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A 3D/2D Comparison between Heterogeneous

Mesoscale Models of Concrete

Filip Nilenius1,2,�, Fredrik Larsson2, Karin Lundgren1,
and Kenneth Runesson2

1 Department of Civil and Environmental Engineering, Chalmers University of
Technology, Göteborg, Sweden

2 Department of Applied Mechanics, Chalmers University of Technology,
Göteborg, Sweden

Abstract. A model for 3D Statistical Volume Elements (SVEs) of mesoscale
concrete is presented and employed in the context of computational homog-
enization. The model is based on voxelization where the SVE is subdivided
into a number of voxels (cubes) which are treated as solid finite elements. The
homogenized response is compared between 3D and 2D SVEs to study how
the third spatial dimension influence the over-all results. The computational
results show that the effective diffusivity of the 3D model is about 1.4 times
that of the 2D model.

1 Introduction

Computational homogenization is a well known technique to account for ma-
terial heterogeneities while keeping computational costs at a moderate level.
One benefit of this technique is that it enables to determine bulk properties
of a material a priori in the case of linear subscale properties. This is bene-
ficial if the macroscopic behaviour of a material is sought and the subscale
features is highly complex. In case of non-linear material behaviour the sub-
scale response needs to be determined concurrently during the computations
in a nested fashion using a FE2-approach. Furthermore, the technique opens
up to ”virtual testing” of new materials.

Concrete has a highly heterogeneous and random material structure at
multiple length scales. Thus, considerable computational work on the effects
of its heterogeneity has been done for this material, see eg. Kim and Al-rub
[10], Idiart et al. [9] and Wang and Ueda [13].

However, most computational work reported in the literature deals with
2D models of concrete and any 3D feature that might be of importance is
naturally not accounted for in these instances. A natural evolution in the
development of computational homogenization is thus to account for all three
spatial dimensions to obtain numerical results that potentially better reflect
the real material behaviour.
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This paper presents a 3D heterogeneous mesoscale model of concrete and
compares computational homogenization between 2D and 3D models to study
how the third spatial dimension contributes to the homogenized results. This
is done in the context of mass diffusion; thus, the effective diffusivity of
concrete is the studied material property in this work.

2 Mesoscale SVE

The concept of Statistical Volume Element (SVE) is fundamental to com-
putational homogenization techniques as it is the foundation on which all
computational work is built. The SVE is expected to contain all material
heterogeneities in a statistical manner and tends to become an Representa-
tive Volume Element (RVE) only when it is sufficiently large, i.e. when the
influence of boundary conditions are sufficiently small, see Ostoja-Starzewski
[12]. The RVE, in turn, is used to extract the sought macroscopic material
properties.

In this work, the mesoscale material constituents are the cement paste
matrix, aggregates and Interfacial Transition Zone (ITZ). The aggregates are
modelled as spheres with random spatial distribution enfolded by an interface
layer of ITZ. The cement paste matrix is considered homogeneous, i.e. cracks
are not accounted for.

2.1 Sieve Curve

The aggregates in the SVE can be of arbitrary size and quantity. The volume
fraction of aggregates is defined as

na =
Va

VSVE
na ∈ [0, 1], (1)

where V• is the volume and sub-index ’a’ denotes aggregate. The SVE model
implementation allows for any realistic na to be used as input. Any sieve
curve is possible to have as input for the SVE realization and we have the
requirement that

N∑

i=0

na,i = na, (2)

where na,i denotes the volume fraction of aggregate size i and N denotes the
total number of particles sizes included in the specified sieve curve. Both N
and na,i can be chosen freely given that the constraint in Eq. (2) is fulfilled.

2.2 Algorithm for Generating SVEs

The algorithm for generating SVEs is given below as pseudo-code and has
been implemented in MATLAB. The algorithms assures that no aggregates
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(a) L� = 2 cm (b) L� = 4 cm

(c) L� = 6 cm (d) L� = 10 cm

Fig. 1 Example SVEs all having the same sieve curve with na ≈ 0.45. L� refers to
the side lenght of the SVE.

Algorithm 1 Generating SVE

1: while the volume fraction of aggregate inside Ω�
1 < na do

2: Generate aggregate from given sieve curve
3: Place the new aggregate at a random point in Ω�
4: if new particle overlap already existing particle then
5: Remove the new aggregate
6: end if
7: add area of the new aggregate to the accumulated aggregate volume
8: end while

overlap once the algorithm has completed. In Figure 1, four example SVEs
produced by the algorithm are show.

1 The SVE domain is denoted Ω�.
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3 FE Discretization of SVE

The spatial discretization technique is based on voxelization to create a struc-
tured grid of equally sized voxels. The concept is to subdivide a cubic body
into a number of smaller cubes (voxels) which are considered solid finite
elements. This approach was used by Bentz et al. [2] and Garboczi [5] in
the context of analytical homogenization of heterogeneous concrete and later
adapted by Hain and Wriggers [6, 7] for elasticity problems and computa-
tional homogenization. Other discretization approaches for 3D domains have
been devised in the literature: both Caballero et al. [4] and Asahina and
Bolander [1] used Voronoi tessellation where the aggregates were based on a
polyhedron representation to generate 3D SVEs.

Material properties of the finite elements are determined by looping over
all elements and for each element measure its distance to the center of all
aggregates (spheres). If the distance is greater that the radius of any of the
aggregates then the elements is located in the cement paste matrix and can
be assigned its proper material property. If the distance is smaller than the
radius then the element sits inside an aggregate.

4 ITZ Implementation

Experimental results by Hedenblad [8] indicate that the effective, or volume
average, diffusivity of concrete slightly increase with increasing aggregate
content, alternatively remains unchanged. This fact implies that the ITZ has
a non-negligible effect on the diffusivity of concrete.

As the SVEs are discretisized into a structured grid, a certain number of
voxels end up right at the interface between the cement paste matrix and
aggregate, see Figure 2.

r

n
(a) 2D analogy: circle discreti-
sized into a structured grid.

n

Da

Dc

AITZ

h

t

(b) Interface voxel.

Fig. 2 Interface voxel (right) containing all three mesoscale constituents located at
the surface of an aggregate (left)
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Consequently, these interface voxels will contain all three mesoscale ma-
terials; cement paste, aggregate and ITZ. For these voxels, we employ an
anisotropic Voigt assumption on the over-all diffusivity, expressed as

D̄ =
VaDa + VcDc

Va + Vc
I +

AITZDITZt

Va + Vc
(I − n⊗ n) , (3)

where D•, are material diffusivities1. Generally, we have that Da � Dc �
DITZ and for this work we assume that Da = 0 cm2/s and we set Dc =
1 cm2/s. The unknown parameters in Eq. (3) are the thickness, t, and dif-
fusivity, DITZ, of the ITZ. Computationally, it is the product of these two,
DITZ × t, that become the model parameter.

There are several ways in which the aggregate interface surface, AITZ, can
cut through the voxel and the intersection points between the surface and
the line segments of the voxel can range from 3 to 6. The gray and white
aggregate and cement paste volumes in Figure 2b become convex hulls, see
Berg et al. [3], spanned by these intersection points and corner nodes, and are
computed by utilizing this geometrical property. The interface area, AITZ, is
determined in a similar fashion.

5 First Order Homogenization

We wish to determine the difference between 3D and 2D SVEs in terms
of homogenized response. This is done by starting from the fully resolved,
stationary, boundary value problem

∇ · J = 0 ∀x ∈ Ω, (4)

for which all material heterogeneities are embedded in Ω ⊂ R
3. Here, ∇ is

the nabla operator and J(x) is the flux of some generic physical quantity.
The corresponding weak form reads

∫

Ω

∇δφ · J =

∫

ΓN

δφJ dΓ, (5)

for suitable test function δφ that is sufficiently regular.
Homogenization implies that the integrands of the volume integrals in

Eq. (5) are replaced by space-averages on RVEs, i.e.

∫

Ω

∇δφ · J dΩ −→
∫

Ω

〈∇δφ · J〉� dΩ, (6)

where 〈•〉� denotes the volume average

〈•〉� def
=

1

|Ω�|
∫

Ω�
• dΩ�, (7)

1 ”a” = aggregate, ”c” cement paste
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on the RVE that occupies the domain Ω� centered at the macroscale position
x̄ ∈ Ω; hence, 〈x− x̄〉� = 0.

We assume first order homogenization defined by the split of a scalar field
φ within Ω� into the macroscale and fluctuation parts2 as follows:

φ(x; x̄) = φM(x; x̄) + φs(x). (8)

The macroscale part varies linearly as

φM(x; x̄) = φ̄(x̄) + ḡφ(x̄) · [x− x̄] ∀x ∈ Ω�, (9)

with ḡ
def
= ∇̄φ̄. Hence, we obtain ∇φM(x̄; x̄) = ḡ(x̄) constant within Ω�. We

then obtain for any macroscale point x̄ ∈ Ω the identity

〈∇δφ · J〉� = δḡ · J̄ with J̄φ = 〈J〉�. (10)

In order to compute the homogenized flux quantity J̄ , it is necessary to com-
pute the fluctuation field φs as well as the spatial gradient on the subscale:

gs def
= ∇φs. This is done on each RVE with given prolongation conditions.

Here, we choose Dirichlet boundary conditions , i. e. φs = 0 on Γ�, whereby
the pertinent RVE-problem becomes: For given values of the macroscale vari-
ables φ̄ and ḡ, compute the subscale field φs that satisfy the system

〈∇(δφs) · J〉� = 0, (11)

for all possible δφs that are sufficiently regular and which vanish on Γ�. We
note that the macroscale prolongations φM are completely defined (varies
linearly) on Ω�.

Our objective is to determine the mapping

L� 
→ 〈J〉�(L�) (12)

and to study how this mapping differs between 3D and 2D SVEs of mesoscale
concrete models. This is done by solving Eq. (12) given a macroscale gradient
ḡ = [−1 0 0]T for SVEs of varying L�.

6 2D SVEs

The 2D SVEs are generated from cutting a 3D SVE into a number of 2D
slices, see Figure 3. The same boundary conditions are applied to the 3D and
2D SVEs. The mean values of all slices are then compared to the single result
obtained for the corresponding 3D SVE. In this way, the 2D/3D comparison
becomes meaningful since comparison is made on the same topology.

2 Superscripts M denotes macroscale, whereas s denotes subscale.
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Fig. 3 3D SVE cut into 2D slices

7 Numerical Examples

7.1 3D/2D Comparison

The numerical example compares the first component of the homogenized
flux tensor, 〈J〉1, as a function of the SVE size3 denoted L�. The RVE size

based on the numerical results becomes LRVE
def
= 10 cm since convergence

has been reached for this value of L�. The cement paste was assigned a unit
diffusivity of Dc = 1 cm2/s, for simplicity, and Da = 0 cm2/s. The ITZ layer
is omitted in the example.
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Fig. 4 Sieve curve SVEs used in the numerical example

Forty 3D SVEs were generated for each L� all having an aggregate volume
fraction, na, of 0.45 with the sieve curve shown in Figure 4. Each 3D SVE
was cut into 69 2D slices. Thus, μ2D is the mean value of 40×69 = 2760 SVE
slices for each L�.
3 ”size” refers to side length of the cube.



256 F. Nilenius et al.

2 4 6 8 10 12
0.3

0.4

0.5

L� [cm]

〈J
1
〉 �

[ g
/
(c
m

2
s)
] 3D

μ+ σ
μ

2D

μ+ σ
μ

Fig. 5 Homogenized flux versus size of SVE. Average values denoted μ and corre-
sponding standard deviations denoted σ.

The results are shown in Figure 5; they show that the 2D results in general
are lower than the corresponding ones for 3D. The reason for this is probably
that the out of plane solution in the 2D case is locked; hence, for the 2D case
the diffusion substance has only two directions (over or under) to bypass
an aggregate but in the 3D case a third direction (around) is enabled. For
L� = 10 cm, μ2D ≈ 0.7μ3D; i.e. the 2D SVE homogenized diffusivity is about
70% of the corresponding 3D value.

7.2 The Effect of ITZ

The same computations as and in Figure 5 were carried out again
now including the ITZ in the mesoscale model and the results are shown in
Figure 6.

The results in Figure 6 show that it is possible to increase the effective
diffusivity by utilizing the ITZ implementation as a model parameter. The
results also show the robustness of the implementation as the mean values,

, in practice become independent of the SVE size, L�. Only the spread
in results, , varies and decreases with increasing L�, as expected.

The valueDITZ×t = 0.15Dc has manually been calibrated such that 〈J1〉�
gets close to a value of 1 g/(cm2 s), i.e. corresponding to a diffusivity of pure
cement paste. The outcome of this numerical example is that the over-all
effect of the aggregates is that they do not change the diffusivity of the bulk
material. This is achieved by the implementation of ITZ in the model. In this
way, the product DITZ × t becomes a useful tool for calibrating the model
with experimental data.
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Fig. 6 Numerical results with ITZ included in the SVEs. The results for DITZ×t = 0
are the same as those presented in Figure 5. 〈J1〉 = 1g/(cm2 s) corresponds to an
effective diffusivity equal to that of pure cement.

7.3 Computational Time

The computational work for this paper has been carried out on a standard
laptop machine having 4GB of RAM with a dual-core processor running
Windows 7. The implementation is made in matlab and is parallelized to
reduce computational time.

The average computational time for one 3D SVE is approximately 20min,
and approximately 0.5min for one 2D SVE, but since the multiple SVEs can
be run in parallel the total time is governed by the number of processors
available.

8 Conclusions and Outlook

A 3D model of heterogeneous mesoscale concrete was presented and employed
in the context of computational homogenization. The algorithm on which
the model is based generates a random structure of aggregates embedded in
cement paste. Any sieve curve is possible as input for the algorithm and any
(realistic) aggregate content is possible to obtain.

The numerical examples presented in the paper shows that the difference
between a 3D and 2D model in terms of effective diffusivity differ approx-
imately by a factor 0.7. The numerical results further show that the ITZ
implementation is robust and can be used to calibrate/adjust the effective
diffusivity of cement with embedded aggregates in it, i.e. concrete. With the
ITZ included in the model, it is possible to increases the effective diffusivity
of concrete in an easy and consistent manner.

The next step is to use 3D SVEs to determine effective material properties
as a function of aggregate volume fraction, as was done in previous work (in
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2D), see Nilenius et al. [11]. The effect of ITZ on the numerical results will
further be investigated so that the model can be calibrated with experimental
data. Additionally, both Dirichlet and Neumann boundary conditions will
be applied to obtain upper and lower bounds, respectively, on the effective
material properties.
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