134 research outputs found

    Symmetric Spaces in Supergravity

    Full text link
    We exploit the relation among irreducible Riemannian globally symmetric spaces (IRGS) and supergravity theories in 3, 4 and 5 space-time dimensions. IRGS appear as scalar manifolds of the theories, as well as moduli spaces of the various classes of solutions to the classical extremal black hole Attractor Equations. Relations with Jordan algebras of degree three and four are also outlined.Comment: 1+23 pages, 15 Tables. Contribution to the Proceedings of the Conference "Symmetry in Mathematics and Physics", 18-20 Jan. 2008, IPAM (UCLA), in celebration of V. S. Varadarajan's 70th Birthda

    The Quaternion-Based Spatial Coordinate and Orientation Frame Alignment Problems

    Full text link
    We review the general problem of finding a global rotation that transforms a given set of points and/or coordinate frames (the "test" data) into the best possible alignment with a corresponding set (the "reference" data). For 3D point data, this "orthogonal Procrustes problem" is often phrased in terms of minimizing a root-mean-square deviation or RMSD corresponding to a Euclidean distance measure relating the two sets of matched coordinates. We focus on quaternion eigensystem methods that have been exploited to solve this problem for at least five decades in several different bodies of scientific literature where they were discovered independently. While numerical methods for the eigenvalue solutions dominate much of this literature, it has long been realized that the quaternion-based RMSD optimization problem can also be solved using exact algebraic expressions based on the form of the quartic equation solution published by Cardano in 1545; we focus on these exact solutions to expose the structure of the entire eigensystem for the traditional 3D spatial alignment problem. We then explore the structure of the less-studied orientation data context, investigating how quaternion methods can be extended to solve the corresponding 3D quaternion orientation frame alignment (QFA) problem, noting the interesting equivalence of this problem to the rotation-averaging problem, which also has been the subject of independent literature threads. We conclude with a brief discussion of the combined 3D translation-orientation data alignment problem. Appendices are devoted to a tutorial on quaternion frames, a related quaternion technique for extracting quaternions from rotation matrices, and a review of quaternion rotation-averaging methods relevant to the orientation-frame alignment problem. Supplementary Material covers extensions of quaternion methods to the 4D problem.Comment: This replaces an early draft that lacked a number of important references to previous work. There are also additional graphics elements. The extensions to 4D data and additional details are worked out in the Supplementary Material appended to the main tex

    The r-map, c-map and black hole solutions

    Get PDF
    We consider various geometrical and physical aspects of the r-map and c-map, which are two maps induced by the dimensional reduction of 5d and 4d, N = 2 supergravity coupled to vector multiplets respectively. We treat reduction over a spacelike or timelike dimension on an equal footing, and prove, for the first time, that the target manifold in the image of the timelike c-map is para-quaternion Kahler. In order to do this we provide a new formulation of projective special Kahler geometry based on real Darboux coordinates, which is useful both mathematically and physically in its own right. As an application we investigate how the r-map and c-map can be used to generate new stationary black hole solutions. In four dimensions we construct new extremal non-BPS solutions, and in both four and five dimensions we construct new non-extremal solutions. We also take the first steps towards constructing new rotating solutions, though at this stage we only recover known solutions. The systematic and geometrical nature of these constructions allows us to gain a deeper understanding of many familiar properties of black holes in supergravity, such as the attractor mechanism and the transformation of BPS into non-BPS black holes using a field rotation matrix. We also observe an interesting and novel feature relating to non-extremal black holes: in order for solutions to correspond to non-extremal black holes with finite scalar fields we find that the number of integration constants must reduce by half. This suggests that non-extremal black holes always satisfy first order equations similar to their extremal counterparts. For STU-like models all calculations are performed explicitly

    Integrability of Supergravity Black Holes and New Tensor Classifiers of Regular and Nilpotent Orbits

    Full text link
    In this paper we apply in a systematic way a previously developed integration algorithm of the relevant Lax equation to the construction of spherical symmetric, asymptotically flat black hole solutions of N=2 supergravities with symmetric Special Geometry. Our main goal is the classification of these black-holes according to the H*-orbits in which the space of possible Lax operators decomposes, H* being the isotropy group of scalar manifold originating from time-like dimensional reduction of supergravity from D=4 to D=3 dimensions. The main result of our investigation is the construction of three universal tensors, extracted from quadratic and quartic powers of the Lax operator, that are capable of classifying both regular and nilpotent H* orbits of Lax operators. Our tensor based classification is compared, in the case of the simple one-field model S^3, to the algebraic classification of nilpotent orbits and it is shown to provide a simple and practical discriminating method. We present a detailed analysis of the S^3 model and its black hole solutions, discussing the Liouville integrability of the corresponding dynamical system. By means of the Kostant-representation of a generic Lie algebra element, we were able to develop an algorithm which produces the necessary number of hamiltonians in involution required by Liouville integrability of generic orbits. The degenerate orbits correspond to extremal black-holes and are nilpotent. We analyze these orbits in some detail working out different representatives thereof and showing that the relation between H* orbits and critical points of the geodesic potential is not one-to-one. Finally we present the conjecture that our newly identified tensor classifiers are universal and able to label all regular and nilpotent orbits in all homogeneous symmetric Special Geometries.Comment: Analysis of nilpotent orbits in terms of tensor classifiers in section 8.1 corrected. Table 1 corrected. Discussion in section 11 extende

    Domain Walls, Black Holes, and Supersymmetric Quantum Mechanics

    Get PDF
    Supersymmetric solutions, such as BPS domain walls or black holes, in four- and five-dimensional supergravity theories with eight supercharges can be described by effective quantum mechanics with a potential term. We show how properties of the latter theory can help us to learn about the physics of supersymmetric vacua and BPS solutions in these supergravity theories. The general approach is illustrated in a number of specific examples where scalar fields of matter multiplets take values in symmetric coset spaces.Comment: 35 pages, added references and corrections, version to appear in NP

    N=4 BPS black holes and octonionic twistors

    Get PDF
    Stationary, spherically symmetric solutions of N=2 supergravity in 3+1 dimensions have been shown to correspond to holomorphic curves on the twistor space of the quaternionic-K\"ahler space which arises in the dimensional reduction along the time direction. In this note, we generalize this result to the case of 1/4-BPS black holes in N=4 supergravity, and show that they too can be lifted to holomorphic curves on a "twistor space" Z, obtained by fibering the Grassmannian F=SO(8)/U(4) over the moduli space in three-dimensions SO(8,n_v+2)/SO(8)xSO(n_v+2). This provides a kind of octonionic generalization of the standard constructions in quaternionic geometry, and may be useful for generalizing the known BPS black hole solutions, and finding new non-BPS extremal solutions.Comment: 30 pages, one figure, uses JHEP3.cl

    The importance of the Selberg integral

    Full text link
    It has been remarked that a fair measure of the impact of Atle Selberg's work is the number of mathematical terms which bear his name. One of these is the Selberg integral, an n-dimensional generalization of the Euler beta integral. We trace its sudden rise to prominence, initiated by a question to Selberg from Enrico Bombieri, more than thirty years after publication. In quick succession the Selberg integral was used to prove an outstanding conjecture in random matrix theory, and cases of the Macdonald conjectures. It further initiated the study of q-analogues, which in turn enriched the Macdonald conjectures. We review these developments and proceed to exhibit the sustained prominence of the Selberg integral, evidenced by its central role in random matrix theory, Calogero-Sutherland quantum many body systems, Knizhnik-Zamolodchikov equations, and multivariable orthogonal polynomial theory.Comment: 43 page

    Quantum Attractor Flows

    Get PDF
    Motivated by the interpretation of the Ooguri-Strominger-Vafa conjecture as a holographic correspondence in the mini-superspace approximation, we study the radial quantization of stationary, spherically symmetric black holes in four dimensions. A key ingredient is the classical equivalence between the radial evolution equation and geodesic motion of a fiducial particle on the moduli space M^*_3 of the three-dimensional theory after reduction along the time direction. In the case of N=2 supergravity, M^*_3 is a para-quaternionic-Kahler manifold; in this case, we show that BPS black holes correspond to a particular class of geodesics which lift holomorphically to the twistor space Z of M^*_3, and identify Z as the BPS phase space. We give a natural quantization of the BPS phase space in terms of the sheaf cohomology of Z, and compute the exact wave function of a BPS black hole with fixed electric and magnetic charges in this framework. We comment on the relation to the topological string amplitude, extensions to N>2 supergravity theories, and applications to automorphic black hole partition functions.Comment: 43 pages, 6 figures; v2: typos and references added; v3: published version, minor change

    Gauged Supergravities in Three Dimensions: A Panoramic Overview

    Get PDF
    Maximal and non-maximal supergravities in three spacetime dimensions allow for a large variety of semisimple and non-semisimple gauge groups, as well as complex gauge groups that have no analog in higher dimensions. In this contribution we review the recent progress in constructing these theories and discuss some of their possible applications.Comment: 32 pages, 1 figure, Proceedings of the 27th Johns Hopkins workshop: Goteborg, August 2003; references adde
    • …
    corecore