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ABSTRACT

THE INTERPLAY OF REWARD AND ENERGY IN REAL-TIME SYSTEMS

Cosmin Rusu, PhD

University of Pittsburgh, 2006

This work contends that three constraints need to be addressed in the context of power-

aware real-time systems: energy, time and task rewards/values. These issues are studied

for two types of systems. First, embedded systems running applications that will include

temporal requirements (e.g., audio and video). Second, servers and server clusters that have

timing constraints and Quality of Service (QoS) requirements implied by the application

being executed (e.g., signal processing, audio/video streams, webpages). Furthermore, many

future real-time systems will rely on different software versions to achieve a variety of QoS-

aware tradeoffs, each with different rewards, time and energy requirements.

For hard real-time systems, solutions are proposed that maximize the system reward/profit

without exceeding the deadlines and without depleting the energy budget (in portable sys-

tems the energy budget is determined by the battery charge, while in server farms it is

dependent on the server architecture and heat/cooling constraints). Both continuous and

discrete reward and power models are studied, and the reward/energy analysis is extended

with multiple task versions, optional/mandatory tasks and long-term reward maximization

policies.

For soft real-time systems, the reward model is relaxed into a QoS constraint, and stochas-

tic schemes are first presented for power management of systems with unpredictable work-

loads. Then, load distribution and power management policies are addressed in the context

of servers and homogeneous server farms. Finally, the work is extended with QoS-aware

local and global policies for the general case of heterogeneous systems.
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1.0 INTRODUCTION

Expanding beyond the traditional focus on performance, power management is now a well

established area in computer systems research. This is specially true in the embedded arena,

but also in servers; it comes from the desire to extend device lifetime (e.g., flying across the

Pacific in a single battery) and/or cost of energy (e.g., paying less than 15% of total costs

for energy in data centers). In these arenas, the trend is a paradigm shift from a maximum

performance approach to a power/performance tradeoff.

However, reducing power and energy does not come for free and is not suitable for all

systems. Some systems are amenable to such tradeoffs, specially systems where desired

properties are well specified. Real-time systems research provides a framework for specifying

such requirements, specially the timing requirements of an application. Some domains are

hard real-time (such as mission critical applications, where deadline misses result in system

failure), while other domains are soft real-time, with statistically specified performance re-

quirements. Note that low-power and high-performance are typically conflicting goals. For

example, one of the well-known solutions to the power consumption problem is to run the

devices at slower speeds (less performance). Thus, real-time issues should be analyzed in

conjunction with power management issues, so that the effect one has on the other can be

controlled.

In addition to power and performance, a third dimension that should be considered is

system reward (also referred to as utility, value or QoS). The utility of an application relates

to the accuracy of the produced results, which in turn depends on the amount of resources

(such as CPU time) allotted to the application. Ideally, systems monitor themselves and

adapt the resource allocation to maximize application utilities.

This dissertation is dedicated to studying the interplay of system reward and power
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management in the context of real-time systems. Rather than explicitly trading reward

for energy, one of the dimensions (i.e., reward or energy) is fixed and given as a system

requirement, while the other dimension (energy and reward respectively) represents the op-

timization objective. Thus, two types of problems are analyzed: maximizing the system

reward for real-time systems with a fixed energy budget, and minimizing the energy con-

sumption for real-time systems with a fixed reward (QoS) requirement. This corresponds to

two types of systems, embedded systems with fixed energy budgets and high-performance

server systems with fixed QoS requirements respectively.

In the embedded arena, most mobile, wireless, systems-on-a-chip and other computing-in-

the-small devices have energy constraints, embodied by a battery that has a finite lifetime.

Therefore, an essential element of these embedded systems is the way in which power is

managed. In addition to the power management needs, some of these devices execute real-

time applications, in which producing timely results is typically as important as producing

logically correct outputs.

In the high-performance servers arena, power consumption is becoming a major concern

in large server farms. Electricity cost is already a significant fraction of the operation cost

of data centers, with that fraction likely to increase in the future [64, 8]. Furthermore,

clusters with high peak power need complex and expensive cooling infrastructures to ensure

the proper operation of the servers. With power densities increasing due to increasing per-

formance and QoS demands and tighter packing, manufacturers are facing the problem of

building powerful systems without introducing additional cooling techniques such as liquid

cooling.

The reward/energy analysis can be particularly beneficial in real-time systems where

admission control algorithms are traditionally used to only accept tasks that will finish

before their deadlines. The main problem with admission control algorithms is that they

are conservative, and that they under-utilize resources. For example, typical real-time tasks

only take 10% to 40% of their worst case execution time (WCET) [28].

A better alternative to admission control is to allow systems to run above the load restric-

tions imposed by real-time constraints. These overloaded systems lend themselves naturally

to scenarios in which some applications are executed in lieu of more important applications
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or a different, perhaps less accurate, version of an application is executed. Application areas

in which an approximate but timely result is acceptable include multimedia [65], and image

and speech processing [18, 31, 86]. In these applications a reward function can be used

to assign a value to the application, as a function of the amount of computation resources

alloted to the application. The problem is then how to choose the amount of resources to

allot to applications that will maximize the overall reward given to the system, such that

the real-time and energy constraints of the system are still satisfied.

Version programming opens a new opportunity for QoS tradeoffs. An example of ver-

sion programming comes from satellite-based signal processing [84]. In that example, four

different algorithms (least-mean square, maximum-likelihood, software trigger, matched fil-

ter) with running times ranging from microseconds to hundreds of milliseconds, and energy

consumptions from µJoules to Joules provide different levels of accuracy. Another example

is Automatic Target Recognition (ATR), where task values and execution times are roughly

proportional to the number of targets detected [37]. Note that, in general, task versions

result not only from different algorithms, but also from the same application with different

input arguments (such as encoding/decoding at different rates, low/high quality compression

schemes, low/high resolution image processing), or even different invocation periods [14].

The three constraints mentioned, namely energy, performance (deadline), and reward

(QoS) play important roles in the current generation of embedded devices. An optimal

scheme chooses to run the most valued applications or versions of applications, without

depleting the energy source while still meeting all deadlines. In high-end systems (such as

server farms) request arrival rates are unpredictable and the reward is typically relaxed into

a QoS specification (such as meeting 95% of deadlines without dropping any requests). In

such systems, an optimal scheme minimizes the energy consumption while guaranteeing the

QoS.

In summary, this dissertation studies the interplay between energy and reward in the

context of real-time systems. Specifically, the contributions of this work are as follows:

• Extending previous work that only considers two of the constraints at a time, a system

reward maximization algorithm is developed for continuous power and reward models,

that is the first to simultaneously consider energy, deadline and rewards. In our exper-
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iments, the proposed iterative algorithm is shown to be within 1% (on average) of the

optimal [69].

• A new discrete reward model is proposed for applications that do not reward partial

execution, as for example, tasks with different versions. Three DVS (dynamic voltage

scaling) algorithms are proposed for discrete rewards and the realistic case of discrete

power functions. In our experimental setting, the algorithms were found to have average

errors within 3% of the optimal with running times in the microsecond range [68, 70].

• Long-term reward maximization schemes are studied for systems with energy constraints.

While the previous algorithms are used for short-term reward maximization, energy

allocation policies are analyzed for long-term (lifetime) reward maximization of battery-

powered embedded systems. Both static and dynamic energy allocation schemes are

devised. Three dynamic schemes are shown to outperform the static allocation by using

various energy reclamation mechanisms [71, 72].

• An efficient stochastic dynamic voltage scaling (DVS) scheme is developed for soft real-

time systems with unpredictable workloads, and is shown to largely outperform prediction-

based and utilization-based schemes [73].

• Local (DVS) and global (on/off) schemes are combined in the context of soft real time

homogeneous server clusters. The approach is based on evaluating the system load and

is shown to outperform previous frequency-based schemes. The scheme was implemented

in a prototype embedded cluster [92, 93].

• Local and global QoS-aware power management algorithms are proposed for the general

case of heterogeneous server clusters. The proposed solution is based on offline power

measurements and is the first work that combines global and local power management

for heterogeneous clusters. A utilization-based DVS scheme is proposed for local power

management, and heterogeneous power-aware request distribution policies are devised

for global power management. The scheme was implemented and evaluated on a real

Apache web server cluster [67].

In addition, to better understand the energy consumption of applications, a fine-grained

event-based power model for PowerPC405 embedded processors (PPC405GP and PPC405LP)
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is devised and shown to have an average error within 6% when compared to real measure-

ments of embedded benchmarks [77, 78]. Similarly, a coarse-grained measurement-based

approach is found to estimate the energy consumption of an entire cluster within 1% of

actual measurements for the web traces used in our experimental setting [67].

The organization of this dissertation is as follows. In Chapter 2, the basic definitions are

given and the current research status is examined in the area of real-time systems, energy

aware computing and reward-based computing. The system models, problem descriptions

and research overview are presented in Chapter 3. Chapter 4 evaluates power/energy es-

timation techniques for both embedded and high-performance systems. Chapters 5 and 6

address the interplay of energy and reward for hard and soft real-time systems respectively.

Finally, we draw our conclusions in Chapter 7.
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2.0 BACKGROUND AND RELATED WORK

2.1 REAL-TIME SYSTEMS

Real-time systems research provides a framework for power/performance tradeoffs by spec-

ifying the timing requirements of applications. In general, real-time applications start exe-

cuting after their ready time (the time when the application becomes available for execution)

and finish their execution before their deadline. For hard real-time systems the deadline is

a strict requirement and deadline misses may result in system failure. Other domains are

soft real-time, meaning that occasional deadline misses are tolerable and the performance

requirement is a statistical one.

Scheduling in real-time systems means determining which task is executed at what time.

For multiprocessor systems scheduling also determines where (that is, on which process-

ing unit) the task is to be executed. In addition, tasks may be either preemptive or non-

preemptive. A schedule is said to be feasible if all constraints (timing and resource con-

straints) of all tasks are satisfied. A scheduling algorithm can be either fixed priority or

dynamic priority (when task priorities change over time).

For hard real-time systems, typical analysis is performed considering worst-case execution

times (WCET) because scheduling of such systems must be guaranteed even in worst-case

scenarios. If a new task cannot be accommodated in an existing schedule, an admission con-

trol algorithm may decide to reject the task. Unfortunately WCET analysis is pessimistic [28]

and typically results in severe under-utilization of the system. WCET analysis, however, is

the only option for guaranteeing the feasibility of critical hard real-time systems.

As the hard real-time constraint is relaxed, a better option is to allow systems to execute

above the restrictions imposed by admission control algorithms, and dynamically exploit the
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slack created by early task completions. The analysis becomes then a statistical one, such as

maintaining the deadline miss ratio below a certain percentage. Application adaptation (dis-

cussed in detail in the next section) refers to increasing or reducing the amount of resources

allotted to applications, and provides great flexibility for such overloaded systems.

A plethora of scheduling algorithms exists for various real-time systems models, both

single and multi-processor. Most common hard real-time models are periodic (with deadlines

equal to periods) and frame-based (where all tasks have equal deadlines and periods). For

soft real-time systems a variety of rate-based models are in use (such as the (m,k) model that

requires only m out of every k task invocations meet their deadlines [38]) as well as a general

aperiodic model where tasks can arrive randomly, each with its own specified deadline. For

single processors, the seminal work of Liu and Layland has established the optimality of

earliest deadline first (EDF) for dynamic priority and rate monotonic scheduling (RMS) for

fixed priority systems [51]. For ideal systems (no overheads) generalized processor sharing

(GPS) was proposed [60], with several extensions for parallel systems (such as proportional

fairness or P-fair [7]).

Scheduling algorithms with focus on system reward or power management for single

processor systems are further reviewed in the next sections.

2.2 REWARD-BASED COMPUTING

The IC (Imprecise Computation) [53, 81] and IRIS (Increased Reward with Increased Ser-

vice) [23, 46] models were proposed to enhance the resource utilization and provide graceful

degradation in real-time systems. In the IC model every real-time task is composed of a

mandatory part and an optional part. The mandatory part must be completed before the

task’s deadline to yield an output of minimal quality. The optional part is to be executed af-

ter the mandatory part while still before the deadline. The longer the optional part executes,

the better the quality of the result (reward). The algorithms proposed for IC applications

concentrate on a model that has an upper bound on the execution time and reward that

can be assigned to the optional part and the aim is usually to minimize the (weighted) sum

of errors. Several efficient algorithms have been proposed to optimally solve the schedul-
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ing problem of aperiodic tasks [53, 81]. A common assumption in these studies is that the

quality of the results produced is a linear function of the precision error; more general error

functions are not usually addressed.

An alternative model is the IRIS model with no upper bounds on the execution times of

the tasks and no separation between the mandatory and optional parts (i.e., tasks may be

allotted no CPU time). Typically, a non-decreasing concave reward function is associated

with each task’s execution time. In [23, 24] the problem of maximizing the total reward in

a system of aperiodic tasks was addressed and an optimal solution for static task sets was

presented, as well as two extensions that include mandatory parts and policies for dynamic

task arrivals.

Both IC and IRIS focus on linear and concave (logarithmic for example) functions be-

cause they represent most of the real-world applications, such as image and speech pro-

cessing [18, 31, 86], multimedia applications [65], information gathering [35] and database

query processing [87]. The case of real applications with no reward for partial executions or

using step functions has been shown in [53] to be NP-Complete. Furthermore, the reward-

based scheduling problem for convex reward functions is NP-Hard, as shown in [5]. Periodic

reward-based scheduling for error-cumulative (errors have an effect on future instances of

the same task) and error non-cumulative applications was explored in [19]. An optimal

algorithm assuming concave reward functions and error non-cumulative applications was

presented in [5].

In [65] a QoS-based resource allocation model (Q-RAM) was proposed for periodic appli-

cations, with reward functions in terms of utilization of resources. In the Q-RAM framework

each application requires a minimum resource allocation to perform acceptably, and can

improve its utility with larger resource allocations. Q-RAM targets systems in which mul-

tiple applications with various requirements along multiple QoS dimensions are competing

for resources. An iterative algorithm was first presented for the case of one resource and

multiple QoS dimensions [65]. In [66], the Q-RAM work is continued by the authors with the

solution for a particular audio-conferencing application with two resources (CPU utilization

and network bandwidth) and one QoS dimension (sampling rate). Several resource tradeoffs

(e.g., compression schemes to reduce network bandwidth while increasing the number of
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CPU cycles) are also investigated, assuming linear utility functions.

A similar utility-based approach for resource allocation in wireless networks is proposed

in [22]. The resource under consideration is network bandwidth. QoS levels of wireless

connections are specified using discrete resource-utility functions, enhanced with various

connection factors (such as age of the connection and disconnection penalty).

Recently, time utility functions (TUF) were also proposed for describing utility for ape-

riodic tasks. A TUF is a generalization of the deadline constraint, assigning the reward of

an applications as a function of the application completion time [50].

Step reward functions remain generally unstudied. Note as well that prior to this disser-

tation, the three constraints (namely energy, deadlines and rewards) were treated separately.

2.3 ENERGY-AWARE COMPUTING

Energy management is nowadays a well established area in computer systems research. There

are two issues related to energy management: energy consumption and peak power consump-

tion. In battery-powered embedded devices, the energy consumption directly determines the

lifetime of the system, and low-power components are needed in order to maintain the peak

power (and thus the size of the cooling system) within acceptable limits. In high-end servers

and server farms, energy management is equally important for different reasons. First, the

electricity cost is already a significant fraction of the operation cost. Second, increasing

performance demands and tighter packing results in high power densities and peak power

values that require expensive cooling technologies.

Power management (PM) techniques can be classified as local and global. Local PM

techniques put unused or underutilized local resources to low-power states. Examples include

halting an idle processor, putting the memory chips to self-refresh and power-down states [29],

or stopping the spinning of idle disks [55]. Typically only the highest power state is available

for normal execution, with the notable exception of CPU dynamic frequency and voltage

scaling (DVS) [94] common in most of today’s microprocessors. Global PM refers to system-

wide approaches for multiprocessor systems, such as turning on and off servers in a server

farm, as required by the load [26]. A PM mechanism (local or global) is said to be QoS-aware
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if it reduces the power consumption while guaranteeing the QoS, such as average response

times or percentage of deadlines met.

Unfortunately, power management does not come for free, and should be used wisely. The

main issue is the overhead of changing device state, which ranges from microseconds (DVS)

to dozens of seconds for complete system reboot. Note there is also an energy overhead

for switching a device from one power state to another. To avoid unnecessary overheads

(such as oscillating too frequently between two device states), load prediction algorithms are

typically used to estimate resource usage when performing power management decisions.

2.4 DYNAMIC VOLTAGE SCALING

Dynamic voltage scaling (DVS) is a local PM technique that allows performance-setting

algorithms to dynamically adjust the voltage and frequency (and thus the performance)

of the processor. An increasing number of processors implement DVS, which can yield

quadratic energy savings for systems in which the dominant power consumer is the processing

unit [44, 94], at the expense of just linear performance loss. In the presence of real-time

constraints, DVS performance-setting algorithms attempt to lower the operating frequency

and voltage while still meeting request deadlines.

For frame-based systems, the effects of having an upper bound on the voltage change rate

are examined in [44]. Non-preemptive power aware scheduling is investigated in [42]. Slowing

down the CPU whenever there is a single task eligible for execution was explored in [83].

For aperiodic tasks, Yao et al. [94] provided a static off-line DVS scheduling algorithm and

on-line extensions, assuming worst-case execution times. Heuristics for on-line scheduling of

aperiodic tasks while not hurting the feasibility of periodic requests are proposed in [43].

Cyclic and EDF scheduling of periodic hard real-time tasks on systems with two (discrete)

voltage levels have been investigated in [47]. The static solution for continuous voltages and

the general periodic model where tasks have potentially different (convex) power character-

istics is provided in [3]. An interesting fact is that the problem of minimizing the energy

consumption for convex power functions and no reward management is equivalent to the

problem of maximizing the rewards for concave reward functions and no energy manage-
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ment [4].

While static solutions rely on pessimistic WCET, much research has been directed at

dynamic slack-management techniques [59, 4, 82, 63]. Moreover, DVS techniques can use

workload estimations to further enhance the energy savings. For example, the expected

energy consumption can be improved by using the probability distribution function of task

execution times. This results in a DVS schedule that gradually increases the speed of exe-

cuting tasks [54, 36, 95].

Schemes that adjust the speed based on system utilization are proposed in [88]. Another

example of the utilization policy is Transmeta’s firmware implementation (LongRun) [21].

CPU utilization is frequently monitored, resulting in performance speed-up/slow-down by

one performance level. A software utilization-based DVS algorithm for personal computers

running Linux [32] was shown to achieve 11%-35% more performance reduction over Lon-

gRun by using improved prediction and distinguishing between background and interactive

jobs. Synthetic utilization bounds [1] have been proposed as a mechanism to provide delay

guarantees in servers. For web servers, a DVS scheme based on such utilization bounds was

described in [79]. Another utilization-based scheme for web servers was proposed in [10],

which increases or decreases the CPU speed according to utilization thresholds.

In practice, reducing the processor performance may negatively affect the energy con-

sumption in other system components, an aspect which is sometimes ignored in DVS research.

For example, reducing the processor performance by half may require the memory subsystem

to be used twice as long, increasing the overall energy consumption of the system. The in-

terplay of DVS with memory power management for a particular system was studied in [29],

with the conclusion that a unified power management is better than having separate DVS

and memory power management policies. Acknowledging the importance of system power

consumption (as opposed to considering just the CPU dynamic power in voltage scaling

decisions), various system power models were recently proposed in the literature [96, 41, 26].

Moreover, although in theory the voltage can be scaled linearly with the frequency,

many DVS processors do not have such a linear relationship, which results in some cases in

inefficient operating frequencies. A frequency is inefficient if there exists a higher frequency

that results in lower energy consumption. Any DVS algorithm should avoid using these
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frequencies. An interesting fact is that the inefficient frequencies are not an artifact of only

the processor characteristics, but also of the power consumption and management of other

system components. Identifying the inefficient operating frequencies was studied in [58].

2.5 POWER MANAGEMENT IN SERVER FARMS

With energy consumption emerging as a key aspect of cluster computing, much recent re-

search has focused on PM in server farms. There are two issues related to the power man-

agement of such systems, peak power control (to alleviate cooling problems) and energy

management (to reduce electricity costs).

Lots of recent research has targeted the cooling problem. Trigger mechanisms for dy-

namic thermal management of high-performance microprocessors are investigated in [11].

For server farms, software-based temperature emulation and management techniques are

proposed in [39]. A combined software/hardware technique is proposed for peak power con-

trol in high-performance servers, targeting the reduction of the cooling system size [30].

Addressing the energy problem, a first characterization of workloads and energy consump-

tion in real-world web servers was made in [10]. DVS was proposed as the main technique

to reduce energy consumption in such systems. Utilization-based DVS and request batching

techniques were further evaluated in [79, 27].

The problem of cluster reconfiguration (i.e., turning on and off cluster machines) for

homogeneous clusters was first addressed in [64]. An offline algorithm determines the number

of servers needed for a given load. Cluster reconfiguration is then performed online using

thresholds to prevent too frequent reconfigurations, even though there is no explicit QoS

consideration. The authors have extended their work to heterogeneous clusters in [40],

adding models for throughput and power consumption estimation. Reconfiguration decisions

are made online based on the precomputed information and the predicted load. The authors

also proposed to add request types to improve load estimation in [41].

Note that due to the convex nature of the power consumption function, load balancing

across the processors minimizes the energy consumption in a homogeneous system. The

assignment of tasks to processors is studied in [6]. One of the first attempts to combine
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cluster-wide and local PM techniques for homogeneous clusters [26] proposed five policies

combining DVS and cluster reconfiguration. Another work proposed to use the cluster load

(instead of the average CPU frequency) as the criteria for turning on/off machines [93].

All approaches rely on power models and offline precomputed tables that determine the

transition points when servers are turned on/off.

2.6 WORKLOAD ESTIMATION

Workload monitoring and prediction plays an important role in this work. Since the power

consumption of systems increases more than linearly with the performance offered, workload

monitoring and prediction allows systems to reduce the energy consumption by adjusting

their performance to the minimum that can satisfy the predicted demand.

Traditional hard real-time application models (such as periodic or frame-based) assume

that the arrival time, deadline and worst-case execution time (WCET) of real-time jobs are

known a-priori. Such systems have to guarantee that real-time jobs are allotted enough

resources to meet their deadlines even in worst-case scenarios. In practice however, real-time

applications exhibit a large variation in actual execution times and WCET is too pessimistic.

Without an explicit prediction of future workloads, the slack (system idleness) created by

jobs that did not require their worst-case can be used to reduce the energy consumption of

the system, while still providing real-time guarantees for subsequent jobs.

If the hard real-time constraint is relaxed, prediction of expected execution times can

further reduce the energy consumption [48]. More advanced power management techniques

use workload predictions to provide resources for the average case and gradually increase the

performance to ensure that hard real-time constraints are met [54, 36, 95]. The prediction is

typically based on the cumulative probability distribution function of task execution times.

Request type information obtained from the request headers (such as static or dynamic pages

for web servers) can further improve the prediction quality [41].

In most real-life situations, there is no prior knowledge of task arrival times and resource

requirements. The workload is rather unpredictable in a variety of systems, from simple cell

phones and PDA devices to more complex personal computers, servers and systems-on-a-
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chip [49, 80]. For such systems (typically soft real-time), estimating arrival rates and request

processing requirements are two important issues. Chandra et al. [16] applied a first-order

autoregressive process to predict arrival rates and a histogram method to estimate the service

demand.

Generally there are two ways of estimating the distribution from a sample: paramet-

ric and nonparametric [25]. Nonparametric methods are more suitable for unpredictable

workloads than parametric methods. Govil et al. [34] did a comparative study of several

predictive algorithms for dynamic speed-setting of low-power CPUs and concluded that sim-

ple algorithms based on rational smoothing rather than “smart” predicting may be most

effective.
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3.0 SYSTEM MODELS AND PROBLEM DESCRIPTION

This chapter introduces the models and notation used throughout the dissertation. Sec-

tions 3.1 through 3.3 introduce the three dimensions considered in this dissertation: dead-

lines, rewards and energy. Section 3.4 identifies the problems to be solved and gives a general

research overview. Section 3.5 discusses the evaluation methodology.

3.1 REAL-TIME APPLICATION MODELS

3.1.1 Frame-based and Periodic Task Sets

For hard real-time systems we focus on frame-based and periodic task models. The task

set is denoted by T={T1, T2, . . . , TN}, where N is the number of tasks. In the frame-based

model all tasks share the same arrival time (the start of a frame) and deadline D, relative

to the start of the frame. The deadline typically corresponds to the start time of the next

frame. This model corresponds to real-time systems that operate in a cyclic basis, with a set

of applications that must execute in a frame, whose execution is to be repeated. Examples

of such applications include multimedia and real-time communication. The execution time

of a task Ti depends on the number of cycles Ci and the task frequency si, and is given by

ti = Ci

si
. The task set is schedulable if

∑N
i=1 ti ≤ D.

The periodic task model is a generalization of the frame-based model in which each

task has its individual deadline di. The utilization of a task Ti is defined as Ui = ti
di

. The

system utilization is defined as U =
∑N

i=1 Ui. For many scheduling algorithms, U serves as a

schedulability bound. For example, under EDF scheduling [51] the task set is schedulable if

and only if U ≤ 1, while under RMS scheduling [51] a sufficient condition for schedulability
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is U ≤ N(21/N − 1).

3.1.2 Aperiodic Request Servers

An aperiodic real-time model corresponds to irregular task arrival times. Upon arrival, each

task is expected to complete by its deadline di. In addition, task execution times are highly

variable. In practice, task inter-arrival times and execution times can be described by a

distribution function or histogram. Due to unpredictability, the hard real-time constraints

are relaxed and occasional deadline misses are tolerated. Scheduling can be either real-

time (such as EDF) or can combine real-time constraints (for example, utilization-based

DVS) with legacy schedulers (e.g., the Linux scheduler). The system reward is typically

described in terms of QoS requirements, such as maintaining deadline miss ratios below

certain thresholds.

3.2 REWARD MODELS

For hard real-time adaptive applications, the continuous and discrete reward models are pre-

sented next. The continuous reward model closely follows the IC (Imprecise Computations)

model. For the discrete case, step reward functions are proposed, with no reward for partial

execution. For soft real-time servers executing non-adaptive requests, the reward model is

relaxed into a QoS requirement.

3.2.1 Continuous Reward Functions

Each task Ti is composed of a mandatory part Mi and an optional part Oi, with compu-

tational requirements expressed in terms of number of CPU cycles. The execution time

depends on the number of cycles and the speed expressed in cycles/second (or the clock

rate), ti = Ci

si
. The worst-case number of cycles needed for the mandatory part is denoted

by li and the total worst-case number of cycles including the optional part is denoted by ui.

In other words, each task must receive a number of cycles between the lower bound li and

the upper bound ui.
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Figure 3.1: Typical reward functions

The optional part of a task can execute only after its corresponding mandatory part com-

pletes. There is a reward function associated with each task; the reward function increases

with the number of cycles that were allocated to the optional part. This reward is zero

when the service time of the optional part is zero and increases with the amount of service

time. There is no extra reward if the optional part receives more cycles than required (i.e.,

ui − li). We consider the case of positive non-decreasing concave reward functions (the 2nd

order derivatives of the reward functions Ri are negative). Note that for convex or partially

convex reward functions, even assuming an infinite energy budget, determining the optimal

solution that maximizes the total reward is NP-hard [5]. Figure 3.1a shows a typical reward

function, which is described by:

Ri(Ci) =





0 if 0 ≤ Ci ≤ li

fi(Ci) if li ≤ Ci ≤ ui

fi(ui) if Ci ≥ ui

3.2.2 Discrete Rewards and Task Versions

For adaptive application domains that do not reward partial execution we propose a discrete

model in which each task has several completion points, each with different rewards, time

and energy requirements. This corresponds to step reward functions, and also applies to
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applications that have several versions with different accuracy levels. For example, one

version may require less cycles and therefore use less energy, at the expense of producing

less accurate/complete/valuable results.

Real-life examples of task versions include satellite-based signal processing [84] (with dif-

ferent algorithms providing different levels of accuracy) and Automated Target Recognition

(ATR) [37] (where task values and running times are roughly proportional to the number of

targets detected). Task versions also correspond to unmodified applications with different

input arguments (such as encoding/decoding at different QoS levels [89, 90], low/high qual-

ity compression schemes, low/high resolution image processing), or even different invocation

periods, as proposed in [14]. For the remainder of this dissertation, the term “versions” also

refers to discrete completion points of the same application (i.e., the discrete equivalent of

the IC model).

For simplicity of notation, we assume the same number of versions V for each task,

although the reward maximization algorithms proposed in this dissertation can handle dif-

ferent number of versions. The version k of task i is denoted by T k
i . The execution time and

energy requirement of version k of task i running at speed level j are denoted by tki,j and ek
i,j

respectively. Associated with version k of task i there is a version value or reward, rk
i . Fig-

ure 3.1b shows a typical step reward function corresponding to task versions (ck
i denotes the

number of cycles required by version k). For non-adaptive tasks (that is, k = 1, correspond-

ing to all-or-nothing reward) the superscript k is omitted in the notation. Note that the

reward maximization problem was shown to be NP-Complete for step reward functions [53].

3.2.3 Quality of Service for Aperiodic Requests

Many real-life application domains (especially aperiodic request servers, such as web servers)

are non-adaptive, meaning that there is no reward function associated with requests. In some

cases the utility of a request may depend on its response time (corresponding to time utility

functions [50]), but typically the system reward/utility is defined in terms of simple QoS

requirements, such as maintaining average response times and/or the percentage of deadline

misses below given thresholds.
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When system utility is defined as QoS, the problem is not to maximize the utility but

rather to maintain a required QoS with minimal system costs (such as power consumption).

For such application domains we focus mostly on soft real-time systems, where each request

is viewed as an aperiodic task and with a soft deadline. In particular, power management

opportunities that ensure the QoS are investigated, where QoS is defined as a percentage

of requests that should meet their deadlines (without dropping any other requests). These

opportunities are studied for both isolated systems (single server) and server clusters. These

systems are typically underutilized (nowadays server farms are designed for peak load, with

an average utilization of 10% to 20% [26]), which creates the opportunity for dynamic and

QoS-aware system reconfiguration.

3.3 POWER MODELS

The power consumption for CMOS based processors is dominated by dynamic power dissi-

pation Pd, which is given by [13, 17]:

Pd = Cef · V 2
dd · f (3.1)

where Cef is the effective switch capacitance, Vdd is the supply voltage and f is the processor

clock frequency. There is an almost linear relationship between the frequency f and the

supply voltage Vdd, given by:

f = k · (Vdd − Vt)
2

Vdd

(3.2)

For the continuous model in Section 3.3.1, the power function is derived from Equation 3.1

and is described as a function of the processor speed. The continuous power function cur-

rently only models the processor power consumption, although a constant power for other

system components can be easily included. The discrete case in Section 3.3.2 corresponds

to discrete processor frequencies/voltages. The discrete energy consumption values repre-

sent the total energy consumed by a task at a given frequency (note that energy is defined

as the integral of power over time) and may refer either to the processor (as described by

Equation 3.1) or the entire system. Finally, a more detailed system power model with the

corresponding notation is introduced in Section 3.3.3.
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3.3.1 Continuous Speeds/Voltages

The speed of task Ti (denoted by si) is physically constrained to be within certain lower

and upper bounds Smin and Smax. The continuous model assumes that si can take any

value in the given range (that is, voltages and frequencies can be changed continuously and

Smin ≤ si ≤ Smax). Typically, the speed is normalized (that is, Smax = 1).

One assumption is that each task Ti runs at single speed si and for each task Ti there

is a corresponding power function Pi, which depends on its speed and on the switching

activity of the task. Inspired by Equation 3.1, we consider the realistic case of positive

non-decreasing convex power functions (the 2nd order derivatives of the power functions Pi

are positive). Thus, it is more energy efficient to run on reduced speeds, at the expense of

linear performance loss. In this dissertation, the term speed change refers to changing both

the frequency and the supply voltage. For this model, we assume that the worst-case time

and energy overheads of speed transitions was already accounted for (for example, at most

two speed transitions per task are necessary with EDF, at task arrival and task completion).

The energy consumed by task Ti running for time ti at speed si is Ei = ti · Pi(si). It is

assumed that there is a limited energy budget in the system, denoted by E:

N∑
i=1

ti · Pi(si) ≤ E (3.3)

3.3.2 Discrete Speed/Voltage Levels

In the discrete model, the variable voltage processor has only a discrete number, M , of

available frequencies (clock rates or CPU speeds), {f1, f2, . . . , fM}. Each task can run at

any of the available speeds and we say that a task runs at speed level k if the speed of the

task is set to fk.

For hard real-time models we assume that the task worst-case execution time and energy

consumption values are known for all task versions and all speed levels (that is, all tki,j and ek
i,j

are known). As in the continuous model, the total energy consumed by the system cannot

exceed the energy budget E.
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3.3.3 System Power Model

In the continuous energy model, the power function considers only the processor. With small

modifications, a fixed cost for other system components may be easily incorporated. In the

discrete case, the energy values, ek
i,j, can refer to either the processor or the entire system

energy consumption.

However, for certain systems, the above continuous and discrete models may be im-

practical or incomplete. The power functions Pi(si) (for the continuous case) or the energy

values ek
i,j (for the discrete case) are typically not available for soft real-time systems with

unpredictable workloads. In addition, the models are incomplete for systems where the idle

system power plays an important role (both continuous and discrete models derived from

Equation 3.1 assume that no power is consumed when the system is idle). Furthermore, for

multiprocessor systems or server farms, unused systems may be put to even lower power, or

completely shut down. Thus, a complete model has to include the power consumption when

the system is idle or even off (“off” power is not necessarily zero if hardware is needed to

wake up the system on certain events, such as Wake-on-LAN packets).

The following notation is introduced: the power of a system actively processing requests

at frequency fi is denoted by Pi, the power of an idle system is denoted by Pidle, and

the power consumption when the system is off is denoted by Poff . Obviously, Pi depends

on the operating frequency. Pidle may or may not depend on the frequency, depending of

the type of idle power management. We also use the notation Pload to denote the average

power consumption of a system as a function of its load. Pload depends not only on the

load, but also on the scheduling policy, various system parameters (such as bus speeds, disk

throughput and memory size), and the power management schemes in place (including but

not limited to DVS). Thus Pload is the most general case of system power function, and

considers all system parameters. Pload is often hard to derive theoretically and is determined

through system power measurements on representative traces. The determination of Pload

for real-life servers will be discussed in detail in Chapter 4.
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3.4 PROBLEM DESCRIPTION AND RESEARCH OVERVIEW
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Figure 3.2: Research overview

In this dissertation, the interplay of reward and energy is studied in the context of real-

time systems. While previous work focused on only two of the constraints at the same

time (either reward maximization or energy minimization given real-time constraints), we

focus on reward maximization techniques for systems with fixed energy budgets and energy

minimization techniques for systems with fixed QoS/reward requirements respectively. The

reward/energy interplay is studied for a variety of systems (ranging from embedded to server

farms) and real-time application models (both hard and soft real-time). A general overview

of our research is given in Figure 3.2.

For hard real-time systems (Chapter 5) we focus on frame-based and periodic applica-

tions. Continuous reward and power models are first assumed in Section 5.1. Extending a

reward-maximization algorithm [5] to also incorporate a fixed energy budget, the problem

is to maximize the system reward while guaranteeing real-time and energy constraints. An

iterative DVS algorithm is proposed and shown to closely approximate the optimal.

The realistic case of discrete reward and power models is studied in Section 5.2, for

for both frame-based and periodic application models. Two algorithms are proposed for re-

23



ward maximization of non-adaptive (i.e., all-or-nothing) applications, REW-Pack and REW-

Unpack, and shown to have worst-case running times in the microsecond range, with results

within 3% of the optimal (on average) in our experimental setup. An extension of the reward

model is then proposed, in the form of task versions, corresponding to the general case of

step reward functions. A third algorithm, MV-Pack, is devised as an extension of REW-Pack

for multiple versions, with similar running times and results.

The above reward maximization algorithms are short-term, as they assume a fixed en-

ergy budget over a relatively short fixed period of time. Long-term reward maximization

issues are further addressed in Section 5.3. The allocation of energy budgets in the long

run is first discussed in Section 5.3.1 for the simple case of battery-powered embedded sys-

tems. Extending to systems that rely on rechargeable energy, static and dynamic policies

for allocation of energy budgets are investigated in Section 5.3.2. Three dynamic policies are

shown to outperform a static conservative scheme, by using various energy reclamation and

prediction mechanisms to further improve the long-term system reward.

For soft real-time systems running non-adaptive applications, the reward model is relaxed

into a QoS constraint (Chapter 6), and the optimization objective is the energy consumption.

We first investigate local power management techniques (DVS policies) for unpredictable

workloads (Section 6.1). A stochastic soft-real time DVS policy that uses the cumulative

distribution function of task execution times is shown to largely outperform (in terms of total

energy consumption) utilization-based and prediction-based DVS policies. Similarly, a local

QoS-aware DVS scheme is proposed for power management in web servers (Section 6.3).

For multi-processor soft real-time systems, global QoS-aware power management policies

are first investigated for homogeneous real-time clusters (Section 6.2). The policies rely on

offline precomputed tables that determine the number of servers needed as a function of

system load. The work is then extended to the general case of heterogeneous clusters in

Section 6.3. An integrated local (DVS) and global (on/off) scheme relying on measurement-

based power modeling is shown to achieve significant energy savings while maintaining a

desired QoS.

We note that while application deadlines and reward functions are known a-priori, the

third dimension studied in this dissertation requires estimation of the energy consumption
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of tasks. Chapter 4 discusses power/energy estimation techniques for both embedded and

high-performance systems. A fine-grained event-based power model for PowerPC embed-

ded processors is derived in Section 4.1. For high-performance servers, a coarse-grained

measurement-based approach is used to identify the system power from load observations

(Section 4.2).

3.5 EVALUATION METHODOLOGY

The solutions proposed in Chapter 5 for hard-real time application models are evaluated

against existing schemes mainly through simulations. Task sets were artificially generated,

with realistic execution times and deadlines and a broad range of task rewards/values. The

continuous power model uses a variety of convex power functions derived from Equation 3.1,

as well as more complex and realistic functions [48] (Section 5.1). For the discrete case,

the proposed schemes (Section 5.2) were studied on a variety of power models, including

Intel XScale [57] and PowerPC405LP. The exact frequencies, voltages and power values

used are indicated throughout the thesis. For PowerPC systems we use IBM’s Mambo

simulator [78] to provide cycle accurate timing and power consumption information. The

derivation and validation of an event-based power model for PPC405GP and PPC405LP

processors is described in Section 4.1.

For homogeneous soft real-time clusters, the proposed schemes in Section 6.2 are evalu-

ated on real traces of signal processing applications provided by our research partners. The

global and local power management schemes are implemented in a PPC750-based experi-

mental platform. The complete trace characteristics, as well as the measured frequencies

and system power consumption values (Pi, Pidle, Poff ), are given in Sections 6.1 and 6.2.

For the general case of heterogeneous soft real-time clusters (Section 6.3), QoS-aware power

management techniques are implemented in an Apache [2] web server cluster. Trace charac-

teristics and the measurement-based derivation of the general system power function Pload

for heterogeneous servers is discussed in detail in Section 4.2.

The proposed algorithms are evaluated against existing algorithms, no-power-management

schemes, and optimal solutions (where such a comparison was possible). In some cases, the
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solutions are compared against an upper bound on the optimal solution. The metric used

for comparison is the overall system reward for reward maximization schemes. For experi-

ments with servers and unpredictable workloads (no task rewards) the metric is the energy

consumption augmented with QoS considerations.
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4.0 POWER CONSUMPTION ESTIMATION

In this work the interplay of reward and energy in the context of real-time systems is analyzed.

Application deadlines and reward functions are known a-priori. The energy consumption,

however, must be estimated either from power models (such as Equation 3.1), published data

(e.g, XScale [57]) or from our own power measurements. In this chapter two approaches are

presented that combine models with direct measurements, in order to better understand the

power/energy consumption of the applications considered in this dissertation.

First, a fine-grained event-based power/energy estimation technique is proposed for Pow-

erPC405 (PPC405GP and PPC405LP) embedded processors. The resulting power model

was validated and incorporated into IBM’s cycle-accurate Mambo simulator for PowerPC

systems [9]. The Mambo simulation infrastructure was then used to determine power con-

sumption values for PPC405LP embedded processors. The derived values are used for the

evaluation of DVS algorithms on the PPC405LP platform in Section 6.1 (Table 6.3), as well

as for the evaluation of reward maximization algorithms in [70].

Second, a coarse-grained measurement-based approach for the power modeling of high-

performance servers is analyzed. In contrast with the PPC405 power estimation (which

identifies certain energy events with fine granularity) this is mostly a measurement-oriented

technique. The system power consumption (of high-end servers in our case) is determined

through offline measurements of representative benchmarks for various system loads. In

other words, we are determining through experimentation the general power function Pload

introduced in Section 3.3.3. The derived power functions Pload for a variety of heterogeneous

servers are then used in Section 6.3 as the basis for power-aware request distribution and

global power management techniques for heterogeneous server clusters.
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4.1 FINE-GRAINED CPU POWER MODEL

In this section we present an event-based approach for power modeling of PPC405 embedded

processors. Events of interest for power are identified, corresponding to various microarchi-

tectural events, such as cache misses or ALU operations. The energy costs are then obtained

through power measurements of specially designed microbenchmarks (small assembly loops).

The PPC405 architecture is first introduced, followed by a description of the power events

used, and validation.

4.1.1 The PPC405 Architecture

The PPC405 core is a relatively simple architecture due to its in-order issue. The PPC405

core implements the PowerPC instruction set using a simple five-stage pipeline, and no

floating point unit, as shown in Figure 4.1. Most instructions execute in one cycle, but some

instructions (such as multiplication or division) require more cycles. Furthermore, some

functional units are pipelined and load misses can overlap with independent instructions.

The processor core frequency used in our experiments is 200MHz, at core voltage 2.5V. The

processor local bus (PLB) is running at 66MHz, and the I/O subsystem uses 3.3V.

Figure 4.1: The PPC405GP pipeline

The PPC405GP processor (used in our evaluation) does not support voltage scaling.

Another processor of the same family (the PPC405LP) uses the same core and also supports
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voltage scaling. Thus, the same methodology (described in the next section) can be used to

identify the power models for both 405 embedded processors.

4.1.2 Power Modeling Events

We use a relatively simple power model, in which the total energy consumed Etotal is the

sum of the static (or idle) energy consumption Eidle and the energies ei consumed by various

microarchitectural events. Thus, if ni denotes the number of times event i occurs, the total

energy is given by

Etotal = Eidle +
∑

i

niei (4.1)

The events of interest for power consumption were identified through experimentation.

An experimental 405GP board with separate power planes was used to measure the pro-

cessor power consumption. To determine the event energy costs we developed over 300 mi-

crobenchmarks (small assembly loops) emphasizing particular events. An example of such

microbenchmark is given below:

loop:
lwz r2, 0 (r3)
addi r2, r2, 1
lwz r2, 0 (r4)
addi r2, r2, 1
lwz r2, 0 (r5)
addi r2, r2, 1
bctr loop

The above microbenchmark is used for measuring the timing and energy consumption

of a data cache miss. Data is used immediately after being loaded from memory, causing

processor stalls if the data is not in the data cache. There are three loads from the addresses

stored in registers r3, r4 and r5. If the registers contain the same address there are no cache

misses (except for the first compulsory miss). When the addresses are different but map

to the same cache set, every load in the microbenchmark results in a miss for a two-way

associative cache (as is the case with the PPC405 architecture).

After measuring the timing and energy consumption, the extra time/energy required can

be attributed to the time penalty and the energy cost of a data cache miss (relative to a hit)
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respectively. Let N denote the loop count, Chit and Phit denote the number of cycles and

power when the loop has no misses, and Cmiss and Pmiss denote the corresponding values for

the case of cache misses. Similarly, Thit and Tmiss denote the execution time (that is, cycles

multiplied with cycle time, which is 5ns in our case since the CPU runs at 200MHz). Then,

the data cache miss penalty (in cycles) is (Cmiss − Chit)/3N (note that 3N is the number

of loads, i.e., cache misses), and the data cache miss extra energy (relative to a data cache

hit), Edcachemiss, can be determined from the equation

PmissTmiss − PhitThit = (Tmiss − Thit)Pidle + 3NEdcachemiss (4.2)

where Pidle is the measured idle power.

Note that in this example, loads replace only clean lines, so there are no line writebacks.

In addition, since loads are followed by uses, the pipeline stalls until the loads return, hence

the term involving Pidle.

Similar microbenchmarks and equations were derived for the other power events. For

example, to measure instruction energy costs, we based our measurements on a loop of

NOP instructions. We then added the instruction of interest to the loop and measured the

contribution of that instruction/functional unit to power consumption.

A special event called average instruction switch is introduced to reflect the energy con-

sumed by the pipeline and control path of the processor as different instructions progress

through the core. This event resulted from the observation that a large variation in power

occurs when reordering instructions within a loop (without affecting functionality and run-

ning time). For example, a loop with six loads and six independent adds consumes 15% less

power/energy if the loads are all executed consecutively followed by all of the adds compared

with the same loop when alternating between loads and adds. Since modeling such switching

is beyond the scope of this work, we chose instead to use an average value based on a limited

number of experiments.

The complete lists of events is shown in Table 4.1 and includes the average energy cost

of cache hits/misses, various instruction types, branch conditions, TLB hits/misses, etc.
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Table 4.1: Power modeling events

Event Description
CPU static energy Base energy for every simulated cycle
Switching Average energy due to switching in pipeline
NOP NOP instruction (additional base energy in active state)
ALU Logic, addition, subtraction, move, etc. instructions
Load/store Load/store instructions
Divide/multiply Divide/multiply instructions
PFB0 branch Branch instruction placed in PFB0 buffer
DCD branch Branch instruction placed in decode stage
Mispredicted branch Branch misprediction (flushing pipeline)
ITLB miss, UTLB hit ITLB miss satisfied by the UTLB
DTLB miss, UTLB hit DTLB miss satisfied by the UTLB
TLB read tlbrehi or tlbrelo instruction
TLB search tlbsx instruction
TLB write tlbwehi or tlbwelo instruction
TLB sync tlbsync instruction
I-cache hit I-cache hit to same cache line as before
I-cache hit other I-cache hit to another cache line
I-cache miss I-cache miss
D-cache hit D-cache load/store hit to same cache line as before
D-cache hit other D-cache load/store hit to another cache line
D-cache miss D-cache miss
D-cache line flush D-cache replacement causes a writeback

4.1.3 Power Modeling Validation

The power model was incorporated in IBM’s cycle accurate Mambo simulator [9] for the

PPC405 architecture. The additional simulator overhead of tracking energy events is negli-

gible, since it required only the addition of an energy counter. This counter is incremented

as appropriate during simulation runtime, with the energy costs corresponding to either in-

structions (an energy value was added to the information structure of each instruction) or

microarchitectural events (such as cache misses).

As benchmarks we use 39 Embedded Microprocessor Benchmarking Consortium (EEMBC)

benchmarks [20]. The results for all benchmarks are presented in Table 4.2. The third column

shows the actual energy (in millijoules), as measured on our 405GP experimental platform.

The maximum absolute error in energy consumed is 11.3%, while the average absolute error

is just 5.9%. Note that for the same benchmarks the error in execution time was at most

7.1% and just 2% on average.
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Table 4.2: Energy validation results

Benchmark Simulated energy (mJ) Actual energy (mJ) Error (%)
a2time 2.50 2.40 4.44
aifftr 807.52 819.40 -1.45
aifirf 4.19 4.36 -3.99
aiifft 734.07 752.80 -2.49
autcor (pulse) 1.62 1.70 -4.67
autcor (sine) 241.05 258.40 -6.72
autcor (speech) 230.02 245.80 -6.42
basefp 19.44 18.49 5.12
bezier 522.69 502.30 4.06
bitmnp 84.33 81.30 3.73
cjpeg 342.15 354.50 -3.48
conven (k3) 82.28 87.12 -5.55
conven (k4) 104.95 111.60 -5.96
conven (k5) 120.67 127.80 -5.58
dither 1238.39 1291.00 -4.07
djpeg 296.86 311.90 -4.82
fbital (pent) 289.11 318.50 -9.23
fbital (step) 29.82 32.89 -9.32
fbital (typ) 633.24 677.90 -6.59
fft (sine) 68.57 70.36 -2.55
fft (spn) 68.42 71.25 -3.97
fft (tpulse) 68.40 70.77 -3.34
filters 1335.55 1389.00 -3.85
idctm 91.19 92.38 -1.28
iirflt 4.17 3.99 4.48
matrix 1378.78 1298.00 6.22
ospf 80.83 88.16 -8.31
pktflow 539.48 593.30 -9.07
pntrch 31.95 33.64 -5.03
rgbcmy 1257.79 1369.00 -8.12
rgbyiq 1332.43 1394.00 -4.42
rotate 662.80 701.80 -5.56
routelookup 252.91 283.50 -10.79
tblook 8.37 7.85 6.61
ttsprk 3.15 3.30 -4.66
Viterbi (gett) 254.85 285.30 -10.67
Viterbi (ines) 254.85 286.10 -10.92
Viterbi (toggle) 254.73 287.20 -11.30
Viterbi (zeros) 254.70 284.10 -10.35

Finally, in Figure 4.2 we show the simulated versus measured power consumption for two

EEMBC benchmarks. The sampling period for both the simulator and the hardware was

set to 20K cycles. Clearly, the model closely follows the measured power corresponding to

various application phases.
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a. matrix b. djpeg

Figure 4.2: Hardware versus simulated power graphs

4.2 COARSE-GRAINED SYSTEM POWER MODEL

The technique presented in the previous section is limited to the power/energy estimation of

a simple in-order embedded processor, ignoring other system components, such as memory

or network. This section evaluates a measurement-based approach to the power modeling of

entire systems, including hardware as well as software components. While the event-based

approach is fine-grained (for example, the power consumed by caches or various functional

units can be estimated), the approach evaluated in this section is coarse-grained, providing

only a system-wide power/energy estimation (that is, the power breakdown of various system

components is unknown).

The main idea behind the measurement-based technique is to estimate the system power

through offline measurements for various system loads. Measurement-based approaches have

several advantages. First, they are simple, as there is no need for models (except for load esti-

mation). Second, they are accurate, provided that load is defined correctly and representative

benchmarks are used for measurements. Third, the entire system power is accounted for,

including the interaction of various hardware and software components. These advantages

come at the expense of offline overheads: representative benchmarks have to be identified for

power measurements, and actual measurements are needed in order to determine the system

power consumption for various values of the load. Moreover, changing any system parameter

(such as DVS scheme or adding more memory) requires redoing the measurements. Note,

however, that the measurement process can be automated, effectively reducing the overheads.
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Power Measurements of Heterogeneous Servers The measurement-based approach is

evaluated for heterogeneous servers, with a specific case study of Apache web servers. This

approach was motivated by our work in local and global power management of heteroge-

neous server clusters (Section 6.3). Our experimental cluster consists of five heterogeneous

servers, as shown in Table 4.3. The server parameters include memory sizes, time to boot

and shutdown, as well as the power when the server is off (note that this power is not zero,

as the Wake-On-LAN interface needed for server reboot is still consuming power).

Table 4.3: Parameters of the machines of the Apache cluster

Machine RAM Cache Wake-On-LAN Boot Shutdown Off Max
name Processor memory size support time time power load

size (sec) (sec) (W)

Transmeta Transmeta Crusoe TM5800 256 MB 512 KB 100 60 1 0.10
Blue AMD Athlon 64 Mobile 3400+ 1GB 1 MB

√
33 11 8 0.95

Silver AMD Athlon 64 3400+ 1GB 512 KB
√

33 12 8 1.00
Green AMD Athlon 64 3000+ 1GB 512 KB

√
33 11 8 0.90

Front-end AMD Athlon 64 Mobile 3400+ 1GB 1 MB Not applicable

Table 4.4: Idle/busy power consumption (in Watts) for each Apache server

Transmeta
Frequency (MHz) 333 400 533 667 733

Idle (W) 8 8.5 8.5 9 9
Busy (W) 9 9.5 10.5 12 12.5

Blue
Frequency (MHz) 800 1800 2000 2200

Idle (W) 68 73 76 80.5
Busy (W) 74.5 93.5 105.5 120.5

Silver
Frequency (MHz) 1000 1800 2000 2200 2400

Idle (W) 70 74.5 78.5 83.5 89.5
Busy (W) 80.5 92.5 103.5 119.5 140.5

Green
Frequency (MHz) 1000 1800 2000

Idle (W) 68 79 87
Busy (W) 77 108 131

The specific frequencies of each server and their corresponding power consumption are

shown in Table 4.4. These values could be used as a power model for each server, provided

that the percentage spent at each frequency is known. We choose, however, to go one step
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further and determine the power of each server based on one single parameter: the server load.

Thus, we are determining the system power function Pload introduced in Section 3.3.3. The

last column in Table 4.3 shows the maximum load each server can handle. The determination

of this value, as well as the Pload function is described next.

As observed in previous work [73, 93, 41], load estimation can be greatly improved by

considering request types. The type of a request may be conveniently determined only by the

header (e.g., the name of the requested file). In the case of a web server there are two main

types of requests, with different computational characteristics: static and dynamic pages.

Static pages reside in server’s memory and do not require much computation. Dynamic

pages, instead, are created on-demand through the use of some external language (e.g., Perl

or PHP). For this reason, dynamic pages typically require more computation than static

ones.

Consider a generic server, and let Astatic and Adynamic be the average execution times

to serve a static and a dynamic page, respectively, at the maximum CPU speed. For

example, for one server in our cluster we measured an average execution time Astatic =

438µs for static pages and Adynamic = 24.5ms for dynamic pages. On average, the time

needed by the CPU to serve Nstatic static requests and Ndynamic dynamic requests is thus

NstaticAstatic + NdynamicAdynamic seconds. If the number of requests is observed over a period

of monitor period seconds, then the load of the machine serving the requests is

Load =
NstaticAstatic + NdynamicAdynamic

monitor period
(4.3)

Notice that this definition of load assumes a CPU-bound server. This is normal for most

web servers because much of the data are already in memory [10, 91]. In fact, on all our

machines we have noticed that the bottleneck of the system was the CPU. However, for

systems with different bottlenecks (e.g., disk I/O or network bandwidth) another definition

of load may be more appropriate. In fact, the definition of load should account for the

bottleneck resource. Even though web requests may exhibit a large variation in execution

times, using the average values (Astatic and Adynamic) in Equation 4.3 results in a very accurate

load estimation, because web requests are relatively small and numerous. We define the
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maximum load of a server as the maximum number of requests that it can handle meeting

the 95% of deadlines, which is our defined QoS requirement.

Once load is defined, representative benchmarks (web traces in our case) are collected

for power measurements. The statistics of the traces are shown in Table 4.5, indicating

the percentage of requests for various static page sizes and dynamic page running times, as

observed in our webserver.

Table 4.5: Web server statistics: static page sizes and dynamic page running times

Request type % Request type %
4 ms (CGI) 0.10 6-7 KB (html) 2.84
7 ms (CGI) 0.71 7-8 KB (html) 1.58

23 ms (CGI) 0.98 8-9 KB (html) 1.80
40 ms (CGI) 0.23 9-10 KB (html) 1.87

200 ms (CGI) 0.06 10-20 KB (html) 10.74
0-1 KB (html) 37.78 20-30 KB (html) 3.62

1-2 KB (html) 8.86 30-40 KB (html) 1.17
2-3 KB (html) 6.56 40-50 KB (html) 0.67
3-4 KB (html) 4.58 50-60 KB (html) 0.80
4-5 KB (html) 4.94 60-70 KB (html) 1.46
5-6 KB (html) 3.38 above 70 KB (html) 5.27

After the OS, the scheduling policy, and the local PM scheme (see Section 6.3.3.1) have

been decided for a server, the power consumption as function of the load and the maxi-

mum load can be determined through simple measurements. The power consumption of our

experimental servers is shown in Figure 4.3.

We measured AC power directly, with a simple power meter with 2% accuracy [76]. In

our case, recording the average power consumption for a given load over a period of 10

minutes was sufficient to obtain a statistically significant average. The last point on each

curve represents the maximum load that meets our QoS specification (i.e., 95% of deadlines

met), normalized to the fastest machine in the cluster, namely Silver. Note that the power

and performance (maximum load) values of Transmeta are much less than those of the Athlon

servers.

The power functions Pload in Figure 4.3 represent our measurement-based model. Load

is estimated dynamically based on Equation 4.3 and the power functions are used at runtime

for power-aware load distribution. As a validation of our measurement-based approach, we
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Figure 4.3: Power consumption versus load for Apache servers

note that the total energy of the cluster for real web traces (estimated using the measured

power functions) was within 1% of the actual (measured) total cluster energy, as will be

shown in the evaluation of cluster-wide power management schemes (Section 6.3).

4.3 CHAPTER SUMMARY

The focus in this chapter is on energy and power estimation techniques, corresponding to the

bottom part of the research overview in Figure 3.2. Two approaches that combine models

with direct measurements are evaluated.

A fine-grained event-based power model for embedded PowerPC processors is first dis-

cussed, relying on certain energy events with measured energy consumption. The model

was incorporated into the Mambo [9] simulation infrastructure and validated against real

hardware for the 405GP processor, shown to be within 6% of actual values on average, with

a maximum error of 11.3%. The derived model is used for evaluation of DVS algorithms in

Section 6.1, as well as reward maximization algorithms in [70].

The event-based model only includes processor power, ignoring the interactions of various

hardware and software components. To study the effect of power management algorithms

on the overall system power, we also evaluate a measurement-based coarse-grained (system-

wide) power/energy estimation technique for servers. The technique determines the general
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system power function Pload (introduced in Section 3.3.3) through direct power measure-

ments. The definition of load, traces used, as well as the derivation of the power functions

for a particular heterogeneous Apache web cluster are presented. The measurement-based

approach is convenient, system-wide and accurate, at the expense of offline measurement

overheads. Using the measured functions Pload as the basis for power management in our ex-

perimental Apache cluster (Section 6.3), the overall energy consumption is estimated within

1% of actual measurements for the web traces used in our experiments.
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5.0 ENERGY-AWARE REWARD MAXIMIZATION FOR HARD

REAL-TIME SYSTEMS

In this chapter we study reward-based scheduling algorithms for continuous reward and power

functions, for hard real-time systems with a limited energy budget. While previous work

targeted either reward maximization or energy minimization given task deadlines, this is the

first work that combines all three constraints, namely energy, deadlines and task rewards.

Theoretical results and an iterative scheduling algorithm for continuous reward and power

models are first described in Section 5.1. The study continues with more realistic discrete

models for both power and reward functions. Task versions are proposed as an extension

of the discrete reward model corresponding to step reward functions. Algorithms for the

discrete reward maximization problem are presented in Section 5.2, for both single-version

and multiple-version reward models. Finally, as the proposed algorithms maximize rewards

given a fixed energy budget, we propose how to determine such energy budgets in the long

run. In particular, we investigate long-term energy budget allocation policies for battery-

powered embedded systems, as well as systems that use rechargeable energy sources in

Section 5.3.

5.1 CONTINUOUS REWARDS AND POWER FUNCTIONS

This section presents our reward maximization algorithms for continuous power and reward

models. The problem definition is first given, for both frame-based and periodic tasks. We

then derive properties of the optimal solutions to the reward maximization problem. Based

on these properties we identify optimal solutions for specific power functions, and derive an
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iterative algorithm for general power functions.

5.1.1 Problem Definition

Using the notation introduced in Chapter 3 for the continuous case, the problem definition

for frame-based tasks is presented next. Formally, for unknowns ti and si (the execution

time and the running speed for each task), the problem is the following:

maximize
N∑

i=1

Ri(si · ti) (5.1)

subject to li ≤ si · ti ≤ ui (5.2)

Smin ≤ si ≤ Smax (5.3)
N∑

i=1

ti ≤ D (5.4)

N∑
i=1

ti · Pi(si) ≤ E (5.5)

Equation 5.1 is our maximization objective (i.e., the system value/reward). The system

reward is thus defined as the sum of rewards Ri for all applications. Under the continuous

reward model (Figure 3.1a), the reward of a task depends on the number of cycles Ci allotted

to the task, Ci = si · ti. The restrictions of the IC model (i.e., the number of cycles allotted

to the task) are present in Equation 5.2. The physical restrictions of the processor voltage

scaling is given in Equation 5.3. The real-time schedulability condition for frame-based tasks

appears in Equation 5.4. Finally, the energy constraint is found in Equation 5.5. The total

energy consumed by all tasks cannot exceed an energy budget E.

For the more general case of periodic tasks, each task Ti has a different deadline di, and

LCM denotes the least common multiple of all task periods. We introduce the notion of

supertask T ′
i to represent all instances of the same task Ti occurring during LCM time units.

Note that the reward of periodic systems with limited energy budgets is maximized when

all instances of a task run at the same speed and for the same amount of time, as shown

in [69]. Based on this result, and noting that LCM
di

instances of task Ti execute in the LCM ,

the reward of a supertask T ′
i is given by R′

i = Ri
LCM

di
and its execution time is t′i = ti

LCM
di

.
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The restrictions on the number of cycles of T ′
i become l′i = li

LCM
di

and u′i = ui
LCM

di
. The

problem then becomes to identify the parameters (speed s′i and time t′i) of each supertask.

Equations 5.1-5.5 for the periodic case become:

maximize
N∑

i=1

R′
i(s

′
i · t′i) (5.6)

subject to l′i ≤ s′i · t′i ≤ u′i (5.7)

Smin ≤ s′i ≤ Smax (5.8)
N∑

i=1

t′i ≤ LCM (5.9)

N∑
i=1

t′i · Pi(s
′
i) ≤ E (5.10)

The real-time schedulability condition 5.9 assumes EDF scheduling. Note that substi-

tuting the parameters of task Ti (Ri, si, ti, li, ui, D) of Equations 5.1-5.5 by the supertask

T ′
i parameters (R′

i, s′i, t′i, l′i, u′i and respectively LCM) we obtain Equations 5.6-5.10. Thus,

the problem formulations for frame-based and periodic tasks are equivalent. For simplicity

of notation, throughout the remaining of this section we use the notation for frame-based

task sets. Clearly, all results (including complexity) apply to periodic tasks as well.

5.1.2 Properties of the Optimal Solution

A solution of 5.1-5.5 is defined as a set of values S={(s1, t1), (s2, t2), . . . , (sn, tn)} that satisfy

the constraints 5.2-5.5 and also maximize the reward as described by 5.1. The value of this

maximum reward is referred to as optimal reward. Because there may be more than one

solution that maximizes the reward, a minimum-energy solution is defined as the solution

consuming the least amount of energy. Some properties of the optimal solutions are presented

next. For the results below, recall that ui is the maximum number of cycles to be allotted to

task Ti and let Rub denote the maximum achievable reward (i.e., Rub =
∑N

i=1 Ri(ui)), which

may be different from the optimal reward.

Lemma 1. If the optimal reward is less than Rub, then in any solution of 5.1-5.5, either the

entire available slack is used (i.e., the processor is fully utilized) or all the tasks run at the

minimum speed.
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Proof. By available slack we mean the CPU idle time. Using all the available slack in a

schedule is equivalent to not having the CPU idle, that is, at any instance of time the

processor is executing some task. Assume that there exists a solution S in which a task Ta

runs on some speed sa > Smin and the entire available slack is not used. Since the optimal

reward is less than Rub, there also exists a task Tb that doesn’t receive ub cycles. We will

show that a higher reward can be achieved for the same amount of energy, thus contradicting

the fact that S is a solution of 5.1-5.5.

Using the available slack, the speed of a task Tk running at sk > Smin can be reduced to

some s′k < sk while still providing the same number of cycles to the task. If sb > Smin, we

pick task k = b to reduce the speed. If sb = Smin, we pick task k = a. If the slack allows

it, then we can reduce sk to s′k = Smin, otherwise Smin < s′k < sk and the processor is fully

utilized. Either way, the total reward is not changed as we keep the number of cycles given

to task Tk constant. However, due to the convex nature of the power functions, the total

energy is reduced.

Next, the saved energy can be used to increase the speed of Tb while keeping tb constant.

Note that it is always possible to increase sb, as sb is known to be less than Smax by the way

we picked Tk in the previous step. By keeping tb constant and increasing sb, the number of

cycles allocated to task Tb will increase. Thus, the total reward increases, contradicting the

maximum-reward condition.

Lemma 2. If the optimal reward is less than Rub, then in any solution of 5.1-5.5, either the

entire energy is used or all the tasks run at the maximum speed.

Proof. Assume that there exists a solution S in which a task Ta runs on some speed sa < Smax

and the entire available energy is not used. Also, since the optimal reward is less than Rub,

there exists a task Tb that does not receive ub cycles. We will show how the extra energy

can be used to increase the total reward, thus contradicting the fact that S is a solution

of 5.1-5.5.

If sb < Smax, we can use the extra energy to increase the speed sb while keeping tb

unchanged and thus the total reward is increased. If sb = Smax, we will improve the total

reward as follows: first, using the available energy, the speed of Ta can be increased to some
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s′a > sa while still providing the same number of cycles Ca to the task. If the available energy

allows it we can have s′a = Smax, otherwise Smax > s′a > sa and the entire energy is used.

This will create some slack that can be used to slow down Tb while keeping Cb constant.

Next, the energy saved by slowing down Tb can be used to increase the speed sb and thus the

total reward. Either way, the total reward is improved, contradicting the maximum-reward

condition.

D time

3

2

all tasks at S
all slack is used

max

1
energy are used
all slack and 

Energy

all tasks at S
all energy is used

min

E

Figure 5.1: Design space

Theorem 1 below combines the results of the above two lemmas, showing that if the

reward is less than Rub, which is to be expected for most task sets, a solution must use

the most amount of slack possible (unless all tasks are already running at Smin) and the

most amount of energy possible (unless all tasks are running at Smax). In other words, the

solutions are on the boundary of the design space, as seen in Figure 5.1.

Theorem 1. If the optimal reward is less than Rub then all solutions have one of the following

properties: either (a) all the available slack and energy are used or (b) all the tasks are

running at the same speed Smin or (c) all the tasks are running at the same speed Smax.

Proof. If the optimal reward is less than Rub, it follows from the above lemmas that there

are only three possible types of solutions:
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1. All tasks run at the minimum speed, in which case the entire available energy is used

and there may be some slack in the final schedule.

2. All tasks run at the maximum speed, in which case the entire available slack is used but

some energy may be wasted in the final schedule.

3. There is at least one task Ti running at speed Smin < si < Smax. In this case, it follows

from Lemmas 1 and 2 that the entire slack and all the available energy are used.

Theorem 2 extends Theorem 1, removing the restriction on the reward, and showing

that there always exists at least one solution that uses the most amount of slack and energy

possible. This property is used to find the optimal solution for specific power functions and

also in a proposed iterative algorithm for general power functions.

Theorem 2. If the optimal reward is equal to Rub, there exists a solution with one of the

following properties: either (a) all the available slack and energy are used or (b) all the tasks

are running at the same speed Smin or (c) all tasks are running at the same speed Smax.

Proof. If the optimal reward is exactly Rub, any solution can be transformed into a solution

in which either all the available slack and energy are used or all the tasks run at the same

speed Smin or Smax, as described next: If there is some available slack and a task Ti such

that si > Smin, we transform the solution by slowing down Ti to use as much as possible

of the available slack while keeping Ci constant. The transformation is applied repeatedly

until either all tasks run at the minimum speed or all the available slack is used. Next, if

there is some unused energy and a task Tj such that sj < Smax, we transform the solution

by speeding up Tj to use as much as possible of the extra energy while keeping tj constant.

The transformation is applied repeatedly until either all tasks run at maximum speed or all

the available energy is used.

The next theorem presents properties of the solutions that are used to identify the

minimum-energy solution for specific power functions. Note that an implication of The-

orem 1 is that if the optimal reward is less than Rub then all solutions are also minimum-

energy solutions. Theorem 3 shows how to compute the speed of all tasks if one task’s speed

44



(different from Smin and Smax) is known. Knowing si, where Smin < si < Smax, the speed of

all tasks Tj, j 6= i can be determined as follows:

Theorem 3. All minimum-energy solutions of 5.1-5.5 have the following properties:

1. If Ti and Tj are two tasks in the minimum-energy solution such that Smin < si < Smax

and Smin < sj < Smax, then Pi(si)− si · P ′
i (si) = Pj(sj)− sj · P ′

j(sj).

2. If si = Smin and Smin < sj < Smax, then Pi(si)− si · P ′
i (si) ≤ Pj(sj)− sj · P ′

j(sj).

3. If si = Smax and Smin < sj < Smax, then Pi(si)− si · P ′
i (si) ≥ Pj(sj)− sj · P ′

j(sj).

where P ′
i and P ′

j denote the first order derivatives of the power functions Pi and Pj.

Proof. Let S be a minimum-energy solution of 5.1-5.5 in which each task Ti receives Ci

cycles. Since S is a minimum-energy solution, there is no other solution in which each task

Ti receives exactly Ci cycles for less energy. Thus, S has to also be a solution of the following

optimization problem:

minimize
N∑

i=1

ti · Pi(si) (5.11)

subject to
N∑

i=1

ti = D (5.12)

ti · si = Ci (5.13)

Smin ≤ si ≤ Smax (5.14)

Using the Lagrangian multipliers method and Kuhn-Tucker conditions [56], any solution

of 5.11-5.14 must satisfy the following:

Pi(si) + λ0 + λi · si = 0 (5.15)

ti · P ′
i (si) + λi · ti − µ1

i + µ2
i = 0 (5.16)

µ1
i · (Smin − si) = 0 (5.17)

µ2
i · (si − Smax) = 0 (5.18)

where λ0, λi, µ1
i ≥ 0, µ2

i ≥ 0, i = 1, 2, . . . , N are constants.

The three properties in the theorem are proved next.
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1. Assume that Ti and Tj are two tasks in S such that Smin < si < Smax and Smin < sj <

Smax. Then, from 5.17 and 5.18 it follows that µ1
i = µ2

i = µ1
j = µ2

j = 0. From 5.16 it

results that λi = −P ′
i (si) and λj = −P ′

j(sj). By substitution in 5.15, Pi(si)−si ·P ′
i (si) =

Pj(sj)− sj · P ′
j(sj).

2. Assume now that si = Smin and Smin < sj < Smax. Then, µ2
i = µ1

j = µ2
j = 0. Since

µ1
i ≥ 0, it results from 5.16 that λi ≥ −P ′

i (si) and λj = −P ′
j(sj). By substitution in 5.15,

Pi(si)− si · P ′
i (si) ≤ Pj(sj)− sj · P ′

j(sj).

3. Similarly, if si = Smax and Smin < sj < Smax, then µ1
i = µ1

j = µ2
j = 0 and since µ2

i ≥ 0 it

follows that Pi(si)− si · P ′
i (si) ≥ Pj(sj)− sj · P ′

j(sj).

5.1.3 Optimal Solutions for Specific Power Functions

In [5] a polynomial time algorithm for optimally solving the following problem was given:

maximize
N∑

i=1

fi(ti) (5.19)

subject to li ≤ ti ≤ ui (5.20)
N∑

i=1

ti = D (5.21)

Equations 5.19-5.21 correspond to the reward maximization problem without energy

constraints. The proposed optimal algorithm, called OPT-LU, also assumes concave (or

linear) functions fi. The complexity of OPT-LU is O(N2 log N). To use the OPT-LU

technique as part of our solution to Equations 5.1-5.5, we have to replace the variables si

with constants and eliminate Equation 5.5 from our model. This reduces the problem to a

form that the OPT-LU algorithm can solve. To find si, we always look for solutions that

consume all the available energy and slack, as seen in Theorem 2. The cases when all tasks

run at the same speed Smin or Smax are treated as special cases.
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5.1.3.1 Optimal solution for identical power functions From Theorem 3 we can

derive the following corollary:

Corollary 1. If all tasks have identical power functions, then all tasks run at the same speed

in the minimum-energy solution.

Assuming identical power functions Pi = P , by virtue of Corollary 1 the total energy

is minimized when all tasks run at the same speed s. In order to find the speed s that

consumes all the energy in the given deadline we solve P (s) = Emax

D
. Because of the speed

bounds there are three possible cases:

1. Smin ≤ s ≤ Smax. In this case s is the optimal speed.

2. s > Smax. In this case there is plenty of energy to run all the tasks at the maximum

speed. s is set to Smax and some of the energy has to be wasted.

3. s < Smin. The speed s is set to Smin. Observe that the entire slack cannot be used as

the available energy would be exceeded even if all tasks run at Smin. Thus, the deadline

is artificially reduced: D′ = Emax

P (Smin)
.

After determining the speeds si = s (and possibly adjusting the deadline), Equation 5.5

can safely be eliminated from the model, as the energy budget cannot be exceeded. Next,

OPT-LU gives the optimal solution, if a solution exists.

5.1.3.2 Optimal solution for certain polynomial power functions From Theo-

rem 3 we can derive the following corollary:

Corollary 2. For power functions of the type Pi = αi · sq, where q is constant for all tasks,

the minimum-energy solutions have the following properties:

1. All tasks that don’t run at minimum or maximum speed consume the same amount of

power P.

2. All tasks running at Smin have a power consumption higher than P.

3. All tasks running at Smax have a power consumption less than P.

Assuming no speed bounds (Smin = 0, Smax = ∞), it follows from Corollary 2 that in

the minimum-energy solution all tasks run at the same power P . Thus, the CPU power that
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fully utilizes the available energy in the given deadline is P = Emax

D
. Next, the speeds si of

all tasks Ti are determined from the equations Pi(si) = P . Having determined all speeds,

Equation 5.5 is eliminated from the model and the problem is transformed into an OPT-LU

problem which returns the optimal solution, if a solution exists.

The solution returned is also minimum-energy if the total reward is less than Rub. If the

reward is exactly Rub, then, analogous to Section 5.1.3.1, the minimum-energy speed and

execution time for task Ti are s′i = si

PN
i=1 ti
D

and t′i = ti
DPN
i=1 ti

, respectively.

5.1.4 Iterative DVS Algorithm for General Power Functions

We next propose an iterative algorithm for general power functions. Similar to the optimal

solutions in Sections 5.1.3.1 and 5.1.3.2, the algorithm for the general case starts by using

the OPT-LU algorithm [5] to first solve the problem without energy constraints. Clearly, the

optimal reward assuming limited energy E is bounded by the OPT-LU solution assuming

all the tasks are running at speed Smax. The unlimited-energy solution is then refined to

satisfy the energy constraint by three types of transfers, as described next.
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a. Inter-task b. Intra-task c. Reduction

Figure 5.2: Transfer types

5.1.4.1 Inter-Task Transfers Based on Theorems 1 and 2 the algorithm looks for solu-

tions that use all the available energy and slack. The algorithm iteratively transfers ∆t units

of time from task Ti to task Tj, i 6= j, by keeping the speed of Ti the same (and thus decreas-

ing the number of cycles and reward of Ti) and reducing the speed of Tj by ∆s =
sj∆t

tj+∆t
so as
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to preserve the same number of cycles Cj. This type of transfer is referred to as inter-task

transfer, and is illustrated in Figure 5.2a. The rectangles represent tasks expressed by speed

(the height of the rectangle in cycles per time unit) and execution time (the width in time

units). Hence, the area of a task represents the demand of the task in terms of number of

cycles. The bold rectangles show the tasks before the transfer, the shadowed rectangles show

the tasks after the transfer.

5.1.4.2 Intra-Task Transfers Similarly, in a intra-task transfer, a task Ti can transfer

∆t time units to itself thus reducing its speed by ∆s = si
∆t
ti

, and thus reducing its reward.

Intra-task transfers are shown in Figure 5.2b. The intra-task transfer results in a decrease

in the energy consumption at the expense of a decrease in the reward. Intra and inter-task

transfers stop when the total energy of the current schedule satisfies the budget constraint.

5.1.4.3 Reduction If no transfer is possible and the energy constraint is not satisfied,

it is the case that all tasks run on the minimum speed and the entire available slack is not

used. For this situation a reduction is introduced: reduce the execution time of task Ti by

∆t, as illustrated in Figure 5.2c.

5.1.4.4 Algorithm Algorithm 1 carries out the transfers and reductions. The input pa-

rameters are the unlimited energy solution S={(Smax, t1), (Smax, t2), . . . , (Smax, tn)} obtained

using the OPT-LU algorithm and the value of the interval ∆t. E(S) denotes the total energy

of an intermediate solution S. Inter-task and intra-task transfers are in lines 2-4, reductions

are in lines 6-9.

Clearly, the value of ∆t will directly influence the quality and the running time of the

solution. When ∆t tends to zero, the solution tends to the optimum and the running time

increases. As the experiments will show the error obtained also depends on other factors

such as the amount of energy available. The ∆t size that gives an acceptable solution cannot

be determined a priori. Therefore, we propose an algorithm that starts with an initial

∆t = ∆tinitial and iteratively refines the solution by halving ∆t until a stopping criterion
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Algorithm 1 SOLVE(∆t,S) algorithm

1: while E(S) > E do
2: determine transferring task Ti and receiving task Tj

3: if Ti and Tj exist then
4: execute transfer, update S, E(S)
5: else
6: while E(S) > E do
7: determine task Ti from which to take ∆t time units
8: if Ti exists then
9: execute reduction, update S, E(S)

10: else
11: return failure (S=NULL,R=0)
12: end if
13: end while
14: end if
15: end while
16: return S={(s1, t1), (s2, t2), . . . , (sn, tn)}, and R=

∑N
i=1 Ri(ti · si)

suggests that the quality of the solution is acceptable.

The stopping criterion used for the quality of the solution is: R∆t−R2∆t

R∆t
≤ ε, where R∆t

and R2∆t are the rewards for the current and previous iteration, and ε is a given threshold.

To prevent searching indefinitely for a solution we use another stopping criterion, ∆tmin, as a

lower bound for ∆t (that is, the search stops when ∆t < ∆tmin). The algorithm is presented

in Figure 2.

Algorithm 2 Variable ∆t algorithm
1: initialize ∆t = ∆tinitial and R∆t = 0
2: while true do
3: R2∆t = R∆t

4: if ∆t < ∆tmin then
5: return failure
6: end if
7: SOLVE(∆t,S) returns R∆t and S∆t

8: if R∆t 6= 0 and R∆t−R2∆t
R∆t

≤ ε then
9: break

10: end if
11: ∆t = ∆t

2
12: end while
13: return S∆t, R∆t
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5.1.5 Evaluation

We first validate the SOLVE(∆t,S) algorithm. We simulate task sets with N = 20 tasks

and identical power functions of the type P = sq
i , where for each simulation run, q was set

to 2 or 3 (square and cubic power functions). We use linear reward functions of the type

Ri(ti · si) = βi · ti · si, where the coefficients βi were randomly chosen such that βi ∈ [0, N ].

The lower computation bounds li and ui were randomly generated so that li ∈ [1, N ] and

ui ∈ [li, li + N ]. The deadline D was generated in the range [
∑N

i=1
li

Smax
,
∑N

i=1
ui

Smax
]. After

solving the energy unrestricted OPT-LU, Emax was chosen so that it does not exceed the

energy of the OPT-LU solution: Emax ∈ [1
5
EOPT−LU , EOPT−LU ]. For the speed limits we

used the normalized speeds Smax = 1 and Smin = 0.5. We note that similar results are

obtained with narrower ranges for βi, li and ui, as well as Smin < 0.5. We simulated 1000

task sets for each point in the graphs.

The error of a solution S is defined as e = Ropt−R(S)

Ropt
, where Ropt is the total reward of

the optimal solution and R(S) is the total reward of solution S. Note that Ropt can always

be computed for identical power functions, as shown in Section 5.1.3.1.
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Figure 5.3: Fixed-size transfers, identical power functions

The effect of the value of ∆t on the accuracy of the solution, is shown in Figure 5.3, for

a wide range of ∆t values. For example, a value of ∆t = D
N log N

is coarse-grained, as each
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task has on average only 3 (log N , for N = 20 tasks) ∆t intervals that can be transfered,

while a value of ∆t = D
N3 is fine-grained, with 400 intervals on average for each task. As seen

in the figure, a fixed value of ∆t = D
N2 log N

results in less than 1% error, with a relatively

small number of transfers. However, if a better accuracy is desired or if the energy available

is relatively small, ∆t = D
N2 log N

might not be enough. On the other hand, for most task

sets a higher ∆t (fewer transfers) can achieve a satisfactory solution. The second algorithm

(variable ∆t size) was proposed to handle these problems.

We used the variable ∆t version of our algorithm and compared the solution we obtained

with the optimal solution. For this experiment we use different power functions of the type

Pi = αi · sq
i , where q is constant for all tasks (for identical power functions we obtained

quite similar results). As shown in Section 5.1.3.2, the optimal solution can always be

computed for power functions of the type Pi = αi · sq
i if there are no speed bounds. Thus,

the power coefficients were generated so that in the optimal solution no task runs on the

minimum or maximum speed. We ensured this by first generating the speeds si in the range

[Smin, Smax] = [0.5, 1] and the CPU power P at which all tasks run in the optimal solution.

Only after that the coefficients αi were generated such that αi · sq
i = P . We use concave

reward functions of the type Ri(Ci) = ln(βi ·Ci +1) with random coefficients βi ∈ [0, N ]. As

seen in Figure 5.4, with a stopping criterion of ε = 0.0005 and task sets of up to 50 tasks,

the average error is less than 0.1%.

Observe that for the first two experiments it was possible to compare the algorithm with

the optimal solution. Since we did not prove that the algorithm converges to the optimal, we

consider these experiments necessary to evaluate the performance of the algorithm. A third

experiment is intended to be more realistic and assumes power functions extracted from real

processor models [48]. In particular, the power functions used are of the type:

Pi = αi · [0.248s3 + 0.225s2 +
√

(311s2 + 282s) · (0.014s2 + 0.0064s)] (5.22)

However, we have no way of computing the optimal solution in this case, and hence, we

approximate the optimal with the solution obtained for a very small ∆t (we used ∆t = D
106 )

and report average and maximum errors relative to this solution. For comparison, we also
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Figure 5.4: Variable-size transfers, polynomial power functions

used ∆t = D
106 in the previous experiment for different power functions of the type Pi = αi ·sq

and the maximum absolute error (exactly computed) across all simulations was less than

0.0001.

The running time of the algorithm depends on the value of ε and the number of tasks N .

For ε = 0.01 and N = 50 tasks the running time is in the range of milliseconds (average of

38 milliseconds on a 400MHz Pentium II), with just 1.5 milliseconds for N = 20 tasks and

half a millisecond for N = 20 tasks and simpler power functions (such as Pi = αi · sq). The

average errors and number of transfers as a function of ε are shown in Figure 5.5. Results

are very similar, with less than 1% average error. As well, we note the number of halvings

is very small. For example, for ∆tinitial = D
N log N

only two halvings are required on average

for ε = 0.01.

5.2 DISCRETE REWARDS AND POWER FUNCTIONS

This section describes the case of discrete power and reward functions. Unlike the continu-

ous case, only a few (discrete) processor frequencies are available for dynamic voltage scaling

(DVS), corresponding to the realistic case of processors that support DVS (the XScale pro-
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Figure 5.5: Variable-size transfers, realistic power functions

cessor model [57] with 5 frequencies/voltages is used for evaluation purposes). The discrete

reward model corresponds to applications that do not reward partial execution. Task versions

are proposed as an extension of the reward model corresponding to step reward functions

(Figure 3.1b).

We first propose the REW-Pack and REW-Unpack algorithms for single-version task

sets. For tasks with multiple versions, the MV-Pack algorithm is proposed. Note that, as in

the continuous case, the frame-based and periodic task models result in equivalent problem

definitions [70].

5.2.1 Optional Single Version

Using the notation introduced in Chapter 3, the problem formulation for the discrete all-

or-nothing reward model is presented next. The problem is similar to the continuous case,

with two exceptions: tasks are optional and non-adaptive. Thus, a task is either selected

for execution, in which case its reward is added to the system reward, or is omitted and

contributes no reward to the system. Formally, the problem is to determine the subset of

tasks S selected for execution and their speeds si so that to:
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maximize
∑
i∈S

ri (5.23)

subject to
∑
i∈S

ti,si
≤ D (5.24)

∑
i∈S

ei,si
≤ E (5.25)

S ⊆ {1, 2, . . . , N} (5.26)

si ∈ {1, 2, . . . ,M} (5.27)

The maximization objective is present in Equation 5.23. Inequality 5.24 represents the

real-time constraint for frame-based systems, and inequality 5.25 enforces the energy budget.

The problem was shown to be NP-hard in [68].

5.2.1.1 The REW-Pack Algorithm We propose the REW-Pack algorithm to solve

the problem described by Equations 5.23-5.27, for tasks that have a single version. Each

task is optional (i.e., may be omitted in the final solution).

As with the continuous reward and power models, we look for solutions that use all

available time and energy. The iterative algorithm for continuous rewards starts with an

optimal solution assuming unlimited energy and relies on fine-grained schedule adaptation

to satisfy the energy constraint (Figure 5.2). However, in the discrete case, identifying the

optimal solution is NP-hard even for unlimited energy, and schedule adaptation is coarse-

grained, due to the all-or-nothing reward model. While the iterative algorithm performs

three types of fine-grained intra-task or inter-task transfers, REW-Pack relies on three types

of coarse-grained schedule adaptations: adding a task, increasing the speed of a task, and

dropping a task. Starting with a low-energy schedule, the search stops when the energy

constraint is violated.

The flowchart of REW-Pack is presented in Figure 5.6. The algorithm works as follows: a

new task is scheduled (at the minimum speed) as long as the energy constraint is not violated.

When the deadline constraint is no longer satisfied, the algorithm starts packing already

selected tasks to create slack for the remaining tasks, where packing means to decrease the

running time of a task, by increasing the speed of the selected task.
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Figure 5.6: Flowchart of REW-Pack

The complete REW-Pack algorithm is shown in Algorithm 3. add task(), drop task()

and increase speed() all return the task number or -1 if no task can be chosen. The variables

time and energy store the total running time of the schedule (time =
∑

i∈S ti,si
) and the

total energy consumed (energy =
∑

i∈S ei,si
) and are initialized to zero. V stores the system

value for the current schedule (V =
∑

i∈S ri) and SV stores the system value, that is, the

largest value of V encountered thus far.

The task Ti that is added (always at the minimum speed) to the current schedule must

satisfy all of the following criteria: the task was not considered yet (considered[i] = false),

the current schedule is feasible (time ≤ D) and by adding the task to the current schedule

at the minimum speed the energy budget is not exceeded (energy + ei,1 ≤ E). Among all

the tasks that satisfy the above criteria, we select the one that has the largest ratio ri

ti,1ei,1
.

Thus, a task is a good candidate if it has large reward, small running time and/or small

energy consumption. In our experiments, metrics that do not consider all parameters (i.e.,

task value, task energy and task time) failed to give good approximations of the optimal

solution.

If no task can be added to the schedule, the algorithm packs tasks to make room for other

not yet selected tasks, where packing means to increase the speed of one of the selected tasks,
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Algorithm 3 The REW-Pack algorithm
1: Initialize: selected[i]=false, considered[i]=false ∀i
2: energy = 0, time = 0, SV = 0, V = 0
3: while true do
4: if time ≤ D and SV < V then
5: SV = V , sol selected[i]=selected[i], sol speed[i]=si, ∀i
6: end if
7: if considered[i]==true ∀i and time ≤ D then
8: break
9: end if

10: i=add task()
11: if i6=-1 then
12: selected[i]=true, considered[i]=true
13: si = 1, energy+ = ei,1, time+ = ti,1, V + = ri

14: else
15: i=increase speed()
16: if i6=-1 then
17: energy+ = ei,si+1 − ei,si

18: time+ = ti,si+1 − ti,si , si = si + 1
19: else
20: i=drop task()
21: energy− = ei,si , time− = ti,si

22: V− = ri, selected[i]=false
23: end if
24: end if
25: end while
26: return solution (sol selected, sol speed, SV)

always to the next higher speed level. The task chosen for a speed increase must satisfy the

following: it must be selected in the current schedule (selected[i] = true), it is not running

at the maximum speed (si 6= M) and by increasing its speed to the next higher speed level

the energy budget is not exceeded (energy + ei,si+1 − ei,si
≤ E). Among all tasks that

satisfy the above criteria, we select (for packing) the task Ti with the highest ratio ∆t
∆E

,

where ∆t = ti,si
− ti,si+1 and ∆E = ei,si+1 − ei,si

. Thus, the best candidates for packing are

considered the tasks that create a lot of room (time or slack) for the remaining tasks while

not significantly increasing the energy consumption.

If the previous two steps fail, a task is eliminated from the current schedule. The task

that is dropped is the task in the current schedule (selected[i] = true) which has the smallest

ratio ri

ti,si
ei,si

. Once a task is dropped, it is not added again.

The complexity of the REW-Pack algorithm can be analyzed as follows. Each task is
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added at most once and dropped at most once. For each task, its speed can be increased at

most M − 1 times. Determining what task to pick takes log N time for all functions (add,

increase and drop). Thus, the complexity of the algorithm is O(MN log N).

5.2.1.2 The REW-Unpack Algorithm With the REW-Unpack algorithm, the search

goes in the opposite direction: tasks are added at the maximum speed and the schedule is

unpacked (i.e., a task is selected and its speed decreased) to create energy for the remaining

tasks. Thus, while REW-Pack starts with a low-energy schedule and does not allow exceeding

the energy budget, REW-Unpack starts with a high-energy schedule and does not allow

exceeding the time budget. The function increase speed() is replaced with decrease speed().

The same metrics and complexity of REW-Pack apply.

5.2.1.3 Evaluation One key desired feature of the algorithms is fast running times. This

allows a scheduler to adapt dynamically to changes in the system such as tasks becoming

unavailable, new tasks being added to the system or new timing and energy constraints.

Simulations results on the XScale processor power model (shown in Table 5.1) show that

both algorithms return solutions very close to the optimal (within 3%) with running times in

the microseconds range (on a 850MHz Pentium III with 256MB of RAM), even for hundreds

of tasks.

Table 5.1: Frequency/voltage settings for Intel XScale processors

f(MHz) 1000 800 600 400 150
Vdd(V ) 1.80 1.60 1.30 1.00 0.75

We simulated both algorithms on the same task sets and, for relatively small task sets,

compared our solution with the optimal solution, obtained through an exhaustive search. We

define the absolute error for any of the two algorithms to be SVOPT−SV
SVOPT

, where SV represents

the system value (reward) resulting from the algorithm and SVOPT is the optimal system

value. The average error for several experiments is defined as the arithmetic mean of the

absolute errors for each experiment.
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The simulations are described by the following parameters: (1) N - number of tasks (2)

M - number of speed levels (3) ti,j, ei,j - time and energy requirements (4) D - deadline (5)

E - available energy and (6) ri - task values.

For each task, its execution time at minimum speed ti,1 was randomly generated in the

range [1, 100], resulting in a wide variation of task execution times. The running time of

task Ti at speed level j was then computed as ti,j = ti,1
f1

fj
, thus the running time is inversely

proportional to the speed. Inspired from Equation 3.1, the power consumption of task Ti at

speed level j, is given by the formula Pij = ai·V oltage(j)2 fj

fM
. Thus, the power is proportional

to the normalized speed and the square of the voltage. ai is an activity factor different for

each task, proportional to the dynamic switching caused by the task and randomly generated

in the range [0.8, 1.2]. The energy requirement ei,j is then computed as ei,j = Pi,j · ti,j, that

is the power multiplied with the time. For a wide variation of task rewards, the value ri was

generated randomly in the range [1, 100] for each task.

The maximum deadline, MaxD, is defined as MaxD =
∑N

i=1 ti,1, that is the total ex-

ecution time of the tasks at minimum speed. The maximum energy, MaxE, is defined as

MaxE =
∑N

i=1 ei,M , that is the total energy requirement for all tasks if running at the max-

imum speed. Clearly, if D ≥ MaxD the timing constraint cannot be violated. Similarly, if

Emax ≥ MaxE the available energy cannot be exceeded. Two parameters: α and β describe

the available time and energy in the system. The deadline was generated using the formula

D = α · MaxD and the energy was generated by Emax = β · MaxE, where α ∈ [0, 1] and

β ∈ [0, 1] (thus covering the full range of time and energy values).

Figure 5.7a shows the average error for tight timing constraints (α = 0.2) as a function

of the available energy (β) for N = 10 tasks. The average error quickly tends to zero as

more energy is available.

The exponential nature of the optimal solution makes it hard to compute the absolute

error for large values of N . There is experimental evidence, however, that the absolute

errors do not increase (rather, they actually decrease) as the number of tasks increases. For

example, in Figure 5.7b, where we simulated task sets with 5 to 14 tasks for α = 0.3 and

β = 0.3, we can see this trend.
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Figure 5.7: Evaluation of REW-Pack and REW-Unpack

As seen in Figure 5.7, REW-Pack and REW-Unpack have very similar average errors.

Intuitively REW-Pack should perform better on time-constrained task sets and REW-Unpack

should have better results on energy-constrained task sets. It turns out however that the

time and energy are equally important (except for cases when D or E are too large to be

used entirely given the other constraint) and both algorithms return schedules that use on

average more than 90% of both the available time and energy. A graphical demonstration

of the two heuristics is available at http://www.cs.pitt.edu/PARTS/demos.

5.2.2 Multiple Task Versions

The discrete reward model in Equations 5.23-5.27 corresponds to a single version for each

task, which is either selected or omitted in the final schedule. To allow for better applica-

tion adaptation, we propose to enhance the discrete reward model with task versions. In

this model, each task may have several versions, each with different rewards and resource

requirements (energy and time), and no reward for partial execution. For example, one ver-

sion may require less cycles and therefore use less energy, at the expense of producing less

accurate/complete/valuable results.

Equivalently, task versions also correspond to the same application with discrete comple-

tion points, as described in Section 3.2.2. This effectively results in the discretized version
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of the IC reward model. Unfortunately, although the three types of transfers for IC tasks

(Section 5.1.4) can be adapted for discrete rewards, the iterative algorithm for continuous re-

wards still cannot apply to the task versions model. This is because it depends on the optimal

solution assuming unlimited energy, which is NP-hard for the case of step reward functions.

Thus, we propose a new algorithm, MV-Pack, for the case of multiple task versions.

Note that all tasks must be selected in the solution. However, the MV-Pack algorithm

can also handle a combination of optional and mandatory tasks. For this case, the original

task set is modified in the following way: for each optional task we artificially add a version

with zero reward and zero energy and time requirements. We call this added version the

zero version. A task selected in the final schedule at its zero version is equivalent to a task

not selected for execution.

Formally, the problem is to determine for each task Ti its speed level si, as well as its

version vi, so that to:

maximize
N∑

i=1

rvi
i (5.28)

subject to
N∑

i=1

tvi
i,si
≤ D (5.29)

N∑
i=1

evi
i,si
≤ E (5.30)

vi ∈ {1, 2, . . . , V } (5.31)

si ∈ {1, 2, . . . ,M} (5.32)

The problem was shown to be NP-hard in [70]. Note that all tasks must be selected in the

final schedule, unlike the single-version problem definition. This restriction is eliminated in

the next section, allowing tasks to be either mandatory or optional.

5.2.2.1 The MV-Pack Algorithm The MV-Pack algorithm is an extension of REW-

Pack for multiple-version task sets. The flowchart of MV-Pack is shown in Figure 5.8. The

algorithm has three major components: add task, increase speed and increase version. The

first two components are identical with those of REW-Pack. However, since the multiple
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versions task model requires that each task is selected in the schedule, tasks are never

dropped.

Yes
speed of some task?

can increase the
increase speed

solution or failure
return current 

No

deadline exceeded?

Yes

added?
all tasks

save solution

can increase the
version of some task?increase version return solution

Yes No

No

No

Yes

initialize

can add a task?

Yes

No
return failure

add task

Figure 5.8: Flowchart of MV-Pack

The algorithm starts with an empty schedule. A new task is added if possible, always

at the first (smallest) speed level and version (we assume that task versions are sorted by

their reward - the first version has the smallest reward). If the deadline is exceeded, tasks

are packed to make room for other tasks. When all the tasks are selected in the schedule, a

minimum reward solution is found, otherwise failure is returned.

Next, while the remaining energy allows it, a better schedule (higher reward) is searched

by increasing the version of some task. The third component of the algorithm (increase

version) selects the task to move to its next higher version. The old version is removed from

the schedule, while the new version is added at the minimum speed. Tasks are then packed

if necessary until either a solution with the new version is found or the energy is exceeded,

in which case the current solution is returned.

The task Ti that is selected to move to the next higher reward version satisfies the

following: (1) it is not running at the highest version (vi < V ) (2) by replacing the current

version with the next higher version at the first speed level, the energy budget is not exceeded

(energy + evi+1
i,1 −evi

i,si
≤ E) and (3) among all the tasks that are not running at their highest

62



version, the next version at minimum speed has the largest reward per unit time and energy.

That is, we select task i that maximizes
r

vi+1
i

t
vi+1
i,1 ·evi+1

i,1

.

The complexity of MV-Pack can be analyzed as follows. Each task is added at most

once and its version can be increased at most V − 1 times. For each task we can increase its

speed at most (M − 1) · V times. With appropriate data structures, determining which task

to choose takes log N time for all functions (add task, increase speed and increase version).

Thus, the complexity of the algorithm is O(MV N log N).

5.2.2.2 Evaluation We simulated the Intel XScale architecture (Table 5.1) for task sets

with V = 4 versions. For each task, the execution time of the first version at minimum

speed t1i,1 was randomly generated in the range [10, 100]. For the remaining versions, the

running time at the first speed level was generated by the formula tki,1 = tk−1
i,1 + ∆k

i , where

∆k
i ∈ [0.2·t1i,1, 1.2·t1i,1] was randomly generated for each task version. Next, tki,j was computed

for all versions and all speed levels, inversely proportional to the speed (tki,j = tki,1 · f1

fj
).

For the power consumption of a task version T k
i at speed level j, we use the formula

P k
i,j = ai · V oltage(j)2 fj

fM
. Thus, the power is proportional to the normalized speed and the

square of the voltage. ai is an activity factor different for each task and identical for all

versions of the same task, proportional to the dynamic switching caused by the task and

randomly generated in the range [0.8, 1.2]. The energy requirement ek
i,j is then computed as

ek
i,j = P k

i,j · tki,j, that is the power multiplied with the time.

Task values of the first versions r1
i were generated randomly in the range [10, 100]. For

the higher versions, task rewards were generated according to the formula rk
i = rk−1

i + δk
i ,

where δk
i ∈ [0.2 · r1

i , 1.2 · r1
i ] was randomly generated for each task version. Thus, observe

that each version requires more time and more energy than the previous versions, but gives

a higher reward; also, there is no assumption on the shape of the reward function (i.e., it is

not necessarily convex, linear or concave).

Experiments with different ranges for δk
i and ∆k

i (such as [10, 100]), also with narrower

or broader ranges for the activity factors ai (such as [0.2, 1.2]) produced very similar results.

The deadline D and maximum energy E are generated by the formulas D =
∑N

i=1 tvi
i,si

and respectively E =
∑N

i=1 evi
i,si

, where the indexes for speed si ∈ {1, 2, . . . , M} and for value
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vi ∈ {1, 2, . . . , V } are randomly picked for each task i ∈ {1, 2, . . . , N}.

We denote by SRmin the minimum system reward that can be achieved for a given task

set, SRmin =
∑N

i=1 r1
i . Similarly, SRmax denotes the maximum reward that can be achieved,

SRmax =
∑N

i=1 rV
i . Observe that if each task i runs at the version vi and the speed level si

used to generate D and E, the energy and deadlines are not exceeded and the system reward

is SRgen =
∑N

i=1 rvi
i .

Since it is impractical to compute the optimal solution, we will compare the performance

of MV-Pack with SRmin, SRmax and SRgen. Figure 5.9a shows the comparison for task

sets of 10 to 100 tasks, where SRgen, SRmax and the reward returned by the algorithm are

normalized to SRmin. Each point is the average of 1000 simulation runs. In all experiments,

MV-Pack returned a system value higher than SRgen and close to SRmax. Note that SRmax

is an upper bound on the optimal solution, not the optimal solution itself. In most cases

SRmax cannot be achieved without exceeding the deadline or energy restrictions. For most

graph points MV-Pack used more than 99% of the available energy; the smallest value is

94%. Similarly, MV-Pack used at least 97% of the available time. The average error as a

function of N for single-version tasks is shown in Figure 5.9b. The actual running times of

the algorithm is less than a millisecond for all experiments, on a 850 MHz Pentium III.
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5.3 LONG-TERM REWARD MAXIMIZATION

While the previous algorithms assume a given energy budget for a relatively short period of

time (corresponding to the frame length or the LCM), we next investigate how to allocate

such energy budgets in the long run, so that to maximize the long-term (lifetime) system

reward. We start by analyzing energy budget allocation for battery-powered embedded

systems with a given battery charge in Section 5.3.1. Our analysis is then extended to a

more complex scenario, in which the system alternates between recharging periods (where

the system replenishes the battery at the same time as executing real-time applications) and

discharging periods (where the system relies entirely on the stored energy in the battery) in

Section 5.3.2. In particular, we propose energy budget allocation policies for maximizing the

long-run system reward of embedded systems that use rechargeable energy.

5.3.1 Battery-Powered Systems

Let Emax denote the battery energy of a given system. While the previously proposed algo-

rithms assume a given energy budget for a short period of time (such as in the milliseconds to

seconds range, corresponding to the length of a frame), the battery capacity Emax determines

the system lifetime, typically in the hours range. The problem is then how to allocate the

short-term energy budgets E so that the long-term (lifetime) system reward is maximized.

Note that reward function are typically concave, while power functions are convex. This

means that the reward of a task as a function of energy (assuming a fixed execution time)

is concave. Extending to the entire system, the short-term system reward as a function of

the short-term energy budget E (assuming a fixed frame length D) is a concave function.

Thus, we observe that, given a long-term energy budget Emax, an energy partition into equal

short-term budgets E will maximize the long-term system reward. The intuition behind this

observation is based on the same argument used in [69], in which it is shown that, due to

the concavity of reward functions and convexity of power functions, all task instances of a

periodic task run at the same speed and for the same amount of time (thus, same energy)

in the optimal (maximum reward) solution. If a frame is viewed as a periodic task (albeit
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a more complex task), it follows that an equal energy partition between frames maximizes

the system reward.

Thus, given a long-term energy budget Emax and a desired system lifetime tmax, each

frame is allocated an energy budget E = Emax

tmax
. Any of the previous algorithms, for both

continuous and discrete reward models, can then be used to determine the schedule within

a frame. An exception occurs when E < Elow, where Elow is the lowest energy budget that

ensures a minimum reward solution. In this case, the frame energy budget is E = Elow and

the system lifetime is DEmax

Elow
< tmax.

If there is no system lifetime requirement tmax, by the same concavity argument, the

long-term reward is maximized when each frame is allocated an energy budget E = Elow,

which results in a system lifetime of DEmax

Elow
time units.

Finally, note that the short-term reward maximization algorithms assume WCET for

tasks. As average-case execution times are less than the worst-case, extra energy exists in

the system that can be reclaimed to further improve the system reward. The issue of energy

reclamation is discussed in detail in the next section, for the more general case of systems

with rechargeable batteries.

5.3.2 Rechargeable Systems

While it would appear as though the device lifetime is ultimately dependent on battery stor-

age capacity, some devices may scavenge the existing energy in the environment. An example

of such a device is the NASA/JPL Mars rover, which relies on both a non-rechargeable bat-

tery source and a solar panel [52]. In this work, we assume that the battery is also recharge-

able. During rechargeable periods (e.g., daytime for devices with solar panels) real-time

tasks are executed at the same time the battery is recharging, while when the system cannot

recharge, it relies entirely on the battery energy acquired during the recharging period. Since

the periods in which recharging is possible may be limited, energy must be used efficiently.

5.3.2.1 Rechargeability Background A short introduction to rechargeable energy

harvesting and storage (illustrated by a solar panel and respectively a rechargeable battery)
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is given next.
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Figure 5.10: Current-voltage characteristic of a typical solar cell

A solar cell (also known as PV cell) converts light into electricity through the photo-

voltaic effect [85]. The current-voltage characteristics of a typical solar cell is shown in

Figure 5.10. At short circuit the current is maximum (Isc) but the power generated (the

voltage multiplied with the current) is zero. Similarly, at open circuit the voltage is max-

imized (Voc) but the current (and thus power) is zero. The optimal operating point (i.e.,

maximum power) is shown on the curve as Pmax. Note that a solar cell cannot store energy

by itself. The device attached to the cell will draw as much power as it needs; the remaining

power (up to Pmax) is simply wasted if not used.

A solar panel is obtained by connecting cells in series or parallel into PV arrays to

obtain any desired voltage/current characteristic. Connecting two cells in series doubles the

resulting Voc; parallel connection doubles the resulting Isc. For each cell Isc depends on the

intensity of light, while Voc depends on other parameters (such as temperature).

A rechargeable battery has a nominal capacity (expressed in Amps-hour) corresponding

to a maximum energy (expressed in Joules or Watts-hour). The charging characteristic for a

typical lithium-ion rechargeable battery is shown in Figure 5.11a. The charging time depends

on the charge current I, but also on other parameters (like temperature). Not all the power

used to recharge the battery can be stored (for example, 1 W of charge for 1 hour results
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Figure 5.11: Charging and discharging characteristics of rechargeable batteries

in less than 1 Watt-hour stored energy). The discharging characteristic as a function of the

discharge current I is shown in Figure 5.11b. The nominal capacity is computed for a given

constant discharging current and temperature. A variable discharging current results in a

reduced effective capacity.

5.3.2.2 Models and Problem Definition The recharging model and problem defini-

tion are presented next. The task model corresponds to multiple versions for frame-based

and periodic tasks used in the previous sections. The problem solved is to determine how

much energy to allocate to each frame so that to maximize the long-run system reward.

MV-Pack is then used for maximizing the short-term system reward within a frame.

The system we target consists of three components: a processing unit, an energy harvester

(such as a solar panel) and a rechargeable battery. The processing unit includes all the

components needed for processing real-time tasks, such as a DVS processor, memory and

network, and we assume that the task energy values ek
i,j refer to the consumption in the

entire system comprised by the processing unit. The harvested power can be either used by

the processing unit or stored for future use by the third component (rechargeable battery).

The shape of the solar power that can be generated on a satellite orbiting the Earth is

shown in Figure 5.12a. The power is either constant (about 1350W/m2) or zero if sunlight
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is obstructed [85]. We will refer to the time when there is solar power as Tr (recharging

time). Td (discharging time) denotes the time when the system has to rely entirely on the

battery (i.e., no solar power). The amount of energy generated during Tr (the area below

the power curve) is denoted by Erec. Note that Erec is only a fraction of the solar power,

as the efficiency of a solar cell is typically 10% to 20%. The solar power on Earth’s surface

varies with time due to atmosphere and clouds, as shown in Figure 5.12b. For this scenario,

Erec will denote the worst-case amount of energy that can be generated during Tr.

We denote the maximum energy that can be stored in the rechargeable battery by Emax.

As well, we denote by Emin the minimum energy required in the battery at any time. There is

a loss of energy when recharging and discharging the battery. We use a parameter, α ∈ [0, 1],

to denote the worst-case recharging loss. For example, for α = 0.9 and Emax = 9Wh, 10Wh

may be needed to fully charge the battery. A second parameter, β ∈ [0, 1] denotes the

worst-case discharging loss. Thus, if β = 0.9 and Emax = 10Wh, the actual energy is just

9Wh under a worst-case discharging scenario.

Our goal is to determine for each frame how much energy to allocate so that the system is

stable (i.e., the battery energy can never be less than Emin), provided that Erec, α and β, as

well as task worst-case execution times and energy requirements are not underestimated. In

addition, the energy is allocated taking into consideration task rewards, so that to maximize

the long-term system reward (the sum of values for all versions selected for execution in all

discharging and recharging frames). Using the multiple version task model of Section 5.2.2

and the MV-Pack algorithm, for a stable system, we also determine what task versions vi to
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select and at what speed levels si to run them. Note that Tr >> D and Td >> D, where

D is the frame length. Thus, MV-Pack maximizes the short-term system value, given the

energy budget allocated by the long-term energy allocation policy.

5.3.2.3 Static Energy Allocation We present necessary and sufficient conditions for

the stability of the system. Based on these conditions we show how to distribute the available

energy among frames, assuming a worst-case scenario.

The static analysis starts by running the MV-Pack algorithm, assuming infinite available

energy. After each successful version increase (i.e., reward/value increase), the intermediate

solution is saved (i.e., the speed and version for each task, as well as the total energy

consumption and reward are stored). There can be at most NV successful version increases,

thus the space and time complexity become O(N2V ). In practice, running times are still

under a millisecond even for 100 tasks (total running time in a Unix system with a 850MHz

Pentium III CPU and 256MB of RAM).

The ith intermediate solution schedule, energy and reward are denoted by φi
S, φi

E and φi
R

respectively. If a solution has a smaller reward and a higher energy than some other solution,

it is eliminated from the saved solutions. This case can happen for artificial scenarios,

although we did not encounter it during simulations. The saved intermediate solutions are

ordered by their rewards/energy in increasing order. Note that even with infinite energy

it may not be possible to run all the task at their highest version due to the real-time

constraints. If the frame deadline is D, the number of frames to be executed during the

recharging period Tr is Nr = Tr

D
. Similarly, Nd denotes the number of frames to be executed

during the discharging period, Nd = Td

D
.

Since it is expected that the frame reward increases less than linearly with the frame

available energy, an equal energy partition is expected to maximize the total reward of the

frames. Thus, we choose to distribute the energy equally among frames (recharging frame

allocation may be different from discharging frame allocation due to recharging/discharging

characteristics and battery capacity limitation).

We next identify necessary and sufficient conditions for a system to be stable (i.e., the

battery energy is at all times above Emin). First, the generated energy during the recharging
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period Tr must be enough to run all the frames with their minimum energy requirement φ1
E.

During recharging, the processing unit will use at least Nrφ
1
E energy. Due to the discharging

loss β, at least
Ndφ1

E

β
has to be stored for use during the discharging period Td. Considering

also the recharging loss α, the first condition for system stability is:

Erec ≥ Nrφ
1
E +

Ndφ
1
E

αβ
(5.33)

This condition is necessary but not sufficient, as it could be the case that not all of the

recharging energy Erec can be used (for example, due to battery capacity limitation). A

second condition enforces that a fully charged battery holds enough energy to execute all

discharging frames at their minimum energy consumption, even in worst case discharging

conditions β:

Emax − Emin ≥ Ndφ
1
E

β
(5.34)

For a stable system, the actual schedules for the recharging and discharging frames are

obtained as follows. We assume the system starts with a discharged battery (Emin) and

the first recharging frame. The schedules for the recharging and discharging frames are the

solutions φi
S and respectively φj

S that satisfy:

maximize Nrφ
i
R + Ndφ

j
R (5.35)

subject to Emax − Emin ≥ Ndφ
j
E

β
(5.36)

Erec ≥ Nrφ
i
E +

Ndφ
j
E

αβ
(5.37)

Determining the optimal values for i and j has complexity O(NV ), as there are at most NV

stored solutions. A solution always exists for a stable system.

During discharging, the feasibility conditions 5.36 and 5.37 give the guarantee that the

battery energy will never be less than Emin (i.e., the system is stable). During recharging,

we assume the processing unit relies directly on the solar power, while the unused power is

stored in the battery with a worst-case loss α.
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5.3.2.4 Dynamic Energy Allocation Schemes The static policy (i.e., the solution

to 5.35-5.37) is too conservative, as the system has to be stable even in worst-case con-

ditions. Dynamic policies are proposed to handle cases when extra energy appears in the

system. There are many ways to improve the system reward when worst-case scenarios do

not happen. For example, whenever a task requires less energy than its worst-case, the

remaining tasks inside its frame can benefit from the extra energy to improve their reward.

However, this approach implies a considerable overhead as a new schedule needs to be con-

structed potentially every task completion. In terms of system reward the approach may

also be inefficient, as it could be better to distribute the energy among frames.

Inspired from the work in [59], three dynamic policies are presented next. While the

dynamic policies in [59] reclaim unused slack in order to improve the energy consumption,

the resource reclaimed in our case is the energy itself, so that to improve the long-term system

reward. We assume that the battery charge can be examined with reasonable accuracy. By

inspecting the battery charge at regular intervals, dynamic schemes will observe the deviation

from the worst case scenario and redistribute the available energy among frames so as to

maximize the system value. Frame boundaries provide such regular intervals for checking the

battery level. Thus, the extra energy is not used in the current frame and the rescheduling

overhead occurs only at frame boundaries.

The first two schemes (Proportional and Speculative) redistribute the energy among all

remaining frames until the first recharging frame (at which moment, because this is a sta-

ble system, the battery level is known to be at least Emin). Also, the system reward can

benefit most from this approach since reward increases less than linearly with the energy.

A third dynamic policy (Greedy) uses the static schedule for frames, but gives all the ex-

tra energy to the next frame. Rescheduling decisions are still made only at frame boundaries.

Proportional Energy Allocation In this scheme, upon the completion of each frame, the

available energy is redistributed equally among all recharging frames and equally among all

discharging frames. A worst case scenario is assumed for the remaining frames and thus the

system is guaranteed to be stable. However, the extra energy can now be used to improve

the system reward while still guaranteeing its stability. When recharging frame k completes,
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aware of the current battery energy and the worst case remaining recharging energy, a new

schedule φi
S is selected for the remaining Nr − k recharging frames and a new schedule φj

S is

selected for the Nd discharging frames so as to maximize (Nr− k)φi
R +Ndφ

j
R, while ensuring

that the worst-case battery charge when the first discharging frame starts is enough to run

all the discharging frames (i.e., is at least Emin +
Ndφj

E

β
). Similarly, when discharging frame

k completes, the available battery energy is equally distributed among the remaining Nd−k

frames so that the battery energy is at least Emin at the completion of the last discharging

frame.

Speculative Energy Allocation The proportional scheme is too conservative as the

worst-case scenario is assumed for all remaining frames. As has been shown in previous

works [59], a better approach is to speculate about future energy consumption and schedule

tasks accordingly, while ensuring that the system is stable even in worst-case conditions for

all remaining frames. During discharging, the battery energy constantly decreases. At frame

boundaries, the actual decrease in battery energy can be compared to the known worst-case.

The ratio of actual consumption to worst-case consumption can be used to estimate con-

sumption for future discharging frames. The ratio will be always less than 1, as the actual

discharge loss is less than β and task energy consumptions will be less than their worst-case.

The ratio for the next frame is then predicted as the average of such ratios for all frames in

a history window. During recharging, a similar ratio is computed at frame boundaries for

estimating the energy accumulating in the battery.

Greedy Energy Allocation This scheme assigns all the available extra energy to the

next frame with the constraint that enough energy is left to run the remaining frames ac-

cording to the static schedule. Thus, the extra energy in the system is immediately used,

unlike in the previous schemes.

The overhead of all dynamic schemes is O(NV ) at each frame completion. Simulation

results presented in the next section quantitatively evaluate both the static and the dynamic

policies.
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5.3.2.5 Experimental Results We simulated the Intel XScale architecture, with 5

speed levels (Table 5.1) for task sets with up to N = 100 tasks and V = 4 versions for

each task. The execution times, energy values and task rewards were generated as described

in Section 5.2.2.2. The static analysis was then performed by running the MV-Pack algo-

rithm to generate the intermediate solutions φi
S.

The values for Emin, Emax and Erec were then generated as described next. Emin is

5% of the battery capacity Emax, which was generated so that the available energy during

discharging (i.e., Emax − Emin) is at least
Ndφ1

E

β
and less than

Ndφs
E

β
, where s is the highest

reward/energy intermediate solution (s is not always NV as deadlines can be missed). Thus,

Equation 5.36 can be satisfied and not enough energy can be stored in the battery to run all

tasks in all discharging frames at their highest version.

Similarly, Erec was generated to be at least (Nd

αβ
+ Nr)φ

1
E and less than (Nd

αβ
+ Nr)φ

s
E.

Equation 5.37 can be satisfied, while the recharging energy cannot support all tasks at their

highest version. We thus ensure that there is a solution, but not enough energy to run all the

most valued task versions. We also ensured that the processing unit power during recharging

periods is less than the worst-case solar power Erec

Tr
. Note that when the system has a large

amount of energy (e.g. large Nr or large Emax and Erec), the problem is unrealistic and

uninteresting. The solution is also trivial, namely runs all tasks at the highest energy/reward

solution s.

The static schedule was created as the solution to Equations 5.35-5.37. The system was

then simulated, starting with the first recharging frame and a discharged (Emin) battery.

The dynamic behavior is simulated as follows: with a probability of 50% tasks required their

worst-case time and energy and with 50% probability their actual running time (and thus

energy requirement) was between 50% to 100% of the worst-case. Thus, on average frames

require 87.5% of their worst-case time and energy. We considered a worst-case α and β of

0.9. The actual α and β values were generated for each recharging/discharging frame in the

range [0.9, 1].

Note that the worst-case generated energy is Erec

Nr
for each recharging frame, correspond-

ing to the pattern in Figure 5.12a. To simulate a deviation from the worst-case, we added

an extra energy of up to 20% for each recharging frame (i.e., the generated energy was in
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the range [Erec

Nr
, 1.2Erec

Nr
] for each recharging frame). To simulate the pattern in Figure 5.12b,

we simulated the deviation from the worst-case as a sinusoidal function with a maximum of

20% in the middle of the recharging period.
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Figure 5.13: Static versus dynamic energy allocation policies

A comparison between the static and dynamic schemes for the recharging pattern in

Figure 5.12b is presented in Figure 5.13. Results for the pattern in Figure 5.12a are very

similar and are not shown. The frame reward and battery energy at the completion of

each frame are indicated for all schemes. Each point in the graph is the average of 1000

experiments (N = 50 tasks, Nr = 50, Nd = 100). The overhead of redistributing the energy

was typically in the range of microseconds to dozens of microseconds for each frame.

As seen in Figure 5.13b, the static scheme does not react to changes in the available

energy and part of the recharging energy is wasted: the battery becomes fully charged

before the recharging period ends (e.g., around frame 330). The dynamic schemes generally

take advantage of all the recharging energy. In terms of frame rewards, all dynamic schemes

outperform the static. Among the dynamic schemes the worst performance is that of the

proportional, which is too conservative in assuming a worst-case scenario for the remaining

frames. As a consequence, the available energy is too slowly redistributed, resulting in

the pattern shown in Figure 5.13a, with frame rewards slowly increasing and extra energy

accumulating towards the end of recharging and discharging periods.
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The greedy scheme uses the extra energy immediately, with frame rewards following (on

average) the sinusoidal shape of the extra energy during the recharging period. The spec-

ulative scheme only ensures that the remaining frames are feasible (i.e., minimum reward)

and also speculates that tasks will not take their worst-case time and energy. For this reason

it can be more aggressive and, on average, allocates more energy than the greedy policy to

the discharging frames, and less energy to the recharging frames. Reducing the energy gap

between the discharging and the recharging frames generally results in an improved total

system value. The speculative scheme thus outperforms the greedy scheme in 83% of the

experiments.

5.4 CHAPTER SUMMARY

task versions
MV−Pack

energy−aware reward maximization

continuous

iterative
DVS algorithm

Rew−Pack
Rew−Unpack

discrete

Hard RT

energy
allocation

Figure 5.14: Chapter overview: reward maximization for hard real-time systems with energy

constraints

The chapter summary is shown in Figure 5.14. The focus is on reward maximization

schemes for hard real-time systems with energy constraints, corresponding to the first part

of the research overview in Figure 3.2. We are interested in overloaded systems running

adaptive real-time applications, and the problem is to identify the allocation of time to tasks

(so as to respect the hard real-time constraints) and the DVS parameters for each task (i.e.,

the task frequency and voltage so that not to exceed a fixed energy budget).
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We investigated these problems for two popular hard real-time application models: frame-

based and periodic tasks. The problem formulation was shown to be equivalent under both

models. For application adaptivity we use both continuous and discrete reward models. In

the continuous case we use the known IC application model, while for the discrete model

we propose to use task versions. The power models considered are both continuous and

discrete. For continuous models we use the known formula expressing the processor power

as a function of frequency and voltage, while for discrete power models we used published

data for processors that support DVS.

We first proposed an iterative algorithm for the continuous case of power and reward

models, as an extension to a previously proposed algorithm [5] that only considered two

constraints at the same time. The algorithm adapts the solution to satisfy the system

constraints by three mechanisms, referred to as transfers. The resulting system reward was

found to be within 1% of the optimal (on average) in our experiments, with low running

times.

We then directed our investigation to the more realistic case of discrete power and reward

models. Two algorithms are proposed for single-version tasks, REW-Pack and REW-Unpack.

The REW-Pack algorithm is based on the idea of task packing, which means sacrificing energy

to improve the timing constraint. REW-Unpack performs the search for a solution in the

opposite direction, sacrificing time to improve the energy constraint. Metrics that consider

all three constraints (time, energy and rewards) are used throughout the algorithms. We

show that the timing and energy constraints are equally important, and thus REW-Pack

and REW-Unpack have similar performance. The two algorithms have running times in the

microsecond range, with average errors within 3% of the optimal in our experiments.

As an extension to the discrete all-or-nothing reward model we propose the use of task

versions to provide finer granularity. In this model each task may have several versions,

with different computation requirements and rewards. The model is realistic and already

applies to certain application areas that support different algorithms for each version. In

addition, task versions already exist in a variety of forms, such as different parameters (for

example or MPEG quality levels [89]), or different task invocation periods. The proposed

MV-Pack algorithm is an extension of REW-Pack to handle such multiple versions. The
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algorithm is shown to have similar performance and running times. In addition, it supports

a combination of mandatory and optional tasks.

Finally, as the above algorithms rely on a given fixed energy budget, we propose a

scheme to determine such budgets, so that to maximize the long-term system reward. In

particular we investigate long-term energy allocation policies for battery-powered systems,

as well as systems that use rechargeable energy. A static energy allocation policy assumes

worst-case scenarios for task execution times and recharging parameters. Three dynamic

energy reclamation policies are shown to further improve the long-term system reward, with

overheads in the microseconds range at frame boundaries.
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6.0 QOS-AWARE ENERGY MINIMIZATION FOR SOFT REAL-TIME

SYSTEMS

In hard real-time systems, task arrival and execution times are known, leading to precise

algorithms and power management schemes, as seen in the previous chapter. However, often

there is no a-priori knowledge of the workload, corresponding to rate-based and aperiodic

applications. Unpredictable workloads are characteristic to a variety of systems, ranging from

cell phones and PDA devices to personal computers, servers and systems-on-a-chip [49, 80].

In addition, many such application domains are non-adaptive, meaning that there is no

reward associated with individual requests. Instead, the system reward is defined in terms

of QoS. The goal of such systems is typically not to maximize the reward, but rather to

minimize the energy consumption while guaranteeing a required QoS.

Continuing the DVS work of Chapter 5 that targeted predictable real-time models,

stochastic DVS schemes are first deployed for local power management of unpredictable

workloads in Section 6.1. Stochastic DVS algorithms are more efficient than traditional

prediction-based or utilization-based algorithms when prediction mechanisms fail to accu-

rately describe the system load (as is the case for workloads with high variability).

We then direct our investigation to multi-processor systems, in particular server clusters.

In these systems, a new problem is that of global power management (that is, turning on/off

cluster machines) aware of QoS requirements. In addition, while the DVS power management

algorithms proposed so far assumed a given load, a new challenge is how to distribute the

load in a large multi-processor system. We first investigate load distribution mechanisms

and power management policies in the context of servers and homogeneous server farms in

Section 6.2. The work is then extended with QoS-aware local and global policies for the

general case of heterogeneous systems in Section 6.3.
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6.1 STOCHASTIC DVS FOR UNPREDICTABLE WORKLOADS

This section evaluates dynamic voltage scaling (DVS) policies for power management in

systems with unpredictable workloads. A clear winner is identified, namely a stochastic

policy that reduces the energy consumption one order of magnitude compared to no power

management, 50% on average in synthetic workloads, and up to 40% for real-life traces

compared to the second-best evaluated scheme.

6.1.1 Two Request-Driven Signal-Processing Applications

The examples that prompted our investigation comes from our industrial research partners,

dealing with satellite-based signal processing. Signal data collected through an external

sensor is disseminated to several processing units for further analysis. A signal processing

application is responsible for timely analysis of the signal data (also referred to as requests,

or events). We are investigating two such applications, known as Subband Tuner (SBT) and

Complex Ambiguity Function (CAF), each provided with several realistic traces.

SBT is an application that searches digital signal data that is related to the frequency

and time domains for certain patterns. It uses filters for finding contiguous chunks of data

that have a specific characteristic for a certain interval of time. After finding such patterns,

there is some processing that occurs. There are two possible paths to be followed, a short

and a long path, depending on the type of the event. From our own measurements, in about

21% of the events, there are not enough details to quickly extract the correct data and

extra processing is required. For the other 79% of the events, the data is sufficient for quick

processing.

CAF is an application that collects data in low orbiting satellites (LEOs) and correlates it

with data collected from geo-stationary satellites (GEOs), for object recognition and location.

CAF processing is done in the LEO through calculations of the difference between arrival

time (dT) and frequency (dF) signals from the object of interest. The object may be on

Earth’s surface or may be flying. The CAF application can determine an object’s location

with an accuracy from 4 to 7 significant digits (corresponding to 1K to 16K data point
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correlation, respectively).

For these applications, the major goal of the power-management policy is to keep up

with the rate of request arrivals, while minimizing the energy consumption. In addition, the

processing of requests is expected not to exceed a maximum response time (soft deadline).

Tables 6.1 and 6.2 present statistical information about request execution and inter-

arrival times for two SBT traces and one CAF trace. As it turns out, the request execution

times, as well as request inter-arrivals, are rather unpredictable, with large deviations from

averages.

Table 6.1: Request execution times (in millions of cycles)

SBT CAF
Type 1 Type 2 Type 1 Type 2 Type 3

Min 2.9 2.0 8.2 4.1 1.3
Max 82.6 753.6 5045 210.2 32.9
Avg 9.7 123.2 820.2 45.0 5.8
Stdev 7.2 153.8 1251 78.5 6.2
% 79% 21% 5.4% 2.9% 91.7%

Table 6.2: Request inter-arrival times (in seconds)

SBT CAF
81 min 1030 sec 1800 sec

Min 0.13 0.1 0
Max 6.7 11 5
Avg 0.37 0.44 0.7
Stdev 0.62 0.77 1.74
events 13045 2307 2564

Note as well that each application has several types of requests/events. The SBT ap-

plication can determine solely from processing the header of a request if its computation is

expected to be relatively short, or if there is a possibility that it may take much longer (thus,

two types). For the CAF application there are three types: the first time an event occurs,

the second time and all times after that (typically resulting in long, short to medium, and

relatively short events, respectively). Request types are the sort of semantic information

that helps improving the predictions about the workload.
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6.1.2 System Model

Requests are processed on a DVS processor, with M discrete operating frequencies. The

average power consumption of the system is known at each operating frequency/voltage.

We denote the average power consumption at frequency fi by Pi. Using IBM’s Mambo

cycle-accurate and power-accurate simulator for the PowerPC platform [78], we observed

very little variation in power within applications at a constant frequency/voltage, for both

SBT and CAF. Thus, describing energy consumption using average power values for each

frequency/voltage results in a precise estimation. The exact values used (for the PPC405LP

processor) are shown in Table 6.3. Both time and energy overheads are considered for speed

changes. The time overhead in our experiments is 1ms, and the power during speed changes

is PM (that is, the power at maximum frequency).

Table 6.3: PPC405LP power consumption of SBT and CAF applications

Speed (MHz) 33 100 266 333
Voltage (V) 1.0 1.0 1.8 1.9
Power (mW) 19 72 600 750

Requests are generated externally and buffered in the system memory for further pro-

cessing. Once arrived, a request must finish processing by its deadline D (different requests

may have different deadlines). Deadlines are soft, meaning that occasional deadline misses,

while undesired, do not result in system failure. To reduce the number of deadlines missed, a

good DVS policy typically chooses the maximum speed whenever it is possible that a request

may miss its deadline.

Requests are scheduled on the processor in a first-come first-served (FCFS) fashion,

without preemption, as subsequent requests may depend on results from previous requests.

The DVS algorithm is invoked in one of two situations: when a timeout expires, or when

an event specifically requests a speed change. The timeout mechanism can specify exactly

at which moment in time to change the speed. For example, in our stochastic scheme two

speeds are used for task execution, a primary and a secondary speed. When a timeout

(determined based on the number of cycles at the primary speed) expires, the task moves

from its primary (base) speed to its secondary (backup) speed. In addition, two events may
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trigger a speed change: the arrival of a new request, or the completion of the current request.

The goal of the DVS algorithm is to select the minimum speed (i.e., minimum energy) that

will not cause requests to miss their deadlines.

6.1.3 Prediction Schemes

Prediction-based DVS algorithms adjust the performance based on workload estimations,

which, in turn, are based on the execution history. The CPU speed is adjusted based

on predicted resource requirements. Thus, the success of such schemes depends on how

accurately the future workload can be predicted.

6.1.3.1 Application-Oblivious Prediction (AO) The simplest form of prediction is

one that only monitors CPU utilization, unaware of the applications running on the system.

CPU utilization (monitored periodically and defined as CPU busy time over total time) is

a great indicator of past resource usage. The CPU speed for the immediate future is then

increased or reduced based on utilization trends. Without a complex prediction scheme, the

underlying assumption is that the immediate future resembles the immediate past.

Our application-oblivious prediction scheme works as follows: the system utilization is

continuously monitored and checked periodically, every p time units. If the system was fully

utilized during the last monitored period, the speed is increased to the next higher discrete

frequency. If the utilization u is less than 100%, the CPU speed s is updated as s = ds · uef ,
where dxef is the function that returns the smallest discrete frequency higher than x.

We experimented with many other variations on this scheme, such as using utilization

thresholds to determine when to increase or reduce the CPU speed. An example of such

a scheme for saving energy in web servers is mentioned in [10], where utilization was mon-

itored every 20 milliseconds. Whenever the CPU utilization exceeds 95%, the CPU speed

is increased to the next higher level. Similarly, when utilization falls below 80%, the speed

is decreased one level. Another example of the utilization policy is Transmeta’s firmware

implementation (LongRun) [21]. CPU utilization is frequently monitored, resulting in per-

formance speed-up/slow-down by one performance level.
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The main problem with utilization-based policies is that they use a fixed monitoring

period for the system lifetime. For workloads with large variations, this results in the system

being either too aggressive or too slow to react. When the monitoring period is too small,

the system may set the speed higher than necessary. If the utilization is monitored too

infrequently, requests may have large response times. Whenever the monitoring period does

not correspond to the workload, utilization-based schemes may not be efficient. Accordingly,

a software DVS algorithm [32] was shown to achieve 11%-35% more performance reduction

(and thus energy savings) over LongRun. Another disadvantage of utilization-based policies

is that request deadlines are not considered. On the other hand, the main advantage is

simplicity. The policy does not require anything more than a timeout mechanism and a

way of monitoring the system utilization. Even better, some CPUs already provide this

functionality.

We also note that utilization need not refer only to the CPU. Other resources (hardware

or conceptual) can be monitored. For example, we experimented with monitoring the number

of requests buffered for processing in memory. An increasing/decreasing number of waiting

requests indicates that there may be a need for higher/lower speeds. Monitoring these other

resources allows optimization of the system based on those resources. Another example is

when memory banks can be turned off: we would like to limit the number of requests that

can fit (most of the time) in a single memory bank, and so monitoring memory usage may

be useful.

6.1.3.2 Application-Aware Prediction (AA) Rather than simply reacting to ob-

served resource requirements, AA schemes attempt to predict future performance needs by

monitoring request inter-arrivals and processing requirements. As with utilization-based

schemes, the CPU speed is adjusted periodically, with a pre-specified period (or timeout)

p. Every p time units, the number of requests (of each type) arriving in the next period

is predicted based on recent such information. The average execution time of each request

is similarly predicted. We also studied schemes that adjust the speed at irregular intervals

corresponding to request completion times and to the arrival of a certain number of requests

in the system, and noted that a periodic adjustment scheme results in more energy savings.
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Let Ni denote the predicted number of requests of type i arriving in the next period,

each of which has average execution time (at maximum speed) ai. Further, let Li denote the

number of requests of type i unfinished from the previous period.
∑

i (Li + Ni)ai represents

the predicted amount of work for the next period p. The speed s is recomputed as s =

d
P

i (Li+Ni)ai

p
fMe

f
.

Li is known and Ni is predicted as the number of requests in the last period. ai is

predicted in one of three ways: the average for the whole trace (from offline profiling), the

average of the last period, or a combination of the two (such as exponential decay).

The above formula guarantees that the system will keep up with the rate, as it attempts

to complete all waiting requests in the next period. However, since these schemes ignore

the deadlines, the penalty incurred in missing deadlines may be very large. As expected,

considering semantic information (i.e., request types) generally improves the quality of the

prediction.

The efficiency of prediction-based DVS schemes greatly depends on the prediction accu-

racy. For unpredictable workloads, the schemes may be too aggressive or too slow to react,

depending on the period p. As with utilization-based schemes, no request deadlines are

considered. Moreover, implementation of the prediction policy is required.

6.1.4 A Stochastic DVS Algorithm

While stochastic schemes still collect statistical information about the workload (a-priori or

online), they differ from prediction-based schemes in that they do not attempt to predict

request processing requirements and inter-arrival times. The data collected is the probability

distribution of request CPU cycles. Requests are classified based on their number of cycles,

with any desired granularity. For example, with a granularity S (expressed in cycles), class C0

would contain all requests whose cycles are up to S, class C1 contains all requests with cycles

in the range (S, 2S] and class Ci represents requests with cycles in the range (iS, (i + 1)S].

Counting the number of requests belonging to each class results in a histogram with B =

dWC
S
e bins, where WC denotes the worst-case number of cycles of a request. We store the

histogram as an array H of size B, where H[i] denotes the number of request in class (bin,
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or position) i.

The probability distribution can be obtained from profiling or through on-line monitoring,

as follows: every time a request finishes processing, its exact number of cycles e is known.

To include the request in the histogram, its corresponding class count is updated as follows:

H[de/Se] = H[de/Se]+1. Of course, separate histograms can be maintained for each request

type.

The cumulative density of probability function CDF associated with a histogram is de-

fined as CDF [k] =
Pk

i=1 H[i]PB
i=1 H[i]

(i.e., the probability that a request requires less than kS cycles,

or the probability that a request belongs to one of the first k bins). When a new request

enters the system, the function 1 − CDF [k] represents the probability that bin k will be

executed (i.e., the request will probably execute for at least kS cycles).

We start by showing how to use DVS to minimize the expected energy consumption

of a single request with a known histogram and deadline. It was previously shown that

an optimal DVS schedule would gradually increase the speed [54, 36, 95]. While the work

in [54] is only intended for continuous speeds, an exact solution for specific power functions

is proposed in [36] and [95]. Since we are interested in systems with more general power

functions (e.g., those that include other components beside the CPU), we are proposing a

simple, novel DVS scheme that selects just two speeds among M possible speeds for each

request: a primary and a secondary speed.

Our scheme chooses a primary speed fi and a secondary speed fj so that to minimize the

expected energy consumption. If WC is the worst-case number of cycles and D is the request

deadline, and WC/D ≥ fM (i.e., the worst-case number of cycles cannot be satisfied within

the deadline even at maximum speed), the scheme selects fi = fj = fM . If WC/D ≤ f1,

then fi = fj = f1. Otherwise, the expected energy for all combinations of primary and

secondary speeds fi ≤ WC/D and fj ≥ WC/D is computed as follows.

The time spent at the primary and secondary speeds, ti and tj, is first determined by

solving the linear system described by the equations tifi + tjfj = WC and ti + tj = D, as

in [45]. The first tifi cycles are executed at the primary speed, and the remaining cycles (up

to WC) are executed at the secondary speed. The expected energy consumption of bin k is

Ek = Pi
S
fi

(1 − CDF [k]), if (k + 1)S ≤ tifi or Ek = Pj
S
fj

(1 − CDF [k]), if (k + 1)S > tifi.
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The total expected energy consumption is
∑B

k=1 Ek.

Depending on the probability distribution of request processing requirements, the pri-

mary and secondary speeds can differ by more than one discrete level. Because we consider

probabilities, our solution is different from [45] (and other subsequent work), which picks

adjacent speed levels for fi and fj. This is precisely the intuition behind the stochastic ap-

proach: if most requests are short enough to finish execution at the primary speed, a larger

gap between the primary and secondary speeds will result in more savings compared to the

adjacent speeds.

The difference is larger for distributions where the worst-case is much higher than the

average case, such as bimodal distributions. After computing all combinations of primary

and secondary speeds (at most M2/4, or four combinations for M = 4 discrete speeds), the

one with the smallest expected energy consumption is selected as the final DVS schedule.

A straightforward implementation of the above DVS algorithm has complexity O(BM2).

From our experience, B = 100 bins results in a good enough representation of the histogram.

Combined with a small number of discrete speeds M , this leads to a very efficient algorithm.

Note that the complexity can be improved to O(B + M2) if using O(B) extra space. This

low complexity can be accomplished by storing a cumulative CDF, defined as CCDF [k] =
∑k

i=1 CDF [i], which requires O(B) extra space. Using the CCDF, the summation in
∑B

k=1 Ek

can be transformed into a O(1) computation. Furthermore, if the histogram is collected

offline (i.e., no need to update the CDF ), the complexity becomes just O(M2).

The description above considered only a single request. With multiple requests dynam-

ically entering the system, we extend our algorithm as follows: aware of all waiting requests

and their deadlines, the latest completion time of the first request is first computed, so that

no request can miss its deadline, even in worst-case scenarios (i.e., assuming that all requests

take their worst-case number of cycles). That is, with new requests arriving with their own

deadlines, the DVS algorithm may have to consider an artificially-reduced deadline for the

current request, to ensure that enough time remains for the queued requests (at maximum

speed) to meet their own deadlines. The approach is greedy, as it assumes maximum speed

for the queued requests in order to create slack for the current request. At the same time

the approach is conservative, as it assumes worst-case execution times. Note that the first
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assumption does not imply that all subsequent requests will run at maximum speed, as in

practice average processing requirements will be less than their worst-case. Whenever a

request finishes execution, the slack created can immediately be used by the next request.

The DVS schedule is then computed as described in the single request system.

The complexity of computing the latest completion time of requests is O(N), where N is

the number of requests queued for execution. The artificially-reduced deadlines are computed

assuming maximum speed and worst-case execution times, in reverse order of the queued

requests, to ensure that all deadlines are met. Note that the computed latest completion

time may be less than the request deadline, to accommodate for processing requirements of

subsequent requests.

Speed change overheads are considered when recomputing the DVS schedule. Also,

whenever a new request comes, a better estimation is obtained for the current executing

request by considering only the remaining cycles when calculating the expected energy. For

each request, the number of speed changes is at most M . Experimental results in the next

section will show that the number of speed changes is much less in practice.

6.1.5 Experimental Results

The traces shown in Tables 6.1 and 6.2 are evaluated next on the PPC405LP power model in

Table 6.3. The monitoring period for the prediction-based schemes (AO and AA) is p = 1.

The stochastic scheme (S) does not need a monitoring period, as it makes no prediction

about the workload. Instead, a soft deadline is used as the maximum allowed response time

for requests. The embedded applications we are dealing with have the same deadline for all

requests. Since the worst-case execution time (at maximum speed) is 2.3 seconds for SBT

and 15 seconds for CAF, we show results for deadlines equal to approximately twice and four

times the worst-case. The histogram for each request type was obtained offline. We used a

fixed bin width of 10 million cycles, resulting in 76 bins for SBT and 505 bins for CAF. The

corresponding space overhead for the histograms is 304 bytes for SBT (2 types, 76 bins, 2

bytes for each bin) and 3030 bytes for CAF (3 types, 505 bins, 2 bytes per bin).

In all the schemes (except no-power-management), the system immediately switches to
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minimum speed when idle (i.e., Pidle = P1). A time overhead of 1 millisecond is added

for each speed change. We compute the energy overhead of a speed change as the system

power at maximum speed times the time overhead. We note that both the time and energy

overheads do not have a significant effect for our traces, due to infrequent speed changes (less

than two speed changes per second for all schemes). The overhead of the policies themselves

is in the microseconds range for each speed computation (at most two speed computations

per request are necessary for the stochastic scheme).

Evaluation results are shown in Table 6.4 for the prediction-based schemes (AA and AO)

and the stochastic scheme (S) with two different deadlines (5 and 10 seconds for SBT, and 30

and 60 seconds for CAF). Two traces are considered for SBT (with lengths of 81 minutes and

1030 seconds respectively), and one trace for CAF (1800 seconds), as described in Tables 6.1

and 6.2. To vary the system load for the same trace, the original inter-arrival times between

requests are multiplied with a scale factor, as in [26]. We considered the following values for

the scale factor: 0.8, 1, 2, and 4, where 1 is the scale factor for the original trace. Reducing

the scale factor below 0.8 results in a overloaded system that cannot keep up with the rate

even if running at the maximum speed at all times.

The savings, shown in columns 2-5 of Table 6.4 for each scale factor, are normalized to the

no-power-management (noPM) scheme. The stochastic approach results in the most energy

savings, up to 28.5x compared to no-power-management and up to 40% less energy compared

to the second-best DVS scheme (the application-oblivious prediction). The stochastic scheme

also results in the fewest speed changes per second (SC/s) among the DVS policies (see

column 6, Table 6.4). This is because many requests do not reach the point where they

switch to the secondary speed. Also, when the system is overloaded or under-utilized, the

primary and secondary speeds are identical (i.e., f1 for a under-utilized system and fM for

an overloaded system).

In most experiments there were no deadline misses (average and maximum delays for

the scale factor of 1 are shown in the last two columns of Table 6.4). We also experimented

with tighter deadlines and noted that the maximum delay of the stochastic scheme closely

matches the specified deadlines (unless the workloads is so high that the deadlines cannot

be met).
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Table 6.4: Evaluation of DVS policies for unpredictable workloads

policy Savings (per scale factors) Avg Max
1 2 4 0.8 SC/s delay delay

81 min (SBT)
noPM 1x 1x 1x 1x 0 0.43 5.22
AA 3.8x 7.5x 13.2x 3x 1.27 0.72 5.43
AO 4x 8.4x 16x 3.1x 1.77 0.86 5.45
S 5s 4.4x 10.5x 21.2x 3.4x 1.05 1.42 5.88
S 10s 4.6x 11.7x 26.7x 3.5x 1.08 2.78 9.63
1030 sec (SBT)
noPM 1x 1x 1x 1x 0 0.36 2.51
AA 4.4x 8.5x 14.5 3.5x 1.1 0.67 3.00
AO 4.6x 9.7x 17.5x 3.7x 1.46 0.90 4.31
S 5s 5.4x 12.5x 23.1x 4.1x 0.95 1.4 4.5
S 10s 5.9x 14.8x 28.5x 4.3x 0.91 2.88 9.01
1800 sec (CAF)
noPM 1x 1x 1x 1x 0 1.54 29.90
AA 4.3x 7.7x 12.9x 3.5x 0.6 1.58 29.89
AO 4.7x 8.5x 14.2x 3.8x 0.39 2.37 31.68

S 30s 4.9x 9.6x 18.2x 3.9x 0.11 3.06 34.41
S 60s 5.2x 11.6x 23.4x 4x 0.07 5.65 42.06
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Figure 6.1: Power and energy consumption for the SBT 81 minutes trace

As seen in Figure 6.1a for the 81 minutes SBT trace, the system power closely matches

the workload (cycles per second), with lower power consumption for the stochastic policy.

The cumulative energy consumption for the same trace is shown in Figure 6.1b. Similar

results hold for the other two traces.
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Finally, we evaluate the DVS policies on a set of synthetic traces. The purpose of

these experiments is to compare the AA, AO and S schemes for more request distributions

(that is, in addition to those described in Tables 6.1 and 6.2). For the request cycles we

artificially generate three typical distributions, namely, bimodal, normal (Gaussian) and

uniform distributions, each with a minimum of 5 million cycles and a worst-case of 200

million cycles (20 bins). We use a uniform random number generator to generate the arrival

rate for each second, which results in a unpredictable workload. The deadline (maximum

response time) for the stochastic scheme is 5 seconds. For each experiment, the average

system load is around 30% of the maximum load that the system can handle. Note that 30%

is actually a high load, and parts of the trace result in a large request queue (that is, many

requests are waiting for execution). For example, a long request takes 6 seconds at 33MHz,

causing subsequent requests to miss their deadlines. Figure 6.2 shows the average energy

consumption of the DVS policies (1000 experiments were averaged for each distribution).

The stochastic scheme achieves up to 20x savings compared to no-power-management and,

on average, 50% more savings compared to the second-best scheme (AO).
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Figure 6.2: Comparison of the DVS policies using synthetic traces
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6.2 HOMOGENEOUS REAL-TIME CLUSTERS

While so far we presented work dealing with single-processor systems, the remaining of this

chapter is dedicated to the power management of multi-processor systems, in particular

server clusters. Two additional challenges emerge in such systems: (a) load distribution

in a multi-processor environment and (b) global power management (i.e., turning on/off

cluster machines as required by the load). This section proposes a global load-aware power

management scheme for homogeneous clusters. The work is then extended with global and

local power management policies for the general case of heterogeneous systems in Section 6.3.

6.2.1 Cluster Model

Figure 6.3: Cluster architecture

The cluster model is shown in Figure 6.3. The cluster consists of a front-end and N

identical servers (nodes), each equipped with a DVS processor. At any given time, each

node is in one of three states: active, idle, or inactive (off). When a node is active, its

processor is running at some frequency fi, and the power consumption is Pi. The idle power

consumption is Pidle, and the power consumption when inactive is Poff .
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The front-end is responsible for collecting requests from clients and for distributing the

requests to the active servers. The applications considered are SBT and CAF, introduced

in the Section 6.1.1. The system load is the amount of work (in cycles) that the front-end

receives in one second. The front-end is also capable of turning on/off servers, according to

some policy. The front-end attempts to distribute the incoming requests among the active

nodes in a balanced fashion.

Each active node carries out DVS independently, running at the lowest frequency that

keeps up with the request arrival rate. Upon servicing the requests allotted by the front-end,

results are returned directly to the clients. Feedback is also sent to the front-end, such as

speed changes.

6.2.2 Load-Aware On/Off DVS (LAOVS)

The power management policy is load-aware and combines local power management (DVS)

with global schemes (on/off). Example of local DVS algorithms were given in Section 6.1.

In this section we focus on the front-end algorithms, that is: how to estimate the system

load, when to turn nodes on and off, and how to distribute requests to active nodes.

6.2.2.1 Load Estimation We determine the number of active nodes based directly on

the system load, which can be obtained by getting feedback from each node. This is in con-

trast with the policies in [26], which turn on/off nodes based on the frequency of active nodes.

The assumption in [26] is that the active nodes are not idle most of the time (continuous

frequencies) and that they are all running at the same frequency (perfect load-balancing).

However, the frequency of a node at a given time does not necessarily correlate well with

its actual load (unless the load is well balanced and the frequency is continuous), and can

result in a poor estimation of the average frequency needed.

In our policy, we determine the number of servers needed based directly on the load

in the recent past (rather than the node frequencies). This results in a more accurate

estimation and eliminates the strong dependency on perfect load balancing. The number of

nodes needed for each load is computed offline using simple approximation algorithms, and
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is stored in a discretized table. The number of nodes is computed without the assumption

of continuous frequencies.

At runtime, the front-end records the history of recent speed changes of each node,

which means that each node needs to send the history of its speed changes as feedback

to the front-end. For each node, the front-end computes the average load over the past

look back seconds, where look back is a system parameter. Note that the average load is

different from the average frequency because idleness is regarded as frequency zero, while

the CPU is operating at some frequency when idle. The summation of the average loads of

all nodes is the estimation of the system load. The number of servers needed is then decided

by a simple table lookup.

The estimation of the system load and deciding the number of active nodes based on

the system load are the highlights of our global on/off policy. Since the global policy uses

the system load and the local server policies rely on DVS algorithms, we call our integrated

policy Load-Aware On-off with independent Voltage Scaling (LAOVS).

6.2.2.2 Threshold Schemes After the front-end obtains the estimation of the system

load, it determines the number of active nodes needed, no by table lookup. Let the current

number of active nodes be denoted by nc. If no = nc, there is no need to make any nodes

active/inactive; if no > nc and nc < N , make an inactive node active; if no < nc and nc > 1,

make an active node inactive. To be conservative, we do not make more than one node

active or inactive at a time.

In real-life workloads, there may be some short-lived temporary workload changes. This

may force the front-end into making a node active or inactive if we do that once the front-

end detects a workload change. To prevent this from happening, we design a threshold

scheme. We define two variables: shutdown threshold and restart threshold. The variable

shutdown threshold is the time the front-end will wait before it is sure to make a node

inactive. Similarly, restart threshold is the time the front-end will wait before it is sure

to make a node active. During the waiting time, the front-end will continue tracking the

system load. At the end of the waiting time, an active node will be made inactive only if

the decision to turn off a node is true every time it was checked during the waiting time.
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Similarly, an inactive node will be made active only if the decision to turn on a node was

true every time it was checked during the waiting time.

6.2.2.3 Workload Distribution Since neither the request arrival rate nor the com-

putational requirement for each request is known a-priori, the front-end approximates the

load-balancing by sending the next request to the active node with the lowest average fre-

quency over the past look back second(s) [12].

Let AN be the number of nodes in the active state. To simplify the tracking of the

status of the nodes, our policy is to keep nodes 1, 2, . . . , AN active and node AN + 1, . . . , N

inactive. The value of AN is at least 1 which means node 1 is always active. Under this

policy, when we want to make a node active, node AN + 1 is the target; when we want to

make a node inactive, node AN is the victim. This implementation was preferred because

of its great simplicity, with complexity of O(1).

Table 6.5: IBM PowerPC 750 frequencies and system total power (measured)

f(MHz) idle 4.125 8.25 16.5 33 99 115.5 132
P(mW ) 1150.0 1150.0 1369.0 1811.0 2661.0 4763.0 5269.0 6533.0

6.2.2.4 Experiments on a Testbed As a proof of concept, to build a real system in

a hardware platform, we implemented our scheme on a testbed consisting of IBM PowerPC

750 nodes. The scheme was implemented in a joint effort with Ruibin Xu and Dakai Zhu;

additional theoretical results and thorough simulation-based evaluation are presented in [93].

Power characteristics of the PPC750 system are presented in Table 6.5. This platform,

provided by our industrial partners with round-robin (RR) as the request distribution policy

at the front-end, only had 2 nodes available at the time of testing. In these experiments our

goal was not to do extensive evaluation in comparison to other schemes, but to implement a

proof-of-concept system, to take actual measurements, and to evaluate power management

policies to a certain extent. Our collected data can be seen through our web interface [62].

The voltage/frequency scaling of PowerPC 750 processors is done through external volt-

age/frequency regulation. The voltage scaling takes around 2ms for each 0.1V adjustment
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and the frequency scaling takes negligible amount of time. Linux is used in the nodes and

the power management (DVS and on/off) is supported through APIs. To power on/off a

node, a specific message is sent to a host machine that has been wired to all nodes. Powering

off a node takes effect immediately while powering on a node (booting from ROM including

uncompressing the kernel) takes 33 seconds. The power consumption of each part in a node

(e.g., processor, memory and I/O) was measured and collected using a data acquisition sys-

tem. The variable look back is set to 4, which means the front-end computes the average

load over the last 4 seconds. Both shutdown threshold and restart threshold are 4 seconds.

The front-end checks the system load every 1 second, deciding whether to turn on or off a

node.

In our experiments, we used an additional node to be the front-end, which emulates the

sensors that generate events; we report results of the 81-minute trace of SBT. The front-end

sends events to nodes every second. On each node, a self-adaptive DVS scheme is employed,

which uses the utilization information during the last interval (i.e., one second) to determine

the frequency/voltage level for the next interval. For our LAOVS policy, whenever a node

changes its voltage/frequency or becomes idle, a feedback message is sent to the front-end.

Figure 6.4a shows the results when the RR policy is used at the front-end and both nodes

are always kept on. The solid line in Figure 6.4a is the normalized arrival rate (Y-axis on

the right side of the plot) of events used in our experiments. Notice that the arrival rate is a

rough indicator of system load. The arrival rate of 1 corresponds to the maximum number

of events that can be handled by two nodes at the maximum voltage/frequency level. The

average arrival rate of this trace is 26%. The other two curves are the power consumption

for each PowerPC 750 system when there is no power management (NPM). From the plots,

we can see that the power consumption of PowerPC 750 systems under NPM is mostly

independent of event arrival rate (i.e., system load).

Figure 6.4b shows the power consumption for each PowerPC 750 system when LAOVS is

used at the front-end. The power consumption of 0 corresponds to the node being powered

down during that period. Figure 6.4b shows that using DVS in each node consumes much

less power than not using any power management. However, we can also see that nodes may
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Figure 6.4: The power consumption for PowerPC 750 systems (RR vs LAOVS)

be mistakenly powered down due to the inaccurate estimation of system load based only on

the feedback of load information from each node (network communication delay is one of the

factors).

Table 6.6: System energy consumption for RR and LAOVS, normalized to RR/NPM

Policies Energy(kJ) %
RR/NPM 37.7 100.0
RR/DVS 13.4 35.5
LAOVS/NPM 26.3 69.5
LAOVS/DVS 10.7 28.4

Table 6.6 shows the total energy consumption in the system when different policies are

employed. We can see that only 69.5% energy was consumed by LAOVS compared to RR

when NPM is employed on nodes. When DVS is used on each node, LAOVS uses around

20% less energy compared to RR.

6.3 HETEROGENEOUS REAL-TIME CLUSTERS

Global and local power management policies are next proposed for the general case of hetero-

geneous server clusters. For validation, we describe and evaluate an implementation of the
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proposed schemes using the Apache Webserver in a small realistic cluster. This is the first

power management scheme that is simultaneously (a) local and cluster-wide (i.e., turning on

and off machines), (b) designed for heterogeneity, (c) QoS-aware and power-aware at the lo-

cal servers (i.e., deadline-aware), (d) measurement-based (contrary to theoretical modeling,

relying on measurements is the key to our approach), and (e) implementation-oriented.

Table 6.7 compares our scheme with prior work in the area of local and global energy

management for servers and server clusters. For completeness, note that the local PM scheme

in [27] combines DVS with request batching.

Table 6.7: Energy management for servers and server clusters

Paper Local PM Global PM Cluster type QoS-aware Power Implem.
Pinheiro et al. [64] - on/off homogeneous - -

√
Heath et al. [40, 41] - on/off heterogeneous - modeled

√
Sharma et al. [79] DVS - -

√
-

√
Elnozahy et al. [26] DVS on/off homogeneous - modeled -
Bohrer et al. [10] DVS - - - modeled -
Elnozahy et al. [27] DVS - - - modeled -
Xu et al. [92, 93] DVS on/off homogeneous - modeled -
Proposed approach DVS on/off heterogeneous

√
measured

√

6.3.1 Cluster Model

The cluster model is the one in Figure 6.3, with the mention that servers are heterogeneous.

A front-end machine receives requests from clients and redirects them to a set of processing

nodes, henceforth referred to as servers. The front-end is not a processing node and has

three main functions: (a) accepting aperiodic requests from clients, (b) selecting the server

to handle each request, and (c) reconfiguring the cluster (i.e., turning servers on/off) to

reduce the global energy consumption while keeping the overall performance within a pre-

specified QoS requirement. After receiving a request, the front-end communicates to the

client to which server the request must be sent using HTTP redirection [15]. Then, the client

sends its request directly to the server.

In our cluster scheme, each request is an aperiodic task (i.e., no assumptions are made

about task arrival times) and is assigned a deadline. The specification of the QoS is system-
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wide and is, in our case, the percentage of deadlines met.

Each server in the heterogeneous cluster performs the same service (i.e., all servers can

process all requests). No restriction is imposed regarding any aspect of their computation:

process scheduling, CPU performance, memory speed/bandwidth, disk speed/bandwidth,

power consumption, network bandwidth, etc. In addition, servers periodically inform the

front-end about their current load, to aid the front-end in load distribution and cluster

configuration decisions. After a request has been processed by a server, the result is returned

directly to the client, without the front-end as intermediary.

Note that a more common cluster design is with the front-end acting as a proxy (i.e.,

acting as intermediary between clients and servers). In our webserver example, choosing

one configuration or the other (i.e., proxy versus no proxy with redirection) is simply a

configuration option, and the proposed scheme in this paper works equally well with either

type of front-end. In our experiments, for high loads (above 1Gbps), we had to use the no-

proxy architecture shown in Figure 6.3, as a proxy front-end cannot fully utilize the cluster

in our experimental setup (our front-end has only one GbE network interface card).

6.3.2 Global Power Management

Our proposed front-end follows a very general framework that is applicable to any heteroge-

neous cluster. To achieve this goal, we cannot impose any restriction on server characteristics.

However, for ease of presentation, definitions and examples emphasize web server clusters.

6.3.2.1 Load Definition and Estimation The front-end determines the number of

active servers to meet the desired level of QoS while minimizing cluster energy consumption.

The number of servers is computed (offline or online) as a function of the system load. Thus,

defining load correctly is a crucial step. A measure of the load for clusters is the number of

requests received per second, measured over some recent interval [79]. Clearly, depending on

the kind of service under consideration, other definitions of load may be more appropriate

(such as the bandwidth for a file server).

At runtime, the front-end needs to correctly estimate (or observe) the load, in order to
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make PM decisions and to perform load distribution. The load estimation can be further

improved by using feedback from the servers. In our case load is defined as described in

Section 4.2 (Equation 4.3, that is the CPU load) and feedback is used only for preventing

server overloading. Two types of requests are considered: static pages and dynamic pages.

The maximum load of a server is defined as the maximum number of requests that it can

handle meeting the 95% of deadlines, which is our QoS requirement. The front-end never

directs more than the maximum load to a server. The cluster load is defined as the sum of the

current loads of all active servers. Therefore, the maximum load that the cluster can handle

is the sum of the maximum loads of all servers. At runtime, the cluster load (i.e., the number

of static pages Nstatic and dynamic pages Ndynamic) is observed every monitor period seconds.

The value of monitor period is a design issue, related to the tradeoff between response time

and overhead. In our cluster, values in the order of a few seconds were found suitable.

6.3.2.2 Server Information In order to reduce the global power consumption at run-

time, we furnish the front-end (at startup) with information about the average power con-

sumption of each server for any different value of its load. Servers can reduce their own power

consumption in a number of different ways, such as using DVS and low-power states for the

CPU, self-refresh modes for memory, stopping disk spinning after some time of idleness, etc.

Moreover, each server may use a different OS or a different scheduling policy (such as a stan-

dard round robin, or a real-time policy to give higher priority to static pages with respect to

dynamic ones). No assumption is made at the front-end about the local PM schemes (that

is, the shape of the power functions).

The parameters for each machine are reported in Table 4.3 (on page 34). The information

and corresponding notation about each server (needed at the front-end level) is presented

next. boot timei and shutdown timei represent the time to boot and to shutdown server

i, including the time to start and finish the (webserver) process of the server. max loadi

is the maximum load of server i that can satisfy the 95% QoS requirement. off poweri is

the power consumed when the server is off (some components, such as the Wake-On-LAN

interface used to power up the machine, may not be completely off). Finally, power vs loadi

is an array with d max loadi

load increment
e entries recording the measured power consumption of server
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i for each value of the load in load increment percents (we used 1%). The first entry of the

array denotes the idle power (i.e., no load). power vs loadi corresponds to the measured

Pload power functions shown in Figure 4.3 (on page 37).

6.3.2.3 On/Off Policy The front-end, besides distributing the load to servers to min-

imize global power consumption, determines the cluster configuration by turning on/off

servers. The front-end algorithm turns machines on and off in a specific order, which is

based on the power efficiency of servers (i.e., the integral of power consumption versus load).

In our case, according to the values of Figure 4.3, the ordering is: Transmeta, Blue, Silver,

Green. In some situations we may need to change the order at runtime, as explained later.

The front-end turns on servers as the cluster load increases. However, since the boot

time is not negligible, we need to turn machines on before they are actually needed. For

this reason, the front-end maintains a variable, called max load increase, which specifies

the maximum load variation that the cluster is prepared to sustain during monitor period.

This is essentially the maximum slope of the load characterization for the cluster.

The on/off policy relies on two tables computed offline. mandatory servers is a ta-

ble that keeps the load at which to turn servers on and is used to determine the low-

est number of servers needed at a certain load to satisfy the QoS requirement. For ex-

ample, consider a cluster with three servers having maximum loads max load0 = 0.5,

max load1 = 1.5 and max load2 = 1.0, respectively. Suppose that monitor period is 5 sec-

onds, max load increase is equal to 0.05, and the boot time is 10 seconds for every machine.

Ideally, we need only one server when the cluster load is less than 0.5, two servers when load is

between 0.5 and 2, and all servers when load is higher than 2. However, if we account for the

time to boot a new machine and we suppose that the cluster load is checked periodically every

monitor period seconds, the table becomes mandatory servers = {0, 0.35, 1.85}. Thus, the

first server is always on, whereas the second and third servers are turned on when the cluster

load reaches 0.35 and 1.85, respectively. In fact, if we consider the boot time of a new server,

we have to account for a potential load increase equal to boot time
monitor period

max load increase.

Moreover, if we suppose that the load is checked periodically every monitor period seconds,

we have to introduce an additional interval of time to account for the error when measuring

101



the current load. In general, server i is turned on when the cluster load reaches

i−1∑
j=0

max loadj − (
boot timei

monitor period
+ 1)max load increase (6.1)

The second table, called power servers, precomputes the number of servers needed to

minimize the power consumption for a given load. Unlike the previous table, this table is

computed considering the power consumption of servers, and is used to distribute the current

load among active servers. For a given value of N , we compute the power consumption of

the cluster as follows. We start considering a load equal to zero, and we increase its value

in load increment increments. Each load increment is allocated to the server that increases

its power by the least amount (according to its power function), thus minimizing the overall

energy/power consumption. In other words, the server with the smallest power slope is

allocated the current load increment. Note that as the load of a server increases, its power

slope is expected to increase due to the convex relationship of power and voltage/frequency.

To determine the load at which N servers become more power efficient than N − 1, we

follow this procedure considering both cases of N − 1 and N machines, respectively. The

load at which N servers consume less power than N − 1 servers is the value after which the

N th server is turned on. The server to be turned on is the next one according to the power

efficiency order.

The complexity of computing the two tables is O(N) (where N is the number of servers)

for mandatory servers and O(NM) for power servers, where M =
∑N

i=1d max loadi

load increment
e. In

our cluster, the time to compute these two tables was less than 1msec, which was negligible

compared to monitor period (which is in the range of seconds). Thus, this computation

can also be performed online. For example, a new ordering of the servers and an online

recalculation of the tables become necessary when a server crashes or when a server is

upgraded.

A high-level view of the front-end on/off policy is presented in Algorithm 4. Every

monitor period seconds the load is estimated according to Equation 4.3, then the request

counters are reset. The number of mandatory servers Nmandatory is determined by a lookup

in the mandatory servers table. If Nmandatory is higher than the current number of active

servers Ncurrent, all needed servers are immediately turned on.
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Algorithm 4 On-off policy
1: Compute the load according to Equation 4.3
2: Reset the counters: Nstatic = 0 and Ndynamic = 0
3: Compute the minimum number of servers: Nmandatory=mandatory servers(Load)
4: if (Nmandatory > Ncurrent) then
5: turn on the servers, set Ncurrent = Nmandatory,return
6: end if
7: Compute the low-power number of servers: Npower = power servers(Load)
8: if (Npower > Ncurrent) and (Cmd 6= Boot) then
9: Set Cmd = Boot, find the next server i to boot

10: Set Ncurrent = Ncurrent + 1, return
11: end if
12: if (Npower < Ncurrent) and (Cmd 6= Shutdown) then
13: Set Cmd = Shutdown, find the next server i to shutdown
14: Set Ncurrent = Ncurrent − 1, return
15: end if
16: if Cmd=Boot for a period of time equal to time booti then
17: Turn on server i, set Cmd = None, return
18: end if
19: if Cmd=Shutdown for a period of time equal to time booti + time shutdowni then
20: Turn off server i, set Cmd = None, return
21: end if

Each server can be in one of the following states: Off, Boot, On, or Shutdown. After

receiving the “boot” command (such as a Wake-On-LAN packet), the server i moves from

the Off to the Boot state. It stays in this state for boot timei seconds (i.e., until it starts

the server process), then informs the front-end that it is available for processing, moving to

the On state. When server i is shutdown, it stays in the Shutdown state for shutdown timei

seconds, after that the front-end changes its state to Off.

The variable Cmd in Algorithm 4 can have three different values: None, Boot or Shut-

down. This variable allows to describe the use of thresholds when turning on/off servers.

If no server is in transition (i.e., all servers are in the On or Off states) a server may be

turned on or off, as decided after a lookup in the power servers table. To be conservative,

only one server at a time is turned on or off. Server i is turned off if the system is in state

Cmd = Shutdown for at least time shutdowni + time booti consecutive seconds, which is

the rent-to-own threshold. Similarly, server i is turned on if Cmd = Boot for time booti

consecutive seconds. Notice that these thresholds do not apply to the mandatory servers,

which are started immediately. The running time of the online part of the algorithm (every

monitor period seconds) is negligible because it is in the microsecond range; the complexity
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is O(N), but can be improved to O(1) by increasing the table size from N to M (that is,

storing all entries in an array).

For convex and linear power functions, tables mandatory servers and power servers

contain the optimal transition points (in the discrete space; for continuous space, see [75]).

In practice, however, power functions may have concave regions. This means that a server

with an abrupt power increase at some load x may not be allocated more than x load, even

though the power may become flat above x + ε, making it a good target for load allocation.

A simple fix to the problem is to consider the average power consumption over a larger

interval, rather than the exact value at each load. This effectively results in smoothing the

power functions. In our case, although the measured power functions have concave regions,

we have found that no smoothing was necessary (as there are no abrupt power changes).

6.3.2.4 Request Distribution Policy The front-end distributes the incoming requests

to a subset of the current servers that are in the On state. load allocation is a table containing

the estimated load allocated to each server and is computed with the same procedure used

to determine the power servers table, in O(MN) time. The load allocation is computed

every monitor period seconds, after the on/off decisions.

Another table, called load accumulated, stores the accumulated load of each server in the

current period, and is reset after computing load allocation. The server i with the minimum

weight

wi =
load accumulatedi

load allocationi

(6.2)

gets the next request. Notice that wi can be higher than 1 when the cluster load (and

thus load allocationi) was underestimated. The server that receives the request updates

its accumulated load (and thus increases its weight), by adding Astatic/monitor period or

Adynamic/monitor period, depending on the request type (recall that Astatic and Adynamic are

the average execution times of static and dynamic requests respectively). The complexity

of finding the server with minimum weight is O(N) with a straightforward implementation,

but can be improved to O(logN) using a tree.
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6.3.2.5 Implementation Issues We implemented our PM scheme in the Apache 1.3.33

Web server [2]. We created an Apache module, called mod on off, which makes on/off

decisions. Moreover, we extended an existing module, mod backhand [33], to support our

distribution policy.

mod backhand is a module responsible for load distribution in Apache clusters. It allows

servers to exchange information about their current usage of resources. It also provides a set

of candidacy functions to forward requests from an overloaded server to other less utilized

servers. Examples of such functions are byLoad, which selects as candidate the least loaded

server, and byCost, which considers a cost for each request.

We added a new candidacy function, called byEnergy, to implement our request distri-

bution policy. We only enabled the byEnergy candidacy function in the front-end machine

(that is, the servers do not redistribute requests). In addition, servers provide some feedback

about their current real-time utilization to front-ends. We used this feedback to prevent the

overloading of the servers. The server with the minimum wi is selected, and wi increases

faster for overloaded servers. In more detail, we add twice the cost of a request (that is,

Astatic or Adynamic) when updating wi for an overloaded server (100% load or higher). We

choose this approach of reducing the rate as opposed to temporarily suspending the send-

ing of requests to overloaded servers due to practical limitations of mod backhand : the load

feedback occurs only several times per second. Thus, suspending the sending of requests to

an apparently overloaded server results in unnecessary overloading of other servers.

The mod on off module communicates with mod backhand through shared memory. On

initialization, mod on off acquires server information and computes both mandatory servers

and power servers tables. mod on off executes periodically every monitor period seconds.

On each invocation it performs the following tasks: (a) computes the current load based

on the counters Nstatic and Ndynamic (that are incremented in the Apache post-read request

phase), (b) looks up in the table to determine the number of servers needed for the next

period, (c) computes the load allocation table for the active servers (not shown in Algo-

rithm 4), (d) turns on (by sending Wake-On-LAN packets) and off (by invoking special CGI

scripts) servers, and finally (e) resets the counters Nstatic, Ndynamic and load accumulated.

In addition, we modified the mod backhand graphical interface to display at runtime the
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estimated power and energy consumption of each server, based on the power vs load and

load accumulated tables. The interface is shown in Figure 6.5 and displays the current state

and estimated power consumption of each server, as well as the total cluster energy since

startup.

Figure 6.5: Online cluster power and energy estimation

6.3.3 Local Power Management

In addition to front-end directed cluster reconfigurations (i.e., turning on/off machines), the

servers perform their own local PM to reduce power consumption of unutilized or under-

utilized resources. We present an example of a QoS-aware DVS scheme and we discuss an

106



implementation using the Apache Webserver [2].

6.3.3.1 Local DVS Policy We rely on a local real-time scheme, where each request is

an aperiodic task and is assigned a deadline. Each request type [73, 93, 41] has a deadline

to allow for more accurate load estimation.

We consider a soft real-time system, in which the schedule is not generated by a real-

time scheduler and the computation time Ci is the average execution time (i.e., Astatic or

Adynamic), not the worst-case. Let Di be the time remaining to the deadline, then the real-

time utilization of a server is defined as U =
∑

i
Ci

Di
.

If the CPU is the bottleneck of the system (as in our case), the CPU frequency to handle

this rate of requests is UfM , where fM is the highest possible frequency of the CPU. Each

server periodically computes its utilization U and sets the CPU frequency to the closest value

higher than UfM .

Note that DVS architectures may have inefficient operating frequencies [74], which exist

when there are higher frequencies that consume less energy. A simple online tool for in-

efficient frequency elimination has been provided in [61]. Removal of inefficient operating

frequencies is the first step in any DVS scheme. This was not necessary in our servers, be-

cause surprisingly all frequencies were efficient, although we had a different experience with

other systems we tested [93].

6.3.3.2 Implementation Issues We implemented an Apache module, called mod cpufreq,

responsible for CPU speed settings at the user level. After detecting the available frequencies,

our module creates an Apache process that periodically sets the CPU frequency according to

the current value of U . We chose a small period of 10ms, but large enough so that the 50µs

measured overhead of voltage/frequency changes (in the Athlon64 machines) is negligible.

To compute U , the module needs to know the type (i.e., static or dynamic) and the arrival

time of each request. At every request arrival (called Apache post-read request phase), the

arrival time and the deadline are recorded with µs accuracy and stored in a hash table in

shared memory. Requests are removed from the queue after being served (called Apache log

request phase). The request type is determined from the name of the requested file. Thus,
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a single queue traversal is necessary to compute U . In fact, the current value of U depends

on all queued requests, therefore the complexity is O(R) where R is the number of requests

queued; the overhead is negligible, as at most dozens of requests are queued at any time.

A problem we encountered during the implementation was that our scheme worked very

well except for fast machines serving a large amount of small static pages. In this case, those

machines were not increasing their speed, resulting in a large number of dropped requests.

Further investigation revealed that the value of U was close to zero. We did not see this

phenomenon on slower machines (such as Transmeta) nor on bigger requests. The problem

was that the requests were served too fast (in approximately 150 µs). Such short requests

were queued, served, and removed from the queue before other requests were added to the

queue. Thus, at any time only a few requests (usually just one) was in the queue, and

when mod cpufreq recomputed the utilization, it resulted in an underestimation of U . In

other words, even though the requests were received and queued at the OS-level, Apache

was not able to see them because it is a user-level server and it has no information about

requests stored at the OS level. We called this problem the short request overload problem

phenomenon.

A simple fix was to compute the utilization also over a recent interval of time interval size

(we used 200ms):

Urecent =
(NstaticAstatic + NdynamicAdynamic)

interval size
(6.3)

We would like to keep the server utilization Urecent below a certain threshold (we used

threshold = 80%). The minimum frequency that does that is Urecent

threshold
fM . Thus, our module

sets the CPU speed to max(U, Urecent

threshold
)fM . Note that Sharma et al.’s work with a kernel

webserver (kHTTPd) [79] aware of small requests at the OS-level has a nice synergy with

our approach and could be used in lieu of our scheme. The problem with including such

work in our scheme is exactly the reason why development of kHTTPd was discontinued:

the difficulty of maintaining, developing and debugging a kernel-level server. Exploring the

composition of our cluster configuration and Sharma’s (or other similar DVS) work is left

for future work.
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6.3.4 Evaluation

To evaluate our QoS-aware PM schemes we used a small cluster composed by one front-end

and 4 different servers. Every machine ran Gentoo Linux 2.6 as operating system and Apache

1.3.33 servers. The parameters of the machines are shown in Tables 4.3 and 4.4.

The cluster has been tested using 2 clients connected to the cluster with a GbE interface

and Gbps switch; the clients generate up to 3,186 requests per second, which corresponds

to a total maximum cluster load equal to 2.95 (all loads were normalized to that of Silver

machine). A total cluster load of 0.05 (or 5%) corresponds on average to 54 requests/second.

Considering request types, however, greatly improves the prediction, as 54 requests/second

may correspond to a load ranging from 0.02 (if Ndynamic = 0) to 1.32 (if Nstatic = 0). We

assigned deadlines of 50ms and 200ms for requests of static and dynamic pages, respectively.

We set max load increase = 0.005. Based on the measured server power functions, the

following tables were derived: power servers = {0, 0.1, 1.05, 2.04} and mandatory servers =

{0, 0.062, 1.012, 2.012}.

6.3.4.1 DVS Policy As first experiment, we evaluated the effectiveness of our local DVS

scheme. We compared our mod cpufreq module with the default PM in Linux (i.e., HALT

instruction when idle) and with Sharma’s DVS scheme for QoS-aware web servers proposed

in [79] (which we implemented at user level in our mod cpufreq module). This scheme adjusts

the speed of the processor to the minimum speed that maintains a quantity called synthetic

utilization below a theoretically derived utilization bound. The bound that ensures that all

deadlines are met is Ubound = 58.6% [1].

The measured power consumption of each scheme on the Blue machine is shown as

function of the load in Figure 6.6a. The graph shows that our scheme outperforms the other

schemes, especially for the mid-range load values. Higher savings are obtained on machines

with a more convex power function (the power function of the Blue machine is rather linear,

as seen in Figure 4.3). In fact, for a rate of 300 requests/sec (approximately 28% load)

the average processor frequency is 1.25GHz using our scheme and 1.5GHz using Sharma’s

scheme, but the amount of energy saved is only 3%. Importantly, we observed that both
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Figure 6.6: Evaluation of local and global power management techniques

schemes maintained the QoS level above 99% even at the highest load.

6.3.4.2 Overall Scheme To evaluate the overall scheme, we performed many experi-

ments with and without the cluster-wide PM scheme (On/Off scheme), and with and without

the local PM scheme (DVS scheme). For each load value, we measured the power consump-

tion of the entire cluster for each scheme independently (see Figure 6.6b). For fairness, we

used the load balancing policy in Section 6.3.2.4 for all the schemes.

The On/Off policy allows a striking reduction of the energy consumption for low values

of the load, because it allows to turn off unutilized servers. In Figure 6.6b we can see that

when load = 0, the cluster consumption is around 32W because each Athlon server consumes

8W when in the Off state, and the Transmeta also consumes 8W when in the On state. The

DVS technique, instead, has its biggest impact whenever a new server is turned on, since

not all active servers are fully utilized. However, its importance decreases as the utilization

of the active servers increases. For high values of the load (in our case, at 70% or higher) all

servers are on, therefore the On/Off technique does not allow to reduce energy consumption.

In those situations, however, there is still room for the DVS technique, that becomes more

important than the On/Off technique.

The energy consumption of all servers without any power management scheme was
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1.32KWh. On average, we measured energy savings of 17% using DVS, 39% using On/Off,

and 45% using both schemes. It is worth noting that the front-end estimation of the total

energy consumed when using DVS was extremely accurate: the difference from the actual

values was less than 1% in our experiments. For example, when using the on-off scheme,

the measured value was 0.72KWh, while the front-end estimated value was 0.725KWh (the

resolution of our power/energy meter [76] is 0.01KWh).

To measure the impact of cluster-wide and local PM schemes in the loss of QoS, we

ran many four-hour experiments with workloads derived from actual webserver traces, and

generated with the same shape of statistics taken from our cs.pitt.edu domain (see Table 4.5).

The average delay (observed at the client side) without any PM scheme was 8.29ms; the

small response time is due to all machines being on at all times, and running at maximum

frequency. Adding DVS (local PM) had a very small impact on the delay, with the average

delay measured at 8.77ms. However, with On/Off scheme, we measured an average delay

equal to 12.29ms without DVS and 12.83ms with DVS. In both cases, the average delay was

not higher than 50% of the no-PM delay and was quite small with respect to deadlines.

6.4 CHAPTER SUMMARY

global PM

QoS−aware energy minimization

heterogeneous

clusters
homogeneous

stochastic DVS

QoS−aware DVS

local PM

Soft RT

Figure 6.7: Chapter overview: QoS-aware energy minimization for soft real-time systems

The chapter summary is shown in Figure 6.7. The focus is on QoS-aware energy mini-

mization schemes for soft real-time systems, corresponding to the second part of the research
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overview in Figure 3.2.

We first investigate DVS algorithms for unpredictable requests corresponding to aperiodic

soft real-time tasks. A stochastic algorithm is shown to largely outperform both prediction-

based and utilization-based DVS algorithms, for realistic signal-processing application traces

provided by our research partners. As the traces were shown to have a large variability in

request execution times, prediction-based DVS schemes generally fail to accurately describe

the load, while utilization schemes are either too aggressive or too slow to react to load

changes. The stochastic scheme eliminates prediction and relies entirely on the probability

distribution function of execution times to gradually increase the frequency/voltage of tasks

aware of deadline constraints. The scheme results in 50% extra savings (on average) over

the second-best policy for synthetic traces, up to 40% savings for real signal-processing

application traces, and an order of magnitude less energy versus no power management.

For systems with more predictable behavior (such as web servers), a DVS scheme that

combines prediction with utilization is shown to successfully reduce the energy consumption

while guaranteeing a required QoS. The workload is predictable in this case, as web requests

are typically small and numerous. Thus, using average execution times and inter-arrival

times gives an accurate load estimation, even though variation in request execution times

may exist. The use of request types is shown to further improve prediction.

We then direct our investigation to QoS-aware power management of multi-processor

systems (clusters). We start with a homogeneous cluster model and propose a coordinated

load-aware global (on/off) and local (DVS) policy (LAOVS) based on estimating the overall

cluster load. The policy is shown to outperform previously proposed schemes that rely

on ideal power models and ignore server idle periods. We evaluate our policy with an

implementation in a prototype signal-processing embedded cluster and show that as much

as 70% saving can be achieved compared to no power management.

Finally, we extend our work to the general case of heterogeneous clusters. A coordinated

local/global policy is proposed that uses utilization-based DVS locally for each server and

a global scheme to turn on/off servers as required by the cluster load. Both local and

global power management schemes are QoS-aware. In addition, the global scheme relies on

measurements (as opposed to theoretical models) to distribute requests in a power-aware
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fashion. Consequently, it is shown that the estimation of cluster energy consumption is

within 1% of real measurements. To prove the concept we implement the scheme in an

experimental Apache web server cluster and show that 45% savings are achieved on average

for real traces.
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7.0 CONCLUSIONS

While performance is traditionally the main concern in systems design, we are now seeing

a paradigm shift from a maximum performance approach to energy-performance tradeoffs.

This is especially true in two areas of computing: embedded systems and high-performance

computing. In the embedded arena, device lifetime is limited by the energy stored in a

battery. In high-end servers, energy is a major concern for different reasons: energy costs

and expensive cooling techniques. Thus, the way power and energy is managed plays an

important role in the design of these systems.

Systems today provide a variety of mechanisms for power management. Examples of

such mechanisms include dynamic voltage scaling (DVS) for processors, low-power states

(such as self-refresh or power-down) for memory chips, or stopping disk spinning during

periods of inactivity. However, power management does not come for free and should be

used carefully. The use of low-power mechanisms has a negative impact on performance,

due to the various overheads involved. A power management (PM) mechanism should only

degrade performance within specified constraints.

Real-time systems provide a framework for specifying such performance constraints. In

a hard real-time system all applications must finish by a specified deadline. A soft real-time

system allows for occasional deadline misses but requires some kind of statistical guarantees.

In addition, some application domains are adaptive, and application reward (or value, or util-

ity) depends on the amount of resources allocated to the application. System reward/utility

is then defined as the sum of rewards of all applications. For non-adaptive applications, the

system reward corresponds to the quality of service (QoS) provided to users. Analyzing the

issues of reward and energy aware of task deadlines is the focus of this work.

Specifically, we are investigating two types of energy-reward interplay for real-time sys-
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tems: (a) system reward maximization mechanisms for hard real-time systems running adap-

tive applications with tight energy constraints, and (b) energy minimization for soft real-time

systems running non-adaptive applications with QoS constraints.

We first explore reward maximization techniques for periodic and frame-based real-time

application models. Assuming continuous frequencies/voltages and continuous application

rewards, we first prove a set of properties of the optimal solutions for reward maximization.

The properties are used to develop exact solutions for certain types of power functions.

For the general case of power functions, an iterative algorithm is proposed. We validate

the accuracy of the algorithm through simulations, and show that, on average, the system

reward is within 1% of the optimal.

Extending to the more realistic case of discrete power and reward functions, we propose

two algorithms for reward maximization: REW-Pack and REW-Unpack. The algorithms

are shown to have running times in the microsecond range, which makes them suitable for

dynamic environments with rapidly changing task sets and system requirements. Although

searching for solutions from opposite directions (corresponding to tight energy and tight

timing constraints respectively) the algorithms are shown to return very similar results,

proving that energy and timing constraints are equally important. In our experiments we

find that the system rewards returned by the algorithms are on average within 3% from the

optimal, with higher percentages for task sets with tighter energy and timing constraints.

The discrete reward model is extended to incorporate task versions, corresponding to

adaptive applications. The REW-Pack algorithm is augmented with the improved reward

model into MV-Pack. The MV-Pack algorithm thus identifies not only the tasks selected

for execution and their frequency/voltage (as was the case with REW-Pack) but also a task

version for each task. As with REW-Pack and REW-Unpack, we show through simulations

that MV-Pack has small average errors and running times.

While the previous algorithms for both continuous and discrete models make best use of

the available energy in a relatively short period of time (associated with frame boundaries or

the least common multiple of task periods) we also addressed the problem of long-term reward

maximization. Specifically, we investigated long-term energy allocation policies for battery-

powered systems and systems that rely on rechargeable energy. For rechargeable systems,
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considering worst-case charging/discharging scenarios and worst-case application execution

times, theoretical conditions are derived for system stability (that is, a task schedule is

guaranteed to exist). Three dynamic policies are then proposed to further improve the

system reward by reclaiming unused energy when worst-case conditions do not happen.

While the static policy is too conservative and wastes energy, the dynamic policies generally

take advantage of all scavenged energy and consistently improve the long-term system reward.

For soft real-time systems corresponding to aperiodic tasks we investigate energy min-

imization algorithms that maintain a required QoS. We first propose a stochastic DVS al-

gorithm for unpredictable workloads. The algorithm relies on the probability distribution

function of task execution times to gradually increase the frequency/voltage of tasks aware

of deadlines. The algorithm is shown to outperform prediction-based and utilization-based

schemes, which are not good choices for unpredictable workloads. 50% energy savings are

reported for synthetic traces and up to 40% for real signal-processing application traces over

the second-best DVS scheme. For workloads with more predictable behavior, such as web

servers with a large (and predictable) number of relatively short requests, a utilization-based

scheme is proposed that considers QoS and request deadlines. The scheme is implemented

at user level in the Apache web server and shown to outperform default power management

(that halts an idle processor) as well as a previously proposed kernel-level utilization-based

DVS scheme.

We then direct our investigation to multiprocessor systems, in particular server clus-

ters. Extending on previous work for homogeneous clusters we propose a load-aware global

(on/off) and local (DVS) scheme (LAOVS). The scheme turns on and off servers as required

by the overall cluster load and uses DVS for local power management independently at each

server. We also eliminate the dependency on theoretical power models and consider the

cluster load for on/off decisions. Accordingly, LAOVS is shown to outperform previously

proposed schemes that turn on/off machines based on the average frequency in the cluster.

LAOVS was implemented in an experimental embedded cluster and shown to result in 3.5x

reduction over no power management (noPM) for realistic signal-processing traces.

For the general case of heterogeneous clusters, we propose an integrated local/global

power management scheme that relies on determining the power functions of individual
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servers through offline power measurements. Requests are allocated to servers considering

primarily the measured power functions, as opposed to server performance. The scheme

proposed is general and can apply to a variety of systems. As a proof of concept we imple-

mented the scheme in an experimental Apache web server cluster. For realistic web traces

we show savings of 45% on average over noPM, and up to 90% for reduced workloads. The

scheme achieves the desired QoS without dropping requests and maintains request average

response times well below their deadlines.

As energy estimation is crucial to this work, we also propose two energy/power estima-

tion schemes. First, a model-based processor power estimation scheme is shown to be within

6% of measured values for a PPC405GP embedded processor across 39 embedded bench-

marks. The model relies on certain energy events whose values are determined through

experimentation. A second scheme was designed for estimating the system power consump-

tion of servers, as a function of server load. This approach relies on realistic traces and offline

power measurements. Using the measured power functions in a realistic web server cluster,

the cluster total energy was estimated within 1% of real measurements.

To summarize, the contributions of my doctoral work to the state of the art in energy

management and reward maximization are as follows:

• Theoretical properties are identified for reward maximization problems and an itera-

tive system reward maximization algorithm is derived for continuous power and reward

models. The algorithm is the first to consider energy, deadline and rewards simultane-

ously [69].

• A new discrete reward model is proposed for adaptive applications that do not reward

partial execution: task versions [70]. The model is realistic and corresponds to discrete

completion points, as well as different task parameters (corresponding to a variety of

existing multimedia applications), tasks with different algorithms with various accuracies,

or simply different invocation periods.

• Three efficient reward-maximization DVS algorithms are proposed for the realistic case

of discrete rewards and power functions [68, 70]. The algorithms start with a relaxed

schedule that is adapted according to various metrics considering task rewards, deadlines

and energy consumptions.
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• Theoretical results and a static energy allocation policy are identified for long-term re-

ward maximization. Three dynamic policies are proposed to further improve the overall

system reward by reclaiming unused energy [71, 72].

• A stochastic DVS scheme is developed for soft real-time systems, and is shown to largely

outperform prediction-based and utilization-based DVS schemes for unpredictable work-

loads [73].

• Local (DVS) and global (on/off) schemes are combined in the context of soft real time

homogeneous server clusters. The approach is based on evaluating the system load and

was implemented in a prototype satellite-based embedded cluster [92, 93].

• A power management policy is proposed for the general case of heterogeneous server

clusters. The policy is based on offline power measurements and is the first work that

combines global and local techniques for heterogeneous clusters. We implemented and

evaluated the scheme on a real Apache web server cluster [67].
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[72] C. Rusu, R. Melhem, and D. Mossé. Multi-version scheduling in rechargeable energy-
aware real-time systems. Journal of Embedded Computing, 2004.
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