1,289 research outputs found

    Covering of high-dimensional cubes and quantization

    Get PDF
    As the main problem, we consider covering of a d-dimensional cube by n balls with reasonably large d (10 or more) and reasonably small n, like n = 100 or n = 1000. We do not require the full coverage but only 90% or 95% coverage. We establish that efficient covering schemes have several important properties which are not seen in small dimensions and in asymptotical considerations, for very large n. One of these properties can be termed ‘do not try to cover the vertices’ as the vertices of the cube and their close neighbourhoods are very hard to cover and for large d there are far too many of them. We clearly demonstrate that, contrary to a common belief, placing balls at points which form a low-discrepancy sequence in the cube, results in a very inefficient covering scheme. For a family of random coverings, we are able to provide very accurate approximations to the coverage probability. We then extend our results to the problems of coverage of a cube by smaller cubes and quantization, the latter being also referred to as facility location. Along with theoretical considerations and derivation of approximations, we provide results of a large-scale numerical investigation

    Partial Regularity for Holonomic Minimisers of Quasiconvex Functionals

    No full text

    On non-centered maximal operators related to a non-doubling and non-radial exponential measure

    Get PDF
    We investigate mapping properties of non-centered Hardy–Littlewood maximal operators related to the exponential measure dμ(x) = exp (- | x1| - ⋯ - | xd|) dx in Rd. The mean values are taken over Euclidean balls or cubes (ℓ∞ balls) or diamonds (ℓ1 balls). Assuming that d≥ 2 , in the cases of cubes and diamonds we prove the Lp-boundedness for p> 1 and disprove the weak type (1,\ua01) estimate. The same is proved in the case of Euclidean balls, under the restriction d≤ 4 for the positive part

    Algorithms for highly symmetric linear and integer programs

    Get PDF
    This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimensio

    Algorithms for highly symmetric linear and integer programs

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension

    3D microwave tomography with huber regularization applied to realistic numerical breast phantoms

    Get PDF
    Quantitative active microwave imaging for breast cancer screening and therapy monitoring applications requires adequate reconstruction algorithms, in particular with regard to the nonlinearity and ill-posedness of the inverse problem. We employ a fully vectorial three-dimensional nonlinear inversion algorithm for reconstructing complex permittivity profiles from multi-view single-frequency scattered field data, which is based on a Gauss-Newton optimization of a regularized cost function. We tested it before with various types of regularizing functions for piecewise-constant objects from Institut Fresnel and with a quadratic smoothing function for a realistic numerical breast phantom. In the present paper we adopt a cost function that includes a Huber function in its regularization term, relying on a Markov Random Field approach. The Huber function favors spatial smoothing within homogeneous regions while preserving discontinuities between contrasted tissues. We illustrate the technique with 3D reconstructions from synthetic data at 2GHz for realistic numerical breast phantoms from the University of Wisconsin-Madison UWCEM online repository: we compare Huber regularization with a multiplicative smoothing regularization and show reconstructions for various positions of a tumor, for multiple tumors and for different tumor sizes, from a sparse and from a denser data configuration

    A 3D/2D comparison between heterogeneous mesoscale models of concrete

    Get PDF
    A model for 3D Statistical Volume Elements (SVEs) of mesoscale concrete is presented and employed in the context of computational homogenization. The model is based on voxelization where the SVE is subdivided into a number of voxels (cubes) which are treated as solid finite elements. The homogenized response is compared between 3D and 2D SVEs to study how the third spatial dimension influence the over-all results. The computational results show that the effective diffusivity of the 3D model is about 1.4 times that of the 2D model
    • …
    corecore