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Abstract
We investigate mapping properties of non-centered Hardy–Littlewood maximal oper-
ators related to the exponential measure dμ(x) = exp(−|x1| − · · · − |xd |)dx in R

d .
The mean values are taken over Euclidean balls or cubes (�∞ balls) or diamonds
(�1 balls). Assuming that d ≥ 2, in the cases of cubes and diamonds we prove the
L p-boundedness for p > 1 and disprove the weak type (1, 1) estimate. The same is
proved in the case of Euclidean balls, under the restriction d ≤ 4 for the positive part.
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1 Introduction and statement of the results

Let d ≥ 1. Consider a metric measure space (Rd , ρ, dη), with a Borel measure
η which is non-negative, non-trivial and locally finite. The associated non-centered
Hardy–Littlewood maximal operator is defined by

Mη f (x) = sup
Bρ�x

1

η(Bρ)

∫
Bρ

| f | dη, x ∈ R
d ,

where the supremum is taken over all open metric balls related to ρ that contain x and
have strictly positive measure η. Here f is any Borel measurable function on Rd . The
centered variant of Mη, denoted by Mc

η , arises by restricting the supremum to balls
centered at x . Clearly, Mc

η f ≤ Mη f . Furthermore, Mη is trivially bounded on L∞.
When η is doubling, the twomaximal operators are comparable and satisfy theweak

type (1, 1) estimate with respect to η. The latter follows from a Vitali type covering
lemma, cf. [4, Chapter 2]. Then, by interpolation, Mη and Mc

η are bounded on L p(dη)

for p > 1.
It is also well known, at least for the Euclidean distance ρ, that (see e.g. [2, p. 44])

whatever the measure η is, Mc
η is always of weak type (1, 1) with respect to η, thus

also bounded on L p(dη) for p > 1. The former is a consequence of the Besicovitch–
Morse covering lemma. In dimension one the larger uncentered operator Mη behaves
in the same way (see [2, p. 45]), that is, it is weak type (1, 1) and bounded on L p(dη),
p > 1, independently of the doubling property of η. However, this is no longer true
in general in higher dimensions.

One of the authors [15] proved that for d = 2 (implicitly d ≥ 2) and either
the Euclidean or the �∞ distance ρ, and the Gaussian measure η, the weak type
(1, 1) estimate for Mη fails. Nevertheless, as shown by Forzani et al. [3], the L p-
boundedness for p > 1 in this case still holds, though the convenient interpolation
argument is inapplicable. Similar results for certain classes of rotationally invariant
measures η were established in [6, 14, 16, 17], among others. It is interesting to point
out that there are radial measures η for which Mη is not even weak type (p, p) for any
p < ∞, see [5, 6, 17].

It should be mentioned that so far non-centered Hardy–Littlewood maximal oper-
ators for non-doubling measures were studied in various settings and spaces also
different from R

d , for example in the framework of cusped manifolds [8, 9].
The main aim of this paper is to study the maximal operator Mη when the distance

ρ is the Euclidean one and for the particular exponential measure η = μ,

dμ(x) = exp
( − |x1| − · · · − |xd |

)
dx .

Our motivation is to provide both methods and results in this model case where the
measure is non-doubling and non-radial, since the literature seems to lack a basic
example of this kind. Only recently Li, Wu and one of the authors [10] considered Mη

essentially for dη(x) = ex1dx in R
d . In this case the measure, in contrast with μ, is

neither finite nor even in each variable. Moreover, it has a simple structure that makes
the associated analysis relatively straightforward.
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On non-centered maximal operators related…

The measure μ is not radial in the sense of the Euclidean distance, nevertheless it
is radial with respect to the �1 metric. Thus one might wonder whether, perhaps, the
maximal operator behaves better when ρ is the seemingly better matching �1 distance.
This issue led us to study Mμ also when ρ is the �1 metric, as well as in the opposite
extreme case where ρ is the �∞ metric.

Denote by MB
μ , MQ

μ , MD
μ the maximal operators Mμ with the underlying �2 or

�∞ or �1 metric, respectively. Note that the metric balls in the first case are just the
Euclidean balls B, and in the second case the Euclidean cubesQwith sides parallel to
the coordinate axes. The third case is geometrically somewhat more complicated, and
we call the metric balls diamonds D in this situation. Notice that in dimension d = 2
the diamonds are simply rotated cubes (or actually squares), but there is no similar
relation in higher dimensions.

Our main result is the following theorem. We strongly believe it will be an inspi-
ration for considering Mη with more general non-radial and non-doubling η, and for
further research in the future.

Theorem 1 Let d ≥ 2.

(A) None of the maximal operators MB
μ , MQ

μ , MD
μ is weak type (1, 1).

(B) The operators MQ
μ and MD

μ are bounded on L p(dμ) for p > 1. The same is true

for MB
μ , provided that d ≤ 4.

Remark 1.1 The restriction d ≤ 4 in Theorem 1(B), the case of MB
μ , is caused by

substantial technical difficulties of geometrical nature in proving the result in dimen-
sions d = 5 and higher. Nevertheless, we strongly believe that the result is true for
any d ≥ 2.

When d = 1, in view of what was said above, all the three maximal operators
coincide and are weak type (1, 1) and bounded on L p(dμ), p > 1. Note that the latter
readily implies Theorem 1(B) for MQ

μ . Indeed, due to the product structure of the

cubes MQ
μ can be controlled by a composition of the one-dimensional operators.

Theorem 1 reveals that the L p behavior of MB
μ and MQ

μ is exactly the same as
in case of their counterparts for the Gaussian measure [3, 15]. In particular, we see
that the local doubling property (see Sect. 2), satisfied by μ but not by the Gaussian
measure, does not lead here to any improvement.

An interesting but technically quite complicated problem is to generalize Theorem
1 to Laguerre-type measures of the form

dμα(x) =
d∏

i=1

|xi |αi exp
( − |xi |

)
dx, (1.1)

where α = (α1, . . . , αd) ∈ (−1,∞)d is a fixed multi-parameter. Clearly, the special
choice α = (0, . . . , 0) gives μ. The restriction of the measure space (Rd , dμα) to
(0,∞)d forms a natural environment for analysis related to the classical Laguerre
operator. Analysis of various objects in this context has already received considerable
attention; see for instance [1, 11–13] and references given there. Thus any knowledge
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A. Nowak et al.

about the non-centeredHardy–Littlewoodmaximal operatorMμα or its variants would
be potentially useful. For some negative results, see Remark 3.1 below, which says
that Mμα is not of weak type (1, 1) when the underlying metric is either �2 or �∞.

The remainingpart of the paper is devoted to the proof ofTheorem1.The subsequent
sections contain technical preliminaries, the proof of Theorem 1(A) and the proof of
Theorem 1(B), respectively.

2 Technical preliminaries

Denote Rd+ = (0,∞)d , d ≥ 1. For brevity the restriction of μ to R
d+ will be denoted

by the same symbol. We write | · |q for the �q , 1 ≤ q ≤ ∞, norm in Rd ,

|x |q =
( d∑

i=1

|xi |q
)1/q

if q < ∞, |x |∞ = max
1≤i≤d

|xi |.

Of course, this norm generates a metric ρq both in R
d and R

d+. For q = 1, 2,∞ we
denote the families of open balls in the metric measure spaces (Rd+, ρq , dμ) by D+,
B+, Q+, respectively. Notice that these are exactly diamonds, Euclidean balls and
cubes, respectively, centered in and intersected with Rd+.

Bring in the non-centered Hardy–Littlewood maximal operator

MB+
μ f (x) = sup

x∈B∈B+

1

μ(B)

∫
B

| f | dμ, x ∈ R
d+,

and analogously MQ+
μ and MD+

μ . The following elementary result shows that proving

Theorem 1 can be reduced to (actually is equivalent to) a similar analysis for MB+
μ ,

MQ+
μ and MD+

μ .

Proposition 2.1 Let d ≥ 1 and p > 1 be fixed. The operator MB
μ is bounded on

L p(Rd , dμ) (is weak type (1, 1) with respect to (Rd , dμ)) if and only if MB+
μ is

bounded on L p(Rd+, dμ) (is weak type (1, 1) with respect to (Rd+, dμ)).

The same relations hold between MQ
μ and MQ+

μ , as well as between MD
μ and MD+

μ .

Proof This is a consequence of the symmetries involved. Use either the even (more
precisely even with respect to each coordinate axis) extension to R

d of f+ on R
d+ or,

for the other implication, the decomposition of f onRd into its symmetric components
which are either even or odd with respect to each coordinate axis. ��

Thus, from now on, we focus on the restricted operators MB+
μ , MQ+

μ and MD+
μ .

This is a crucial reduction from a technical point of view, since in R
d+ the measure μ

has a simpler analytic structure than in R
d (no absolute values involved). From now

on μ will denote the restriction of the measure with density exp(−|x |1) to Rd+.
In what follows we shall write X � Y with Y > 0 to indicate that X ≤ CY

with a constant C > 0 depending only on the dimension and on p in the proofs of L p

123



On non-centered maximal operators related…

estimates, and also onα in Remarks 2.4 and 3.1.Wewrite X 	 Y when simultaneously
X � Y and Y � X .

We will occasionally refer to the strong maximal operator in Euclidean space with
Lebesgue measure. It is defined as

Mstr f (x) = sup
1

|R|
∫
R

| f (y)| dy, (2.1)

where the supremum is taken over all rectangleswith edges parallel with the coordinate
axes and containing x . It iswell known thatMstr is bounded on L p(dx) for 1 < p ≤ ∞,
as seen by iterating the one-dimensional estimate.

The following notation will be used for �1, �2 and �∞ balls in Rd+. For x ∈ R
d+ and

r > 0

D(x, r) = {
y ∈ R

d+ : |x − y|1 < r
}
,

B(x, r) = {
y ∈ R

d+ : |x − y|2 < r
}
,

Q(x, r) = {
y ∈ R

d+ : |x − y|∞ < r
}
.

Euclidean balls in all of Rd will be written as

B(x, r) = {
y ∈ R

d : |x − y|2 < r
}
.

Further, we denote

1 = (1, . . . , 1) ∈ R
d+,

�d−1+ = {
x ∈ R

d+ : |x |1 = 1
}
,

a ∨ b = max(a, b),

a ∧ b = min(a, b).

The measure μ is not doubling in (Rd+, ρq , dμ), q = 1, 2,∞; nevertheless it is
locally doubling in the following sense.

Lemma 2.2 Let d ≥ 1. Given R > 0, there exists a constant CR > 0 such that

μ
(
Q(x, 2r)

) ≤ CR μ
(
Q(x, r)

)
, x ∈ R

d+, 0 < r ≤ R. (2.2)

The same holds if Q above is replaced either by B or by D.

Proof This is elementary, since in any of the balls considered the density of μ varies
at most by a factor depending only on R. ��

Let d ≥ 1. We now give sharp estimates for the measure of large cubes, balls and
diamonds provided that they are disjoint with the boundary of Rd+. Consider a ball
in one of the three metrics �∞, �2, �1 with center x ∈ R

d+ and radius r satisfying
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1 ≤ r ≤ min1≤i≤d xi . We select a point zq = zq(x, r) in the closure of this ball where
| · |1 is minimal, i.e., the density of μ is maximal, as follows:

z∞ = x − r 1,

z2 = x − r√
d
1,

z1 = x − r

d
1.

Notice that z∞ and z2 are unique points with this minimizing property, but z1 is not.

Lemma 2.3 Let x ∈ R
d+ and 1 ≤ r ≤ xi , i = 1, . . . , d. Then the balls Q(x, r),

B(x, r) and D(x, r) are contained in Rd+ and

μ
(
Q(x, r)

) 	 exp(−|z∞|1),
μ

(
B(x, r)

) 	 exp(−|z2|1) r (d−1)/2,

μ
(
D(x, r)

) 	 exp(−|z1|1) rd−1.

The implicit constants here depend only on d.

Proof The inclusions follow, since if y is in one of the balls, then |yi − xi | < r for
each i , so that yi > 0.

The estimate for cubes is straightforward. One has

μ
(
Q(x, r)

) =
∫
Q(x,r)

exp(−|y|1) dy =
d∏

i=1

(
e−(xi−r) − e−(xi+r)

)

	 exp(−|x |1)erd = exp(−|z∞|1).

To deal with the case of Euclidean balls, observe that any point in B(x, r) can be
written as z2 + s√

d
1 + y, where s > 0 and y ⊥ 1. Using the expression for z2, we

see that this point is in B(x, r) precisely when (r − s)2 + |y|2 < r2 or equivalently
|y| <

√
2rs − s2 and 0 < s < 2r . We now integrate in y in a hyperplane orthogonal

to 1 and then in s, taking the density of μ into account. For the upper estimate, we
simply write

μ
(
B(x, r)

)
�

∫ 2r

0
exp

( − |z2|1 − √
d s

)
(2rs − s2)(d−1)/2 ds

� exp(−|z2|1)
∫ ∞

0
exp

( − √
d s

)
(rs)(d−1)/2 ds 	 exp(−|z2|1) r (d−1)/2.

To obtain the lower estimate, we observe that 2rs − s2 > rs for 0 < s < r and argue
similarly. Since r ≥ 1, we get

μ
(
B(x, r)

)
�

∫ r

0
exp

( − |z2|1 − √
d s

)
(rs)(d−1)/2 ds 	 exp(−|z2|1) r (d−1)/2.
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As for the diamonds, note that |z1|1 = |x |1 − r . For s > 0 the diameter of the
intersection of D(x, r)with the hyperplane {y : |y|1 = |x |1−r+s} isO(r). Integrating
as before, we obtain the upper estimate.

On the other hand, consider the following set

{
x − r

d
1 + s

d
1 + y : 0 < s < r/2, y ⊥ 1, |yi | <

r

2d
for i = 1, . . . , d

}
.

The �1 distance from x to a point in this set is

d∑
i=1

∣∣∣− r

d
+ s

d
+ yi

∣∣∣ =
d∑

i=1

( r
d

− s

d
− yi

)
≤ r − s < r .

Thus D(x, r) contains the set, and the lower estimate follows by integration. ��
Remark 2.4 Lemmas 2.2 and 2.3 can be generalized to the space (Rd+, ρq , dμα), where
q ∈ {1, 2,∞} and μα is the restriction of the measure defined in (1.1). This means
that μα is locally doubling (but not doubling) in the context of this space. Moreover,

μα

(
Eq(x, r)

) 	 xα1
1 · . . . · xαd

d exp(−|x |1) r (d−1)/qerd
1−1/q

uniformly in x ∈ R
d+ and 1 ≤ r ≤ min1≤i≤d xi ; here Eq(x, r) is the open ball in

(Rd+, ρq) centered at x and of radius r .
Proposition 2.1 can also be generalized in a similar spirit.

We now pass to the proof of Theorem 1. It is worth indicating that the radiality of
μ with respect to the �1 norm will be heavily exploited, often implicitly, throughout
our reasonings.

3 Proof of Theorem 1(A)

In this section we prove Theorem 1(A) working with the operators restricted to R
d+,

see Proposition 2.1. The cases of MQ+
μ and MB+

μ will be treated together, since the
argument is essentially the same. This argument has the advantage that it can be rather

easily generalized to cover MQ+
μα and MB+

μα (analogues of MQ+
μ and MB+

μ for the
measure μα), see Remark 3.1 below. Unfortunately, this argument does not apply to

MD+
μ since it uses essentially the non-radiality of themeasurewith respect to the norm.

Therefore, we give a different argument forMD+
μ , but the question of its generalization

to MD+
μα seems to be technically difficult and remains open.

Proof of Theorem 1(A), the cases of MQ
� andMB

�

We first consider the case d = 2 and then indicate the changes needed for d ≥ 3. We

begin with the operator MQ+
μ . Let Qs , s ≥ 2, denote the square centered at (s, s) and
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Fig. 1 Counterexample for MQ+
μ in dimension d = 2

of ‘radius’ s/2. Further, let Q̂s be the union of all squares obtained by moving Qs (or
rather its center) along the line segment �s which is the intersection of 1

2Qs with the
line x + y = 2s, see Fig. 1.

Assuming a contrario that MQ+
μ is of weak type (1, 1), we claim that

μ(Q̂s) � μ(Qs), s ≥ 2. (3.1)

To see this, take (x0, y0) ∈ Q̂s and find a square Q0 = Q((x ′, y′), s/2) with center
on �s and of side length s, such that (x0, y0) ∈ Q0. It is clear that 1

2Qs ⊂ Q0,
and by Lemma 2.3 μ(Q0) = μ(Qs) 	 e−s . Thus, for the L1-normalized function
χ̃ = 1

μ( 12 Qs )
χ 1

2 Qs
one has

MQ+
μ χ̃(x0, y0) ≥ 1

μ(Q0)

∫
Q0

χ̃ dμ = 1

μ(Qs)
.

We conclude that

Q̂s ⊂
{
(x, y) : MQ+

μ χ̃(x, y) ≥ 1

μ(Qs)

}
,
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Fig. 2 Counterexample for MB+
μ in dimension d = 2

hence (3.1) follows. On the other hand, since Q̂s contains the rectangle Rs with basis
�s − ( s2 ,

s
2 ) and height

√
2s, we have

μ(Q̂s) ≥
∫
Rs

e−(x+y) dxdy � s
∫ 3s

s
e−r dr � se−s .

For large s this contradicts (3.1) since, as already noted, μ(Qs) 	 e−s .
We now continue with the operator MB+

μ in dimension d = 2. Let Bs , s ≥ 1, denote
the discs with center at (s, s) and radius s/2 (thus Bs is an ordinary Euclidean disc),
and let B̂s be the union of all balls obtained by moving Bs (or rather its center) along
the line segment �̃s which is the intersection of 1

2 Bs with the line x + y = 2s, see
Fig. 2.

Again, assuming a contrario that MB+
μ is of weak type (1, 1), we claim that

μ(B̂s) � μ(Bs), s ≥ 2. (3.2)

The argument is similar to that for squares. Lemma 2.3 yields

μ(Bs) = μ
(
B((x ′, y′), s/2)

) 	 √
s e−s(2−

√
2
2 ), s ≥ 2, (x ′, y′) ∈ �̃s .
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Since B̂s contains the rectangle R̃s with basis �̃s − ( s
2
√
2
, s
2
√
2
) and height s (that

contains 1
2 Bs), we have

μ(B̂s) ≥
∫
R̃s

e−(x+y) dxdy � s
∫ (2+

√
2
2 )s

(2−
√
2
2 )s

e−r dr � se−(2−
√
2
2 )s,

which for large s contradicts (3.2).
We pass to explaining the changes necessary for d ≥ 3. Let Qs , s ≥ 1, denote the

cube centered at s1, of side length s, and let Q̂s be the union of all cubes emerging
from moving the center of Qs along the hypersegment �s obtained by intersecting
1
2Qs with the hyperplane x1+· · ·+xd = ds.With the present notation the justification

of (3.1), assuming a contrario the weak type (1, 1) of MQ+
μ , is analogous to that for

the case d = 2 and involves the estimate (see Lemma 2.3)

μ(Qs) = μ
(
Q(x ′, s/2)

) 	 e−ds/2, s ≥ 2, x ′ ∈ �s .

Now (3.1) is contradicted for large s by

μ(Q̂s) � sd−1e−ds/2.

To justify the last estimate, observe that Q̂s contains the hyperprism Rs with basis
�s − s

21 and height
√
ds. Then

μ(Q̂s) ≥
∫
Rs

e−|x |1 dx � sd−1
∫ 3ds

2

ds
2

e−r dr � sd−1e−ds/2, s ≥ 1.

Similarly, let Bs , s ≥ 1, denote the ball with center at s1 and radius s/2, and let B̂s

be the union of balls emerging from moving the center of Bs along the hypersegment
�s obtained by intersecting 1

2 Bs with the hyperplane x1 + · · · + xd = ds. Assuming

again a contrario the weak type (1, 1) of MB+
μ , we prove (3.2) in a way analogous to

that for the case d = 2 with the estimate

μ
(
B(x ′, s/2)

) 	 s
d−1
2 e−s(d−

√
d
2 ), s ≥ 2, x ′ ∈ �̃s

included. Let R̃s be the cylinder with basis �̃s − s
2
√
d
and height s that includes 1

2 Bs .

Since R̃s ⊂ B̂s , we have

μ(B̂s) ≥
∫
R̃s

e−|x |1 dx � sd−1
∫ (d+

√
d
2 )s

(d−
√
d
2 )s

e−r dr � sd−1e−(d−
√
d
2 )s .

For large s, this contradicts μ(Bs) 	 s
d−1
2 e−s(d−

√
d
2 ). This finishes the proof. ��
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Remark 3.1 In view of Remark 2.4, the above proof extends in a straightforward man-

ner to the context of the measure μα given in (1.1). Consequently, MQ+
μα and MB+

μα are
not weak type (1, 1).

Alternative condensed version of the proof of Theorem 1(A), the cases of MQ
� and

MB
�

Consider first MQ
μ . With s > 1, we choose 0 ≤ f ∈ L1(dμ) so that the measure

f dμ is a close approximation of the Dirac measure δ2s1. The cube Q(2s1+ y, s) will
contain the point 2s1 if y ⊥ 1 and |y|∞ < s, and this cube is contained in R

d+. Then
any point x ∈ Q(2 s1 + y, s) will satisfy

MQ+
μ f (x) � μ

(
Q(2s1 + y, s)

)−1 	 exp (|z∞|1), (3.3)

where we applied Lemma 2.3, and z∞ = z∞(2 s1 + y, s) = s1 + y. Notice that
|z∞|1 = ds does not depend on y. The union of these cubes taken over all admissible
points y will contain the set

{
σ1 + y : s < σ < 2s, y ⊥ 1, |y|∞ < s

}
,

whose μ measure is at least c exp (−|z∞|1) sd−1. Since (3.3) holds in this set, the
weak type (1, 1) inequality is violated for large s.

In the case of MB+
μ , we proceed similarly, with the same f but with the balls

B(2s1 + y, s) instead of the cubes. In view of Lemma 2.3, the estimate (3.3) will
now read MB+

μ f (x) � μ(B(2 s1 + y, s))−1 	 exp (|z2|1) s(1−d)/2, where z2 =
z2(2 s1 + y, s). The measure of the union of the balls will be at least constant times
exp (−|z2|1) sd−1. These two estimates together disprove the weak type inequality. ��

Proof of Theorem 1(A), the case of MD
�

Fixing a large N > 0, we now let f dμ approximate δ(0,...,0,N ) (cf. the argument for

MQ+
μ ).

Let ξ ∈ R
d+ with |ξ |1 < N , and write s = |ξ |1. To estimate MD+

μ f (ξ) from below,
we introduce a (closed) diamond D = {x ∈ R

d+ : |x − c|1 ≤ M} with ci = ξi for
i < d and cd = ξd + M . Here M > N + s. Then the points ξ and (0, . . . , 0, N ) are
both in D, and |x |1 ≥ s if x ∈ D. Since xd ≥ ξd for all points x ∈ D, one has for
h > 0

D ∩ {x : |x |1 = s + h} ⊂
{
x ∈ R

d+ : |x |1 = s + h, ξd ≤ xd
}

⊂
{
x ∈ R

d+ : xd = s + h −
d−1∑
1

xi ,
d−1∑
1

xi ≤ s + h − ξd

}
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and the (d − 1)-dimensional area of the last set here is O((s + h − ξd)
d−1), as seen

by projecting onto R
d−1. Thus

μ(D) �
∫ ∞

0
(s + h − ξd)

d−1e−s−h dh 	 (1 + s − ξd)
d−1 e−s .

This implies that MD+
μ f (ξ) � es/(1 + s − ξd)

d−1; observe that s − ξd = ∑d−1
1 ξi .

Next we choose the level λ = N 1−d eN and examine when MD+
μ f (ξ) � λ. This

occurs if 1 + (s − ξd)
d−1 � Nd−1es−N , in particular if

1 < Nd−1es−N i.e. s > N − (d − 1) log N and (s − ξd)
d−1 < Nd−1es−N .

To find points ξ ∈ R
d+ satisfying these two inequalities, we fix

|ξ |1 = s ∈ (
N − (d − 1) log N , N

)
.

We can then choose any ξi ∈ (
0, d−1 N e(s−N )/(d−1)

)
, i = 1, . . . , d − 1, and set

ξd = s − ∑d−1
1 ξi . Indeed, for such points ξ the first inequality is clear, and the

second one follows because

s − ξd =
d−1∑
1

ξi < N e(s−N )/(d−1) < s.

Here the last inequality assures that ξd is positive, and it holds since s < N implies
es s1−d < eN N 1−d for large s and N .

Keeping still s fixed, we see that the (d−1)-dimensionalmeasure of the set of points
ξ thus obtained is of order of magnitude Nd−1es−N . Varying then s, we conclude that
the μ-measure of the set of all points ξ obtained is greater than constant times

∫ N

N−(d−1) log N
Nd−1es−Ne−s ds 	 Nd−1 e−N log N = log N

λ
.

For large N , this contradicts the weak-type (1, 1) boundedness of MD+
μ . ��

4 Proof of Theorem 1(B)

As remarked in Sect. 1, the case of MQ
μ in Theorem 1(B) is an immediate consequence

of the one-dimensional result. The remaining two cases are much less straightforward
and will be treated subsequently. We shall work with the operators restricted to R

d+,
see Proposition 2.1. We make the following two preliminary reductions in proving the

L p-boundedness of MD+
μ and MB+

μ .
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Reduction 1 We may consider only diamonds (elements of D+) or balls (elements of
B+) with radii bounded from below by any fixed positive constant, due to the local
doubling property of μ, see Lemma 2.2.

Reduction 2 Among diamonds or balls remaining after Reduction 1, we may consider
only those not intersecting t�d−1+ = {x ∈ R

d+ : |x |1 = t} for 0 < t ≤ c with c > 2
arbitrary and fixed, since otherwise they have measures bounded from below (and
above) by a positive constant.

We first consider the simpler case MD+
μ . The reasoning in case of MB+

μ is more
sophisticated, because of the geometry of the balls in R

d+, especially those touching
the boundary of Rd+.

Proof of Theorem 1(B), the case of MD
�

Our aim is to prove that MD+
μ is bounded on L p(Rd+, dμ) for 1 < p < ∞. Recall

that diamonds in Rd+ are denoted

D(z, r) = {
y ∈ R

d+ : |z − y|1 < r
}
.

Here r > 0, and z will always be in R
d+.

For each x ∈ R
d we denote x0 = ∑d

1 x j . Then


t := {x ∈ R
d : x0 = t}

is a hyperplane for each t ∈ R, and we write λt for the Lebesgue measure in 
t .
Further, xt will for t > 0 denote the orthogonal projection on 
t of any point x .

Let f be a nonnegative function in L1(dμ), which we extend by 0 in Rd \Rd+. We

want to estimate MD+
μ f at a point ξ ∈ R

d+. So we take a diamond D = D(z, r) with
z ∈ R

d+ and such that ξ ∈ D, and estimate the mean

1

μ(D)

∫
D

f (y) dμ(y).

Reductions 1 and 2 allow us to assume that the quantities r and z0 −r > 2 are large. It
will be convenient to write b = z0 − r , which indicates the “bottom” of the diamond.

Denoting slices of D as Dt = D ∩ 
t , we can write this mean as

1

μ(D)

∫ b+2r

b
e−t

∫
Dt

f dλt dt . (4.1)

The inner integral here will be estimated in terms of a (d − 1)-dimensional max-
imal operator. We define V as the set consisting of the d-dimensional vector v =
(1,−1, 0, . . . , 0) and all the vectors obtained from v by permuting the coordinates.
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Proposition 4.1 For each t ∈ (b, b + 2r) there exists a (d − 1)-dimensional
parallelepiped Pt ⊂ 
t containing Dt and containing ξt such that

λt (Pt ) �
[
1 + (t − b) ∨ (ξ0 − b)

]d−1
eb μ(D)

and whose edges are all parallel to vectors in V .

Before proving this proposition, we use it to finish the proof of the L p(dμ)-

boundedness of MD+
μ . Here 1 < p < ∞.

In the iterated integral in (4.1), we extend the inner integration to Pt and insert the
factor

[1 + (t − b) ∨ (ξ0 − b)]d−1 eb μ(D)

λt (Pt )
� 1.

Thus (4.1) is controlled by

∫ b+2r

b
e−t+b [1 + (t − b) ∨ (ξ0 − b)]d−1 1

λt (Pt )

∫
Pt

f dλt dt .

The mean over Pt here can be estimated in terms of the non-centered maximal
operatorMt in 
t associated with parallelepipeds having edges with directions from
V , evaluated at ξt . So the iterated integral is at most

∫ b+2r

b
e−t+b [

1 + (t − b) ∨ (ξ0 − b)
]d−1Mt f (ξt ) dt . (4.2)

We consider the exponent −t + b here. Since ξ0 > b and t > b, we have

−t + b = ξ0

p
− t

p
− 1

p′ (t − b) − 1

p
(ξ0 − b)

≤ ξ0

p
− t

p
−

( 1

p
∧ 1

p′
) [

(t − b) ∨ (ξ0 − b)
]

≤ ξ0

p
− t

p
− c

[
(t − b) ∨ (ξ0 − b)

] − c |ξ0 − t |

with c = c(p) > 0; in the last step we used the simple fact that (t − b) ∨ (ξ0 − b) ≥
|ξ0 − t |. After inserting this estimate in the integral (4.2), we can delete the factors
e−c [(t−b)∨(ξ0−b)] [1+(t−b)∨(ξ0−b)

]d−1, and thus estimate (4.2) by constant times

∫ b+2r

b
eξ0/p e−t/p e−c |ξ0−t | Mt f (ξt ) dt .
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Now we apply Hölder’s inequality, with e−c |ξ0−t |/p′
as one factor. It follows that

(4.1) is not larger than constant times

( ∫ +∞

0
eξ0 e−t e−c |ξ0−t | [Mt f (ξt )

]p
dt

)1/p

.

Since this quantity is independent of the choice of the diamond D, it gives an upper
bound for MD+

μ f (ξ).
Integrating pth powers with respect to dμ(ξ), one obtains

∫ [
MD+

μ f (ξ)
]p

dμ(ξ) �
∫ +∞

0

∫

t

∫ +∞

0
e−t e−c |ξ0−t | [Mt f (ξt )

]p
dt dλt (ξt ) dξ0.

In the right-hand side here, we integrate first in ξt , using the fact1 that the operator
Mt is bounded on L p(dλt ) uniformly in t . Thus the triple integral is at most constant
times

∫ +∞

0

∫ +∞

0
e−t e−c |ξ0−t |

∫

t

f (ζ )p dλt (ζ ) dt dξ0.

Integrating next in ξ0, we conclude that

∫ [
MD+

μ f (ξ)
]p

dμ(ξ) �
∫ +∞

0
e−t

∫

t

f (ζ )p dλt (ζ ) dt = ‖ f ‖p
L p(dμ),

and this proves the L p(dμ)-boundedness of MD+
μ .

Proof of Proposition 4.1 We fix ξ ∈ D and t ∈ (b, b + 2r), and for convenience we
also write t = b + h = z0 − r + h with 0 < h < 2r . Further, we renumber the
coordinates so that

zd = max
1≤ j≤d

z j . (4.3)

Denote

Gt,ξ = 
t ∩ {
x ∈ R

d : ∀i xi > −|t − ξ0| and |z − x |1 < r + |t − ξ0|
}
.

Obviously Dt ⊂ Gt,ξ but also ξt ∈ Gt,ξ . Indeed, (ξt )i > (ξt )i − ξi ≥ −|ξt − ξ |1 =
−|t − ξ0| and |z − ξt |1 ≤ |z − ξ |1 + |ξ − ξt |1 < r + |t − ξ0|.
1 There are finitely many components of Mt defined by fixing the directions of the edges of the paral-
lelepipeds, and each of them is made by a linear transformation into the strong maximal operator Mstr in
R
d−1, see (2.1).
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In order to include Gt,ξ in a parallelepiped in
t , we let x ∈ Gt,ξ . Since |z− x |1 <

r + |t − ξ0| and (z − x)0 = r − h, we then have for each i = 1, . . . , d

xi − zi ≤
d∑
1

(xi − zi )+ = 1

2

[|x − z|1 − (z − x)0
]

<
1

2

(
h + |t − ξ0|

)
. (4.4)

Switching coordinates to yi = zi − xi + (h + |t − ξ0|)/2, we get

0 < yi < zi + |t − ξ0| + (h + |t − ξ0|)/2
= zi + (

h + 3|t − ξ0|
)
/2, i = 1, . . . , d.

Further, (z − x)0 = r − h implies, since yd > 0,

d−1∑
1

yi = y0 − yd = (z − x)0 + d(h + |t − ξ0|)
2

− yd < r − h + d(h + |t − ξ0|)
2

.

We need a simple lemma.

Lemma 4.2 Let m ≥ 2 and consider the set E ⊂ R
m defined by

E =
{
y ∈

m∏
1

(0, ai ) :
m∑
1

yi < R
}

for some ai , R > 0. Then E is contained in the m-dimensional rectangle

Ẽ =
m∏
1

(0, ai ∧ R),

and the Lebesgue measures satisfy |E | 	 ∣∣Ẽ∣∣ = ∏m
1 ai ∧ R.

(In expressions like the last product here, we always mean the product of the minima.)
To get the lower estimate for |E | in the lemma, one observes that E ⊃ ∏m

1 (0, (ai ∧
R)/m), and the other parts are trivial.

Let the projection τt : 
t → R
d−1 be given by suppression of the last coordinate.

The lemma, applied with m = d − 1 and in the coordinates (y1, . . . , yd−1), implies
that the projection τt (Gt,ξ ) is contained in a rectangle Ẽ inRd−1 with sides parallel to
the y (or equivalently x) coordinate axes. Then Gt,ξ is contained in τ−1

t
(
Ẽ

)
, which is

seen to be a parallelepiped Pt fulfilling the conditions of Proposition 4.1, except that
the estimate we get for its Lebesgue measure is

λt (Pt ) 	
d−1∏
1

(
zi + h + 3|t − ξ0|

2

)
∧

(
r − h + d(h + |t − ξ0|)

2

)
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�
d−1∏
1

[
zi + h + (t − b) ∨ (ξ0 − b)

] ∧ r . (4.5)

In addition to (4.5), we will deduce a similar estimate by writing first

d−1∑
1

xi = z0 − (z − x)0 − xd < z0 − r + h + |t − ξ0|.

Combining this estimate with (4.4) and applying Lemma 4.2 in the coordinates yi =
xi +|t−ξ0|, we can argue as above. As a result, we find a parallelepiped Pt containing
Gt,ξ and verifying

λt (Pt ) �
d−1∏
1

[
zi + h + (t − b) ∨ (ξ0 − b)

] ∧ (
z0 − r + h + |t − ξ0|

)
. (4.6)

Next we derive two different lower estimates for μ(D), whose validity will depend
on the condition

d−1∑
1

zi ≥ r − h. (4.7)

We shall verify that

μ(D) � e−b
d−1∏
1

(zi + 1) ∧
{

r
z0 − r

}
(4.8)

when (4.7) holds (upper), and when (4.7) is false (lower), respectively.
These two estimates will end the proof of Proposition 4.1 when combined with

(4.5) and (4.6), respectively, since

zi + h + (t − b) ∨ (ξ0 − b)

zi + 1
� 1 + (t − b) ∨ (ξ0 − b),

and

[zi + h + (t − b) ∨ (ξ0 − b)] ∧ (z0 − r + h + |t − ξ0|)
(zi + 1) ∧ (z0 − r)

� 1 + (t − b) ∨ (ξ0 − b);

recall here that z0 − r > 2, see Reduction 2.
To verify (4.8), it is enough to show that for 1 < h < 2, under relevant assumptions,

λb+h(Db+h) �
d−1∏
1

(zi + 1) ∧
{

r
z0 − r

}
, (4.9)
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because one can then integrate with respect to e−b−h dh over the interval (1, 2).
Observe that the last coordinate of any point x ∈ 
b+h is given by

xd = zd +
d−1∑
1

(zi − xi ) − r + h = z0 −
d−1∑
1

xi − r + h. (4.10)

Let h ∈ (1, 2). Aiming at the lower case in (4.9) and thus assuming (4.7) false, we
define the set

E =
{
(xi )

d−1
1 ∈ R

d−1 : 0 < xi < zi + h

2d
, i = 1, . . . , d − 1, and

d−1∑
1

xi < z0 − r

}
.

We claim that the inverse projection, or lift, τ−1
b+h(E) is contained in Db+h . Indeed, let

x ∈ τ−1
b+h(E) and consider the last coordinate xd of x . From (4.10) we conclude

xd > z0 − (z0 − r) − r + h = h and xd < z0 − r + h < zd ,

the last step since (4.7) is false. Thus x ∈ R
d+ ∩ 
b+h . Further,

|x − z|1 = (z − x)0 + 2
d∑
1

(xi − zi )+ < r − h + 2(d − 1)h

2d
< r , (4.11)

so that x ∈ D. The claim follows.
For the measures, we then get λb+h(Db+h) ≥ λb+h(τ

−1
b+h(E)) 	 |E |, where | · |

denotes Lebesgue measure in R
d−1. Lemma 4.2 yields that |E | 	 ∏d−1

1 (zi + 1) ∧
(z0 − r). This proves (4.9) and thus (4.8), for the lower lines.

Next, we verify (4.9) (upper) under the assumption (4.7); recall that 1 < h < 2.
We start with the case zd ≥ r , and here we argue almost as above. Define now

E ′ =
{
(xi )

d−1
1 ∈ R

d−1 : 0 < xi < zi + h

2d
, i = 1, . . . , d − 1, and

d−1∑
1

xi >

d−1∑
1

zi − r + h

}
.

Points in E ′ clearly satisfy

− (d − 1)h

2d
<

d−1∑
1

(zi − xi ) < r − h.

As before, we take a point x ∈ τ−1
b+h(E

′) and verify that x ∈ Db+h . From (4.10)
combined with zd ≥ r , we now get

xd > zd − (d − 1)h/(2d) − r + h > 0 and xd < zd + r − h − r + h = zd .
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It follows that x ∈ R
d+ ∩
b+h and that (4.11) remains valid. This proves the inclusion

τ−1
b+h(E

′) ⊂ Db+h .
Thus λb+h(Db+h) � |E ′|, and |E ′| can be estimated by means of Lemma 4.2

and the coordinates yi = zi − xi + h/(2d), i = 1, . . . , d − 1. Since 0 < yi <

zi +h/(2d) 	 zi +1 for each i and
∑d−1

1 yi < r −h+ (d −1)h/(2d) 	 r , the result
is |E ′| 	 ∏d−1

1 (zi + 1) ∧ r . This proves (4.9) (upper) when zd ≥ r .
In the complementary case zd < r , we can suppress ∧r in (4.9) (upper) because of

(4.3). Define s, σ ∈ R by

s
d−1∑
1

(
zi + h

2d

)
=

d−1∑
1

zi − r + h, σ

d−1∑
1

(
zi + h

2d

)
= z0 − r .

They satisfy 0 ≤ s < σ < 1, where the first inequality follows from (4.7), the second
because h < 2 < zd and the third from zd < r . Consider now the set

S =
{
x ∈ 
b+h : s

(
zi + h

2d

)
< xi < σ

(
zi + h

2d

)
, i = 1, . . . , d − 1

}
.

Clearly, any point x ∈ S satisfies

d−1∑
1

zi − r + h <

d−1∑
1

xi < z0 − r ,

so for its last coordinate, (4.10) implies 0 < h < xd < zd . Thus S ⊂ R
d+, and (4.11)

holds again, since for each i = 1, . . . , d − 1

xi − zi < (σ − 1)zi + σh/(2d) < h/(2d).

It follows that S ⊂ Db+h .
For the measures, we have

λb+h(S) 	 ∣∣τb+h(S)
∣∣ =

d−1∏
1

(σ − s)
(
zi + h

2d

)
	 (σ − s)d−1

d−1∏
1

(zi + 1).

To finish the proof of (4.9) (upper), it is enough to verify that σ − s � 1. But

σ − s = zd − h∑d−1
1 [zi + h/(2d)] � zd∑d−1

1 zi + 1
� 1,

the last inequality because of (4.3). Proposition 4.1 is proved. ��
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Proof of Theorem 1(B), the case of MB
�

Our strategy of proving the L p-boundedness of MB+
μ is heavily inspired by [10]. Thus

wefirst rotate suitably thewhole situation and then use a slicing argument togetherwith
L p-boundedness of certain standard maximal functions. The details are as follows.

Rotate simultaneously the cone Rd+ and all the objects considered (measure, trun-
cated balls, etc.) so that the rotation of �d−1+ is orthogonal to the first coordinate axis
and contained in the half-space {x ∈ R

d : x1 > 0}. Then denote by C+ the rotated
open cone, in which the rotatedmeasure is, up to amultiplicative constant and scaling,

ν(dx) = e−x1 dx .

Clearly, the above formula extends ν from C+ to all of Rd . We shall sometimes use
this extension without explicit indication. Further, denote

πξ = {x ∈ R
d : x1 = ξ}, ξ ≥ 0.

Our aim is to prove that MB+
μ is bounded on L p(Rd+, dμ) for 1 < p < ∞. After

rotation and scaling and keeping the same symbols, we consider MB+
μ as a maximal

operator acting on functions living on C+, related to the family B̃+ of truncated
Euclidean balls in R

d with centers in C+, the truncation being relative to C+. Then
the L p-boundedness concerns L p(C+, dν).

Thus it is enough that we prove the L p(dν)-boundedness, 1 < p < ∞, of the
maximal operator

M f (x) = sup
1

ν(B̃)

∫
B̃

| f | dν, (4.12)

where the supremum is taken over all truncated balls

B̃ = B̃(m, r) := B(m, r) ∩ C+,

called simply balls henceforth, such thatm ∈ C+ and x ∈ B̃. Further, we may assume
that f is non-negative and defined in all of Rd but supported in the closure of C+.

Inwhat follows points inRd will bewritten as x = (x1, x ′).We shall always assume
that the centers of balls B̃ are in C+. Given B̃, the minimum

min
{
x1 : x ∈ cl(B̃)

}

(cl meaning closure in R
d ) is taken at a unique point a = a(B̃) = (a1, a′) ∈ ∂ B̃.

We now make some preliminary observations that lead to an essential reduction of
the class of truncated balls over which the supremum in (4.12) is taken.

Observation 1 We may restrict to balls B̃(m, r) with radii uniformly bounded from
below by a positive constant, see Reduction 1 above. In addition we may assume that
a1(B̃) > 2, see Reduction 2.
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Observation 2 We may further restrict to balls B̃(m, r) such that a = a(B̃) ∈ ∂C+.
(In particular, we exclude untruncated balls B̃ = B(m, r) entirely contained in C+.)
Indeed, if a /∈ ∂C+, i.e., a is in (the interior of) C+, then m1 = a1 + r and m′ = a′,
and one considers the following two complementary cases.

If 1 � √
r < a1, then ν(B̃(m, r)) 	 r (d−1)/2e−a1 	 ν(B(m, r)) (for the last

relation, see the proof of Lemma 2.3) and the result is a simple consequence of [10,
Theorem 3].

On the other hand, letting M0 be that part of the maximal operator M given by
restricting the supremum in (4.12) to balls B̃(m, r) remaining after Observation 1 and
such that a(B̃) /∈ ∂C+ and a1 ≤ √

r , we have the following.
Claim M0 is L p(dν)-bounded for 1 < p < ∞.

To justify the Claim, notice that any B̃ under consideration contains a cylinder
parallel to the x1 axis, with one face contained in πa1+1, of essentially unit width and
radius comparable to a1, so ν(B̃) � ad−1

1 e−a1 . Given that, consider the projections

dτ(x1) = xd−1
1 e−x1 dx1,

F(x1) = 1

xd−1
1

∫
πx1∩C+

f (x1, x
′) dx ′,

of dν and f , respectively, on the x1 axis (here we omit multiplicative constants, which
are irrelevant for the argument). Notice that

∫
f dν = ∫

Fdτ . Thus we have

1

ν(B̃)

∫
B̃
f dν � 1

τ(Ia1)

∫
Ia1

F dτ,

where Ia1 = (a1,∞). Now observe that the one-dimensional maximal operator

g(s) �→ sup
I�s

1

τ(I )

∫
I
g dτ

(the supremum taken over all intervals I ⊂ R+ such that s ∈ I ) is of weak type
(1, 1) with respect to the measure space (R+, dτ), and it controls M0. Therefore M0
is of weak type (1, 1) with respect to (C+, dν), and the L p(dν)-boundedness of M0
follows by interpolation with the L∞-boundedness. This finishes proving the Claim
and ends Observation 2.

Summing up, in the analysis of (4.12) we may assume that B̃ = B̃(m, r) is a ball
such that m ∈ C+ and

r >
√
d, a1 > 2, a ∈ ∂C+. (4.13)

By convention, we define the supremum in (4.12) as zero if there is no admissible ball
B̃ containing x .

We shall first prove the result in the simplest situation when the dimension d = 2.
This will give us some intuition needed for higher dimensions.
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Fig. 3 The situation for d = 2

Dimension d = 2 When d = 2 we write points simply x = (x1, x2) rather than
x = (x1, x ′). Our rotated cone is C+ = {x ∈ R

2 : |x2| < x1}. We can assume
that the balls B̃(m, r) under consideration are such that m2 ≥ 0, by symmetry. Then
a(B̃) = (a, a) with a > 2, and also r >

√
2 and m2 ≥ a; see (4.13). Notice that

r/
√
2 < m1 − a ≤ r and, of course,

(m1 − a)2 + (m2 − a)2 = r2. (4.14)

See Fig. 3.
We shall now split into cases. In each case, we consider the maximal operator

obtained by imposing some conditions on B̃, in addition to (4.13).
Case 1 B̃ contains the point (a+1, 0). Then ν(B̃) � ae−a, since B̃ contains a rectangle
of unit width and height a, with one of the vertical edges contained in πa+1. Thus the
projection argument from Observation 2 gives the desired conclusion.
Case 2 B̃ does not contain the point (a + 1, 0). We first find the lower intersection
of the line x1 = a + h, 0 < h ≤ r/

√
2, with ∂B, denoted (a + h, a − ξ); here B is

the untruncated prototype of B̃ and ξ = ξ(h) > 0. Notice that the condition defining
Case 2 can be written as ξ(1) ≤ a.

We have

(m1 − a − h)2 + (m2 − a + ξ)2 = r2.
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Subtracting (4.14) from this equation leads to

ξ2 + 2(m2 − a)ξ − 2(m1 − a)h + h2 = 0.

Dividing by ξ2, solving for 1/ξ and taking into account that ξ > 0, we get

ξ = 2(m1 − a)h − h2

m2 − a + √
(m2 − a)2 + 2(m1 − a)h − h2

.

Note that h < m1 − a (recall that r/
√
2 ≤ m1 − a < r ). Then 2(m1 − a)h − h2 	

(m1 − a)h 	 rh. Consequently,

ξ(h) 	 rh

m2 − a + √
rh

	 rh

m2 − a
∧ √

rh, 0 < h ≤ r/
√
2. (4.15)

To estimate ν(B̃) from below, observe that B̃ contains the triangle T whose vertices
are (a, a), (a+ 1, a− ξ(1)) and (a+ 1, a), and ν(T ) 	 ξ(1)e−a. Thus (4.15) implies

ν(B̃) � ξ(1)e−a 	
( r

m2 − a
∧ √

r
)
e−a. (4.16)

Next, we consider all h > 0 and estimate from above the measures of the
intersections πa+h ∩ shw B̃, where

shw B̃ := B̃ + (
R+ × {0})

is the shadow of B̃ in the positive x1 direction. By the geometry of the situation and
(4.15), observing also that m2 − a < r/

√
2, we have

∣∣πa+h ∩ shw B̃
∣∣ ≤

{
ξ(h) + h, h ≤ r/

√
2

2r , h > r/
√
2

}

�
{

rh
m2−a ∧ √

rh, h ≤ r/
√
2

r , h > r/
√
2

}
, h > 0.

Using this together with (4.16), by an elementary analysis of cases we see that

|πa+h ∩ shw B̃|
eaν(B̃)

�
{√

h + h, h ≤ r/
√
2√

r + r , h > r/
√
2

}
�

√
h + h � 1 + h, h > 0,

(4.17)

uniformly in a and B̃.
Now, let M2 be the part of the maximal operator (4.12) under consideration, i.e.,

with the supremum taken only over balls B̃ considered in Case 2. We will apply the
slicing argument from [10].
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Similarly as in [10], consider the unit slices

Si = {x ∈ C+ : i < x1 ≤ i + 1}, i ≥ 1.

In Si one has e−i−1dx ≤ dν(x) ≤ e−i dx . Let

Mk
2 f (x) =

∑
j−i=k

χS j (x)M2( f χSi )(x).

Since M2 f ≤ ∑
k∈Z Mk

2 f , it is enough to prove that ‖Mk
2 f ‖L p(dν) �

2−δ|k|/p‖ f ‖L p(dν) with some δ > 0, because then one can sum the estimates and
get the conclusion. Thus we must show that

∫
S j

[
M2( f χSi )

]p
dν � e−δ| j−i |

∫
Si

f p dν, i, j ≥ 1. (4.18)

With i, j ≥ 1, we let x ∈ S j and B̃ be a ball containing x , and we will estimate
first the mean

1

ν(B̃)

∫
B̃

χSi (y) f (y) dν(y).

In our situation x ∈ B̃ ∩ S j and y ∈ B̃ ∩ Si . Observing that the sets {z2 ∈ R :
∃z1 (z1, z2) ∈ πa+h ∩ shw B̃} form an increasing family of intervals with respect to
h > 0, we get

|y2 − x2| ≤ ∣∣πi+1 ∩ shw B̃
∣∣ ∨ ∣∣π j+1 ∩ shw B̃

∣∣ = ∣∣πi∨ j+1 ∩ shw B̃
∣∣;

notice that here i, j ≥ 1 ∨ (a − 1) = a − 1. Then, using (4.17), we obtain

1

ν(B̃)

∫
B̃

χSi (y) f (y) dν(y)

≤ 1

ν(B̃)

∫ i+1

i
e−i

∫
|y2−x2|<|πi∨ j+1∩ shw B̃|

f (y1, y2) dy2 dy1

≤ 2
|πi∨ j+1 ∩ shw B̃|

ν(B̃)

∫ i+1

i
e−i

∫ i+1

i
M f (y1, x2) dy1

�
[
1 + (i ∨ j − a + 1)

]
ea−i

∫ i+1

i
M f (y1, x2) dy1, (4.19)

where the implicit multiplicative constant is independent of i, j ≥ a − 1, the ball B̃
and the point x ∈ B̃ ∩ S j , and of f . Here M is the one-dimensional non-centered
Hardy–Littlewood maximal function acting on the second coordinate. Note thatM is
bounded on L p(R, dx2) for p > 1.
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We now estimate the factor in front of the integral in (4.19). Write

a − i − 1 = j − i

p
− 1

p′ (i − a + 1) − 1

p
( j − a + 1) ≤ j − i

p

−
( 1

p
∧ 1

p′
)
[i ∨ j − a + 1],

where the last inequality follows from the bound i ∧ j ≥ a − 1. Thus

[
1 + (i ∨ j − a + 1)

]
ea−i ≤ e j/p−i/p+1e−2ε[i∨ j−a+1][1 + (i ∨ j − a + 1)]

� e j/p−i/pe−ε[i∨ j−a+1]

≤ e j/p−i/pe−ε|i− j |,

with ε = 1
2 (

1
p ∧ 1

p′ ), uniformly in a > 2 and i, j ≥ a − 1.
With the bound just obtained, taking the supremum of the left-hand side of (4.19)

and using Hölder’s inequality on the right-hand side there, we arrive at

χS j (x)M2( f χSi )(x) � e j/p−i/pe−ε|i− j |χS j (x)

( ∫
i<y1<i+1

[M f (y1, x2)
]p

dy1

)1/p

.

Raising to power p and integrating this estimate in x = (x1, x2) ∈ S j we further get

∫
S j

[
M2( f χSi )(x)

]p
e− j dx

� e−ε p| j−i |
∫
i<y1<i+1

∫
S j

[M f (y1, x2)
]p

dx1 dx2 e
−i dy1.

Finally, we use the L p-boundedness of M to write

∫
R

[M f (y1, x2)
]p

dx2 �
∫
R

f p(y1, y2) dy2, y1 ∈ (i, i + 1),

and (4.18) with δ = ε p follows. This finishes the proof in the case of dimension d = 2.

Remark Cases 1 and 2 considered above can be merged. Indeed, right after (4.14) one
can estimate ξ(h), as it was done in Case 2, getting (4.15). Then it follows that

ν(B̃) �
[
a ∧ ξ(1)

]
e−a 	

(
a ∧ r

m2 − a
∧ √

r
)
e−a.

Further, we can estimate measures of the intersections πa+h ∩ shw B̃ as (observe that
the expression 2(a + h) appears as the measure of C+ ∩ πa+h)

∣∣πa+h ∩ shw B̃
∣∣ ≤

{
2(a + h) ∧ (ξ(h) + h), h ≤ r/

√
2

2r , h > r/
√
2

}
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Fig. 4 Positions of a and m, d = 3

�
{

(a + h) ∧ rh
m2−a ∧ √

rh, h ≤ r/
√
2

r , h > r/
√
2

}
, h > 0.

Using this together with an elementary analysis of cases we get the key bound

|πa+h ∩ shw B̃|
eaν(B̃)

� 1 + h, h > 0,

uniformly in a and B̃. From here the slicing argument goes as described in Case 2
above.

Dimension d = 3 From now on we will write points x = (x1, x ′), with x1 > 0 and
x ′ ∈ R

2. Our fixed rotated cone C+ is contained in R+ × R
2, its vertex is the origin

of R3, and its central axis is the Ox1 axis. For any ξ > 0, the intersection C+ ∩ πξ is
an open equilateral triangle of side

√
6 ξ .

In order to estimate M f defined in (4.12), we let B̃ = B̃(m, r) be a truncated ball
with m ∈ C+ verifying (4.13).

For any set E ⊂ R
3, we define its shadow in the direction of the x1 axis as

shw E := E + {(s, 0, 0) : s > 0}.

We claim that

1 < r/
√
3 ≤ m1 − a1 ≤ r , (4.20)

where only the second inequality needs to be verified. For this we fix m1 and a1 and
use Fig. 4.

Each part of this figure shows the triangles πa1 ∩ ∂C+ and πm1 ∩ ∂C+, and inside
the latter the triangle πm1 ∩ shw(πa1 ∩ ∂C+). Notice that the point m cannot be in the
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Fig. 5 The plane πa1 , d = 3

interior of this last triangle, since a is on the boundary of C+. Given the position of
a, the figure illustrates the possible positions of m. To the left, a is on an open face
of the cone C+, and then m is seen to be in the short, closed segment indicated. In
the right-hand part of the figure, a is on an edge of C+, and m has to belong to the
closed quadrilateral marked in the figure. From this, we see that the minimal value of
the quotient (m1 − a1)/r = (m1 − a1)/|m − a| occurs when a and m are situated on
the same edge of C+, and then the quotient equals 1/

√
3. We have verified the claim

(4.20).
For 0 ≤ h < r + (m1 − a1) we define

Ch = {
x ′ ∈ R

2 : (a1 + h, x ′) ∈ C+
}

and Bh = {
x ′ ∈ R

2 : (a1 + h, x ′) ∈ B
}
,

with B = B(m, r). Observe that Bh would be empty if defined in this way for h ≥
r + (m1 − a1).
Case I a(B̃) lies on an edge of C+.

We intersect C+ and B with πa1 , see Fig. 5.
Then C0 is an equilateral triangle with one vertex at a′, and B0 is an open disc with

center m′ and radius R satisfying

(m1 − a1)
2 + R2 = r2. (4.21)

The definition of a implies that a′ ∈ ∂B0 ∩ ∂C0 and also that the tangent line, denoted
t , to B0 through a′ does not intersect C0. Thus R = |a′ − m′|.
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Fig. 6 The plane πa1+h (formally, here C0 = shw(C+ ∩ πa1 ) ∩ πa1+1), d = 3

The point a′ is the endpoint of two edges of C0, and we consider the angles at a′
between t and these two edges. Let β denote the smallest such angle and let e1 be the
corresponding edge. Then 0 ≤ β ≤ π/3, and the other edge e2 forms the angle of
β + π/3 with the same tangent.

We now consider the intersection of B and shw(C+ ∩ πa1) with the plane πa1+h ,
assuming that 0 < h ≤ r/

√
3; see Fig. 6. Then a′ is an inner point of the disc Bh .

From a′ we move first along the edge e1 and then possibly continue beyond it in
the same direction until we hit ∂Bh , say at distance ph from a′. Then

(m1 − a1 − h)2 + p2h cos
2 β + (R + ph sin β)2 = r2. (4.22)

Subtracting (4.21), we get

p2h + 2ph R sin β − 2(m1 − a1)h + h2 = 0.

We rewrite this as a quadratic equation in 1/ph which we solve, getting

ph = 2(m1 − a1)h − h2√
R2 sin2 β + 2(m1 − a1)h − h2 + R sin β

.
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Since h ≤ r/
√
3 < m1 − a1 ≤ r , we see that

ph 	 (m1 − a1)h√
(m1 − a1)h + R sin β

	 rh√
rh + R sin β

	 √
rh ∧ rh

R sin β
. (4.23)

We next repeat the above, but moving in the direction of e2 until we leave Bh , after
covering a distance qh , say. The same argument applies, but instead of β we have
β + π/3 ∈ [π/3, 2π/3]. The result is

qh 	 √
rh ∧ rh

R
. (4.24)

We now estimate the measure of B̃ from below. Consider for the time being only
h ∈ (1/2, 1). Then ph 	 p1 and qh 	 q1. Thus we can find one point on each edge e1
and e2 belonging to the closure of Bh ∩ Ch whose distance from a′ is comparable to
a1 ∧ p1 and a1 ∧ q1, respectively (recall that |e1| = |e2| 	 a1). The triangle formed
by these two points and a′ is also contained in Bh ∩ Ch by convexity, and its area is
comparable to (a1 ∧ p1)(a1 ∧ q1). Integrating over 1/2 < h < 1, we see that

ν(B̃) � (a1 ∧ p1)(a1 ∧ q1)e
−a1 . (4.25)

Next, we consider all h ∈ (0, r + (m1 − a1)). We shall need the following.

Proposition 4.3 There is an increasing family of parallelograms {Ph : 0 < h <

r + (m1 − a1)} in R2 with sides parallel to e1 and e2 and side lengths controlled (up
to multiplicative absolute constants) by (a1 + h)∧ ph and (a1 + h)∧qh, respectively,
in case 0 < h ≤ r/3, and by r in case h > r/3, such that Bh ∩ Ch ⊂ Ph for
0 < h < r + (m1 − a1).

Proof Consider first h ≤ r/3. The triangle Ch is a concentric scaling of C0, and all
its points have a distance of at most

√
2 h from C0. In particular, Ch has a vertex a′

h ,
corresponding to a′, which is at the distance

√
2 h sin(β + π/6) from t , and at the

distance
√
2 h cos(β + π/6) from the line perpendicular to t and passing through a′

(and m′); see Fig. 7.
Bring in the “vertical coordinate”

τ(x ′) = 〈x ′ − m′, a′ − m′〉 (4.26)

in the plane πa1+h .
We take asPh the smallest open parallelogramhaving one vertex at a′

h , sides parallel
to e1 and e2, and containing Bh ∩ Ch . Then we must show that the side lengths of Ph

are controlled by (a1 + h) ∧ ph and (a1 + h) ∧ qh . We shall separate the cases when
a′
h lies below or above the level of m′, see Fig. 7.
Assume first that τ(a′

h) ≤ 0, i.e., a′
h does not exceed the level of m′. This means

that
√
2 h sin(β + π/6) ≥ |a′ −m′| = R, which implies h ≥ R/

√
2. In this situation,

see (4.23) and (4.24), one has ph 	 √
rh 	 qh . On the other hand, the radius of Bh is

also comparable with R + qh 	 √
rh.
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Fig. 7 The plane πa1+h (formally, here C0 = shw(C+ ∩ πa1 ) ∩ πa1+1), d = 3

Now, observe that the edges of Ph have lengths controlled by the quantity

(side length of Ch) ∧ (radius of Bh),

thus by (a1 + h) ∧ √
rh 	 (a1 + h) ∧ ph 	 (a1 + h) ∧ qh , as desired.

Next, assume that τ(a′
h) > 0, i.e., a′

h is above the level of m
′. We shall construct a

parallelogram P∗
h containing Ph , having vertex at a′

h and sides parallel to e1 and e2,
whose side lengths satisfy the desired estimates. Clearly, this will be enough for our
purpose.

In the plane πa1+h , let w be the line through a′
h parallel to t . Define u to be the line

parallel to w given by u = {x ′ : τ(x ′) = (supBh τ) ∧ (supCh
τ)}. Observe that two

cases may occur (call them (a) and (b), respectively): u is tangent to Bh (if the last
minimum is realized by supBh τ , see Fig. 7) or u passes through the vertex of Ch of
maximal distance from w.

The intersection Bh ∩ Ch is contained in the band between w and u. In case (a),
the width of this band, see Fig. 7, is not larger than (actually comparable with) qh +√
2 h sin(β + π/6), and this quantity, in view of (4.24), is comparable to qh . In case

(b), the width of this band is comparable with the side length of Ch , i.e., with a1 + h.
Now consider the segment along the e2 directionwith one endpoint at a′

h , andwhose
other endpoint lies on u. Since e2 forms the angle β + π/3 with u, which is separated
from 0, the segment in question has length comparable with the width of the band,
thus with (a1 + h) ∧ qh . We take this segment as a side of our P∗

h .
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As the other side of P∗
h we shall take the segment along the e1 direction with one

endpoint at a′
h , and the other endpoint b′

h lies either on the boundary of Bh , inside
the band, or is the vertex of Ch in case Bh is so large that ∂Bh does not cross this
(e1-directed) side of Ch . See again Fig. 7. Denote by ph the length of this segment.
Clearly, ph is comparable with a1 + h in case b′

h is the vertex. Assuming the other
case b′

h ∈ ∂Bh , we will show that ph is comparable to ph , a fact that is intuitively
clear from the picture. Since P∗

h just defined contains2 Bh ∩ Ch , this will finish the
reasoning when h ≤ r/3.

Observe that, cf. (4.22),

(m1 − a1 − h)2 + (
ph cosβ − √

2 h cos(β + π/6)
)2

+(
ph sin β + R − √

2 h sin(β + π/6)
)2 = r2.

Subtracting (4.21) and solving for 1/ph (see the analysis leading from (4.22)
to (4.23)), we get after some elementary computations and applications of basic
trigonometric identities

ph = 2(m1 − a1)h + 2
√
2Rh sin(β + π/6) − 3h2√

R2 sin2 β + 2h(m1 − a1) + √
2Rh cosβ − 3h2/2 + R sin β − √

2
√
3 h/2

.

Then, recalling that r/
√
3 < m1 − a1 ≤ r , R < r and h ≤ r/3, we arrive at

ph 	 rh

R sin β
∧ √

rh 	 ph .

Considering h > r/3, take as Ph the smallest (open) parallelogram, with sides
parallel to e1 and e2, containing both Pr/3 and Bm1−a1 . This parallelogram has side
lengths comparable to r , by the geometry of the situation.

The fact that the family {Ph : h > 0} is increasing is clear from the construction.
Proposition 4.3 follows. ��

In view of (4.25), for Ph from Proposition 4.3 we have the bound

|Ph |
ea1ν(B̃)

�
{ [(a1+h)∧ph ][(a1+h)∧qh ]

(a1∧p1)(a1∧q1) , 0 < h ≤ r/3,
r2

(a1∧p1)(a1∧q1) , h > r/3.

To estimate the right-hand side here we use (4.23) and (4.24), and apply an elementary
analysis of cases. Considering h ≤ r/3, if a1 ∧ p1 = a1, then (recall that a1 > 2)

(a1 + h) ∧ ph
a1 ∧ p1

≤ a1 + h

a1
< 1 + h;

2 This inclusion is seen from the geometry of the situation, see Fig. 7. Perhaps the least obvious point is
to ensure that in the case when b′

h ∈ ∂Bh the edge of P∗
h starting at b′

h and parallel to e2 does not cross
Bh . Indeed, this is true since the outward normal of Bh at b′

h enters into Ch . Thus the angle between this
normal and e2 is less than π/3, and the inclusion follows.
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if a1 ∧ p1 = p1, then

(a1 + h) ∧ ph
a1 ∧ p1

≤ ph
p1

	
rh

R sin β
∧ √

rh
r

R sin β
∧ √

r
≤ h ∨ √

h � 1 + h.

For h > r/3 we have

r

a1 ∧ p1
	 r

a1 ∧ r
R sin β

∧ √
r

≤ r ∨ (R sin β) ∨ √
r � 1 + h.

The factors involving qh are treated similarly. Thus we arrive at the key bound

|Ph |
ea1ν(B̃)

� 1 + h2, h > 0, (4.27)

uniformly in a1 and B̃.
We are now in a position to apply the slicing argument. Let M be the part of the

maximal operator (4.12) under consideration. As in dimension 2, we define Si for
i ≥ 1 as {x ∈ C+ : i < x1 ≤ i + 1}, and in Si , e−i−1dx ≤ dν(x) < e−i dx . It is
enough to prove that for some constant δ > 0

∫
S j

[
M( f χSi )

]p
dν � e−δ| j−i |

∫
Si

f p dν, i, j ≥ 1, (4.28)

see (4.18) and the preceding comments.
To prove (4.28), let i, j ≥ 1. Let x ∈ B̃ ∩ S j and y ∈ B̃ ∩ Si . Proposition 4.3 tells

us that x ′ and y′ are contained in a certain parallelogram Ph , and both parallelograms
are contained in the one given by Proposition 4.3 with h = (i −a1+1)∨ ( j −a1+1);
notice that here i, j ≥ a − 1. Define

M′g(z) = sup
1

|P|
∫
P

|g(w)| dw,

for any locally integrable function g in R
2, where the supremum is taken over all

parallelograms P containing z and with sides parallel to two sides of the triangle C0,
and |P| denotes the area of P . Then we can write the estimate

1

ν(B̃)

∫
B̃

χSi (y) f (y) dν(y) ≤ 1

ν(B̃)
e−i |Pi∨ j−a1+1|

∫ i+1

i
M′ f (y1, x ′) dy1.

(4.29)

Note thatM′ is bounded on L p(R2) for 1 < p < ∞. Indeed,M′ splits naturally into
three components, each determined by two edges of C0. Then a linear transformation
makes each component coincide with the strong maximal operator Mstr in R2.
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Fig. 8 The plane πa1 in Case II, d = 3

Combining (4.29) with (4.27) we obtain

1

ν(B̃)

∫
B̃

χSi (y) f (y) dν(y) � ea1−i [1 + (i ∨ j − a1 + 1)2
] ∫ i+1

i
M′ f (y1, x ′) dy1.

This is an analogue of (4.19). From here one proceeds as before, arguing as done after
(4.19), getting L p(dν)-boundedness of the considered part of our maximal operator.
Case II a(B̃) lies on a face of C+.

Then a′ is an inner point of a side of the triangle C0; see Fig. 8.
We split C0 into its intersections with three two-dimensional cones, by introducing

two rays from a′ forming angles of π/3 with the side of C0. Then we apply the
arguments from Case I, using instead of C0 each of these three intersections, with
β = 0 twice and with β = π/3 once, as seen in Fig. 8. That intersection which has
β = π/3 is not a triangle but a parallelogram. But notice that the h-expansion of this
parallelogram, analogous toCh in Case I, will necessarily be contained in the analog of
the parallelogram Ph constructed in Proposition 4.3. To get the lower estimate (4.25),
it is enough to argue as in Case I for the larger of the two intersections with β = 0. In
each of the three intersections, we can now follow the pattern of Case I for all upper
estimates of integrals, and divide by ν(B̃).

This ends the case of dimension 3.
Dimension d = 4 We largely follow the three-dimensional argument. Recall that

B̃ = B̃(m, r) := B(m, r) ∩ C+.
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The assumptions (4.13) remain in force. As in dimension three, we define for 0 ≤ h <

r + (m1 − a1)

Ch = {
x ′ ∈ R

3 : (a1 + h, x ′) ∈ C+
}

(4.30)

which is an open regular tetrahedron of edge (a1 + h)
√
8, and

Bh = {
x ′ ∈ R

3 : (a1 + h, x ′) ∈ B(m, r)
}
.

Observe that (4.13) implies a′ ∈ ∂C0. The radius of the ball Bh will be denoted by
Rh , and as before we write R for R0.

In πa1 , which we identify with R
3, we now let T be the tangent plane of the ball

B0 passing through a′. Moreover, T+ will denote that closed half-space in πa1 whose
boundary is T and which contains C0.

Instead of (4.20), we now have

1 < r/2 < m1 − a1 ≤ r . (4.31)

The equality (4.21) remains valid and implies

R2 = r2 − (m1 − a1)
2 = (r + (m1 − a1))(r − (m1 − a1)) 	 r(r − (m1 − a1)).

(4.32)

When h < r , we similarly get for Rh in view of (4.31)

R2
h = r2 − (m1 − a1 − h)2

= (r + (m1 − a1 − h))(r − (m1 − a1) + h) 	 r(r − (m1 − a1) + h).

(4.33)

We also have

R2
h − R2 = (m1 − a1)

2 − (m1 − a1 − h)2 = 2(m1 − a1)h − h2 � rh,

(4.34)

the last step by (4.31).
The “vertical coordinate” τ in R

3 is defined by (4.26), as in the three-dimensional
case.

Wewill need someangles connectedwith a regular tetrahedron. The angle at a vertex
between an edge and the axis of symmetry from that vertex is γ , where sin γ = 1/

√
3,

and the angle between two faces of the tetrahedron is 2γ . Further, the angle between a
face and an edge not in that face is κ , where sin κ = √

2/3. Using this last angle, one
finds that the ratio between the height and the edge of the tetrahedron is

√
2/3 > 1/2;

the height is the distance between a vertex and the opposite face.
Case I a′ is a vertex of C0.
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InR3, the point a′ is now an endpoint of three edges e1, e2 and e3 of the tetrahedron
C0. Let βi , i = 1, 2, 3, denote the angle at a′ between ei and the plane T . Then
0 ≤ βi ≤ π/2, and at most two of the βi can be small.

Clearly a′ is an inner point of the ball Bh when 0 < h < r+(m1−a1). We consider
for i = 1, 2, 3 the intersection of Bh and the ray in the direction of ei emanating from
a′. Let pih be the length of this intersection. We can determine the pih exactly like ph
in dimension three, and instead of (4.23) we get for 0 < h < r/2

pih 	 √
rh ∧ rh

R sin βi
, i = 1, 2, 3. (4.35)

The argument leading to (4.25) also carries over, so that

ν(B̃) �
(
a1 ∧ p11

) (
a1 ∧ p21

) (
a1 ∧ p31

)
e−a1 . (4.36)

As before, a′
h denotes the vertex of Ch that corresponds to a′; one finds that the

distance from a′ to a′
h is

√
3 h.

Let Ph ⊂ R
3 for 0 < h ≤ r/2 be the minimal parallelepiped containing Bh ∩ Ch

which has one vertex at a′
h and edges parallel to e1, e2 and e3. Then Ph increases with

h.

Proposition 4.4 For 0 < h ≤ r/2, the edges of Ph are bounded by constant times
(a1 + h) ∧ pih, i = 1, 2, 3.

To prove this, we fix h ∈ (0, r/2) and deal first with the simple case when h ≥ c0R,
for some small constant c0 > 0 to be determined. Then the pih are all of magnitude√
rh, and (4.34) implies

R2
h � R2 + rh � rh,

the last step since here R � h. Thus Rh �
√
rh.

Comparing the sides of Ph with the minimum of Rh and the edge of Ch , we arrive
at the conclusion of the proposition, when h ≥ c0 R.

Consider now the remaining case 0 < h < c0R, and observe that then a′
h ∈ Bh .

Let i ∈ {1, 2, 3}. We define ρi as the ray parallel with ei , with endpoint at a′
h and

contained in the half-space {x ′ : τ(x ′) ≥ τ(a′
h)}. If sin βi ≥ 1/32, we denote by b′

i
the point of intersection of ρi and ∂H , where H is the half-space

H =
{
x ′ : τ(x ′) ≤ sup

Bh
τ

}
.

When sin βi < 1/32, we define b′
i similarly, but now with the intersection point of ρi

and ∂Bh . Finally, let vi be the vector b′
i − a′

h , which is parallel with ei . See Fig. 9.
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Fig. 9 The plane perpendicular to T containing a′
h and b′

i , d = 4

Define now

P ′
h =

{
a′
h +

3∑
1

αivi : 0 ≤ αi ≤ 1, i = 1, 2, 3

}
,

a parallelepiped with one vertex at a′
h and edge lengths |vi |. It is increasing in h.

We will need the following two lemmas, whose proofs are given after the end of
the proof of Proposition 4.4.

Lemma 4.5 If 0 < h < c0R with c0 small enough, then for i = 1, 2, 3

|vi | � pih,

and if moreover sin βi < 1/32, then

|vi | ≥ 4h.

Lemma 4.6 If 0 < h < c0R with c0 small enough, then

Bh ∩ Ch ⊂ P ′
h .

Given these lemmas, and still assuming 0 < h < c0R, let P ′′
h be the minimal

parallelepiped with one vertex at a′
h that contains Ch . Then the parallelepiped P∗

h =
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P ′
h ∩ P ′′

h will contain Bh ∩ Ch because of Lemma 4.6. From Lemma 4.5 and the fact
that the edges of P ′′

h are of order of magnitude a1 + h, it follows that the edges of P∗
h

are as stated in Proposition 4.4. The minimality of Ph shows that Ph ⊂ P∗
h , and this

concludes the proof of Proposition 4.4.
In the proofs of the two lemmas, we will denote by ω the angle at a′ between the

central axis of C0 emanating from a′ and the plane T . Notice that ω � 1, since ω is
at least as large as the angle between the central axis and a face of C0.

Proof of Lemma 4.5 Consider first the case sin βi ≥ 1/32. The vertical distance τ(b′
i )−

τ(a′
h) is Rh − R + √

3 h sinω, see Fig. 9. This gives an expression for |vi |, and then
we use in turn (4.34), (4.33), (4.32) and then (4.35). As a result,

|vi | = Rh − R + √
3 h sinω

sin βi
�

R2
h − R2

Rh
+ h � rh√

r(r − (m1 − a1) + h)

� rh√
r(r − (m1 − a1))

∧ √
rh 	 rh

R
∧ √

rh 	 pih .

In the opposite case sin βi < 1/32, the quantity |vi | is the length of a segment from
a′
h to a point on ∂Bh . The segment forms an angle βi with the planeW = {x ′ : τ(x ′) =

τ(a′
h)} (and is on the same side of W as the point a′), as seen in Fig. 9.
Project this segment and also the central axis of Ch starting at a′

h orthogonally onto
the plane W . Let θ denote the angle between these two projections at their common
point a′

h .
Since the endpoint of the segment is on ∂Bh , the following equation will have

the positive solution z = |vi |, and also a negative solution. We temporarily write
� = R − √

3 h sinω, which is the vertical distance between m′ and a′
h . The equation

is

(� + z sin βi )
2 + (−√

3 h cosω + z cosβi cos θ)2 + (z cosβi sin θ)2 = R2
h,

or simplified

z2 + 2Kz + L = 0,

where K = � sin βi − √
3 h cosω cosβi cos θ and L = �2 + 3 h2 cos2 ω − R2

h . We
consider this equation for all θ ∈ [0, π ]. Since the two roots of the equation have
opposite signs, the constant term L is negative, which can also be seen geometrically.
Let us now vary only θ , and write the positive solution as z = z(θ). Differentiating
the equation with respect to θ , we get

(z + K )
dz

dθ
= −z

√
3 h cosω cosβi sin θ.

Since z is the positive solution of the equation, z + K equals the square root that
appears in the well-known formula for the solutions, so it is positive. Thus dz/dθ < 0
for 0 < θ < π . It follows that the minimal and maximal values of z(θ) are z(π) and
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z(0), respectively, so that z(π) ≤ |vi | ≤ z(0). We now rewrite the equation with these
two values of θ , and replace K , L and also � by their explicit expressions. Using some
elementary trigonometry, one obtains the result

z2 + 2
(
R sin βi ± √

3 h cos(ω ± βi )
)
z − (

R2
h − R2 + 2

√
3 Rh sinω − 3h2

) = 0,

where the ± signs should be read as plus for z(π) and minus for z(0). We now solve
this equation for 1/z, denoting

K∗ = R sin βi ± √
3 h cos(ω ± βi ) and L∗ = R2

h − R2 + 2
√
3 Rh sinω − 3h2.

The positive solution z is given by

z = L∗
K∗ + √

K 2∗ + L∗
. (4.37)

We estimate the numerator and the denominator in (4.37) from above and below,
choosing c0 small enough whenever needed. Because of (4.34), we find

L∗ ≤ 2rh + 4Rh ≤ 6rh � rh (4.38)

and

L∗ ≥ 2(m1 − a1)h − 4h2 ≥ rh − 4c0rh ≥ rh/2, (4.39)

where we also used (4.20). Further, (4.38) implies that

K∗ +
√
K 2∗ + L∗ ≤ 2|K∗| + √

L∗ ≤ 2R sin βi

+2
√
3 h + √

6rh ≤ 2R sin βi + 3
√
rh. (4.40)

From (4.39), we obtain

K∗ +
√
K 2∗ + L∗ ≥ R sin βi − √

3 h + √
rh/2 � R sin βi + √

rh. (4.41)

These four inequalities hold whether the ± signs are read as plus or minus.
Combining (4.38) and (4.41) with (4.37), we conclude that

|vi | � rh

R sin βi
∧ √

rh 	 pih,

because of (4.35). If sin βi < 1/32, (4.39) and (4.40) similarly yield

|vi | ≥ rh/2

2R sin βi + 3
√
rh

≥ 1

2

rh/2

(2R sin βi ) ∨ (
3
√
rh

) ≥ rh

8R sin βi
∧

√
rh

12
≥ 4h.
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The last two formulas end the proof of Lemma 4.5. ��
Proof of Lemma 4.6 Any point x ∈ Ch can be written x = a′

h +∑3
1 α jv j with α j ≥ 0.

Assume now that x ∈ Bh ∩ Ch . We will show that α j ≤ 1 for each j , so that x ∈ P ′
h .

Thus we fix j ∈ {1, 2, 3}. Observe that to prove the inequality α j ≤ 1, wemay assume
that α j ≥ 1, since the opposite case is clear.

Since x = a′
h + ∑3

1 αivi ∈ H and the function αi �→ τ(a′
h + ∑3

1 αivi ) is nonde-
creasing for each i , the point a′

h + α jv j is also in H . If sin β j ≥ 1/32, this implies
α j ≤ 1, by the definitions of v j and b′

h .
When instead sin β j < 1/32, we will similarly show that α j ≤ 1 by proving that

a′
h + α jv j ∈ Bh . We know that a′

h + ∑3
1 α jv j ∈ Bh , so it is enough to verify that the

distance |a′
h + ∑3

1 αivi − m′| is increasing in αi for i �= j . But

∣∣∣a′
h +

3∑
1

αivi − m′
∣∣∣2

= ∣∣a′
h − m′∣∣2 + 2

3∑
1

αi 〈a′
h − m′, vi 〉 +

3∑
1

α2
i |vi |2 + 2

∑
1≤i<k≤3

αiαk〈vi , vk〉,

and here all the terms to the right except possibly the second one are nondecreasing
in αi . Further, 〈vi , vk〉 = |vi ||vk |/2. Consider for i �= j the following two terms from
the right-hand side

2αi 〈a′
h − m′, vi 〉 + αiα j |vi ||v j |. (4.42)

Now

〈a′
h − m′, vi 〉 = −√

3 h cosω |vi | cosβi + (R − √
3 h sinω)|vi | sin βi ,

so (4.42) equals

αi |vi |
(
−2

√
3 h cosω cosβi + 2(R − √

3 h sinω) sin βi + α j |v j |
)

.

It is enough to verify that the three terms in this parenthesis have a positive sum. The
middle term is positive, since c0 is small. Recall that we assumed α j ≥ 1 and also
sin β j < 1/32 which implies |v j | ≥ 4h because of Lemma 4.5. Thus the first term in
the above parenthesis is dominated by the third term, the parenthesis is positive and
the expression in (4.42) is increasing in αi , as desired. Lemma 4.6 is proved. ��

We can now continue Case I as in three dimensions, but using the three quantities
pih instead of ph and qh . In the estimate (4.27) the exponent of h will be 3 instead
of 2. We extend the definition of Ph by setting it equal to the smallest parallelepiped
containing Pr/2 ∩ Bm1−a1 for r/2 < h < r + (m1 − a1); cf. the end of the proof of
Proposition 4.3 in the three-dimensional case. We leave the details finishing Case I to
the reader.
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Fig. 10 Translates C j
0 of C0,

j = 1, 2, 3, in Case II, d = 4

Case II a′ is an inner point of a face of C0.
This face of C0 is contained in the plane T , and we consider the three translates

C j
0 , j = 1, 2, 3, ofC0 along T which have a vertex at a′ (see Fig. 10, where for clarity

only that face of C0 contained in T is marked).
The angles at a′ between T and the edges of eachC j

0 are now 0, 0, κ . The dilations
Ch are given by (4.30), andwe can define for 0 ≤ h < r+(m1−a1) analogous dilations
C j
h , j = 1, 2, 3, of the C j

0 by replacing in (4.30) C+ by the four-dimensional cone

generated by C j
0 × {a1} and the origin. In analogy with the beginning of Case I, we

consider for each j the intersection with Bh of the three rays emanating from a′ and
containing an edge of C j

h . As in Case I, we write pih, i = 1, 2, 3, for the lengths of
these intersections. The pih will not depend on j , and from (4.35) we see that their
orders of magnitude are

√
rh,

√
rh and

√
rh ∧ rh

R
. (4.43)

At least one of the intersections C0 ∩ C j
0 , j = 1, 2, 3, is comparable in volume

to C0. To estimate the measure of B̃ from below, we can thus for one value of j
argue as in Case I with C j

0 and C j
h . Hence we still have the lower estimate (4.36). The

corresponding upper estimate will now be verified.
In addition to C j

0 , j = 1, 2, 3, we will consider a finite number of tetrahedra

C j
0 , j = 4, . . . , N , of the same size. They will all have a vertex at a′ and be contained

in T+. We select them so that the C j
0 , j = 1, . . . N , together cover a neighborhood of

a′ in T+. Here N will be an absolute constant. Of the three angles at a′ between the
plane T and an edge of any C j

0 , j = 4, . . . , N , at least one must stay away from 0,

since C j
0 ⊂ T+. (In fact, the largest of these three angles is at least π/4.) This implies
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Fig. 11 Translates C j
0 of C0, j = 1, 2, in Case III, d = 4

that the corresponding lengths pi, jh (which will now depend also on j) have orders of
magnitude no larger than those in (4.43).

By C j,2
0 we denote the result of a scaling of C j

0 centered at a′ by a factor of 2.

Thus a′ is a vertex also of C j,2
0 . The C j,2

0 , j = 1, . . . , N , will together contain the

intersection of T+ and the ball of center a′ and radius equal to the height ofC j,2
0 . Since

this height is larger than the diameter, i.e., the edge, of C j
0 , we conclude that

N⋃
j=1

C j,2
0 ⊃ C0.

The arguments fromCase I will apply to each scaled tetrahedronC j,2
h . In particular,

we choose as there minimal parallelepipedsP j
h containing Bh ∩C j,2

h , j = 1, . . . , N ,
which together cover Bh ∩ Ch . The proofs of Lemmas 4.5 and 4.6 and then also that
of Proposition 4.4 will go through for each P j

h , and this allows us to conclude Case II
like Case I.
Case III a′ is an inner point of an edge of C0.

This edge of C0 will be called e0. It is contained in T , and it is the intersection of
two faces ofC0. We denote by
′ and
′′ the planes containing these faces. The angle
between 
′ and 
′′ is 2γ .

Consider the translates C1
0 and C2

0 of C0 along e0 which have one vertex at a′ (see
Fig. 11). BothC1

0 andC
2
0 have three edges with endpoint a

′: one in
′ ∩
′′, one in
′
and one in 
′′. These edges form angles with the plane T which are β1 = 0, β2 > 0
and β3 > 0. For h ∈ (0, r + (m1 − a1)) we have dilations Ch , C1

h and C2
h of C0, C1

0
and C2

0 , where the latter two dilations are constructed as in Case II.
Following Case II, we introduce rays emanating from a′ along the three edges of

C1
0 and C2

0 and segments of lengths pih, i = 1, 2, 3. These pih will satisfy (4.35). At
least one of the intersections C0 ∩ C1

0 and C0 ∩ C2
0 must have volume comparable to
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that of C0. The argument leading to (4.25) can be applied to the corresponding C j
0 ;

cf. (4.36). This gives the necessary lower estimate for ν(B̃).
To get the corresponding upper estimate, we follow the pattern of Case II. We will

cover C0 by a finite number of (doubled) tetrahedra having one vertex at a′, among
them C1

0 and C2
0 doubled. This is done as follows.

Consider the wedge defined as that component of R3 \ (

′ ∪ 
′′) which contains

C0. There is then a half-plane that splits this wedge in two congruent wedges denoted
V ′ and V ′′; of these V ′ shall be the one with boundary along 
′.

We will next rotateC1
0 , using as rotation axis the normal through a′ of the plane
′.

The rotation angle will go from 0 to 2π/3; the angle 2π/3 will bringC1
0 toC

2
0 . During

this rotation, the edge ofC1
0 from a′ in
′ ∩
′′ and that in
′ will both stay in
′. The

edge from a′ which is in 
′′ before the rotation will describe a conic surface, and its
angle with 
′′ will be positive and increase until it reaches a maximum at the rotation
angle π/3. Then it will decrease back to 0. This maximum is seen to be 2γ − κ , and
one has 0 < 2γ − κ < γ , the last inequality since κ > γ .

This implies that the rotations of C1
0 considered will together cover the intersection

of V ′ with a neighborhood of a′. We can then select a finite number of these rotated
tetrahedra, say C j

0 , j = 1, . . . N , which together also cover a neighborhood of a′ in
V ′. Notice that C1

0 and C2
0 are included here. As in Case II, we consider the doubled

tetrahedra C j,2
0 with a vertex at a′ and conclude that

N⋃
j=1

C j,2
0 ⊃ C0 ∩ V ′.

To deal similarly with V ′′, we repeat the rotation procedure, swapping 
′ and 
′′
as well as V ′ and V ′′.

The result will be that we cover C0 by a finite number of tetrahedra, each having
a vertex at a′. The edges of these tetrahedra will have angles with T which are larger
than or equal to β1, β2 and β3, respectively. This makes it possible to argue as in Cases
I and II, considering dilationsCh andC

j,2
h for h ∈ (0, r+(m1−a1)) and also minimal

parallelepipeds.
This ends Case III and the argument in dimension four.
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