

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

LENS DISTORTION CORRECTION BY ANALYSING THE SHAPE OF PATTERNS IN HOUGH TRANSFORM SPACE

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

In

Electronics and Computer Engineering

at Massey University, Manawatu, New Zealand

YUAN CHANG

2018

Abstract

Many low cost, wide angle lenses suffer from lens distortion, resulting from a radial variation in the lens magnification. As a result, straight lines, particularly those in the periphery, appear curved. The Hough transform is a commonly used linear feature detection technique within an image. In Hough transform space, straight lines and curved lines have different shapes of peaks. This thesis proposes a lens distortion correction method named SLDC based on analysing the shape of patterns in the Hough transform space. It works by reconstructing the distorted line from significant points on the smile-shaped Hough pattern. It then optimises the distortion parameter by mapping the reconstructed curved line into a straight line and minimising the RMSE. From both simulation and correcting real world images, the SLDC provides encouraging results.

Keywords: Hough transform; barrel lens distortion correction; straight line; shape of peaks

Acknowledgements

I would like to thank my supervisors, Donald Bailey and Steven Le Moan, for all their support throughout this research. I am thankful to them giving me this chance of chasing my dream and expanding my knowledge. Without their help and push I would never have made it.

I would like to thank my parents, for their unconditional love and support throughout these years. Their love is the driving force which keeping me going forward. I would also like to thank all my friends who cheered up through many long days and late nights at Massey.

Table of Content

Abstract	1
Acknowledgements	2
List of Figures	5
List of Tables	7
Chapter 1 Introduction	8
1.1. What is Lens Distortion?	8
1.2. Camera Calibration	9
1.3. Edge and Line Detection	10
1.4. Research Goals	12
1.5. Overview	12
Chapter 2 Background	13
2.1. Modelling Lens Distortion	13
2.1.1. Polynomial Lens Distortion Models	14
2.1.2. Non-Polynomial Models of Radial Distortion	16
2.2. Hough Transform	17
2.3. Related Work	20
Chapter 3 Analysis of the Shape of Hough Patterns	22
3.1. Straight Line	22
3.2. Curved Line	22
3.2.1. The Shape of the 'Blurred' Peak	23
3.2.2. The Slope of the 'Smile'	25
3.3. Distortion Correction	26
3.3.1. Feature Points Based Method	26
3.3.2. 'Smile' Based Method	27
Chapter 4 Smile Based Lens Distortion Correction	28
4.1. Preprocessing	28
4.2. Hough Transform	28
4.3. Selecting the Hough Pattern for Analysis	29
4.4. Parabola Fitting	30
4.5. Curved line Reconstruction	31
4.6. Estimating the Lens Distortion Parameter	32
Chapter 5 Accuracy Analysis	34
5.1. Error in the estimated lens distortion parameter and the RMSE of the image	35
5.2. Error when Using Continuous Data to Correct Distortion	38
5.3. Systematic and Random Error of the SLDC	39
5.3.1. The 'Smile' and the True Value	40
5.3.2. Error from Quantisation	42
5.3.3. Error from Fitting	44

5.3.4. Error in Reconstructing the Curved Line	
5.3.5. Error from Noise	47
5.3.6. Error of the Estimated Lens Distortion Parameter	47
5.4. Accuracy of General Cases	
5.4.1. Three Factors of the Line Segment	
5.4.2. Straight Line is Asymmetric about the Origin	
5.4.3. Line Segment is Tilted	
5.5. High-Resolution Hough Transform	54
Chapter 6 Results and Discussion	56
6.1. Real World Image	56
6.2. Accuracy Comparison with the Previous Method	59
6.3. Discussion	61
6.3.1. The advantage of the SLDC	61
6.3.2. Contribution to Other Correction Method	61
Chapter 7 Conclusion and Future Works	
7.1. Conclusion	
7.2. Suggestions for Future Work	
7.2.1. Analyse Multiple Hough Patterns	63
7.2.2. Using the standard Hough Transform	63
8.0. References	65

List of Figures

Figure 1: Real scene and what the camera saw with distortion	3
Figure 2: Left: the original grid; Centre: the effect of barrel radial distortion; Right: the effect of	F
pincushion distortion	9
Figure 3: Convolution kernels used by the Sobel filter10	C
Figure 4: Convolution kernels used by the Prewitt filter1	1
Figure 5: Left: a straight line and that line curved by lens distortion; Right: the corresponding	
peaks in the Hough space	2
Figure 6: Error of approximate inverse model as a function of distortion parameter κ_1 and	
normalised radius from image centre15	5
Figure 7: Original Hough transform18	3
Figure 8: Standard Hough transform19	9
Figure 9: Left: a straight line segment in the image domain; Right: the corresponding pattern	
in the Hough transform space22	2
Figure 10: Left: curved line; Right: the corresponding Hough pattern	3
Figure 11: Shape of Hough patterns with different factors relative to Figure 10, (a) has a	
smaller κ , (b) the straight line is closer to the origin (smaller y_0), in (c) the straight line is	
shorter (smaller <i>L</i>), and (d) the straight line is asymmetric about the origin25	5
Figure 12: A point on the 'smile' in the Hough pattern25	5
Figure 13: Basic steps of the 'smile' based method28	3
Figure 14: The original image (left) and the input for the Hough transform (horizontal and	
vertical)	3
Figure 15: Left: distorted image; Centre: Hough patterns and the scores	9
Figure 16: The most significant points and the fitted parabola	1
Figure 17: The reconstructed curved line and the original curved line	2
Figure 18: Basic Steps of the 'Smile' based method and the errors introduced by this method	
	4
Figure 19: RMSE with varying κ and error in the estimated κ , when $L = 1$ and $y_0 = 1$ 36	3
Figure 20: RMSE with varying L and error in the estimated κ , when $\kappa = 0.05$ and $y_0 = 1, \dots, 36$	3
Figure 21: RMSE with varying y_0 and error in the estimated κ , when $\kappa = 0.05$ and $L = 1,, 37$	7
Figure 22: Left: The undistorted image; Right: the corrected image with 2.5×10^3 error in κ . 37	7
Figure 23: Different parameters and the accuracy of the estimated lens distortion parameter.	
	9
Figure 24: Δc and Δx in the image space for $m = 0$ 40	C
Figure 25: Relation between density and intercept42	2
Figure 26: The effect of quantisation on the density of votes for two different values of the lens	s
distortion parameter43	3
Figure 27: The most significant points and the true value44	4
Figure 28: Smoothed detected smile (red) compared to the true smile (blue)48	5
Figure 29: The effect of fitting threshold on estimated lens distortion parameter46	3

Figure 30: Reconstruction error of the vertical position of the reconstructed line46
Figure 31: left: the curved line without noise; right: curved line with random noise added47
Figure 32: Influence of y_0 and L on error when $\kappa = 0.05$
Figure 33: (a): delta c from continuous data; (b): delta c from quantized data
Figure 34: Influence from y_0 and κ on error when <i>L</i> is equal to 1
Figure 35: Influence from L and κ on the error when y_0 is equal to 1
Figure 36: left: the original straight line; right: its corresponding Hough pattern
Figure 37: left: a horizontal curved line and a tilted curved line; right: Hough patterns
Figure 38: left: the distortion grid with a moved distortion centre; centre: the corrected image
without estimating the distortion centre; right: the corrected image with estimated distortion
centre53
Figure 39: left: a group of Hough patterns and detected most significant points; right: the fitted
Gaussian curve
Figure 40: left: distorted images; right: corrected images. The edge which was used as the
reference to correct the distortion and measure the straightness is highlighted58
Figure 41: Correcting image with serious distortion59
Figure 42: (a) is the undistorted grid; (b) is the distorted grid; (c) is the correction result of the
previous method; (d) is the correction result of the SLDC60
Figure 43: Left: distorted image; Right: corrected image by Bailey's method with our
reconstructed curved line61

List of Tables

Table 1: The RMSE of the parabola and the 4 th polynomial with different κ	45
Table 2: The noise level and the RMSE of the line segment	47
Table 3: Accuracy between the normal and high-resolution Hough space	55
Table 4: The RMSE when fitting a straight line to the corrected edges.	59
Table 5: Comparison the accuracy between the previous method and the 'smile' based	
method	60