
Math. Program., Ser. A (2013) 137:65–90
DOI 10.1007/s10107-011-0487-6

FULL LENGTH PAPER

Algorithms for highly symmetric linear and integer
programs

Richard Bödi · Katrin Herr · Michael Joswig

Received: 11 January 2011 / Accepted: 29 July 2011 / Published online: 25 September 2011
© Springer and Mathematical Optimization Society 2011

Abstract This paper deals with exploiting symmetry for solving linear and integer
programming problems. Basic properties of linear representations of finite groups can
be used to reduce symmetric linear programming to solving linear programs of lower
dimension. Combining this approach with knowledge of the geometry of feasible inte-
ger solutions yields an algorithm for solving highly symmetric integer linear programs
which only takes time which is linear in the number of constraints and quadratic in
the dimension.

Keywords Linear programming · Integer programming · Symmetry ·
Permutation group

Mathematics Subject Classification (2000) 90C10 (90C05, 52B12)

Research by Herr is supported by Studienstiftung des deutschen Volkes. Research by Joswig is partially
supported by DFG Research Unit 565 “Polyhedral Surfaces” and DFG Priority Program 1489
“Experimental Methods in Algebra, Geometry, and Number Theory”.

R. Bödi (B)
School of Engineering, Zürcher Hochschule für Angewandte Wissenschaften,
Rosenstr. 2, 8400 Winterthur, Switzerland
e-mail: richard.boedi@zhaw.ch

K. Herr ·M. Joswig
Fachbereich Mathematik, TU Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany
e-mail: herr@mathematik.tu-darmstadt.de

M. Joswig
e-mail: joswig@mathematik.tu-darmstadt.de

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/151536848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

66 R. Bödi et al.

1 Introduction

It is a known fact that many standard (integer) linear programming formulations
of relevant problems in optimization exhibit a lot of symmetry. In this situation a
standard branch-and-cut framework repeatedly enumerates symmetric solutions, and
sometimes this renders such methods useless. To address these issues the last decade
saw a number of approaches to devise algorithms specialized to symmetric optimiza-
tion problems. We mention a few: Margot suggests to solve symmetric integer linear
programs (ILPs) via a pruned branch-and-cut approach involving techniques from
computational group theory [14,15]. A recent improvement in this direction is “orbi-
tal branching” devised by Ostrowski et al. [19]. Friedman [6] as well as Kaibel and
Pfetsch [9] treat symmetric ILPs by shrinking the domain of feasibility by cutting off
symmetric solutions. Gatermann and Parrilo apply results from representation theory
and invariant theory to semidefinite programming [7], which includes linear program-
ming as a special case. Our approach is close in spirit to that paper. See also the survey
of Margot [16] for a general overview of symmetric integer linear programming.

This is how our paper is organized: first we analyze linear programs with an arbitrary
finite group of linear automorphisms. Most results in this section are known. A first
key observation, Theorem 1, is that symmetric linear programming can be reduced to
linear programming over the fixed space of the automorphism group. Sections 3 and 4
translate these results to the context of integer linear programming. In the sequel we
concentrate on groups acting as signed permutations on the standard basis of R

n . Sec-
tion 5 contains our main contribution: our Core Point Algorithm B can solve an integer
linear program in R

n whose group of linear automorphisms contains the alternating
group of degree n (acting as signed permutations) in O(mn2) time, where m is the
number of constraints. This is in sharp contrast with the known NP-completeness of
the general integer linear programming feasibility problem. While our algorithm only
works for ILPs with an exceptionally high degree of symmetry we believe that this is
a first step towards an entire new class of algorithms dealing with symmetry in ILPs.
Suitable generalizations are the subject to ongoing research. In Sect. 6 we discuss
algorithms to determine groups of automorphisms of integer linear programs. This
leads to algorithmic problems which turn out to be graph-isomorphism-complete. The
final Sect. 8 contains experimental results. One of the ILP classes that we investigated
computationally is motivated by work of Pokutta and Stauffer on lower bounds for
Gomory-Chvátal ranks [21]. Section 7 explains the construction.

2 Automorphisms of linear programs

The purpose of this section is to introduce the notation and to collect basic facts for
future reference. The results of this section up to and including Corollary 1 can be
found in the literature which is why we skip some of the proofs.

We consider linear programs LP(A, b, c) of the form

max ct x
s.t. Ax ≤ b, x ∈ R

n (1)

123

Symmetric linear and integer programs 67

where A ∈ R
m×n, b ∈ R

m , and c ∈ R
n\{0}. Throughout we will assume that the

set P(A, b) := {x ∈ R
n | Ax ≤ b} of feasible points is not empty, and hence it is a

convex polyhedron, which may be bounded or unbounded. We will also assume that
an optimal solution exists. This is to say, our linear program LP(A, b, c) is bounded
even if the feasible region may be unbounded. In this case the set of optimal solutions
forms a non-empty face of P(A, b). Our final assumption c �= 0 is not essential for
the algorithms below, but it allows to simplify the exposition somewhat.

Each row of the matrix A corresponds to one linear inequality. Suppose that one
of these rows is the zero vector. Then the corresponding right hand side must be
non-negative, since otherwise the linear program would be infeasible, and this was
explicitly excluded above. But then this linear inequality is trivially satisfied. There-
fore we will further assume that the matrix A does not contain any zero rows. In this
case each row defines an affine hyperplane. This way LP(A, b, c) gives rise to an
arrangement H(A, b) of m labeled affine hyperplanes in R

n .

Definition 1 An automorphism of the linear program LP(A, b, c) is a linear trans-
formation in GLnR which induces a permutation of H(A, b), which leaves P(A, b)
invariant, and which does not change the objective value ct x for any feasible point
x ∈ P(A, b).

The objective function is linear, and hence it follows that an automorphism of
LP(A, b, c) does not change the objective value on the linear span lin(P(A, b)) of the
feasible points.

In [16], Margot considers coordinate permutations in the context of symmetric
integer linear programming. This is a special case of our definition of automorphisms
as coordinate permutations are induced by certain linear transformations. One could
also consider more general affine transformations by additionally taking translations
into account. In all what comes below this would require a number of straightforward
changes. We refrain from doing so for the sake of a clearer exposition. The following
examples show that the three properties to be satisfied by a linear automorphism are
mutually independent.

Example 1 For m = n = 1 let A = 1, b = 0, and c = 1. The feasible region is
the non-positive ray R≤0. Multiplication with any positive real number γ leaves the
feasible region and the hyperplane arrangement (consisting of the origin) invariant. If
γ �= 1 the objective function is not preserved.

Example 2 For m = n = 2 let

A =
(−1 0

0 −1

)
, b = 0, c =

(−1
0

)
.

Then P(A, b) is the non-negative quadrant in R
2. Now γ = (

1 0
0 −1

)
leaves the coor-

dinate hyperplane arrangement H(A, b) invariant, but it changes the feasible region.
For each x ∈ R

2 we have ct x = ctγ x .

123

68 R. Bödi et al.

Example 3 For m = 3 and n = 2 let

A =
⎛
⎝−1 0

0 −1
−1 −2

⎞
⎠ , b = 0, c = −1.

The feasible region is the non-negative quadrant in R
2; the third inequality is redundant.

The linear transformation γ = (
0 1
1 0

)
leaves the feasible region invariant, and it sat-

isfies ct x = ctγ x for all x ∈ R. However, the hyperplane arrangement H(A, b) is
changed.

For more examples see [3]. There it is also shown that each finite (permutation)
group occurs as the group of automorphisms of a linear program.

Remark 1 It is always possible to scale the rows of the extended matrix (A|b) such that
the leftmost non-zero coefficient is ±1. This allows to remove duplicate inequalities
from the input by sorting. The complexity of sorting the rows by pairwise comparison
is of order O(mn log m). This can be neglected in the asymptotic analysis of our algo-
rithms below since it is always dominated. This way we can always assume that the
hyperplanes in H(A, b), that is, the inequalities, and the rows of the extended matrix
(A|b) are in a one-to-one correspondence. In the rational case it is more natural to
scale the inequalities to integer coefficients which are coprime. This is what we will
usually do. For a more sophisticated algorithm to sort out equivalent constraints, see
Bixby and Wagner [2].

Since we view points in R
n as column vectors, a matrix γ representing a linear

transformation acts by multiplication on the left. The adjoint action on the row space,
and thus on the set of linear inequalities, is by multiplication of the inverse transpose
γ−t on the right. The set of linear transformations permuting the arrangement H(A, b)
forms a closed subgroup of GLnR, that is, a linear Lie group. Similarly, the set of lin-
ear transformations leaving the feasible region P(A, b) invariant forms a linear Lie
group. It follows that the set Aut(LP(a, b, c)) of automorphisms of the linear program
LP(A, b, c) also forms a linear Lie group. For basic facts about (linear) Lie groups,
see Rossmann [25].

Remark 2 Clearly, the value and the set of optimal solutions of a linear program only
depend on the non-redundant constraints. At the expense of one linear program per
constraint one can get rid of the redundant ones. This obviously does not help to
reduce the complexity of solving the linear program given since the linear program
for a redundancy check is of the same size. However, for more costly algorithmic prob-
lems, like integer programming as is discussed below, this reduction can be useful. In
particular, this will be the case when the group of automorphisms becomes larger, see
Example 3. Notice that the notion of “invariance” from [7, Definition 3.1], specialized
to linear programming, implies that redundant constraints are going to be ignored.

The following result is a consequence of the combinatorial properties of a convex
polytope P: the faces of P are partially ordered by inclusion, and this partially ordered

123

Symmetric linear and integer programs 69

set forms a lattice. The automorphisms of this lattice, the face lattice of P , are called
combinatorial automorphisms. Each linear (or affine or projective) automorphism of
P induces a combinatorial automorphism, but, in general, a polytope may have many
combinatorial automorphisms which are not linearly induced. See Ziegler [27] for the
details.

Lemma 1 If the feasible region P(A, b) is bounded and full-dimensional, then the
automorphism group Aut(LP(A, b, c)) is finite. Moreover, the objective function c
satisfies ctγ x = ct x for all x ∈ R

n and γ ∈ Aut(LP(A, b, c)).

Proof Let v be a vertex of the polytope P = P(A, b). Since dim P = n there are
vertices w1, w2, . . . , wn each of which shares an edge with v and such that the differ-
ence vectors w1 − v,w2 − v, . . . , wn − v form a basis of R

n . This implies that each
combinatorial automorphism of P is induced by at most one linear automorphism.
Hence the group Aut(LP(A, b, c)) is contained in the group of combinatorial auto-
morphisms of P , which is finite. While Definition 1 asks that each feasible point is
mapped to a (feasible) point with the same objective value, the additional claim deals
with all points, feasible or not. However, this follows from lin(P(A, b)) = R

n as c is
linear. ��

If the polyhedron P(A, b) is not full-dimensional, then the automorphism group
is a direct product of the group of automorphisms fixing the linear span of P(A, b)
with a full general linear group of the orthogonal complement. In the sequel we will
therefore restrict our attention to the full-dimensional case.

Definition 2 Given a subset Y ⊆ R
n and a group Γ ≤ GLR acting on Y , the set of

fixed points of Y with respect to an element γ ∈ Γ is defined by

Fixγ (Y) := {y ∈ Y | γ y = y} .

Therefore, the set of fixed points of Y with respect to Γ is given by

FixΓ (Y) := {y ∈ Y | γ y = y for all γ ∈ Γ } =
⋂
γ∈Γ

Fixγ (Y).

The set of fixed points Fixγ (Rn) is the (possibly zero-dimensional) eigenspace
Eig(γ, 1) of the linear transformation γ with respect to the eigenvalue 1. This implies
that FixΓ (Rn) is a linear subspace for any group Γ of linear transformations. More
generally, FixΓ (Y) is the intersection of this subspace with the set Y .

Remark 3 If the linear group Γ ≤ GLnR is generated by the set G ⊂ Γ , then

FixΓ (R
n) =

⋂
γ∈G

Fixγ (R
n) =

⋂
γ∈G

Eig(γ, 1).

In particular, if G is finite, that is, if the group Γ is finitely generated, this leads to an
algorithm to compute (a primal or dual basis of) the fixed space by solving one linear
system of equations per transformation in the generating set G.

123

70 R. Bödi et al.

Remark 4 Let Γ ≤ Aut(LP(A, b, c)) be a group of automorphisms of the linear pro-
gram LP(A, b, c). If the feasible region P(A, b) is bounded and full-dimensional then
the set of fixed points FixΓ (Rn) contains the one-dimensional linear subspace spanned
by the objective vector c; see Lemma 1.

For any finite set S ⊂ R
n let

β(S) := 1

|S|
∑
v∈S

v

be its barycenter. The two subsequent results are basic observations from represen-
tation theory, not restricted to applications in (linear) optimization. For a brief proof,
for instance, see [26, Lemma 3.5].

Lemma 2 The map

R
n → FixΓ (R

n), v
→ β(Γ v)

which sends a point to the barycenter of its Γ -orbit is a linear projection onto the
fixed space.

Let S ⊆ R
n be a finite set which is spanning, that is, we require lin(S) = R

n . Fur-
ther let Γ be a finite subgroup of GLnR acting on S: each element of Γ is a bijection
if restricted to S. Phrased differently, we are considering a linear representation of an
abstract group Γ on the vector space R

n which induces a permutation representation
on the set S. In this case Γ splits S into disjoint orbits O1, O2, . . . , Ok . In our appli-
cations below, S will usually be the set of vertices of some polytope which linearly
spans R

n .

Lemma 3 For the fixed space of Γ we have

FixΓ (R
n) = lin{β(O1), β(O2), . . . , β(Ok)}.

In particular, dim FixΓ (Rn) ≤ k.

Proof Since S = O1 ∪ O2 ∪ · · · ∪ Ok is spanning and since the union of the orbits
gives S it follows that

R
n = lin(O1)+ lin(O2)+ · · · + lin(Ok). (2)

For i ∈ {1, 2, . . . , k} the linear subspace lin(Oi) is Γ -invariant. If we apply the surjec-
tive linear map v
→ β(Γ v) from Lemma 2 to the set S, we obtain a generating set for
FixΓ (Rn). Applying the same map to a single orbit Oi similarly yields a generating
set for FixΓ (lin(Oi)). Now the claim follows from the equation Γ Oi = Oi . ��

Notice that the sum decomposition (2) is not necessarily direct. We now apply the
results obtained so far to a finite group of automorphisms of a linear program.

123

Symmetric linear and integer programs 71

Proposition 1 Let Γ ≤ Aut(LP(A, b, c)) be finite. If x ∈ R
n is an arbitrary point,

the barycenter of its Γ -orbit satisfies ctβ(Γ x) = ct x. If, moreover, x ∈ P(A, b) is
feasible, then β(Γ x) is feasible, too.

Geometrically this means that the points of one orbit are in the same affine
hyperplane orthogonal to c.

Proof As the objective function is constant on the orbit Γ x it follows that ctβ(Γ x) =
ct x . If x is a feasible point, then γ x is also feasible for all γ ∈ Γ . So the barycenter
β(Γ x) is a convex combination of feasible points. The claim follows as the feasible
region is convex. ��

Since we assumed that LP(A, b, c) has an optimal solution, the following is an
immediate consequence of the preceding result.

Corollary 1 There exists an optimal solution of LP(A, b, c) which is a fixed point
with respect to the entire automorphism group Aut(LP(A, b, c)).

Up to minor technical details Theorem 3.3 of [7] generalizes Corollary 1 to semi-
definite programming.

Let LP(A, b, c) be a linear program with P(A, b) bounded and full-dimensional,
and let Γ = 〈γ1, γ2, . . . , γt 〉 be a finite subgroup of Aut(LP(A, b, c)). Following
Remark 3 we can compute a matrix E such that the kernel {x | Ex = 0} is the fixed
space FixΓ (Rn): for each γi we determine a dual basis for the eigenspace {x | (γi −
id)x = 0} by solving a square system of linear equations. The total number of oper-
ations to do so is of order O(tn3). Throughout this paper we measure algorithmic
complexity in the RAM model; that is, we ignore the encoding lengths of real num-
bers, and all arithmetic operations are assumed to take constant time. The group Γ
acts on the rows of the extended matrix (A|b), and we define a new extended matrix
(A′|b′) by summing the rows of the same Γ -orbit. We have the following general
result.

Theorem 1 The polyhedron

P ′ = {
x ∈ R

n
∣∣ A′x ≤ b′, Ex = 0

}

is the set FixΓ (P(A, b)) of feasible points which is fixed under the action of Γ . In
particular, P ′ = {β(Γ x) | x ∈ P(A, b)}. Each optimal solution of the linear program

max ct x

s.t.

⎛
⎝ A′

E
−E

⎞
⎠ x ≤

⎛
⎝b′

0
0

⎞
⎠ , x ∈ R

n (3)

is an optimal solution of LP(A, b, c), and the objective values are the same.

Proof We constructed the matrix E in order to guarantee that each fixed point in
P = P(A, b) satisfies the equation Ex = 0. Further, each inequality of the system

123

72 R. Bödi et al.

A′x ≤ b′ is a positive linear combination of valid inequalities. It follows that FixΓ (P)
is contained in P ′.

To prove the reverse inclusion consider a point x which is fixed by each
transformation in Γ but which is not contained in P . Then for some index i we
have the strict inequality ai,·x > bi . Without loss of generality we can assume that
the first k rows a1,·, a2,·, . . . , ak,· of A form the Γ -orbit of the row ai,·. It follows that
b1 = b2 = · · · = bk = bi . Moreover, since x is a fixed point we have

a1,·x = a2,·x = · · · = ak,·x = ai,·x > bi .

This implies that (
∑k

j=1 a j,·)x > kbi , and hence x is not contained in P ′. We conclude
that P ′ is the set of points in P fixed by each transformation of Γ . Now Lemma 2
says that P ′ is the image of P under the map x
→ β(Γ x). The claim about the linear
program (3) follows from Corollary 1. ��
Remark 5 It has been observed by Scharlau and Schürmann1 that the vertices of the
polyhedron P ′ are barycenters of orbits of vertices of P . This is a consequence of the
fact that P ′ is the image of P under the linear map x
→ β(Γ x).

Corollary 1 and Theorem 1 yield a direct algorithm for solving a symmetric linear
program: instead of solving LP(A, b, c) one can solve the linear program (3). The
benefit is the following: the larger the group Γ ≤ Aut(LP(A, b, c)) the smaller the
dimension of the fixed space and the number of constraints.

Remark 6 Formally, the feasible points of the derived linear program live in the same
space R

n as the original linear program. However, an algorithm based on the Simplex
Method directly benefits if the solutions are contained in a proper subspace: the rows
of the matrix E describing the fixed space never have to be exchanged in a Simplex
tableau. Alternatively, one can project FixΓ (Rn) onto a full-dimensional coordinate
subspace, solve the projected linear program and lift back.

In the special case where the linear program admits a group of automorphisms
acting on the standard basis of R

n (that is, the group acts by permuting the columns)
it is standard optimization practice to identify variables in the same orbit, and to solve
the reduced linear program. Theorem 1 generalizes this approach to arbitrary groups
of automorphisms.

3 Symmetries of integer linear programs

We now turn to our main focus. Associated with LP(A, b, c) is the integer linear
program

max ct x
s.t. Ax ≤ b, x ∈ Z

n,
(4)

1 private communication.

123

Symmetric linear and integer programs 73

which we denote as ILP(A, b, c). Throughout we make the same assumptions as above:
the linear program LP(A, b, c) is feasible, the matrix A does not have any zero rows,
and the inequalities bijectively correspond to the hyperplane arrangement H(A, b);
see Remark 1.

Definition 3 A symmetry of the integer linear program ILP(A, b, c) is an automor-
phism of LP(A, b, c)which acts on the signed standard basis {±e1,±e2, . . . ,±en} of
R

n as a signed permutation.

The symmetries of the integer linear program (4) form a group Sym(ILP(A, b, c))
which is a subgroup of the group OnZ, the group of all 0/1/−1-matrices with exactly
one non-zero entry per row and column. We have OnZ = OnR ∩ GLnZ, and OnZ

is isomorphic to the Coxeter group of type Bn , the group of automorphisms of the
regular n-dimensional cube and its polar, the regular n-dimensional cross polytope.
As a consequence, the group of symmetries of an integer linear program is always
finite, even if Aut(LP(A, b, c)) is infinite.

The motivation for our definition is Lie-theoretical: let Γ be any finite subgroup of
GLnZ. Then Γ is a compact subgroup of GLnR, hence it is contained in (a conjugate
copy of) the maximal compact subgroup OnR. It follows that, up to conjugation in
GLnR, the group Γ is a subgroup of OnZ.

As an abstract group OnZ is isomorphic to the wreath product

Z2 � Sym(n) = (Z2)
n

� Sym(n),

where Z2 is the cyclic group of order two and Sym(n) is the symmetric group of
degree n; the group Sym(n) acts on the direct product (Z2)

n by permuting the factors.
Each element of OnZ can be written as a product of a sign vector and a permuta-
tion. Since a permutation is a product of disjoint cycles, each signed permutation is
a product of signed cycles which are disjoint. In terms of notation we write the signs
between the indices within a cycle. This is to say, (1+2−4+3−) denotes the signed
permutation matrix

⎛
⎜⎜⎝

0 0 −1 0
1 0 0 0
0 0 0 1
0 −1 0 0

⎞
⎟⎟⎠

which is to be multiplied to column vectors from the left.

Remark 7 In the optimization literature the authors often restrict their attention to sym-
metries permuting the standard basis vectors; for instance, see Margot [16] and the
references listed there. However, our more general analysis below shows that taking
signed permutations into account does not cause any extra effort. Moreover, if the
polyhedron P(A, b) is full-dimensional and bounded the group of automorphisms of
the linear relaxation is already finite by Lemma 1. Then Aut(LP(A, b, c)) ∩GLnZ is
already contained in OnZ (up to conjugation in GLnR) by the Lie-theoretical argument
given above. Hence, at least in this case, considering groups of signed permutations
is a natural choice.

123

74 R. Bödi et al.

Before we will inspect groups of symmetries of integer linear programs we need
to collect a few basic results on the action of the group OnZ on the entire space R

n .
Throughout let Γ be a subgroup of OnZ. Then Γ acts on the signed standard basis

S = {±e1,±e2, . . . ,±en}.

In the sequel we will always consider this particular action ofΓ . There are two kinds of
orbits to distinguish: the bipolar orbits contain at least one pair±ei , while the unipolar
orbits do not. Since Γ is a linear group, a signed permutation σ ∈ Γ with σei = εe j

and ε ∈ {±1} maps −ei to−εe j . Hence, a bipolar orbit only consists of pairs, that is,
−O = O . On the other hand, for each unipolar orbit O the set −O = {−ei | ei ∈ O}
forms another orbit, and Γ acts equivalently on O and −O .

Proposition 2 For the fixed space of Γ we have

FixΓ (R
n) = lin {β(O) | O orbit of Γ } = lin {β(O) | O unipolar orbit of Γ } .

Proof The first equality is a consequence of Lemma 3. The second equality holds as
β(O) = 0 for any bipolar orbit O . ��
Remark 8 The points in S are the vertices of the regular n-dimensional cross polytope.
If O ⊂ S is a unipolar Γ -orbit, then β(O) is the barycenter of the non-trivial face
of the cross polytope which is spanned by the vertices in O . In view of cone polarity
the action of Γ on S is dual to the induced action on the vertices of the regular cube
[−1, 1]. That is, the two corresponding representations of Γ on R

n and on its dual
space form a contra-gradient pair.

We call the action of Γ on the set of signed standard basis vectors semi-transitive
if there are precisely two opposite orbits of length n. Moreover, we call the action
sub-transitive if there is no proper coordinate subspace which is invariant under Γ .
Clearly, a semi-transitive action is necessarily sub-transitive. The converse does not
hold, but we have the following characterization.

Proposition 3 Suppose that Γ acts sub-transitively. Then either Γ acts semi-transi-
tively with orbits O and −O such that the fixed space

FixΓ (R
n) = lin(β(O)) = lin(β(−O))

is one-dimensional, or FixΓ (Rn) = 0.

Proof IfΓ has a bipolar orbit O , then O equals the entire set S of signed standard basis
vectors because Γ acts sub-transitively. In this case the fixed space reduces to the ori-
gin. If, however, each orbit is unipolar, we have exactly one pair (O,−O) of opposite
orbits, again due to sub-transitivity. Now the claim follows from Proposition 2. ��
Corollary 2 If Γ acts semi-transitively, then Γ is conjugate to a subgroup of Sym(n)
in OnZ.

123

Symmetric linear and integer programs 75

Proof Let O and −O be the two orbits of Γ , both of which have length n. Pick a
transformation ε ∈ OnZ which maps O to the standard basis {e1, e2, . . . , en}. Now for
each γ ∈ Γ the conjugate transformation εγ ε−1 leaves the sets {e1, e2, . . . , en} and
{−e1,−e2, . . . ,−en} invariant. We conclude that εΓ ε−1 is a subgroup of Sym(n).

��

We now interpret the results above for integer linear programming. Consider an
integer linear program ILP(A, b, c) such that the set P(A, b) of feasible points of
the linear relaxation is full-dimensional. Let Γ ≤ Sym(ILP(A, b, c)) be a group of
automorphisms. We have Γ ≤ OnZ. The action of Γ on the set {±e1,±e2, . . . ,±en}
can be decomposed into orbits. In this way the most relevant case occurs when Γ
acts sub-transitively. From Lemma 1 we know that c is contained in the fixed space
FixΓ (Rn), and then Proposition 3 says c �= 0 enforces the action of Γ to be semi-tran-
sitive. Finally, by Corollary 2 we can conjugate Γ into a subgroup of Sym(n) acting
on the standard basis {e1, e2, . . . , en}. This is the situation that we will be dealing with
in our algorithms below.

4 Layers of integer points

Our goal is to describe an algorithm for the efficient solution of a highly symmetric
integer linear program. Again we consider ILP(A, b, c) with a group Γ of automor-
phisms as above.

Let us assume that the objective function c �= 0 is projectively rational. This means
that we require c to be a constant real multiple of a rational vector. For such a vec-
tor c let coprime(c) be the unique integral vector with coprime coefficients such that
c = ρ coprime(c) for some positive real ρ. If c is a multiple of a standard basis vector,
the single non-zero coefficient of coprime(c) is defined to be±1. For an integer k the
kth c-layer is the affine hyperplane

Hc,k = ker (x
→ ct x)+ k

‖coprime(c)‖2 coprime(c).

We have Hc,k = Hρc,k for all ρ > 0, and H−c,k = −Hc,k = Hc,−k . All points in Hc,k

attain the same value k with respect to the rescaled objective function coprime(c).
We call k the number of the c-layer Hc,k . The intersection of Hc,k with the line Rc is
called its center.

Lemma 4 If c �= 0 is projectively rational, the integral point x ∈ Z
n is contained in

the c-layer with number coprime(c)t x .

Proof The number k = coprime(c)t x is an integer. We abbreviate d = coprime(c)
and compute

ct
(

k

‖d‖2 d

)
= ct

(
dt xd

‖d‖2
)
= dt d

‖d‖2 ct x = ct x .

123

76 R. Bödi et al.

Input: (A, b) such that Sym(ILP(A, b,1)) acts transitively on standard basis
Output: optimal solution of ILP(A, b,1) or “infeasible”

1 let z = ζ1 be a symmetric optimal solution of the LP relaxation LP(A, b,1)
2 k ← �nζ�
3 repeat
4 I ← P(A, b) ∩ H1,k ∩ Z

n

5 if I not empty then
6 let x be any point in I
7 else
8 k ← k − 1

9 until feasible (integral) x found or k < n�ζ�
10 return x or “infeasible”

Algorithm A: Reduction to 1-layers

Hence x− (k/ ‖d‖2)d is contained in the kernel of the linear form ct , that is, the point
x lies in the affine hyperplane Hc,k . ��

For the following result it is crucial that the coefficients of coprime(c) are coprime.

Proposition 4 If c �= 0 is projectively rational, the c-layers Hc,k for k ∈ Z partition
the set Z

n of all integral points.

Proof From Lemma 4 it is clear that each integral point is contained in some c-layer.
By construction it is also obvious that the c-layers are pairwise disjoint. It remains to
show that Hc,k ∩ Z

n is non-empty for all k ∈ Z.
Let d = coprime(c). Since the coefficients d1, d2, . . . , dn are coprime there are

integral coefficients x1, x2, . . . , xn such that

x1d1 + x2d2 + · · · + xndn = gcd(d1, d2, . . . , dn) = 1.

However, the left side of this equation equals ct x , whence the point x is contained in
the first c-layer Hc,1. Now ct (kx) = kct (x) = k implies that the kth layer contains
the integral point kx for arbitrary k ∈ Z. ��

Another way of putting the statement above is that coprime(c) is the unique gener-
ator of the unique minimal Hilbert basis of the one-dimensional pointed cone R≥0c.

Remark 9 An important consequence of Proposition 4 is that for any given bounds
	, u ∈ R there are only finitely many c-layers with feasible integral points whose
objective values lie between 	 and u. This does not hold if the objective function is
not projectively rational.

Theorem 2 For given A and b such that Sym(ILP(A, b,1)) acts transitively on the
standard basis the Algorithm A solves the integer linear program ILP(A, b,1).

Proof Recall that throughout we assumed that the set of feasible points of the lin-
ear relaxation is bounded. Hence it cannot occur that the integer linear program is
unbounded.

123

Symmetric linear and integer programs 77

Let Γ ≤ Sym(ILP(A, b,1)) be a transitive group of automorphisms. The fixed
space is spanned by 1. If z is an optimal solution of the relaxation LP(A, b1), then,
by Proposition 1, the barycenter β(Γ z) = ζ1 for ζ = 1/n(z1 + z2 + · · · + zn) is
also an optimal solution. Now �ζ�1 is an integral point in the fixed space with an
objective value not exceeding the optimal value of the linear programming relaxa-
tion. Each 1-layer with a feasible integral point meets the one-dimensional polyhe-
dron P ′ = {β(Γ x) | x ∈ P(A, b)}. We infer that no integral optimal solution of
ILP(A, b,1) can have an objective value strictly less than n�ζ�.

Due to Proposition 4 the 1-layers partition Z
n , and so the feasible points of

ILP(A, b, c) are contained in the set

�nζ�⋃
k=n�ζ�

H1,k .

��

The benefit of Algorithm A is that it reduces a (symmetric) n-dimensional integer
linear programming problem to n integer feasibility problems in one dimension below.
Since the latter is still an NP-complete problem not much is gained, in general. The
situation changes, however, if we assume higher degrees of transitivity for the action
of the group of automorphisms.

Remark 10 Searching a family of parallel affine hyperplanes for integer points as in
Algorithm A also plays a key role in Lenstra’s algorithm for integer linear program-
ming which requires polynomial time in fixed dimension [12].

5 Searching integer layers efficiently

The question remaining is how to test ILP-feasibility of a c-layer in an efficient way.
Our key observation is that some optimal integral solution is close to the fixed space
if the integer linear program is “highly symmetric”. For our purposes this property
becomes manifest in the degree of transitivity of its group of symmetries: a group Γ
acts μ-transitively on a set S if for any two μ-tuples (s1, . . . , sμ), (s1

′, . . . , sμ′) of
distinct elements si ∈ S and si

′ ∈ S there exists an element γ ∈ Γ such that γ si = si
′.

It is immediate that a μ-transitive action is also (μ − 1)-transitive. A 1-transitive
action is the same as a transitive action. For very regular polytopes a high degree of
transitivity on the standard basis can already imply transitivity on the vertices of the
polytope. The following example plays an important role in the algorithm below: the
(r, n)-hypersimplex
(r, n) is the 0/1-polytope with vertices

eS =
∑
i∈S

ei ,

where S ranges over all r -element subsets of [n].

123

78 R. Bödi et al.

Proposition 5 LetΓ ≤ GLnR be a linear group which actsμ-transitively on the stan-
dard basis. Then Γ acts transitively on the set of vertices of the (r, n)-hypersimplex
for any

r ∈ {0, 1, . . . , μ} ∪ {n − μ, n − μ+ 1, . . . , n}.

Proof By assumption Γ acts transitively on the r -element subsets of [n] for r ≤ μ.
Since Γ is a linear group it thus acts transitively on the set of vertices of
(r, n).
The corresponding claim for the remaining hypersimplices follows since
(r, n) is
affinely isomorphic to
(n − r, n) via the map x
→ 1− x . ��

Below we will apply the previous results in the case where μ ≥ �n/2� + 1. Then
the group acts transitively on the sets of vertices of all hypersimplices. As already
announced we are heading for integral optimal solutions close to the fixed space.

Definition 4 Given a c-layer with center z, an integral point in the c-layer is a core
point if it minimizes the distance to z.

Example 4 For the objective function c = 1 and an integer k = qn + r with q ∈ Z

and r ∈ {0, 1, . . . , n − 1}, the set of core points in the kth layer consists of all integer
points with r coefficients equal to q+1 and n−r coefficients equal to q. In particular,
the number of core points in this case equals

(n
r

)
. These core points are precisely the

vertices of the (r, n)-hypersimplex, translated by the vector q1.

Lemma 5 Let x ∈ P(A, b) be an LP-feasible point in the kth c-layer, and let γ ∈
Sym(ILP(A, b, c)) with γ x �= x. Then any point in the interior of the line segment
[x, γ x] is LP-feasible and closer to the center of the kth c-layer than x.

Proof Since γ is an orthogonal linear map it preserves distances. The center z of the
kth c-layer is fixed under γ , and this implies that (x, z, γ x) is an isosceles triangle.
We infer that ‖p − z‖ < ‖x − z‖ for all points p in the interior of [x, γ x]. Since γ
is an automorphism of the linear relaxation LP(A, b, c) the point γ x is feasible, too.
The feasible region is convex, and hence p is feasible. ��
Theorem 3 Suppose that Γ ≤ Sym(ILP(A, b,1)) acts (�n/2� + 1)-transitively on
the standard basis of R

n, and n ≥ 2. Then either each core point in the kth 1-layer is
feasible or H1,k does not contain any feasible point.

Proof Let x be a feasible integer point in the kth 1-layer which is not a core point.
We will show that there is another feasible integer point which is closer to the center,
and this will prove the claim.

Due to the invariance of Z
n under translation by integer vectors we may assume

that k ∈ {0, 1, . . . , n− 1}. Since x is not a core point, in particular, it is not the center
of the kth layer. Hence x is not contained in the fixed space R1, which means that not
all coordinates of x are the same. We split the set [n] of coordinate directions into two
subsets by considering

{i | xi is even} and {i | xi is odd}.

123

Symmetric linear and integer programs 79

Then one of the sets—denoted by I —contains at least �(n + 1)/2� elements, while
the other set J has at most �n/2� elements. We will employ the �n/2�-transitivity of
the automorphism group to control J , and the additional degree of freedom to produce
two distinct feasible integer points. We distinguish two cases.

1. Suppose that x has two coordinates xu �= xv such that xu is congruent to xv
modulo two. That is, the set {u, v} is contained in either I or J . Observe that this
condition is satisfied whenever x has at least three pairwise distinct coordinates.
Due to the (�n/2� + 1)-transitivity of Γ there is an automorphism γ ∈ Γ which
leaves J invariant and which maps u to v. Since J is invariant, its complement
I = [n]\J is invariant, too. Notice that we do not require the set J to be non-empty
(if {u, v} ⊆ I).
Letting x ′ = γ x we observe that xi and x ′i are congruent modulo two for all
i ∈ [n]. Since xu �= xv = xγ (u) = x ′u we have x �= x ′, and hence

y = 1

2
(x + x ′) = 1

2
(x + γ x)

is an integer point in the interval [x, γ x].
2. Otherwise the n coordinates of the point x attain exactly two distinct values,one of

them being even, the other one odd. Let xu and xv be two coordinates with distinct
values. Without loss of generality, xi = xu for all i ∈ I and x j = xv for all j ∈ J .
Due to the transitivity of Γ there is an automorphism γ ∈ Γ with γ eu = ev . Then
x and γ x are distinct points. Consider an interior point

y = λx + (1− λ)γ x for 0 < λ < 1 (5)

in the line segment [x, γ x]. We want to find a parameter λ such that y is inte-
gral. As x has only two distinct coordinates the i th coordinate of y can attain the
following values only:

yi = λxu + (1− λ)xu = xu or (6)

yi = λxv + (1− λ)xv = xv or (7)

yi = λxu + (1− λ)xv = λ(xu − xv)+ xv or (8)

yi = λxv + (1− λ)xu = λ(xv − xu)+ xu . (9)

Since x is integral the coordinates of types (6) and (7) are integers for arbi-
trary parameters λ ∈ (0, 1). The coordinates of types (8) and (9) are integral if
λ · |xu − xv| ∈ Z.
We assumed that x is contained in the kth 1-layer for some k = 0, 1, . . . , n − 1
and that it is not a core point. In Example 4 it has been observed that the core
points in these layers are the vertices of a translated hypersimplex. We learned

123

80 R. Bödi et al.

Input: (A, b) such that Sym(ILP(A, b,1)) acts (�n/2� + 1)-transitively on standard basis
Output: optimal solution of ILP(A, b,1) or “infeasible”

1 let z = ζ1 be a symmetric optimal solution of the LP relaxation LP(A, b,1)
2 d ← �nζ� − n�ζ�
3 repeat
4 x ← (�ζ� + 1, . . . , �ζ� + 1︸ ︷︷ ︸

d

, �ζ�, . . . , �ζ�︸ ︷︷ ︸
n−d

)

5 if x infeasible then
6 d ← d − 1

7 until feasible x found or d < 0
8 return x or “infeasible”

Algorithm B: Core point algorithm

that some coordinate difference |xi − xk |must exceed one, as x is not a core point.
Since all coefficients are equal to either xu or xv it follows that |xu − xv| ≥ 2. We
can now set

λ = 1

|xu − xv|
in the formula (5).

In both cases we obtain an integral point y in the interior of the interval [x, γ x].
By Lemma 5, such a point is always closer to the center than x . This shows that
there exists a feasible core point in the same layer as x . Applying Proposition 5 with
μ = �n/2� + 1 yields that then each core point must be feasible. ��

Now Algorithm A can be modified in Step 6 to check a single core point per
layer for feasibility, provided that the group of automorphisms of the ILP acts at least
(�n/2� + 1)-transitively. This is our Core Point Algorithm B.

Corollary 3 For given A and b such that Sym(ILP(A, b,1)) acts (�n/2�+ 1)-trans-
itively on the standard basis the Core Point Algorithm B solves the integer linear
program ILP(A, b,1) in O(mn2) time.

Proof The correctness follows from Theorems 2 and 3. The main loop of the algo-
rithm is executed at most n times. In each step the costs are dominated by checking
one point in R

n for feasibility against m linear inequalities. ��
Remark 11 The linear search in Algorithms A and B cannot be substituted by a direct
bisectional approach. The reason is that the set of all k in {0, 1, . . . , �nζ� − n�ζ�}
such that the kth 1-layer contains a feasible point is not necessarily (the set of integer
points of) an interval.

Remark 12 It is a classical result that a group acting (�n/2� + 1)-transitively on n
elements is necessarily isomorphic to the alternating group An or to the full symmetric
group Sn ; see Miller [18] and also Cameron [5] for a modern view on multiply transi-
tive group actions. Notice, however, that S5 (which is isomorphic, as an abstract group,
to the projective linear group PGL2(5)) admits an exceptional 3-transitive action on
six elements. This does not meet the requirements for Theorem 3 or its Corollary 3.

123

Symmetric linear and integer programs 81

6 Finding all symmetries

For the algorithms presented it is never necessary to know the entire group of auto-
morphisms of LP(A, b, c) or ILP(A, b, c). Generally, any subgroup will do, the larger
the better. Yet here we would like to discuss the question of how to find automor-
phisms of integer linear programs. From the input data we will construct a labeled
graph G(A, b, c) whose group of labeled automorphisms coincides with the group
Sym(ILP(A, b, c)).

Expressing symmetry in optimization via graph automorphisms is not a new idea:
the linear automorphism group of a polytope and of a linear program can be obtained
by computing the automorphism group of a certain graph as described by Bremner
et al. [4]. The combinatorial automorphisms of a polytope are the (labeled) graph auto-
morphisms of the bipartite graph encoded by the vertex-edge-incidences. This directly
follows from the fact that the face lattice of a polytope is atomic and coatomic; see
Kaibel and Schwartz [10]. Liberti studies automorphisms of optimization problems
which are more general than integer linear programs [13]. His approach, however, deals
with expression trees obtained from a specific encoding of the optimization problem.
None of these concepts seems to be directly related to the kind of symmetry studied
here. Ideas similar to ours, however, have been applied by Puget [22] for symmetry
detection in constraint programming; see also [16, §3] and, additionally, Berthold and
Pfetsch [1] for symmetries of 0/1-ILPs.

The complexity status of the graph isomorphism problem is notoriously open.
While the known algorithms for determining the automorphism group of a graph
require exponential time, there exist software packages, for instance, nauty [17] or
SymPol [24], that can solve such problems very well in practice.

For a given matrix A ∈ R
m×n , right hand side b ∈ R

m , and objective function
c ∈ R

n we will now associate two undirected simple graphs, the ILP graph G(A, b, c),
and the reduced ILP graph G′(A, b, c). For the sake of a simplified exposition we start
out by describing the reduced ILP graph. Throughout we assume that the rows of the
extended matrix (A|b) are normalized as described in Remark 1. We have one node
αi j for each position in the matrix A, one node ρi for each row, and one node ζ j

for each column, that is, (i, j) ∈ [m] × [n], where [n] = {1, 2, . . . , n}. Further, we
have one node κu for each distinct coefficient u in the matrix A, one node λv for each
distinct coefficient v of b, and one node μw for each distinct coefficient w of c. This
gives a total of mn + m + n + n A + nb + nc nodes, where n A, nb, and nc denotes
the respective number of different entries in A, b, and c. The nodes receive labels
in the following way: all positions share the same label, the rows receive a second,
and the columns a third label. Each node corresponding to one of the coefficients
receives an individual label. This way we arrive at n A+ nb+ nc+ 3 labels altogether.
The edges of G′(A, b, c) are defined as follows: the node αi j is adjacent to ρi and ζ j

as well as to the coefficient node which represents the coefficient ai j of the matrix A.
Moreover, the row node ρi is adjacent to the node λbi , and the node ζ j is adjacent to
the node μc j . This totals to 3mn + m + n edges.

To the best of our knowledge the above construction of (reduced) ILP graphs is
new. However, it bears some similarity with a construction due to Puget [22]. There

123

82 R. Bödi et al.

Fig. 1 The reduced ILP graph for (10)

the author considers constraint satisfiability problems with a finite choice for each
variable.

Example 5 The reduced ILP graph of the integer linear program

max x1 + x2 + x3
s.t. x1 + 2x2 ≤ 3

x2 + 2x3 ≤ 3
2x1 + x3 ≤ 3, xi ∈ Z

(10)

is shown in Fig. 1.

Let γ be an automorphism of G′(A, b, c) which respects all node labels. Since
the common label of the column nodes is preserved γ induces a column permutation
ψγ ∈ Sym(n). Now ψγ acts on the standard basis {e1, e2, . . . , en}, and by linear
extension we obtain a linear transformation which we denote ψ∗γ .

Lemma 6 The linear transformation ψ∗γ is a symmetry of ILP(A, b, c).

Proof As above letγ be a labeled automorphism of G′ = G′(A, b, c)with induced col-
umn permutation ψ = ψγ and linear transformation ψ∗ ∈ Sym(n) ≤ GLnR. As for
the column nodes the graph automorphism γ also induces a permutation φ ∈ Sym(m)
of the row nodes of G′. The position nodes αi j form a label class of their own, and
so they are permuted by γ as well. Since each position node is adjacent to precisely
one row and one column node we infer that γ (αi j) = αφ(i),ψ(j). Each position node
is adjacent to precisely one matrix coefficient node, each of which forms a singleton
label class. This implies that the coefficient ai j corresponding to the node αi j is the
same as the coefficient aφ(i),ψ(j). Likewise we obtain bi = bφ(i) and c j = cψ(j). This
means that ψ∗γ is a symmetry of ILP(A, b, c). ��

123

Symmetric linear and integer programs 83

Proposition 6 The map γ
→ ψ∗γ is an isomorphism from the group of labeled auto-
morphisms of the graph G′(A, b, c) to the group Sym(ILP(A, b, c)) ∩ Sym(n).

Proof We describe the inverse map. To this end let σ be a symmetry of ILP(A, b, c)
which acts on the standard basis of R

n . Hence σ induces a permutation φ of the rows
of the extended matrix (A|b) and a permutation ψ of the columns of A. It is obvious
how φ and ψ induce permutations of the row nodes and of the column nodes of G′.
By the same reasoning as in the proof of Lemma 6 the pair (φ,ψ) uniquely extends
to a labeled graph automorphism γ (σ) of the reduced ILP graph.

We omit the straightforward proofs that the equations γ (ψ∗γ) = γ and ψ∗γ (σ) = σ
both hold. From these it follows that the map γ
→ ψ∗γ is bijective. In both groups
the multiplications are given by concatenations of maps. A direct computation yields
ψ∗γ1γ2

= ψ∗γ1
ψ∗γ2

; all maps are acting on the left. Hence the group structures are
preserved. ��

We now explain how the full ILP graph G(A, b, c) differs from the reduced ILP
graph G′(A, b, c). The key to the construction of G′(A, b, c) is the map γ
→ ψ∗γ
yielding a linear transformation which acts as a permutation of the standard basis of
R

n . In order to allow for signed permutations certain nodes have to be duplicated: each
column node ζ j in G′(A, b, c) gets a twin node ζ̂ j in G(A, b, c), each matrix coeffi-
cient node αi j corresponding to a non-zero coefficient gets a twin node α̂i j . Moreover,
we add further nodes representing negatives of non-zero coefficients in the matrix A
and the objective function c unless nodes with these labels already exist. This way
ILP(A, b, c) has less than twice as many nodes as ILP′(A, b, c); it is always strictly
less as the nodes corresponding to the coefficients in b are never duplicated. We also
add edges such that first α̂i j is adjacent to ρi and ζ̂ j for all i and j , second ζ̂ j is adjacent
to μ−c j , third α̂i j is adjacent to κ−ai j , and, finally, the twins are matched up: αi j is

adjacent to α̂i j and ζ̂ j is adjacent to ζ j . The labeling is extended in a way such that
twins share the same label; the nodes newly introduced for negatives of coefficients
receive new singleton labels.

Each labeled graph automorphism of G′(A, b, c) uniquely extends to a labeled
graph automorphism of G(A, b, c), but the automorphism group of the non-reduced
ILP graph is larger, in general. We have the following result.

Theorem 4 The group of labeled graph automorphisms of G(A, b, c) is isomorphic
to the group of symmetries of ILP(A, b, c).

Proof One can follow the strategy in the proof of Proposition 6. We know that a labeled
graph automorphism of G′(A, b, c) encodes a symmetry of ILP(A, b, c) which per-
mutes the set {e1, e2, . . . , en}. Now a labeled graph automorphism of G(A, b, c) may
map a column node ζ j to some node ζ̂k . But then it follows that ζ̂ j is mapped to
ζk since ζ̂ j is the only column node adjacent to ζ j , and ζk is the only column node
adjacent to ζ̂k . This shows that the permutation of the column nodes can be extended
to a linear transformation. As in the proof of Proposition 6 one can show that this
linear transformation is a symmetry of the integer linear program. Conversely, each
such symmetry acts like a signed permutation on the signed standard basis and yields
a labeled isomorphism of the graph G(A, b, c). ��

123

84 R. Bödi et al.

Roughly speaking, a class C of graphs is graph isomorphism complete if the prob-
lem of deciding whether any two given graphs in C are isomorphic is as difficult as for
general graphs, up to a polynomial time transformation. For a precise definition, for
instance, see the monograph [11]. The next result is not only of theoretical interest.
To the contrary, for practical applications it can be read as: finding the symmetries of
an integer linear program via reducing to automorphisms of suitable (labeled) graphs,
is the right thing to do.

Theorem 5 The classes of ILP graphs and reduced ILP graphs are both graph iso-
morphism complete.

Proof We only prove that the class of reduced ILP graphs is graph isomorphism
complete. It is known that the class of bipartite graphs is graph isomorphism com-
plete. Hence it suffices to encode an arbitrary bipartite graph as a reduced ILP graph,
which is not too large.

Let G = (V, E) be an undirected bipartite graph with m+ n nodes V = U ∪W =
{u1, . . . , um}∪{w1, . . . , wn}. As our matrix AG = (ai j) ∈ R

m×n we take the bipartite
adjacency matrix of G, that is,

ai j =
{

1 if {ui , w j } ∈ E

0 otherwise.

Let G ′ be another bipartite graph. Then it is easy to see that the reduced ILP graph of
ILP(AG,1,1) is isomorphic to the reduced ILP graph of ILP(AG ′ ,1,1) if and only
if G is isomorphic to G ′. ��
Remark 13 Margot [16, §3] observes that, in general, deciding if the group of symme-
tries of an ILP is the full symmetric group is an NP-complete problem. This does not
conflict with our Theorem 5: Margot argues via NP-completeness of the ILP feasibility
problem, while we always assume that the ILPs that we consider are feasible.

Remark 14 Rehn investigates arbitrary automorphisms of the integer lattice Z
n in the

context of polyhedral geometry [23]. In particular, his modification of a backtrack-
ing algorithm of Plesken and Souvignier [20] allows to obtain matrix generators of
the group of symmetries. For practical applications this should be superior to our
approach via graph automorphisms if the number m of constraints is much larger than
the dimension n.

7 Hypertruncated cubes

In this section we will construct a specific class of highly symmetric convex poly-
topes among which one can find examples of rather high Gomory-Chvátal rank. The
motivation for this construction is rooted in the systematic study of Gomory-Chvátal
cuts and cutting-plane proof systems. Pokutta and Stauffer [21] propose a new method
for computing lower bounds on the Gomory-Chvátal rank for polytopes contained in

123

Symmetric linear and integer programs 85

the 0/1-cube, and the polytopes constructed here provide examples which asymptot-
ically almost attain the bounds obtained. The subsequent section on computational
experiments also contains results about these polytopes.

Our construction starts out with the unit cube C = [0, 1]n . Intersecting C with the
hyperplane defined by

∑
xi = r for r ∈ {2, 3, . . . , n − 1} gives the hypersimplex

(r, n) which already appeared in Example 4. Here we are interested in the (r, n)-
truncated cube C ′ = {x ∈ [0, 1]n | ∑ xi ≤ r}. Now the (r, n; λ)-hypertruncated cube
is defined as

C ′′ = conv(C ′ ∪ λ1) for λ > r/n. (11)

Notice that the full group Sym(n) acts on the cube C as well as on the truncated cube
C ′ as well as on the hypertruncated cube C ′′. Hence our algorithms above can be
applied. Our next goal is to describe the vertices and the facets of C ′′.

Proposition 7 Let n ≥ 2, r ∈ {2, 3, . . . , n − 1}, and r/n < λ < 1. The vertices of
the (r, n; λ)-hypertruncated cube C ′′ are

eS for all S ⊂ [n] with #S ≤ r and λ1.

Proof The points eS , for S ⊂ [n] and #S ≤ r , are the vertices of the (r, n)-truncated
cube C ′. They are also vertices of C ′′. Since nλ exceeds r , the hyperplane

∑
xi = nλ

does not separate C ′′, and its intersection with C ′′ only contains the point λ1. Hence
the latter is a vertex, too. Looking at the defining equation (11) shows that there cannot
be any other vertices. ��

Of course, the vertices determine the facets completely. In this case, it is particu-
larly easy to read off the facets of C ′′ by looking at the facets of C ′ and analyzing
what changes in case the point λ1 is added as a generator. This proves the claim in
[21, Remark 3.3].

Proposition 8 Let n ≥ 2, r ∈ {2, 3, . . . , n − 1}, and λ > r/n. The facets of the
(r, n; λ)-hypertruncated cube C ′′ are

xi ≥ 0, xi ≤ 1 (12)(
1− n + r

λ

)
xi +

∑
k �=i

xk ≥ r (13)

(
1− r + λ(n − 1)

)
xi + (1− λ)

∑
k �=i

xk ≤ λ(n − r) (14)

for i ∈ [n]. In particular, C ′′ has precisely 4n facets.

Proof The facets of type (12) are the facets of the unit cube C . Together with the
truncating inequality

∑
xi ≤ r they also form the facets of the truncated cube C ′.

The remaining facets of C ′′ are the facets through the vertex λ1. Each of them is the
convex hull of λ1 and a ridge of C ′ contained in the truncating facet. A ridge is a

123

86 R. Bödi et al.

face of codimension 2, that is, a facet of a facet. As pointed out above the truncating
facet is the hypersimplex
(r, n). Its facets arise from the intersection with the cube
facets. A hypersimplex facet of type {x ∈
(r, n) | xi = 0} is a deletion facet, and a
hypersimplex facet of type {x ∈
(r, n) | xi = 1} is a contraction facet. The n − 1
points rek for k �= i span an (n − 2)-dimensional affine subspace A containing the
i th deletion facet. However, these points are not contained in
(r, n). Looking for an
affine hyperplane containing A and λ1 results in a rank-1 system of linear equations.
This way we obtain the n linear inequalities of type (13). Similarly, the affine span of
a contraction ridge is generated by the n − 1 points ei + (r − 1)ek for k �= i . Via the
same approach we arrive at the n linear inequalities of type (14). ��

Remark 15 Pokutta and Stauffer [21] show that the Gomory-Chvátal ranks of the
(r, n; λ)-hypertruncated cubes for r = �n/e�, where e = 2.7172 . . . is Euler’s con-
stant, and λ = (m − 1)/m approach n/e − o(1) as m ∈ N goes to infinity. In our
experiments below we look at the case r = �n/e� and λ = 1/2, that is, m = 2. Fur-
ther experiments (not documented here) seem to suggest that the parameter m does
not have a strong impact on the computation; this is why we restrict our attention to a
fixed choice of m = 2.

8 Computational results

The following experiments were carried out on an Intel(R) Core(TM) i7 920 2.67 GHz
machine, with 12 GB of main memory, running Ubuntu 10.04 (Lucid Lynx). The per-
formance of each core is estimated at 5346.16 bogomips each. All our tests were run
single-threaded.

The goal of the experiments is to compare the performances of a conven-
tional branch-and-cut approach (with automated symmetry detection) and the Core-
Point-Algorithm B on highly symmetric integer linear programs. For the test of the
conventional branch-and-cut method we used CPLEX, Version 12.1.0, while the Core-
Point-Algorithm was implemented and tested in polymake, Version 2.9.9 [8]. As
a major difference polymake employs exact rational arithmetic (via GMP), while
CPLEX uses floating-point arithmetic. It should be stressed that CPLEX can detect if
the symmetry group of an integer linear program contains the full symmetric group
acting on the standard basis of R

n , and this is exploited in its algorithms. For input in
this category (which includes all our examples below), it is thus quite a challenge to
beat CPLEX.

8.1 Hypertruncated cubes

We tested our algorithms on the (�n/e�, n; 1/2)-hypertruncated cubes; see Remark 15.
In this case we have only 4n linear inequalities from Proposition 8 as input. Each
coefficient is small, and computationally accuracy (for floating-point computations)
or coefficient growth (for exact arithmetic) is not an issue here. This benign input
can be dealt with easily up to high dimensions. Table 1 lists the timings for CPLEX’

123

Symmetric linear and integer programs 87

Table 1 Hypertruncated cubes
d CPLEX Polymake

Time LP (s) Time IP (s) Time LP (s) Time IP (s)

100 0.00 0.07 0.01 0.08

200 0.07 0.29 0.02 0.57

300 0.19 0.73 0.03 1.88

400 0.41 1.58 0.06 4.26

500 0.90 2.99 0.10 8.39

600 1.52 4.80 0.14 14.30

700 2.21 7.01 0.18 22.29

800 3.44 11.59 0.24 32.96

900 5.17 16.37 0.31 47.11

1000 6.77 21.66 0.38 65.11

1100 8.25 26.55 0.47 85.52

1200 11.75 35.47 0.55 111.59

1300 14.05 45.63 0.65 142.76

1400 18.96 57.23 0.74 175.23

1500 23.42 73.50 0.85 217.19

1600 28.11 78.13 0.98 263.21

1700 32.07 97.23 1.11 315.38

1800 41.82 128.88 1.25 374.63

1900 44.68 137.22 1.40 444.48

2000 50.39 154.35 1.54 511.59

Branch-and-Cut and polymake’s Core Point Algorithm. The timings required to
obtain the solution of the linear relaxation are given separately for both systems.

The fact that polymake takes more time is due to the overhead induced by the
GMP exact rational arithmetic. Since coefficient growth does not occur the overhead
versus floating-point arithmetic can be estimated to be constant. Hence the roughly
quadratic overhead (in dependence of n) versus the CPLEX result is a consequence of
the total algorithmic complexity of O(mn2) from Corollary 3. Altogether both solvers
behave pretty well for these kinds of examples.

An industry strength solver as CPLEX comes with a number of bolts and whistles
which allow to tune its behavior in many ways. For the hypertruncated cubes this does
not play any role. Since no parallel implementation of the Core Point Algorithm is
available (yet) we set the number of CPLEX’ parallel threads to one.

8.2 Wild input

One way to produce symmetric input for (integer) linear optimization algorithms is
by brute force: one can take any system Ax ≤ b of linear inequalities and let the full
group Sym(n) act. This way each original inequality may give up to n! inequalities in
the resulting symmetrized system. The symmetrized system of inequalities is Sym(n)-

123

88 R. Bödi et al.

invariant by construction. In order to produce input to our algorithms which is less well
behaved than the hypertruncated cubes studied above we will apply this procedure to
a special class of polytopes, which can be considered “wild”. We aim at symmetric
polytopes with many facets whose coordinates are not so nice, but still somewhat
under control.

The first building block of our construction is the regular hexagon H whose vertices
are at distance 56/6 from the origin, that is,

H = conv

{
56

6
ekπ i/6

∣∣∣∣ k = 0, 1, . . . , 5

}
.

Notice that only in the formula above the letter ‘i’ denotes the imaginary unit, and we
identify the complex numbers with R

2. The coordinates of H are irrational; however,
the subsequent steps in the construction are chosen such that we will arrive at a rational
polytope in the end. The second item is the regular cross polytope scaled by 73/10,
that is,

C(d) = conv

{
±73

10
ei

∣∣∣∣ i ∈ [d]
}
.

Finally, we consider the join P ∗ Q of two polytopes P ⊂ R
δ and Q ⊂ R

ε, which is
defined as

P ∗ Q = conv
({
(x, 0, 1) ∈ R

δ × R
ε × R

∣∣ x ∈ P
}

∪ {
(0, y,−1) ∈ R

δ × R
ε × R

∣∣ y ∈ Q
})
.

If P and Q are full-dimensional polytopes withμ and ν vertices, respectively, the join
P ∗Q has dimension δ+ ε+1 and μ+ν vertices. For the combinatorics of P ∗Q the
exact values for the (δ+ε+1)st coordinate are inessential, as long as they are distinct.
We now replace the “−1” for the second factor by−11/12 to obtain the distorted join

J (d) = conv

({
(x, 0, 1) ∈ R

2 × R
d × R

∣∣∣ x ∈ H
}

∪
{(

0, y,−11

12

)
∈ R

2 × R
d × R

∣∣∣∣ y ∈ C(d)

})

of the hexagon H with the cross polytope C(d). This polytope is further modified
in two steps: First we perturb by rounding the (rational and irrational) coordinates to
three decimal places and treating these as exact rational numbers. Since the polytopes
H,C(d), and J (d) are simplicial this perturbation does not change the combinatorial
types. Secondly, we symmetrize the polytope by letting the group Sym(d + 3) act on
the facets of the perturbed polytope. The resulting inequalities form the input of our
second class of experiments.

The parameters 56/6, 73/10, and 11/12 which occur in the construction are cho-
sen, more or less, at random. They do not have a specific meaning. We refrain from

123

Symmetric linear and integer programs 89

Table 2 Symmetrized distorted
joins of a hexagon with
cross-polytopes

d CPLEX Polymake

Time LP (s) Time IP (s) Time LP (s) Time IP (s)

3 0.00 0.01 0.00 0.00

4 0.00 0.06 0.01 0.00

5 0.00 0.17 0.01 0.02

6 0.05 0.74 0.04 0.04

7 0.13 2.71 0.09 0.13

8 0.62 10.15 0.24 0.38

9 2.08 42.06 0.69 1.03

10 8.02 135.51 1.86 2.89

further investigating these symmetrized distorted joins and the geometry of lattice
points inside. This would be tedious and at the same time irrelevant for our purposes.

The interesting fact is that we get symmetric polytopes which are somewhat com-
plicated, because they have lots of inequalities: for instance, yielding 885,768 inequal-
ities for d = 10. As a consequence CPLEX cannot deal with these examples in a fully
automated way. The best parameter settings that we found were

Parallel thread count 1
Presolve indicator No
Feas. pump heuristic −1
RINS heuristic −1
MIP optimization emph. 2

But even with these adjustments our implementation outperformsCPLEX by a large
margin; see Table 2. This holds in spite of the fact that polymake computes with
exact rational numbers throughout.

Acknowledgments We are indebted to Tobias Achterberg, Max Horn, Leo Liberti, Marc Pfetsch, Sebas-
tian Pokutta, and Achill Schürmann for valuable discussions on various aspects of this paper. Moreover, we
would like to thank an anonymous referee for pointing out the reference [22].

References

1. Berthold, T., Pfetsch, M.E. : Detecting orbitopal symmetries. In: Fleischmann, B., Borgwardt, K.H.,
Klein, R., Tuma, A. (eds.) Operations Research Proceedings 2008, pp. 433–438. Springer, Berlin
(2009)

2. Bixby, R., Wagner, D.K.: A note on detecting simple redundancies in linear systems. OR Lett. 6(1),
15–17 (1987)

3. Bödi, R., Grundhöfer, T., Herr, K.: Symmetries of linear programs. Note Mat. 30(1), 129–132 (2010)
4. Bremner, D., Dutour Sikirić, M., Schürmann, A.: Polyhedral representation conversion up to symme-

tries. In: Polyhedral Computation, CRM Proceedings. Lecture Notes, vol. 48, pp. 45–71. American
Mathematical Society, Providence (2009)

5. Cameron, P.J.: Finite permutation groups and finite simple groups. Bull. Lond. Math. Soc. 13, 1–22
(1981)

123

90 R. Bödi et al.

6. Friedman, E.J.: Fundamental domains for integer programs with symmetries. In: Zu, Y., Zhu, B.,
Dress, A. (eds.) COCOA 2007, LNCS, vol. 4616, pp. 146–153. Springer, Berlin (2007)

7. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure
Appl. Algebra 192(1–3), 95–128 (2004). doi:10.1016/j.jpaa.2003.12.011

8. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In: Polytopes—
combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp. 43–73. Birkhäuser,
Basel (2000)

9. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1, Ser. A), 1–36
(2008). doi:10.1007/s10107-006-0081-5

10. Kaibel, V., Schwartz, A.: On the complexity of polytope isomorphism problems. Graphs Combin.
19(2), 215–230 (2003)

11. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston (1993)

12. Lenstra, H.W. Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4),
538–548 (1983). doi:10.1287/moor.8.4.538

13. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploi-
tation. Math. Program. 1–32 (2010). doi:10.1007/s10107-010-0351-0

14. Margot, F.: Pruning by isomorphism in branch-and-cut. Math. Program. 94(1, Ser. A), 71–90 (2002).
doi:10.1007/s10107-002-0358-2

15. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1–3, Ser. B), 3–21 (2003). doi:10.
1007/s10107-003-0394-6. Integer programming (Pittsburgh, PA, 2002)

16. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T., Naddef, D.,
Nemhauser, G.L., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer
Programming 1958–2008, chap. 17, pp. 647–681. Springer, Berlin (2010)

17. McKay, B.D.: Nauty (2005). http://cs.anu.edu.au/people/bdm/nauty
18. Miller, G.A.: Multiply transitive substitution groups. Trans. Am. Math. Soc. 28(2), 339–345 (1926).

doi:10.2307/1989119
19. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1, Ser. A),

147–148 (2011). doi:10.1007/s10107-009-0273-x
20. Plesken, W., Souvignier, B.: Computing isometries of lattices. J. Symb. Comput. 24(3–4), 327–334

(1997). doi:10.1006/jsco.1996.0130. Computational algebra and number theory (London, 1993)
21. Pokutta, S., Stauffer, G.: Lower bounds for the chvátal-gomory rank in the 0/1 cube. Oper. Res. Lett.

39(3), 200–203 (2011). doi:10.1016/j.orl.2011.03.001; http://www.sciencedirect.com/science/article/
pii/S0167637711000289

22. Puget, J.F.: Automatic detection of variable and value symmetries. In: van Beek, P. (ed.) Principles
and Practice of Constraint Programming—CP 2005, Lecture Notes in Computer Science, vol. 3709,
pp. 475–489. Springer, Berlin (2005). http://dx.doi.org/10.1007/11564751_36

23. Rehn, T.: Polyhedral Description Conversion Up to Symmetries. Master’s thesis, Otto-von-Guericke
Universität Magdeburg (2010). http://www.math.uni-rostock.de/~rehn/docs/diploma-thesis-ma-rehn.
pdf

24. Rehn, T., Schürmann, A.: A C++ tool for the work with symmetric polyhedra. Preliminary version
0.1.1. http://fma2.math.uni-magdeburg.de/~latgeo/sympol/sympol.html

25. Rossmann, W.: An introduction through linear groups. In: Lie Groups, Oxford Graduate Texts in
Mathematics, vol. 5. Oxford University Press, Oxford (2002)

26. Webb, P.: Finite group representations for the pure mathematician. http://www.math.umn.edu/~webb/
RepBook/index.html

27. Ziegler, G.M.: Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152. Springer, New York
(1995)

123

http://dx.doi.org/10.1016/j.jpaa.2003.12.011
http://dx.doi.org/10.1007/s10107-006-0081-5
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1007/s10107-010-0351-0
http://dx.doi.org/10.1007/s10107-002-0358-2
http://dx.doi.org/10.1007/s10107-003-0394-6
http://dx.doi.org/10.1007/s10107-003-0394-6
http://cs.anu.edu.au/people/bdm/nauty
http://dx.doi.org/10.2307/1989119
http://dx.doi.org/10.1007/s10107-009-0273-x
http://dx.doi.org/10.1006/jsco.1996.0130
http://dx.doi.org/10.1016/j.orl.2011.03.001
http://www.sciencedirect.com/science/article/pii/S0167637711000289
http://www.sciencedirect.com/science/article/pii/S0167637711000289
http://dx.doi.org/10.1007/11564751_36
http://www.math.uni-rostock.de/~rehn/docs/diploma-thesis-ma-rehn.pdf
http://www.math.uni-rostock.de/~rehn/docs/diploma-thesis-ma-rehn.pdf
http://fma2.math.uni-magdeburg.de/~latgeo/sympol/sympol.html
http://www.math.umn.edu/~webb/RepBook/index.html
http://www.math.umn.edu/~webb/RepBook/index.html

	Algorithms for highly symmetric linear and integer programs
	Abstract
	1 Introduction
	2 Automorphisms of linear programs
	3 Symmetries of integer linear programs
	4 Layers of integer points
	5 Searching integer layers efficiently
	6 Finding all symmetries
	7 Hypertruncated cubes
	8 Computational results
	8.1 Hypertruncated cubes
	8.2 Wild input

	Acknowledgments
	References

