

speed of the processor. The value M is chosen based on the bus speed constraints and

on the minimal performance requirements. The value N is based on the values of peak

performance.

To modify the system clock frequency, register CCLKCFG can be used, that is register

number 6 of the co-processor 14 (which is dedicated to power management at the lower

level). It is a 32 bit register that is used to enter the Turbo Mode and the Frequency Change

Sequence. Register CCLKCFG can only be modified through the following assembler

instructions:

MCR p14, 0, R0, c6, c0, 0

to read the value of the register and put it in R0, and

MRC p14, 0, R0, c6, c0, 0

to copy the content of register R0 into the register CCLKCFG.

As the reader can see, there is a great deal of flexibility in setting the clock frequen-

cies. We had to choose how to implement our algorithm, which frequency to use as base

frequencies, and so on. Notice that the PXA250 processor does not allow many values

for the core frequency without changing the memory speed as well. However, we wanted

to maintain the memory frequency constant because different values could affect our ex-

perimental results. Thus, we configured the system to use only three different processor

frequencies — i.e., 100 MHz, 200 MHz, 400 MHz — whereas the memory frequency did

never change. By using these 3 levels, we were able to use the minimum possible frequency

(100 MHz) and the maximum one (400 MHz). Therefore, we had two thresholds, U1 = 1/4

and U2 = 1/2.
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Figure 5.13: Decompression speed related to processor speed.

5.4.2 Experimental results

Our study was particularly focused on multimedia applications. Therefore, we decided

to evaluate the performance of our system using a multimedia application. However, our

approach can be used for a large range of different applications, because it is completely

transparent to the application characteristics. Unfortunately, our test-bed system, the

Intrinsyc CerfCube, does not present a video output. So, we decided to focus our attention

on a audio decoder. We selected the decoder provided by the Xiph.Org Foundation2.

The audio format was Ogg Vorbis, a non-proprietary high quality (from 8 to 48 bits,

polyphonic) compressed audio format with fixed or variable bitrate ranging from 16 to

128 Kbps per channel. It is in direct competition with the MPEG format et similia.

One may argue that varying the processor frequency only, without touching the pe-

ripherals frequencies (like memory, for example) does not bring appreciable advantages.

We performed some experiments showing that, in the considered test-bed, this is not the

case. To execute the first test, we decompressed a set of audio streams at 44100 Hz and

two channels, measuring the time necessary to decompress every stream under different

fixed clock frequencies. From the measured values, we extracted how much the speed of

decompression is related to the speed of the processor. The result is shown in Figure 5.13,

where we show on the x-axis the frequency of the processor, and on the y-axis the decom-

pression speed. As the reader can see, the relationship is almost linear. This justifies our

assumption that by doubling the processor frequency, the computation time of one task’s

job halves.

2Xiph.Org is a “non-profit organization dedicated to protecting the foundations of Internet multimedia
from control by private interests”.
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Figure 5.14: Current entering in the CerfCube system during the boot.

Processor frequency Current

100 MHz 446.0 mA

200 MHz 508.5 mA

400 MHz 579.9 mA

Table 5.3: Average values of the input current.

Then, we evaluated the power consumed by our system under different conditions, with

and without GRUB-PA. We inserted a dedicated electronic circuit between the CerfCube

board and the power supply to measure the input current to the board. The circuit is

powered by a separate 9V battery: it puts a very small resistor in series with the CerfCube

board and measures the voltage at the ends of the resistor. The resulting data are sampled

and sent through a serial cable to a host PC that collects and shows them. Figure 5.14,

for instance, shows the input current measured during the boot of the embedded device.

We did many experiments using the multimedia application described above, in order

to ensure that the scheduler was working properly and that the assumptions of the GRUB-

PA algorithm were satisfied. In particular, we measured the temporal evolution of the

current entering into the board in different conditions, with or without our algorithm, and

under different workloads. The average values of the input current that we observed are

reported in Table 5.3.

We also considered the most general case of many real-time applications activating and

deactivating dynamically. We executed several instances of the audio decoder concurrently,

each one on a different audio stream. A different value of the bandwidth was assigned to

each instance of the application, so that the total load of the system was highly variable

and we could take fully advantage of the DVS technique. We observed that, at any time,
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the power consumption was proportional to the value of the U variable of GRUB-PA

(respecting the discretization of the processor frequencies, of course). In particular, for a

value of U comprised between 0 and 0.25, we measured an amount of energy saved equal to

38.4 percent of the total power consumed by the system. Notice that this is the percentage

of energy saved with respect to the total energy consumed by the board, although our

algorithm acts only on the processor. This value proves that the DVS technique is as an

effective way of reducing energy consumption in modern computational systems: using

GRUB-PA, in fact, the energy consumption of the whole system has been easily reduced

of one third.

The interested reader can refer to the original paper [111] for a more detailed descrip-

tion of the experiments.

5.5 Summary

In this chapter, we presented GRUB-PA, a novel energy-aware scheduling algorithm suit-

able for systems consisting of hard periodic and soft aperiodic real-time tasks. The algo-

rithm is based on the Resource Reservation framework, so it does not make any restrictive

assumption on the characteristics of the tasks.

We theoretically analyzed the main properties of the algorithm, simulated its behaviour

and set up a test bed.

Our simulations show that GRUB-PA, besides giving guarantees about the temporal

execution of tasks (i.e., temporal isolation), presents performance similar to those pro-

vided by other energy-aware scheduling algorithms presented in the literature so far. In

particular, for values of the average utilization less than 50 percent, GRUB-PA shows per-

formance better than most of the algorithms presented. However, unlike most algorithms,

GRUB-PA can also be applied to hard and soft, and periodic, sporadic or even aperiodic

tasks.

Moreover, we presented an implementation of GRUB-PA in the Linux operating sys-

tem. The experimental results on this real test-bed system show that using GRUB-PA we

can save up to 38.4 percent of the total power consumed by the system with respect to

the unmodified one.



Chapter 6

Final Remarks

6.1 Conclusions

In this thesis, we have proved that achieving real-time guarantees and energy efficiency

at the same time is actually possible by using proper energy-aware real-time scheduling

algorithms. Starting from the definitions and the notation concerning real-time systems

provided in Chapter 1, we have formally defined a scheduling model to study the problem

of energy minimization in real-time system. We have also provided a possible taxonomy

of energy-aware scheduling algorithms similar to the one proposed by Kim et al. [65] as

well as the state of the art of such algorithms in the real-time literature so far.

In Chapter 3, we studied the problem of energy minimization from an analytical point

of view, integrating the concept of probabilistic execution time within the framework of

energy minimization. In particular, we found the optimal values of the instant of frequency

transition (i.e., transition point) and speed assignments when probabilistic information

about task execution times is known. The optimal values have been found using a very

general model for the processor that accounts for idle power and for both the time and

the energy overheads due to voltage/frequency transition. Our result is optimal and

represents an improvement over the sub-optimal scheme proposed by Zhu. et al. [43, 141]

in the DVS-EDF algorithm (i.e, providing the average number of cycles in the first portion

and running the second portion at the maximum processor speed). We also studied how

the overhead and the idle power affect the optimal values. Very interestingly, we showed

that, in our model, the power consumed during the idle operating mode can be easily

taken into account by adjusting the active operating modes of the processor. Then, we

showed how our results can be applied to some significant cases (namely, uniform and

exponential densities).

In Chapter 4, we provided an overview of the Resource Reservation technique [104]

which provides the temporal isolation property: the temporal behaviour of each task (i.e.,

its ability to meet its deadlines) is isolated from the rest of the system and it is not affected
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by the behaviour of the other tasks. If a task misbehaves and requires a large execution

time, it cannot monopolize the processor. Such property is particularly useful when mixing

hard and soft real-time tasks on the same system. Then, we investigated some anomalies in

the schedule generated by the CBS [6] and GRUB [76, 75, 77] algorithms and we proposed

a novel algorithm, called HGRUB [11], which maintains the same features of CBS and

GRUB but it is not affected by the problems described. We also proved some properties

about this novel algorithm when scheduling cpu-intensive tasks.

In Chapter 5, we modified GRUB for energy-aware scheduling. The novel algorithm

has been called GRUB-PA (Greedy Reclamation of Unused Bandwidth—Power Aware).

Like GRUB, GRUB-PA is based on the Resource Reservation framework, so it does not

make any restrictive assumption on the characteristics of the tasks. Thus, unlike most of

the algorithms proposed in the literature, GRUB-PA can handle any mixture of hard, soft,

periodic, sporadic and aperiodic tasks. The mechanism used by the GRUB-PA algorithm

(i.e., Utilization Updating) is very similar to the one used by the DVSST algorithm [101]:

they both use a global variable U to set the processor speed. However, we have shown

that, thanks to its reclamation property, GRUB-PA always anticipates the time at which

the processor speed is lowered with respect to DVSST, resulting in a larger amount of

energy saved.

We theoretically analyzed the main properties of GRUB-PA, simulated its behaviour

and set up a test bed. We evaluated the algorithm through a set of comparisons with

several energy-aware algorithms proposed in the literature. In particular, we compared

our algorithm with the DRA algorithm, proposed by Aydin et al. [17, 18, 16], with the EDF

version of the RTDVS algorithms, proposed by Pillai and Shin [98], and with the DVSST

algorithm, proposed by Qadi et al. [101]. To make the comparisons, we implemented the

algorithms in our Open-Source scheduling simulation environment RTSim [96, 4], release

0.3. For our purposes, we extended the processor components of RTSim, to include models

of processors with varying speed, and we modelled the power consumption of both the Intel

Xscale PXA250 [58, 57] and the Transmeta Crusoe TM5800 [131] processors. Through

a set of simulations, we showed that our algorithm, besides giving guarantees about the

temporal execution of tasks, achieves performance similar or better than those provided

by the other energy-aware scheduling algorithms, but it has the net advantage of handling

different kinds of tasks (i.e., hard, soft, periodic, sporadic and aperiodic tasks).

Finally, we implemented the GRUB-PA algorithm on the Linux kernel 2.4.18 and we

tested its effectiveness on a real test-bed by experimentally decoding some compressed

audio files. We have built a dedicated electronic circuit to measure the input current

entering into our test-bed. We measured the temporal evolution of the current in different

conditions, with or without our algorithm, and under different workloads. We observed

a maximum energy reduction equal to 38.4 percent of the total energy consumed by the
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system. Notice that this is the percentage of energy saved with respect to the total energy

consumed by the board, although our algorithm acts only on the processor.

In Appendix A, we also provide an overview of the existing real-time extensions of the

Linux kernel, showing that creating a RTOS starting from a general-purpose operating

system is actually possible. We explain the typical problems in supporting real-time

activities on such kind of systems. Then, we describe the possible approaches to solve

these problems as well as the advantages and disadvantages of each technique.

6.2 Ongoing work

Currently, we are working on several topics related to Resource Reservations and energy

efficiency. These topics can be summarized as follows.

Processor model and energy management scheme

We are working on several extensions of the model and results discussed in Chapter 3. In

particular, we are addressing

• the extension to the case of discrete processor frequencies, developing an on-line

algorithm with low complexity to find the best pair of frequencies to be used;

• the extension to multiprocessor and multicore systems, considering the case in which

the speed of each computing unit can be changed independently from the others;

• the extension to the case of multiple speeds (i.e., more than two) resembling the

approach of PACE algorithms; this extension would be an improvement over the

classical algorithms because it would consider the more general case with idle power

and with both time and energy overheads due to voltage/frequency transitions. We

are also studying the optimal number of speeds for such algorithm.

Resource Reservations

We are currently investigating the use of the Resource Reservation technique in the fol-

lowing areas.

• We are working on a Resource Reservation mechanism for webservers. This allows

to provide QoS to each served request as well as temporal isolation among different

requests. In particular, we are implementing a Resource Reservation mechanism on

top of the Apache [1] webserver.

• We are investigating the feasibility of an energy-aware extension of the IRIS [83]

algorithm, similarly as what we have done for GRUB. A comparison between GRUB-

PA and this novel algorithm would be very interesting.
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• Extending GRUB-PA to multiprocessor and multicore systems. In particular, start-

ing from the results obtained in a preliminary study [107], we are evaluating the

possibility of implementing GRUB-PA in the Condor [2] workload management sys-

tem to create a flexible energy-aware webserver.

Operating systems

In the field of operating systems, we plan to work in the following sectors.

• We are evaluating the possibility of using the virtualization technique provided by

modern operating systems (e.g., Xen) and task migration to reduce the energy con-

sumed by a cluster of computers. In fact, in case of low workload, the tasks running

on a cluster unit could be migrated to a different unit in order to shut down one

computation unit and reduce energy consumption.

• An implementation of the Resource Reservation framework on the current main-

stream of the Linux kernel, similarly as what we have done for the 2.4.18 kernel in

the OCERA project. This implementation should exploit the newest services offered

made available by the work of Ingo Molnar [89].

• Exploit the Dynamic Tick feature of the Linux kernel, by implementing an algorithm

that sets the value of the system tick based on the current workload and the timing

constraints of the real-time tasks currently in execution.



Appendix A

Supporting Real-Time

Applications on Linux

In the last years, there has been a considerable interest in using Linux as a RTOS, especially

in control systems. The simple and elegant design of Linux guarantees robustness and very

good performance, while its Open Source license allows to modify and change the source

code according to the user needs.

However, Linux has been designed to be a general-purpose operating system where

applications can dynamically activate at any time, and the scheduler cannot make any re-

strictive assumption on the characteristics of the running programs. Therefore, it presents

some issues, like unpredictable latencies, limited support for real-time scheduling, and

coarse grain timing resolution that might be a problem for real-time applications [40].

For these reasons, several modifications have been proposed to add “real-time” features

to the kernel. In this appendix, we give a brief description of the many existing approaches

to support real-time applications on Linux. Moreover, we take a look at the expected

trends, presenting what we believe will be the future of Linux for what concerns real-time

support.

A.1 Introduction

Linux is a full-featured operating system, originally designed to be used in server or desktop

environments. Since then, Linux has evolved and grown to be used in almost all computer

areas — among others, embedded systems and parallel clusters 1.

In the last years, there has been a considerable interest in using Linux for real-time

control systems, from both academic institutions, independent developers and industries.

1Linux currently supports almost every hardware processor, including x86, AMD x86-64, ARM, Compaq
Alpha, CRIS, DEC VAX, H8/300, Hitachi SuperH, HP PA-RISC, IBM S/390, Intel Xscale IXP and PXA,
Intel IA-64, MIPS, Motorola 68000, PowerPC, Samsung S3C24XX, SPARC and UltraSPARC.
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There are several reasons for this raising interest. First of all, Linux is an Open Source

project, meaning that the source code of the operating system is freely available to ev-

erybody, and can be customized according to the user needs, provided that the modified

version is still licensed under the GNU General Public License (GPL). This license allows

anybody to redistribute, and even sell, a product as long as the recipient is able to exercise

the same rights (access to the source code included). This way, a user (for example, a

company) is not tied to the OS provider anymore, and is free of modifying the OS at will.

The GPL Open Source license helped the growth of a large community of researchers and

developers who added new features to the kernel and ported Linux to new architectures.

Nowadays, there is a huge amount of programs, libraries and tools available as Open

Source code that can be used to build a customized version of the Linux OS.

Another reason for the usage of Linux in real-time systems is its wide popularity and

success. It has the simple and elegant design of the UNIX OSs, which guarantees a very

stable, robust and secure system. Moreover, it has excellent performance and a good net-

work protocol stack implementation. The portability of code from different UNIX operat-

ing systems is ensured by the well known “Portable Operating System Interface” (POSIX)

API. This is an IEEE standard defining the basic environment and set of functions offered

by the operating system to the application programs. Finally, the huge community of

engineers and developers working on Linux makes finding expert kernel programmers very

easy.

Thus, when compared to commercial real-time operating systems (RTOSs) in terms

of cost of development, Linux has good chances to be the winner. Unfortunately, the

standard mainline kernel (as provided by Linus Torvalds) is not adequate to be used as

RTOS. Linux has been designed to be a general-purpose operating system (GPOS), and

thus not much attention has been dedicated to the problem of reducing the latency of

critical operations. Instead, the main design goal of the Linux kernel has been (and still

remains) to optimize the average throughput (i.e., the amount of “useful work” done by

the system in the unit of time). As we will show in Section A.3, a Linux program may

suffer high latencies in response to critical events.

To overcome these problems, many approaches have been proposed in the last years

to modify Linux in order to make it more “real-time”. Kernel developers have worked

in parallel toward the goal of reducing the worst-case latency of the standard Linux ker-

nel, and proposed some possible solutions. At the same time, a new approach (called

Resource Reservation) is slowly making its way to real-time system programming, and

many Linux-based implementations of this approach are already available. Because of

these improvements, the final goal of supporting real-time activities on a general purpose

operating system [40] like Linux is finally becoming possible.

In this appendix, we discuss the state of the art of the different approaches to a Linux-
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based RTOS, and we take a look at the future trends. The appendix is organized as

follows. In Section A.2, we describe the problems in supporting real-time activities using

the standard Linux kernel. Then, we present the possible approaches to create a real-time

version of Linux. In particular, in Section A.3 we describe the approach called Interrupt

Abstraction, and we present some implementations of this mechanism. In Section A.4,

instead, we present some different techniques to add real-time capabilities to the standard

Linux kernel. Finally, in Section A.5 we state our conclusions and we try to predict the

next steps of Linux kernel development for what concerns real-time support.

A.2 Towards a Real-Time Linux Kernel

A.2.1 Problems Using Standard Linux

There are several issues that must be analyzed in supporting real-time activities in a

general-purpose operating system like Linux. All these issues are related to non-deterministic

behaviours of the system, which makes real-time processes experience latencies of unpre-

dictable length during execution [8, 48]. All real-time applications, however, consist of

time-sensitive activities having strict timing constraints (like deadlines) that must be sat-

isfied, otherwise the system does not work properly.

The “latency” of an OS can be defined in many different ways. In general, latency

is the time it takes between the occurrence of an event and the beginning of the action

that will respond to the event. In the case of real-time control applications, it is often

defined as the time between the interrupt signal arrives to the processor (signaling that an

external event like a sensor reading has occurred) and when the handling routine actually

starts execution (for example the real-time task that will respond to the event). In the

development of critical real-time control systems, it is necessary to account for the worst-

case scenario: hence we are particularly interested in the maximum latency values.

In the 2.4.x versions of Linux, the maximum latency can be very high: for example, it

can go up to 230 msec on a native standard kernel running on a Desktop computer [135].

Such a large interval of time is considered inadequate even for soft real-time applications.

A control application requiring a sampling rate of 10 Hz (and hence a sampling period of

100 msec) cannot be safely executed in real-time on Linux 2.4.17, as in the worst-case up

to two invocations can be delayed or even skipped.

The two main sources of latency in general-purpose operating systems are task latency

and timer resolution. Task latency is experienced by a process when it cannot preempt

a lower priority process because this is executing in kernel context (i.e., the kernel is

executing on behalf of the process). Typically, monolithic operating systems do not allow

more than one stream of execution in kernel context, so that the high priority task cannot

execute until the kernel code either returns to user-space or explicitly blocks. This is
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equivalent to having a lock for all the kernel code: whenever a task invokes a kernel

routine, the kernel is locked, and no other kernel activity (except very low-level interrupt

handling, commonly referred as top-half in Linux) can be executed. In case of Linux 2.4.x,

many portions of the kernel code require a considerable execution time. If a high priority

task is activated in response to an interrupt while the kernel is locked, it must wait for

the kernel lock to be released before starting execution.

Another source of latency is related to timing resolution. Every operating system

needs to keep track of the flow of time, because a large number of kernel functions (e.g.,

process scheduling) are time-driven. Operating systems keep track of time through an

electronic timer circuit that issues a hardware interrupt after a pre-programmed amount

of time. When the timer issues the interrupt, the kernel knows that the specified interval

of time is elapsed. Typically, general-purpose operating systems like Linux set the system

timer in order to have periodic interrupts at a certain frequency. The value of the period

is called tick and it is often a configurable option which depends on the processor speed.

For example, in Linux 2.6 the tick value can vary between 1 msec (on fast processors)

up to 40 msec (on slow machines). The periodic tick rate directly affects the granularity

of all timing activities and it is one of the major causes of latency in operating systems.

The kernel, in fact, is not able of measuring (or deferring activities for) intervals of time

below a certain threshold. This represents a problem in real-time systems which need an

accurate estimation of the current time and the execution of tasks at precise instants.

Finally, another problem in supporting real-time processes in general-purpose operat-

ing systems is the limited support for proper real-time scheduling policies. Linux provides

the POSIX-compliant SCHED FIFO and SCHED RR policies, that are simple fixed priority

schedulers. Both policies enable a task to execute until it explicitly releases the proces-

sor. Although fixed priority is adequate for real-time scheduling in embedded systems,

it is not suitable for supporting real-time activities in general-purpose operating systems.

Notable drawbacks of fixed priority schedulers are the fairness and the security among

processes [9]. In fact, if a regular non-privileged user is enabled to access the real-time

scheduling facilities, then he can rise his processes to the highest priority, starving the rest

of the system. On the other hand, it is very difficult to provide real-time guarantees if

only privileged users are allowed to access the scheduling facilities. Moreover, even trusted

users may crash the system due to some mistake during development or debugging.

A.2.2 Classification of Linux-based RTOSs

For the above reasons, the standard Linux kernel is not suitable for supporting real-time

control applications. Thus, during the last years, several approaches have been proposed

to add real-time features to the kernel. These techniques can be grouped in the following

two classes of approaches:
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1. Interrupt Abstraction, which adds a new abstraction layer beneath the kernel to take

full control of interrupts and system timers. This approach creates a hard RTOS

that executes Linux as a background task. We describe this approach in Section A.3;

2. Kernel Preemption approaches, that make the behaviour of the system more de-

terministic, by improving kernel preemption, response times and timing resolution.

These techniques are described in Section A.4.

A.3 Interrupt Abstraction

The approach based on Interrupt Abstraction consists of creating a layer of virtual hard-

ware between the standard Linux kernel and the computer hardware, as shown in Fig-

ure A.1. This layer is also called Real-Time Hardware Abstraction Layer (RTHAL) [42],

although it only virtualizes interrupts. Then, a separate complete real-time subsystem

that consists of a RTOS and a set of real-time tasks and device drivers, runs together with

the Linux OS.

The mechanism is the following. Every interrupt source is marked as real-time or

non real-time. Real-Time interrupts are served by the real-time subsystem, whereas non-

real-time interrupts are managed by the Linux kernel. To avoid latencies when executing

real-time code, every time an interrupt arrives (the arrow marked with (a) in Figure A.1),

the RTHAL checks if it is a real-time interrupt. If so, the interrupt is immediately served

by the real-time subsystem. A non-real-time interrupt, instead, is not forwarded to the

Linux kernel immediately, but it is stored in a “pending interrupts” vector. The pending

interrupts (and all other Linux activities) can be served only when no other real-time

activity is running (arrow marked with (b) in Figure A.1). In practice, the resulting system

is a multithreaded RTOS, in which the standard Linux kernel is the lowest-priority thread.

The Linux kernel, and all the normal Linux processes are managed by the abstraction

layer as the lowest priority task — i.e., the Linux kernel only executes when there are no

real-time tasks to run and the real-time kernel is inactive.

Three main modifications must be done to the Linux kernel in order to virtualize the

hardware and take full control of the machine. The abstraction layer must:

1. take direct control of all the hardware interrupts. The new interrupt handler in-

tercepts all hardware interrupts, and checks whether the interrupt is related to a

real-time activity or not, according to the mechanism described in Figure A.1;

2. take the control of the hardware timer (8254 and APIC when available) and imple-

ment a virtual timer for Linux;

3. remove the basic control of the hardware interrupts from Linux by replacing all the

cli and sti function calls (disable and enable interrupt flag, respectively) from the
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Figure A.1: Interrupt Abstraction.

kernel code so that Linux cannot disable hardware interrupts (but only their virtual

counterparts).

The Interrupt Abstraction approach has been successfully implemented in some ex-

isting RTOSs, the most famous being RTLinux and RTAI. RTLinux [140] is a patch

developed at Finite State Machine Labs (FSMLabs) to add hard real-time features to the

standard Linux kernel. The project started in 1995 and it is released in two different

versions: an Open Source (under GPL license) version, and a more featured commercial

version. The RTLinux patch implements a small and fast RTOS, compliant with the

POSIX 1003.13 “minimal real-time system” profile. This means that it has basic thread

management, IPC primitives, semaphores, signals, spinlocks, FIFOs, etc. Some function

calls, however, do not follow the POSIX standard. RTLinux is covered by US Patent

5885745 issued on November 30th, 1999. The patent is not valid outside of the USA, but

FSMLabs has expressed its intention to enforce the patent. This has generated a massive

transition of community developers efforts towards RTAI.

RTAI is the acronym of “Real-Time Application Interface” [42, 3]. The project started

as a variant of RTLinux in 1997 at Dipartimento di Ingegneria Aerospaziale of Politecnico
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Linux 2.4 RTAI

Idle system Avg. 4.3 5.8
Interrupt Max. 32.5 25.9
latency Loaded system Avg. 14.3 17.9

Max. 162.9 64.9

Idle system Avg. 49.7 33.2
Task Max. 332.3 68.0
latency Loaded system Avg. 3147.5 63.0

Max. 84585.0 142.0

Table A.1: Interrupt and task latency in the standard Linux 2.4 and in RTAI. All measures
are in microseconds.

di Milano (DIAPM), Italy. The project is under LGPL license, and it is supported by a

large community of developers based upon the Open Source model. Although the RTAI

project started from the original RTLinux code, the API of the projects evolved in opposite

directions. In fact, the main developer (Prof. Paolo Mantegazza) has rewritten the code

adding new features and creating a more complete and robust system. With respect to the

Open Source version of RTLinux, RTAI has a greater amount of supported architectures

and a larger number of mechanisms for communication between processes.

An in-depth comparison of the latency between the standard Linux kernel 2.4 and

RTAI on a platform with an Axis ETRAX processor has been done in [14]. The main

results of the experiments are summarized in Table A.1. The values are measured without

system load (Idle system) and when a load is applied (Loaded system), respectively. The

upper part of Table A.1 shows the values of the interrupt latency (i.e., the time between the

interrupt arrival and the execution of the interrupt handler). Notice that, on average, the

RTHAL imposes a slight increase in latency, due to the additional overhead of intercepting

every interrupt with the RTHAL. However, the maximum latency values using RTAI are

much smaller than using a standard kernel (especially for a loaded system), meaning that

the determinism and the responsiveness of the system have been actually improved.

The bottom part of Table A.1 shows the values of the task latency (i.e., the time

between the interrupt arrival and when the task starts processing). Task latency is essen-

tially composed by two components: the interrupt and the scheduling latencies. In this

case, the behaviour of the two systems differs even in those situations where the interrupt

latency values were almost close. This difference is due to how the Linux scheduler works:

while on RTAI a real-time process is scheduled maintaining the interrupts disabled, on

Linux the interrupts are re-enabled after the interrupt handler finishes, leading to much

more non-determinism.

FSMLabs, the owner of RTLinux, did not clear up the uncertainty around the legal

repercussion of its patent on RTAI. For this reason, the RTAI community has developed the

Adaptive Domain Environment for Operating Systems (Adeos) nanokernel as alternative
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for RTAI’s core, to get rid of the old kernel patch and exploit a more structured and flexible

way to add a real-time environment to Linux [42]. The purpose of the Adeos nanokernel is

not limited to be the new RTAI’s core, but also to provide a flexible environment for sharing

hardware resources among multiple operating systems (or among multiple instances of the

same OS).

A.3.1 Advantages

It is important to highlight the advantages of using the Interrupt Abstraction approach.

First of all, the latency reduction is really effective: measurements show a maximum

latency below the microsecond [64] on a Intel Pentium M processor at 1.60 GHz. This al-

lows the implementation of very fast control loops for applications like vibrational control.

Also, thanks to the interrupt virtualization, it is possible to use a full-featured OS like

Linux for the non-real-time activities. As a matter of fact, even the most critical control

application includes non real-time activities, like logging and monitoring, man-machine

interface, remote access through Internet, and so on. Using a system like Linux can re-

duce considerably the effort in developing this part of the system, and the programmer can

focus on the most critical part. Finally, a further advantage is the possibility of developing

and then executing the code on the same hardware platform, simplifying considerably the

complexity of the development environment.

A.3.2 Limitations of RTLinux and RTAI

Both RTLinux and RTAI in their basic versions suffer from some software engineering

and programming problems. As shown in Figure A.1, the real-time subsystem (RTOS and

tasks) executes in the same memory space and with the same privileges as the Linux kernel

code. This means that there is no protection of memory between the real-time tasks and

the Linux kernel. The real-time tasks are typically executed as modules dynamically loaded

into the kernel. Therefore, a real-time task with errors (like wrong memory references,

or unbounded execution time) may crash the entire system. Such situation is frequent

during debugging and development, and it is a very common experience for programmers

of such systems to reboot the computer several times before identifying the error. Both

the commercial version of RTLinux and the most recent versions of RTAI partially solved

this problem. In particular, RTAI supports the LXRT interface that lets developers try

out real-time tasks in user space, where memory protection is enabled, at the cost of some

more latency. Once the task has been properly debugged, it can be executed on RTAI

without changing the task code. The LXRT mechanism has then evolved to the Xenomai

project which will be described in the next section.

Another problem is the communication with the non-real-time Linux activities. In

particular, the real-time subsystem cannot use the Linux device drivers. For example, both
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RTLinux and RTAI have their own network protocol stacks for communicating through

Ethernet and with the serial driver, because the real-time tasks cannot use the Linux

protocol stack. Therefore, in the same system, there is duplication of code for both the

real-time and the non-real-time parts. Moreover, the effort of developing device drivers is

always a consistent part of the development.

A.3.3 The Xenomai approach

A spin-off of the RTAI project 2, Xenomai [45] brings the concept of virtualization one step

further. Like RTAI, it uses the Adeos nanokernel to provide the interrupt virtualization,

but it allows a real-time task to execute in user space. Xenomai uses the concept of

domain provided by Adeos extensively. In particular, Xenomai defines a primary domain,

which is controlled by the RTOS (called RT-Nucleus), and a secondary domain, which

is controlled by the Linux scheduler. A real-time task can execute in user space or in

kernel space. Normally, it starts in the primary domain, where it remains as long as it

invokes only the RTOS API. When the real-time task invokes a function belonging to the

Linux standard API or libraries, it is automatically migrated to the secondary domain,

under the control of the Linux scheduler. However, it keeps its real-time priority, being

scheduled with the SCHED FIFO or SCHED RR Linux policies. While the real-time task

is in the secondary mode, it can experience some delay and latency, due to the fact that it

is scheduled by Linux. However, at any time after the function call has been completed,

it can go back to the primary mode by explicitly calling a function. In this way, at the

cost of some limited unpredictability, the real-time programmer can use the full power of

Linux also for real-time applications. In fact, real-time tasks can run in their own memory

space and are protected from the other tasks. This isolation facilitates debugging and

fault confinement, reducing considerably the development time, and adding robustness to

software faults.

Regarding the latency, the tasks in primary domain experience latencies comparable

with the execution on RTAI. In secondary domain, instead, the maximum latency is higher,

but still acceptable. As stated by Philippe Gerum [46], Xenomai leader, improvements on

the standard Linux latency can help Xenomai too. For this reason, Xenomai developers

put a constant effort in ensuring the simplicity and minimal invasivity of their approach

with respect to the Linux code, thus that it is possible to use Xenomai along with separate

solutions (like the PREEMPT RT presented in Section A.4.3) proposed by other developers.

2Xenomai is the evolution of the Fusion project (in turn a generalization of the LXRT interface), which
was an effort to execute real-time RTAI tasks in user space.
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A.4 Making the Kernel More Predictable

An alternative to interrupt and hardware abstractions consists on making the Linux kernel

more deterministic, by improving some parts that do not allow a predictable behaviour.

As we discussed in Section A.2, the main sources of unpredictable behaviour in Linux

are the kernel latency, the timing resolution and the process scheduling [8, 48]. We now

present all the solutions that have been proposed to address these issues.

A.4.1 Reducing Kernel Latency

In the past, two different approaches were proposed to reduce kernel latency in the 2.4

version of the Linux kernel. These two approaches were the Low Latency Patch and the

Preemptible Kernel Patch, respectively. The former patch was introduced by Ingo Molnar

and then maintained by Andrew Morton [91]. Rather than attempting a brute-force

approach (i.e., preemption) in a kernel that is not designed for it, this patch focuses on

introducing explicit preemption points in blocks of kernel code that may execute for long

intervals of time. The idea is to find places that iterate over large data structures and

figure out how to safely introduce a call to the scheduler. Sometimes this implies releasing

a spinlock, scheduling and then reacquiring the spinlock, which is also known as “lock

breaking”.

A different strategy has been proposed by Robert Love with MontaVista’s Preemptible

Kernel Patch [82]. This patch makes the kernel preemptible, just like user-space: if a high

priority task becomes runnable, the patch allows a context switch even if another process

is running in kernel context. Hence, it becomes possible to preempt a process at any point,

as long as the kernel is in a consistent state (i.e., no lock is held). Kernel preemption is

subject only to Symmetric Multi-Processing (SMP) locking constraints (i.e., spinlocks are

used as markers for regions of preemptibility). With the advent of Linux 2.6, Robert Love’s

patch has been accepted in the mainline kernel, thus that the Linux kernel has become

a fully preemptive kernel [82], unlike most existing operating systems (UNIX variants

included).

A comparison of the two techniques has been performed by Clark Williams [135] and

is summarized in Table A.2. The hardware used for the experiments is a 700 MHz AMD

Duron system with 360MB RAM and a 20GB Western Digital IDE drive connected to a

VIA Technologies VT82C686 IDE controller. The experiments show that the maximum

latency on a native 2.4.17 standard kernel can be as high as 232.7 msec, which is not a

negligible value even on Desktop machines. The Preemptible Kernel Patch can reduce

this value, but it is the Low Latency Patch that really makes the difference in the latency

behaviour of the kernel, allowing a maximum latency of 1.3 msec. Obviously, the two

techniques can also be combined together. In this case, the result is quite unexpected: the
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Linux Preempt. Low Both
2.4.17 Kernel Latency Patches

Avg. 88 µsec 53.8 µsec 54.2 µsec 52 µsec
Max. 232.7 msec 45.3 msec 1.3 msec 1.2 msec

Table A.2: Average and maximum latency values using a standard Linux 2.4.17, the
Preemptible Kernel and the Low Latency patches.

maximum latency measured is 1.2 msec, which is a small improvement with respect to the

gain obtained using only the Low Latency Patch.

A.4.2 Improving Timing Resolution

The fact that periodic timer interrupts are not suitable for real-time kernels is well known

in the literature [8]. For this reason, most of the existing real-time kernels provide a

“High Resolution Timers” (HRT) API, that issues the interrupts aperiodically — i.e., the

system timer is programmed to generate the interrupt after an interval of time that is not

constant, but that depends on the next event scheduled by the operating system. Often,

these implementations exploit also processor-specific hardware (like the APIC on modern

x86 processors) to obtain a better timing resolution (typically, in the order of microseconds

or even fractions of microseconds).

There are two different projects to provide HRT in the Linux kernel. The first project,

called High-Resolution POSIX Timers [15], started in 2001 as a separate patch and never

became part of the standard kernel.

Very recently, a newer API developed by Thomas Gleixner has been accepted into

the 2.6.16 version of the mainline kernel [94]. Rather than using a “timer wheel” data

structure, this implementation uses a time-sorted linked list, with the next timer to expire

being at the head of the list. A separate red/black tree is also used to enable the insertion

and removal of timer events without scanning through the list. A new type (called ktime t)

is used to store a time value in nanoseconds and it is meant to be used as an opaque

structure. Interestingly, its definition changes depending on the underlying architecture.

On 64-bit systems, it is just a 64-bit integer value in nanoseconds. On 32-bit machines,

instead, it is a two-field data structure: one 32-bit value holds the number of seconds and

the other holds nanoseconds. The order of the two fields depends on whether the host

architecture is big-endian or not — they are always arranged so that the two values can,

when needed, be treated as a single 64-bit value. Doing things this way complicates the

header files, but provides efficient time value manipulation on all architectures.



116 APPENDIX A. SUPPORTING REAL-TIME APPLICATIONS ON LINUX

Kernel sys load Aver Max Min StdDev

None 5.8 51.9 5.6 0.3
Ping 5.8 49.1 5.6 0.8

Vanilla-2.6.12 lm. + ping 6.1 53.3 5.6 1.1
lmbench 6.1 77.9 5.6 0.8
lm. + hd 6.5 128.4 5.6 3.4
DoHell 6.8 555.6 5.6 7.2
None 5.7 48.9 5.6 0.2
Ping 7.0 62.0 5.6 1.5

RT-V0.7.51-02 lm. + ping 7.9 56.2 5.6 1.9
lmbench 7.3 56.1 5.6 1.4
lm. + hd 7.3 70.5 5.6 1.8
DoHell 7.4 54.6 5.6 1.4
None 7.2 47.6 5.7 1.9
Ping 7.3 48.9 5.7 0.4

Ipipe-0.7 lm.+ ping 7.6 50.5 5.7 0.8
lmbench 7.5 50.5 5.7 0.9
lm. + hd 7.5 50.5 5.7 1.1
DoHell 7.6 50.5 5.7 0.7

Table A.3: Latency comparison between Standard Linux, Linux with the PREEMPT RT

patch, and Adeos. All numbers are in microseconds.

A.4.3 The PREEMPT RT patch

The latest modification is the PREEMPT RT patch by Ingo Molnar [89]. This work brings

the kernel preemption to an unprecedent level of sophistication by introducing the Priority

Inheritance Protocol in the kernel locks. The Priority Inheritance (PI) protocol, first

proposed by Sha et al. [117], solves the problem of unbounded priority inversion. A

priority inversion happens when a high priority task must wait for a low priority task

to complete a critical section of code and release the lock. If the low priority task is

preempted by a medium priority task while holding the lock, the high priority task will

have to wait for a long time. The priority inheritance protocol dictates that in this case,

the low priority task inherits the priority of the high priority task while holding the lock,

preventing the preemption by medium priority tasks. Refer to Section 1.8 for an in-depth

explanation of the problem.

In the general case (i.e., nested spinlocks, readers/writers locks) the priority inheritance

mechanism is a complex algorithm to implement. Nevertheless, it can help reduce the

latency of Linux activities even further, reaching the level of the Interrupt Abstraction

methods.

In Table A.3 we report the results of a comparison between a standard Linux (denoted

as Vanilla-2.6.12), the same Linux with the RT patch applied, and the Adeos microkernel,

used by both RTAI and Xenomai (denoted with Ipipe-0.7)3.

3The results are provided by Paolo Mantegazza and are taken from https://mail.rtai.org/

pipermail/rtai/2005-October/013265.html. We are not aware of the original source of these numbers.
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On each kernel configuration, a number of standard tests have been run to stress the

system in order to measure the worst-case latency. The interrupt latency (i.e., the time

it takes from the raise of the interrupt signal to the execution of the first instruction

of the interrupt handler) has been measured in all cases. As the reader can see from

the table, the maximum latencies are quite high in the Vanilla kernel (in the order of

half a millisecond), while the maximum latencies in the RT kernel and with the Adeos

microkernel are comparable. However, other tests seems to show a slight advantage to the

Adeos approach. It is important to point out that these numbers are referred to interrupt

latency, while task latency can be much higher and depends also upon timer resolution

and scheduling latency.

A.4.4 Resource Reservations

As we have seen, the scheduling policies offered by Linux are not suitable for supporting

the execution of real-time applications. A real-time general-purpose OS should support

scheduling policies providing temporal isolation among the running processes. This means

that the timely execution of a process should not be affected by the behaviour of the other

processes executing on the system. This way, if a process misbehaves, and tries to use all

the resources of the system, it cannot starve the other processes. The same problem is

present in the Interrupt Abstraction methods: if a real-time task enters an infinite loop

of code, the other low priority activities in the system cannot execute anymore. It is

important then to provide temporal isolation among different tasks, similarly to the way

the Linux kernel provides memory protection. Such characteristics would also help in

mixing hard and soft real-time applications on the same operating system.

As we have seen in Chapter 4, the Resource Reservation mechanism [84, 85] is an

effective way for providing such temporal protection in GPOSs. This technique provides

support for time-sensitive applications by allowing the integration of classical real-time

techniques, developed to meet timing constraints on RTOSs, with the general-purpose

allocation strategies used on GPOSs. The basic idea behind the resource reservation

technique is to reserve a fraction of the time to real-time applications. This way, real-

time priorities can be securely used even by non-privileged users. The mechanism works

as follows. Each real-time process is assigned a “reservation” (Qi, Ti), meaning that the

process is reserved the processor for a time of length Qi every period Ti. During its

execution, the task is executed at an appropriate real-time priority. However, if the task

tries to execute for a longer time, then it is suspended and resumed later. This way, each

task is constrained to not use more than its reserved share — i.e., a maximum of Qi every

Pi units of time. Refer to Chapter 4 for a description of some scheduling algorithms based

on Resource Reservation.

Notable examples of Resource Reservations in the Linux OS are Linux/RK and RED



118 APPENDIX A. SUPPORTING REAL-TIME APPLICATIONS ON LINUX

Hook Idle 10 tasks 20 tasks 30 tasks
creation 119 117 107 105
termination 48 44 39 35
unblock 316 387 421 483
block 138 6431 8101 9164
budget exhaustion 202 252 276 312

Table A.4: Overhead introduced by the hooks. All numbers are in nanoseconds.

Linux [54, 133, 104].

A real-time scheduler based on Resource Reservation has been developed for Linux

2.4.18 within the OCERA (“Open Components for Embedded Real-time Applications”)

European project, and it is available as Open Source code. The implementation details

of this project have already been described in Section 5.4. The scheduler implements the

CBS [6, 9, 39], the GRUB [76, 77], the HGRUB, and the GRUB-PA [111, 112] scheduling

algorithms. The execution of the hooks introduces an overhead which is at most 10 µsec

(see Table A.4) on a AMD Athlon XP at 1.6 GHz running Linux 2.4.27 with High Resolu-

tion Timers and Linux Trace Toolkit patches. Although not comparable with the values

obtainable using Interrupt Abstraction, this overhead is acceptable for most soft real-time

applications.

A Resource Reservation scheduling policy for Linux has been developed also by Davide

Libenzi with the SCHED SOFTRR project [74]. Using this policy, a task can run with

real-time priority, but it is subject to a constraint on the maximum processor time it

can consume. Thus, non-privileged users can have deterministic latencies when running

time-sensitive applications, while system stability and fairness are enforced by the bound.

Another scheduling policy, called SCHED ISO (that stands for “Isochronous Schedul-

ing”) has been implemented by Con Kolivas [66]. Also this policy does not require supe-

ruser privileges and is starvation-free. Tasks running under the SCHED ISO policy actually

execute as SCHED RR unless the processor usage exceeds a specified limit (i.e., 70 percent).

The value of this limit can be configured through the proc filesystem.

A.5 Summary

Linux has become very popular for supporting real-time applications for many reasons,

among the others the availability of a huge amount of programs distributed with Open

Source license, the robustness and flexibility of the kernel and its standard interface. Many

projects have been proposed to make Linux more real-time, both by using the Interrupt

Abstraction approach, and by directly modifying kernel internals (preemption patches,

and resource reservations).

The choice of which Linux flavor to use for executing a real-time application depends

entirely on the requirements of the application. For hard real-time applications with very
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small constants of time (below the milliseconds), it is still necessary to use RTLinux, RTAI

or Xenomai, since they can provide very low latencies. Also, RTAI and Xenomai guarantee

nice integration with control design tools, like Scilab/Scicos, Matlab/Simulink, etc.

On the other hand, thanks to the constant attention to reducing the latency of the

standard Linux kernel, soft real-time applications, or even hard real-time applications with

large constants of time, can be scheduled directly by the Linux scheduler, in case with the

help of a resource reservation scheduler like GRUB, SCHED SOFTRR or SCHED ISO.

In the future, we believe that the two approaches will merge into a single product, able

to provide different levels of services and latencies to different applications. In this sense,

Xenomai is paving the way to such integration.
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