26,074 research outputs found

    Some experiments with the 3-D hough shape transform

    Get PDF
    Journal ArticleThe application of the Hough shape transform to the problem of the identification and localization of objects in 3-space is presented. The rotation-invariant Hough transform is defined which permits the determination of the geometric transformation from the model to the detected object. Given a sample of 3-D surface points, a set of special model points are derived which are used to form the model. Methods are presented for reducing the amount of computation and accumulator space requited to perform the analysis

    Automatic Detection of Circular Objects by Ellipse Growing

    Get PDF
    We present a new method for automatically detecting circular objects in images: we detect an osculating circle to an elliptic arc using a Hough transform, iteratively deforming it into an ellipse, removing outlier pixels, and searching for a separate edge. The voting space is restricted to one and two dimensions for efficiency, and special weighting schemes are introduced to enhance the accuracy. We demonstrate the effectiveness of our method using real images. Finally, we apply our method to the calibration of a turntable for 3-D object shape reconstruction

    Template reduction of feature point models for rigid objects and application to tracking in microscope images.

    Get PDF
    This thesis addresses the problem of tracking rigid objects in video sequences. A novel approach to reducing the template size of shapes is presented. The reduced shape template can be used to enhance the performance of tracking, detection and recognition algorithms. The main idea consists of pre-calculating all possible positions and orientations that a shape can undergo for a given state space. From these states, it is possible to extract a set of points that uniquely and robustly characterises the shape for the considered state space. An algorithm, based on the Hough transform, has been developed to achieve this for discrete shapes, i.e. sets of points, projected in an image when the state space is bounded. An extended discussion on particle filters, that serves as an introduction to the topic, is presented, as well as some generic improvements. The introduction of these improvements allow the data to be better sampled by incorporating additional measurements and knowledge about the velocity of the tracked object. A partial re-initialisation scheme is also presented that enables faster recovery of the system when the object is temporarily occluded.A stencil estimator is introduced to identify the position of an object in an image. Some of its properties are discussed and demonstrated. The estimator can be efficiently evaluated using the bounded Hough transform algorithm. The performance of the stencilled Hough transform can be further enhanced with a methodology that decimates the stencils while maintaining the robustness of the tracker. Performance evaluations have demonstrated the relevance of the approach. Although the methods presented in this thesis could be adapted to full 3-D object motion, motions that maintain the same view of the object in front of a camera are more specifically studied

    On a shape adaptive image ray transform

    No full text
    A conventional approach to image analysis is to perform separately feature extraction at a low level (such as edge detection) and follow this with high level feature extraction to determine structure (e.g. by collecting edge points using the Hough transform. The original image Ray Transform (IRT) demonstrated capability to extract structures at a low level. Here we extend the IRT to add shape specificity that makes it select specific shapes rather than just edges, the new capability is achieved by addition of a single parameter that controls which shape is elected by the extended IRT. The extended approach can then perform low-and high-level feature extraction simultaneously. We show how the IRT process can be extended to focus on chosen shapes such as lines and circles. We confirm the new capability by application of conventional methods for exact shape location. We analyze performance with images from the Caltech-256 dataset and show that the new approach can indeed select chosen shapes. Further research could capitalize on the new extraction ability to extend descriptive capability

    Lens distortion correction by analysing the shape of patterns in Hough transform space : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Electronics and Computer Engineering at Massey University, Manawatu, New Zealand

    Get PDF
    Many low cost, wide angle lenses suffer from lens distortion, resulting from a radial variation in the lens magnification. As a result, straight lines, particularly those in the periphery, appear curved. The Hough transform is a commonly used linear feature detection technique within an image. In Hough transform space, straight lines and curved lines have different shapes of peaks. This thesis proposes a lens distortion correction method named SLDC based on analysing the shape of patterns in the Hough transform space. It works by reconstructing the distorted line from significant points on the smile-shaped Hough pattern. It then optimises the distortion parameter by mapping the reconstructed curved line into a straight line and minimising the RMSE. From both simulation and correcting real world images, the SLDC provides encouraging results

    2D and 3D Polar Plume Analysis from the Three Vantage Positions of STEREO/EUVI A, B, and SOHO/EIT

    Get PDF
    Polar plumes are seen as elongated objects starting at the solar polar regions. Here, we analyze these objects from a sequence of images taken simultaneously by the three spacecraft telescopes STEREO/EUVI A and B, and SOHO/EIT. We establish a method capable of automatically identifying plumes in solar EUV images close to the limb at 1.01 - 1.39 R in order to study their temporal evolution. This plume-identification method is based on a multiscale Hough-wavelet analysis. Then two methods to determined their 3D localization and structure are discussed: First, tomography using the filtered back-projection and including the differential rotation of the Sun and, secondly, conventional stereoscopic triangulation. We show that tomography and stereoscopy are complementary to study polar plumes. We also show that this systematic 2D identification and the proposed methods of 3D reconstruction are well suited, on one hand, to identify plumes individually and on the other hand, to analyze the distribution of plumes and inter-plume regions. Finally, the results are discussed focusing on the plume position with their cross-section area.Comment: 22 pages, 10 figures, Solar Physics articl

    Detection of Airport Runway Edges using Line Detection Techniques

    Get PDF
    Airport runway detection is a vital aspect for both military and commercial applications. An algorithm to extract runway edges based on edge detection and line detection techniques is discussed. The runway images are initially enhanced by dilation, thresholding and edge detection. Based on some unique characteristics like the runway being gray with two white lines indicating the runway boundaries, long and continuous edges of the runway are considered to be straight lines. The straight lines are detected using Convolution operators pertaining to vertical, 45° or -45° lines. Hough Transform is then applied to fit only the pair of lines corresponding to the runway boundaries in certain orientations. The test results prove that combination of Convolution and Hough transform is very competent in detecting runway edges accurately

    A rigorous definition of axial lines: ridges on isovist fields

    Get PDF
    We suggest that 'axial lines' defined by (Hillier and Hanson, 1984) as lines of uninterrupted movement within urban streetscapes or buildings, appear as ridges in isovist fields (Benedikt, 1979). These are formed from the maximum diametric lengths of the individual isovists, sometimes called viewsheds, that make up these fields (Batty and Rana, 2004). We present an image processing technique for the identification of lines from ridges, discuss current strengths and weaknesses of the method, and show how it can be implemented easily and effectively.Comment: 18 pages, 5 figure
    corecore