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Abstract 

The application of the Hough shape transform to the problem of the identification and 

localization of objects in 3-space is presented. The rotation-invariant Hough transform is 

defined which permits the determination of the geometric transformation from the model 

to the detected object. Given a sample of 3-D surface points, a set of special model 

points are derived which are used to form the model. Methods are presented for 

reducing the amount of computation and accumulator space required to perform the 

analysis. 
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1. Introduction 

The Hough shape transform has been proposed and developed by several 

workers [1, 2, 5]. A 3-D version has also been investigated [3, 4]. A performance analysis 

has been described by Shapiro [61 and special data structures have been investigated for 

use as the parameter space accumulators. We review here the method presented in 

Wu [7]. 

2. Hough Shape Models 

An extention of the 2-D Hough shape transform to handle 3-D surfaces offers an 

alternative approach to object identification, and furthermore permits the localization of 

objects in space. That is, the exact transformation can be found which maps the 

reference object onto the detected object. The classic Hough transform is a method for 

detecting curves by using the duality between points on a curve and parameters of that 

curve. For instance, in the case of straight lines, we could parameterize them by their 

corresponding slopes and intercepts. The parameter space is then quantized, and an 

accumulator is associated with each point in the parameter space. The accumulator is 

incremented for each detected point whose associated curve in parameter space crosses 

that accumulator. Local maxima in the accumulators correspond to collinear points in the 

image space. The values in the accumulators measure the number of points on the line. 

The Hough shape transform is a generalization of the classic Hough transform for 

handling objects which have no simple analytic forms, but have particular shapes. A 

reference point is picked. For each boundary point compute the displacement vector 

from the boundary point to the reference point. Store the reference point and the 

displacement vectors. The basic strategy of the Hough shape transform is to compute 

the possible loci of the reference point given edge point data in an image, and is 

achieved by associating an accumulator with each point in space, and applying the 

following algorithm: for all e, a detected edge location, and for all d, a displacement 

vector, increment the accumulator at ( e + d). Possible locations for the reference point 

are given by the maxima in the accumulator array. Figure 2-1 gives an example of the 

Hough shape definition. Figure 2-2 shows the corresponding Hough shape detection. 

The extended 3-D Hough algorithm works as follows. A 3-D object is represented as a 

collection of n vertexes. These vertexes in turn are denoted by their (x,y,z) locations. 
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Figure 2-1: Example of Hough shape definition 
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Figure 2-2: Example of Hough shape detection 
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Call this set of 3-D points P, where P = { ( xi' Yi' zi },) i= 1, ... ,n. Choose some reference 

point, Po = ( xo' YO' Zo ,J e.g., the centroid of the set of triples. The object representation 

is given as a list of displacement vectors from each point in P to the reference point PO' 

The model is then a characterization of P as a displacement from each vertex to the 

reference PO' 

Given the spatial proximity graph representation of a set of points sampled from the 

surface of a polyhedral object, the points in the graph can be grouped to find the planar 

regions. The planar faces of the detected object are then intersected to find the vertices 

of the object. The detection procedure is then to match the set of model vertexes with 

the detected vertexes as points in the transform space. From matching each point on the 

surface of an object to matching a small set of points representing the vertexes of the 

object, we arrive at a much reduced set to be matched. 

For each detected vertex, we associate the n displacement vectors to compute the 

possible loci of the reference point, PO' in parameter space. Accumulate counts for the 

possible locations of PO' The location that has the maximum count in the 3-D space 

corresponds to the translated position of the reference pOint Po of the object model. 

The above algorithm produces a unique maximum for any translated P, and the 

maximum value is equal to the number of detected object vertices. But if all the points in 

P are not in the detected object, then the maximum will be less than the number of 

points in the model object. Moreover, if there are several copies of the object, then there 

may not be a unique maximum. However, the reference point is always guaranteed to be 

one of the maxima. We could use the ratio maximum/d, where d is the number of 

detected points, to judge the likelihood that that maximum location does indeed 

correspond to PO' 

Since in general, objects are both translated and rotated, a more realistic Hough shape 

model will be the one which deals with rotation as well as translation. The following 

section outlines the algorithm to compute rotational invariant 3-D Hough transform. 
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3. Rotational Invariant 3-D Hough Shape Model 

Given a set of points P={(xi,vi,xi)}' i= 1 ,n, representing a 3-D object model, choose some 

reference point PO' (xo,yo,zO), such that the lengths of all the vectors of R={(dxi,dYi,dzi)}, 

where dXi=xO~xi' dYi=YO~Yj. and dzi=zO-zi' are distinct. The model representation is then 

in terms of the reference point PO' and R. 

Given a set of detected points D={(xi,vi,xi)}' i=l.m, use a 3-D array H, to accumulate 

counts for possible location of Po in space. Then the rotation invariant 3-D Hough 

transform is computed by: 

for all p = (x.y.z) in D, 

for all r in R. 

increment H(sphere with center at (x.y,z) and radius r) by 1. 

In actual implementation. the accumulators are defined in terms of intersections of 

spheres which represent possible loci of rotated and translated PO's. Intuitively. the 

rotation invariant 3-D Hough transform is computed by keeping accumulators for points 

of intersection of the various spheres centered at all the detected points. Then the 

location in H having the maximum value corresponds to the translated and rotated 

position of the reference point PO' of the object model. However. if there exists possible 

rotational symmetry of the object model, there is no guarantee of a unique maximum in 

the accumulator array H. In this case, any of the maximum may be chosen. 

Recall PO' the model reference point, is of distinct distance from all vectors in R. Call 

the possible location of the transformed point PO" (xO',Yo',zol With the finding of the 

possible location of the transformed PO' construct R'={(dxi,dYi,dzi)}' i= Lm. where 

dy=xO'-xi' dYi=YO'-Yi' and dzi=zO'-zi' and (xi,vi,zi) in D. Matching is done by finding for 

each r' in R', its counterpart r in R. such that r'=r. Then the detected point in D which 

gives rise to r' corresponds to the possible transformed location of the model point in P 

which gives rise to r. The match is reported in terms of the transformation that maps the 

model points to the detected points. 

Section 3 gives the algorithmic implementation of a matcher based on the rotational 

invariant 3-D Hough shape model. Section 4 details a method to find the intersections of 

spheres. which is needed to process the accumulators. 
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4. Shape Recognition 

We now give an algorithm based upon the Hough shape model for performing shape 

recognition. 

procedure MATCHER(detected _object: a set of 3-D points); 

{ r match the points to all models "'/ 
for m := 1 step 1 until all_models 
{ 

r produce maximum accumulator "'/ 
max_count := MAX ACCUMULATOR(detected object,model); 

if OBJECT IDENTIFIED 

DETERIVIINE ORIENTATION(detected _ object,model); 
} 

} 

integer procedure MAX ACCUMULATOR(detected _ object,model); 
{ 

} 

/"'. initialize accumulators "'/ 

II\JITIALIZE ACCUMULATORS; 

for d := 1 step 1 until all_detected points 
{ 

for a := 1 step 1 until all_accumulators 
{ 

for r := 1 step 1 until all_madel_radii 
{ 

if INTERSECT 
then UPDATE ACCUMULATOR; 

} 
} 

} 

return(FIND MAX ACCUMULATOR); 

The procedure DETERMINE ORIEI\JTATIOI\J, when given the correspondence between the 

model reference point and the detected reference point, the model points and the 

detected points, finds the transformation which maps the model points to the detected 

points. The procedure INITIALIZE ACCUIVIULATORS, when given the set of model radii, and 
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the pair of most distant points in the set of detected points, creates accumulators which 

represent all the intersections of spheres with radii taken from the set of model radii and 

centered at these two distant points. The procedure INTERSECT returns true if the 

sphere, centered at a given detected point with a radius equal to a given model radius, 

intersects a given accumulator. UPDATE ACCUMULATOR is a procedure that updates 

information pertaining to an existing accumulator which has been intersected, or creates 

new accumulators when necessary after intersection of an existing accumulator with a 

given sphere. FIND MAX ACCUMULATOR is a procedure that returns the maximum of all 

the accumulators. 

5. Intersecting a set of spheres 

We break this seemingly involved problem into a set of simpler problems. We approach 

the intersection problem in the following manner. 

Let So be the first sphere with radius rO' centered at (xO,vO,zO). 

let S2 be the second sphere with radius r2' centered at (x2,v2,z2). 

Let d be the distance between the centers of the spheres. 

We have the following four possible cases: 

1. No intersection if rO + r2 < d as shown in Figure 5-1, 

y 

Figure 5-1: No intersection with rO + r2 < d 

2. Intersection at a single point if 

a. rO + r2 d, as shown in Figure 5-2, or 
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Figure 5-2: Single point intersection with rO + r2 d 

b. rO + d = r2' as shown in Figure 5-3, or 

'i 

-\-

Figure 5-3: Single point intersection with rO + d r2 

c. r2 + d = rO' as shown in Figure 5-4, 
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y 

i 

Figure 5-4: Single point intersection with r2 + d rO 

3. Intersection equal to either one of the spheres if 

b. rO = r2' as shown in Figure 5-5, and 

-{ 

-I--

Figure 5-5: Spherical intersection with identical spheres 

4. Intersection is a circle in 3-D space if rO + r2 > d, as shown in Figure 5-6. 



Figure 5-6: 3-~ circle intersection with ra + r2 > d 

Since there are four possible outcomes for intersecting the first two spheres, in order to 

finish intersecting the entire set of spheres, we have to deal with each outcome 

separately. 

In case 1, we continue by starting the whole intersection procedure again with a distinct 

pair of spheres from the set. 

In case 2, further intersection means testing if the current point of intersection lies on 

the subsequent sphere. 

In case 3, further intersection means picking another sphere from the remaining set. and 

repeat the' process of intersecting two spheres. 

The continuation of case 4 is relatively elaborate. We will consider this case in detail. 

5.1. Intersection of a 3-D circle and a sphere 

Now Figure 5-7 gives a closer view of the region of intersection between two spheres 

resulting in a 3-D circle. 
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Figure 5-7 : 3-D circle intersection with rO + r2 > d 

Let x be the distance between the center of the first sphere, and the center of the 

circular intersection. 

Let r be the radius of the circular intersection. 

We have as in Figure 5-8 

Figure 5-8: Details of 3-D circular intersection 



Using the Pythagorian Theorem 

After some rearrangements, finally 

x = ( r 02 - r / + d 2 ) I ( 2 ,', d ), and 

r=(r02-x2)1/2 

11 

As a result, the coordinates, (x1'Y1,zl), of the center of the 3-D circular intersection are: 

Y1 = ( Y2- YO ) .:, y I d + Yo' and 

The strategy to find the intersection between a 3-D circle and a sphere is as follows: 

1. Transform the 3-D circle to the x-y plane, so that it is centered at (0,0,0). Call 
this transformation M. 

2. Apply the same transformation M to the sphere to be intersected. 

3. Find the intersection of the transformed sphere with the x-y plane. Call the 

intersection region U. U could be empty, a single point, or a circle. 

4. Intersect the transformed 3-D circle with U. At this stage we are dealing with 
a simpler problem, intersecting one circle with a single point or another circle. 

The solution may be empty, a single point, a circle, or two points. Call the 
solution set W. 

5. Apply the inverse transformation of M to W. 

The overall intersection between the 3-D circle and the sphere will simply be the 

transformed W under the inverse of the original transformation M. 

The following pages outline the steps to derive the transformation M which maps the 3-

D circle onto the x-y plane and its center to the origin (0,0,0). 
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Figure 5-9 shows the original position of the 3-~ circle. Since the plane containing the 

3-D circular intersection is orthogonal to P1 P2' M is equivalent to the transformation that 

maps P1 to the origin and P1P2 on the negative z-axis, as shown in Figure 5-10. 

'{ 

-;... 

Figure 5-9: 3-~ circular intersection 

i 

Figure 5-10: Symbolic representation of 3-~ circular intersection 

We formulate the transformation M in three steps . 

1. Translate P1 to the origin. 

2. Rotate about the y-axis, so that P 1 P2 lies in the y-z plane. 

3. Rotate about the x-axis, so that P1P2 lies on the negative z-axis . 

Step 1: Translate P 1 to the origin. 
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I , 0 0 0 
I 0 1 0 0 

T(-x" -Y1' -z,) = I 0 0 1 0 
I _ -x, -Yl -z, 1 

Applying T to P l' P2 gives: 

;?tE3D 2: Rotate about the v-axis. 

Figure 5-11 shows P1P2 after step 1, along with the projection of P1P2 onto the x-z 

plane. The rotation, Ry' is by the positive angle a, for which 

cos a, = -------- , and 

where 

d 1 ( 2 2 }1/2. = (z2-z ,) + (x2-x l ) 

I 2 2 I (x2-x , ) (z2-z 1) 
P2 tt = P2 ' . a, = I 0 Y2-Yl - -------- - -------- , I 

I d, d, I 



14 

Figure 5-11: Rotation about the v-axis 

Step 3: Rotate about the x-axis. 

Figure 5-12 shows P 1 P') after step 2. The rotation R is h\l th'" n"'gative angle e, for 

which 

cos ( - e) = cos e = , and 
d-x 

sin(- e) = -sine = 
-Y2' , 

d-x 

Figure 5-12: Rotation about x-a XiS 
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The result of the rotation in step 3 is 

T Ry(a) 

= 0 0 -(d-x) 

P1 P2 now coincides with the negative z-axis. 

The composite matrix M 

T(-x, -y, -z) . Ry(a) • Rx (-8) 

is the required transformation. 

The inverse of matrix M is simply: 

Once the transformation IV1 is obtained, we apply it to the sphere to be intersected. Let 

S3 be the sphere which is centered at P3, (x3'Y3,z3)' with radius r3' 

Applying M to P3 gives: 

The equation of the transformed sphere becomes: 

Set z to 0 to find the intersection of the transformed sphere with the 

x-y plane. We have 

Expand and collect like terms: 

Recall the general equation of a circle: 

x2 + y2 + a*x + b*y + c = O. 

r 2 
3 
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Such a circle is centered at (-al2, -bl2), 

with radius = 112 ,', ( a2 + b2 - 4"'c ) 112. 

Comparing the equation of the intersection between the transformed sphere and the x-V 

plane, and the general equation of a circle, we see that the intersection can be 

represented by a circle on the x-V plane centered at (x3·'Y3',O) with radius 

r4 = 112'·'(r/-z3·2) 112. 

Analyzing r 4' we observe the following about the intersection between the x-v plane 

and the transformed sphere: 

1. Intersection is empty if r 4 is complex or r3 2 < Z3,2 

2. Intersection is a single point if r 4 is zero or r32 

3. Intersection is a circle if r 4 is real or r32 > Z3,2 

z ,2 
3 

So far, we have reduced the order of complexity of intersecting a 3-D circle with a 

sphere to the order of complexity of intersecting two circles. This finishes our discussion 

on intersecting a 3-~ circle with a sphere. 

Thus, we have examined all possible outcomes of the intersection between spheres by 

looking at the intersection between three spheres. Any further intersection between 

spheres will be an instantiation of one of the possible cases discussed. 

6. Case Studies 

6.1. Hough Shape Model 

To directly apply the Hough shape transform to a model of a 3-~ object in terms of its 

surface points would require a 3-~ accumulator array, as discussed in section 2.2, which 

could easily exhaust the memory of a machine. Therefore, it is necessary to compress 

the size of the model representation. We recommend two approaches. illustrated by two 

examples. which drastically reduce the set of accumulators. 
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The first approach works well with polyhedral models. We reduce the size of the model 

representation by using the vertexes of the polyhedron to represent it. 

The second approach is suitable for objects of irregular shape. This approach consists 

of choosing four control points which are recoverable from the type of data available, and 

determining the geometric transformation from the model to the detected control points. 

If the control points are not directly distinguishable, e.g., they are all vertexes of the same 

order, then the Hough shape transform can be used to label them; otherwise, the 

transformation can be determined directly. 
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We would like to use a cube as the model object to illustrate the first approach . The 

model is given in terms of : 

reference point : (1 .5, 1.3, 1.25), 

and radii of magnitude : 
4.09, 
3.43, 
3.38, 

3.28, 
2.54, 
2.40, 
2.33, 
0.65. 

Figures 6-1 and 6-2 show the detected surface points of the cube and the corresponding 

spatial proximity graph obtained, respectively, as displayed on the PS300 . 

• • • • • I • . . . . . . . . . . . . . . . . . 
" ... . . . . 

• I ••• I •• 

. . . . . . . . 
. . . . . . . 
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.... . . . . . . . . . . . . . . . . 

. . . . . . . . . . .. . . . . . . 
. .... 

. . ..... . 
. ... 

• • I I 

. ... . . . . . . . . . . . . . : : : : : . ... 
• • • I • 

. . . . . 

Figure 6-1: Surface points on the cube 
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m 's denote model vertexes 

mrf denotes model reference point 

d's denote detected vertexes 

,', denotes detected reference point 

Figure 6-3: Initial circular accumulators when detecting cube 

Since there are rotational symmetries in the cube with respect to the chosen model 

reference point we actually detected eighteen possible locations for the model reference 

point. Here is the one we picked, and along with it is the corresponding transformation 

that maps the model cube to the detected cube: 

detected reference point: (6.5, 1.3, 1.25) 

transformation matrix: 

-
1. 0 O. O. I 
O. 1. O. O. I 
O. O. 1. O. I 
5. O. O. 1J 

In this case the detected cube is an instantiation of the model cube which has simply 

been translated by 5 units in the positive direction along the x-axis . 
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Renault Piece 

We would like to use the industrial object shown below as the model object to illustrate 

the second approach. There are about 2000 point samples. We call this piece the 

Renault piece. Figure 6-4 shows the detected surface points of the Renault piece. (This 

data was digitized on a laser range finder developed at INRIA, Rocquencourt, France by 

F. Germane.) Figure 6-5 is the spatial proximity graph obtained as displayed on the Evans 

and Sutherland PS300. 

",. " . .. . , .. , 
"." .. , ,. , 

. ...... . ....... . 
"."" . , ...... . . ..... . 

" ..... . ........ . .. ' ..... . 
" ..... . . . . . . . . . ......... 

, .... , .. 
,.,., ... 

Figure 6-4: Detected surface points of the Renault piece 
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Figure 6-5: SPG of the Renault piece with 4 nearest neighbors 

The four control points chosen as model points could be derived from the spatial 

proximity graph of the model. The model is given in terms of: 

model reference point ( 10.344000, 19.333334, 25.122999 ) 

and the radii of magnitude : 
29.900755, 
18.041958, 
13.079391, 
3 .379884. 

The detected control points are : 

(-21 .000000, -7.246000,2.706000), 
(-17.600000, -3 .183000,16.096001), 
(-17.200001 , 3.755000, 16.305000), 
(-18.000000, 10.844000, 25.872999) . 

Figure 6-6 shows the initial set of accumulators using the four control points for 

detection . 
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m's denote model vertexes 

mrf denotes model reference point 

d's denote detected vertexes 

.:, denotes detected reference point 

Figure 6-6: Initial circular accumulators when detecting Renault piece 

Here is the transformation that the maps the model object to the detected object: 

0.000000 1.000000 -0.000000 0.000000 
-1.000000 -0.000002 0.000002 0.000000 
-0.000000 -0.000000 1.000001 0.000000 

-2.000000 1.000031 0.999962 1.000000 

In this case, the detected object is an instantiation of the model object after it has been 

translated by (1.0, 2.0, 1.0) and rotated by 90 degrees with respect to the z-axis. 

7. Conclusions and Future Research 

We picked the Hough shape model for its simplicity. We would like to suggest a closer 

examination of a possible improvement to our current vertex-based implementation. 

When dealing with polyhedral models, an alternative to using vertexes to represent the 

polyhedral faces of a 3-~ object is to map each face of the 3-~ object into a 4-0 
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transform space, and model these points considered as an object. The 4-0 points are the 

coefficients of the planes that contain the faces of the polyhedron. Since the number of 

faces is usually small, we can keep the storage needed for accumulators under control. 

However, the difficulty of such an approach lies in interpreting the geometric meaning 

and geometric correspondence of the detected reference point found to the model 

reference point. An undesirable consequence of lacking a clear understanding of the 

geometric meaning and geometric correspondence is that the orientation of the 

recognized object will remain unknown. 

Finally, methods to limit the number of spheres to be intersected must also be found 

and applied to the appropriate situations. For example, if two vertexes are known to 

belong to the same object, then it is more reasonable to use those vertexes to form the 

initial set of accumulators. A very distant pair of vertexes known to belong to the same 

object would be e'len better, since the number of intersections would most probably be 

less. 
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