research

On a shape adaptive image ray transform

Abstract

A conventional approach to image analysis is to perform separately feature extraction at a low level (such as edge detection) and follow this with high level feature extraction to determine structure (e.g. by collecting edge points using the Hough transform. The original image Ray Transform (IRT) demonstrated capability to extract structures at a low level. Here we extend the IRT to add shape specificity that makes it select specific shapes rather than just edges, the new capability is achieved by addition of a single parameter that controls which shape is elected by the extended IRT. The extended approach can then perform low-and high-level feature extraction simultaneously. We show how the IRT process can be extended to focus on chosen shapes such as lines and circles. We confirm the new capability by application of conventional methods for exact shape location. We analyze performance with images from the Caltech-256 dataset and show that the new approach can indeed select chosen shapes. Further research could capitalize on the new extraction ability to extend descriptive capability

    Similar works

    Full text

    thumbnail-image

    Available Versions