10,566 research outputs found

    Liquid-gas-solid flows with lattice Boltzmann: Simulation of floating bodies

    Full text link
    This paper presents a model for the simulation of liquid-gas-solid flows by means of the lattice Boltzmann method. The approach is built upon previous works for the simulation of liquid-solid particle suspensions on the one hand, and on a liquid-gas free surface model on the other. We show how the two approaches can be unified by a novel set of dynamic cell conversion rules. For evaluation, we concentrate on the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the measured heeling stability of a floating box.Comment: 22 pages, Preprint submitted to Computers and Mathematics with Applications Special Issue ICMMES 2011, Proceedings of the Eighth International Conference for Mesoscopic Methods in Engineering and Scienc

    Cube-Cut: Vertebral Body Segmentation in MRI-Data through Cubic-Shaped Divergences

    Full text link
    In this article, we present a graph-based method using a cubic template for volumetric segmentation of vertebrae in magnetic resonance imaging (MRI) acquisitions. The user can define the degree of deviation from a regular cube via a smoothness value Delta. The Cube-Cut algorithm generates a directed graph with two terminal nodes (s-t-network), where the nodes of the graph correspond to a cubic-shaped subset of the image's voxels. The weightings of the graph's terminal edges, which connect every node with a virtual source s or a virtual sink t, represent the affinity of a voxel to the vertebra (source) and to the background (sink). Furthermore, a set of infinite weighted and non-terminal edges implements the smoothness term. After graph construction, a minimal s-t-cut is calculated within polynomial computation time, which splits the nodes into two disjoint units. Subsequently, the segmentation result is determined out of the source-set. A quantitative evaluation of a C++ implementation of the algorithm resulted in an average Dice Similarity Coefficient (DSC) of 81.33% and a running time of less than a minute.Comment: 23 figures, 2 tables, 43 references, PLoS ONE 9(4): e9338

    A geometry of information, I: Nerves, posets and differential forms

    Get PDF
    The main theme of this workshop (Dagstuhl seminar 04351) is `Spatial Representation: Continuous vs. Discrete'. Spatial representation has two contrasting but interacting aspects (i) representation of spaces' and (ii) representation by spaces. In this paper, we will examine two aspects that are common to both interpretations of the theme, namely nerve constructions and refinement. Representations change, data changes, spaces change. We will examine the possibility of a `differential geometry' of spatial representations of both types, and in the sequel give an algebra of differential forms that has the potential to handle the dynamical aspect of such a geometry. We will discuss briefly a conjectured class of spaces, generalising the Cantor set which would seem ideal as a test-bed for the set of tools we are developing.Comment: 28 pages. A version of this paper appears also on the Dagstuhl seminar portal http://drops.dagstuhl.de/portals/04351

    Electrocardiogram of the Mixmaster Universe

    Full text link
    The Mixmaster dynamics is revisited in a new light as revealing a series of transitions in the complex scale invariant scalar invariant of the Weyl curvature tensor best represented by the speciality index S\mathcal{S}, which gives a 4-dimensional measure of the evolution of the spacetime independent of all the 3-dimensional gauge-dependent variables except for the time used to parametrize it. Its graph versus time characterized by correlated isolated pulses in its real and imaginary parts corresponding to curvature wall collisions serves as a sort of electrocardiogram of the Mixmaster universe, with each such pulse pair arising from a single circuit or ``complex pulse'' around the origin in the complex plane. These pulses in the speciality index and their limiting points on the real axis seem to invariantly characterize some of the so called spike solutions in inhomogeneous cosmology and should play an important role as a gauge invariant lens through which to view current investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex figures; added example of a transient true spike to contrast with the permanent true spike example from the Lim family of true spike solutions; remarks in introduction and conclusion adjusted and toned down; minor adjustments to the remaining tex

    Countable locally 2-arc-transitive bipartite graphs

    Get PDF
    We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These examples are obtained by gluing together copies of incidence graphs of semilinear spaces, satisfying a certain symmetry property, in a tree-like way. In one case we show how the classification problem for that family relates to the problem of determining a certain family of highly arc-transitive digraphs. Numerous illustrative examples are given.Comment: 29 page
    • …
    corecore