1,311 research outputs found

    Regulation of BAX/BAK-Dependent Cell Death Program

    Get PDF
    Mammals have evolved an intricate regulation of a genetically programmed apoptotic cell death that involves mitochondria. Diverse apoptotic signals converge on mitochondria, which causes the release of cytochrome c into the cytosol to activate Apaf-1. This initiates caspase activation, which results in irreversible cellular demise. The BCL-2 family proteins constitute a critical checkpoint in mitochondrion-dependent apoptosis. Multidomain proapoptotic BAX/BAK promotes mitochondrial outer membrane permeabilization, whereas anti-apoptotic BCL-2/BCL-XL/MCL-1 protects mitochondrial integrity and prevents cytochrome c release. The proapoptotic activity of BAX/BAK is triggered by BH3-only molecules: BH3s) which are upregulated by upstream death signals. However, how these subfamilies interact with one another to execute mitochondrial cell death remains unclear. Thus, this thesis aims at elucidating the mechanism regarding how the interplay between BCL-2 subfamilies determines cellular commitment to survival versus death and how BAX/BAK activation is triggered by BH3s. Our laboratory showed that BH3s can be further classified into two subclasses- `activator\u27 tBID/BIM/PUMA that directly activates BAX/BAK to induce cytochrome c release and `inactivator\u27 BH3s that antagonize the function of anti-apoptotic BCL-2 members. Here, a BAX/BAK mutagenesis study indicated that anti-apoptotic BCL-2 members prevent BAX/BAK activation by sequestering activator BH3s rather than by directly binding to BAX/BAK. I further demonstrated that inactivator BH3s are able to displace activator BH3s from anti-apoptotic BCL-2 members with unique specificity, thus preventing their sequestration of activator BH3s. Activator BH3s were shown to act downstream of inactivator BH3s to trigger BAX/BAK activation, establishing the hierarchy of BCL-2 subfamilies in regulating mitochondrial apoptosis. Then, I investigated the molecular mechanism whereby BAX/BAK is activated by activator BH3s. I demonstrated that BAX undergoes stepwise structural reorganization leading to two activation processes-mitochondrial targeting and homo-oligomerization. Activator BH3s initiate BAX activation by attacking and exposing α1 helix of BAX leading to the secondary disengagement of the α9 helix and mitochondrial translocation. Activator BH3s remain associated with BAX to drive homo-oligomerization at the mitochondria. BAK has bypassed the first activation step, but requires activator BH3s for homo-oligomerization. This study further emphasizes the direct engagement of activator BH3s in BAX/BAK-dependent mitochondrial apoptotic pathway. Lastly, our laboratory showed that BH3s trigger caspase-independent mitochondrial dysfunction only in the presence of BAX/BAK. I found that BAK exists as several distinct complexes at the mitochondria, one of which is functionally different from cytochrome c-releasing BAK oligomers but instead includes VDAC/ANT channels that regulate ATP/ADP transport to support ATP production by oxidative phosphorylation. tBID overexpression induces cell death in the absence of Apaf-1 by inhibiting VDAC-mediated ADP import into the mitochondria in a BAK-dependent manner, suggesting that activated BAK antagonizes VDAC activity to initiate mitochondrial dysfunction. This study provides novel insights into how BAK activation couples apoptosis and mitochondrial dysfunction to trigger cell death

    Main Pro-Apoptotic Member of BCL-2 Family Proteins-BAX

    Get PDF
    Programmed cell death (apoptosis) plays a vital role in the regulation of cellular homeostasis. Because of apoptosis fundamental importance, this process is highly regulated. One important set of factors involved in apoptosis regulation is the Bcl-2 family proteins. Bcl-2 family members form a complex regulatory network that controls cell survival and death in response to different physiological and pathological signals. This family includes both pro- and anti-apoptotic members, and Bax protein (Mol wt 21 kDa) is a major pro-apoptotic factor with multifunctional activity. This review summarizes new data about the main representative of Bcl-2 family-Bax, its structure and mechanism(s) by which this protein modulates apoptosis

    Cancer microenvironment and endoplasmic reticulum stress response

    Get PDF
    Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma

    Use of Human Cancer Cell Lines Mitochondria to Explore the Mechanisms of BH3 Peptides and ABT-737-Induced Mitochondrial Membrane Permeabilization

    Get PDF
    Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria

    Therapeutic Modulation of Apoptosis: Targeting the BCL-2 Family at the Interface of the Mitochondrial Membrane

    Get PDF
    A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease

    Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human renal cell carcinoma (RCC) is very resistant to chemotherapy. ABT-737 is a novel inhibitor of anti-apoptotic proteins of the Bcl-2 family that has shown promise in various preclinical tumour models.</p> <p>Results</p> <p>We here report a strong over-additive pro-apoptotic effect of ABT-737 and etoposide, vinblastine or paclitaxel but not 5-fluorouracil in cell lines from human RCC. ABT-737 showed very little activity as a single agent but killed RCC cells potently when anti-apoptotic Mcl-1 or, unexpectedly, A1 was targeted by RNAi. This potent augmentation required endogenous Noxa protein since RNAi directed against Noxa but not against Bim or Puma reduced apoptosis induction by the combination of ABT-737 and etoposide or vinblastine. At the level of mitochondria, etoposide-treatment had a similar sensitizing activity and allowed for ABT-737-induced release of cytochrome <it>c</it>.</p> <p>Conclusions</p> <p>Chemotherapeutic drugs can overcome protection afforded by Mcl-1 and A1 through endogenous Noxa protein in RCC cells, and the combination of such drugs with ABT-737 may be a promising strategy in RCC. Strikingly, A1 emerged in RCC cell lines as a protein of similar importance as the well-established Mcl-1 in protection against apoptosis in these cells.</p

    Understanding and Drugging the Bcl-2 Transmembrane Interactome for Tumor Treatment

    Full text link
    [ES] La familia de proteínas Bcl-2 regula la apoptosis a través de una compleja red de interacciones. Las células tumorales suelen presentar mutaciones que afectan a su expresión o sus interacciones para mejorar la progresión tumoral. Además, alteraciones en su regulación también promueven la migración de células cancerígenas, la invasión y la metástasis. Para llevar a cabo sus funciones, las proteínas Bcl 2 interaccionan entre sí tanto en el citoplasma como en las membranas intracelulares. Los equilibrios de interacción de los dominios Bcl citosólicos se han investigado ampliamente y recientemente, se han propuesto como dianas terapéuticas. Sin embargo, el interactoma de los dominios transmembrana (TMD, del inglés transmembrane domains) sigue siendo poco conocido. Por ello, un conocimiento profundo de la biología de las proteínas Bcl-2 es necesario para explotar eficientemente sus superficies de unión en el tratamiento del cáncer. Para llevar a cabo este objetivo, nos hemos centrado en tres áreas: 1. La comprensión detallada de la contribución del TMD de Mcl-1 a su interactoma en membrana y su función. 2. El descubrimiento de nuevos inhibidores de Mcl-1 que actúen sobre su TMD y que permitan desarrollar una clase de drogas anticancerígenas aún por explorar. 3. La caracterización molecular de mutaciones relacionadas con el cáncer descritas en los TMD de Bcl-2 y Bcl-xL y sus implicaciones en la supervivencia de las células tumorales. La proteína antiapoptótica Mcl-1 inhibe a los miembros proapoptóticos Bak, Bax, Bok, Noxa, etc. Aunque se ha estudiado en detalle su actividad promoviendo la supervivencia celular, el mecanismo molecular por el cuál previene la apoptosis mediada por Bok aún no está claro. Además, el conocimiento de las actividades de Mcl-1, descritas hasta ahora, se basa exclusivamente en las estructuras resueltas de las regiones solubles en agua y en estudios centrados en los dominios citosólicos. Por primera vez, hemos demostrado la relevancia del TMD de Mcl-1 en su equilibrio de interacción. En este trabajo describimos su capacidad específica para homo- y hetero-oligomerizar con el TMD de Bok. También ponemos de manifiesto la influencia de estas interacciones en la modulación de apoptosis y resaltamos la relevancia clínica de los mutantes del TMD de Mcl-1 identificados en pacientes con cáncer. Muchos tumores hematológicos y sólidos sobre-expresan Mcl-1 como mecanismo para adquirir quimiorresistencia. Se han desarrollado miméticos de BH3 específicos para modular su actividad antiapoptótica en células cancerosas. Sin embargo, aún no disponemos de datos científicos que informen sobre su toxicidad y eficacia en humanos. En este trabajo, proponemos la novedosa interacción de los TMDs de Mcl-1 y Bok como un nuevo sitio de acción de fármacos quimioterapéuticos. Hemos identificado tres inhibidores de esta interacción con características que los hacen prometedores candidatos para el desarrollo farmacéutico, así como buenas herramientas moleculares para estudiar la interacción de los TMDs de Mcl-1 y Bok. Para modular la apoptosis, las células tumorales también presentan versiones mutadas de las proteínas antiapoptóticas Bcl-2 y Bcl-xL. En nuestro conocimiento, este es el primer estudio que analiza mutaciones somáticas de sus TMDs. Nuestro trabajo demuestra cómo estas mutaciones alteran el equilibrio en membrana de las proteínas. Además, nuestros resultados explican la influencia que algunos mutantes somáticos ejercen en la regulación de la apoptosis. En general, los resultados científicos que aparecen en esta tesis resaltan el papel de los Bcl TMDs en el interactoma de las proteínas Bcl-2. Estos hallazgos corroboran que las interacciones laterales entre los TMDs son específicas y contribuyen activamente a la funcionalidad de la proteína. Por lo tanto, comprender los Bcl TMDs puede proporcionar nuevos conocimientos sobre la biología de las proteínas Bcl.[CA] La família de proteïnes Bcl-2 regula l'apoptosi a través d'una complexa xarxa d'interaccions. Les cèl·lules tumorals solen presentar mutacions que afecten la seua expressió o les seues interaccions per a millorar la progressió tumoral. A més, alteracions en la seua regulació també promouen la migració de cèl·lules cancerígenes, la invasió i la metàstasi. Per a dur a terme les seues funcions, les proteïnes Bcl-2 interaccionen entre si tant en el citoplasma com en les membranes intracel·lulars. Els equilibris d'interacció dels dominis Bcl citosòlics s'han investigat àmpliament i recentment, s'han proposat com a dianes terapèutiques. No obstant això, l'interactoma dels dominis transmembrana (TMD, de l'anglés transmembrane domains) continua sent poc conegut. Per això, un coneixement profund de la biologia de les proteïnes Bcl-2 és necessari per a explotar eficientment les seues superfícies d'unió en el tractament del càncer. Per a dur a terme aquest objectiu, ens hem centrat en tres àrees: 1. La comprensió detallada de la contribució del TMD de Mcl-1 al seu interactoma en membrana i la seua funció. 2. El descobriment de nous inhibidors de Mcl-1 que actuen sobre el seu TMD i que permeten desenvolupar una classe de drogues anticanceroses encara per explorar. 3. La caracterització molecular de mutacions relacionades amb el càncer descrites en els TMD de Bcl-2 i Bcl-xL i les seues implicacions en la supervivència de les cèl·lules tumorals. La proteïna anti apoptòtica Mcl-1 inhibeix als membres pro apoptòtics Bak, Bax, Bok, Noxa, etc. Encara que s'ha estudiat detalladament la seua activitat promovent la supervivència cel·lular, el mecanisme molecular pel qual prevé l'apoptosi mediada per Bok encara no és clar. A més, el coneixement de les activitats de Mcl-1, descrites fins ara, es basa exclusivament en les estructures resoltes solubles en aigua i en estudis centrats en els dominis externs a la membrana. Per primera vegada, hem demostrat la rellevància del TMD de Mcl-1 el seu equilibri d'interacció. En aquest treball descrivim la seua capacitat específica per a unir-se amb si mateix i per a hetero-oligomeritzar amb el TMD de Bok. També expliquem la influència d'aquestes interaccions en l'apoptosi i ressaltem la rellevància clínica dels mutants del TMD de Mcl-1 identificats en pacients amb càncer. Molts tumors hematològics i sòlids sobre-expressen Mcl-1 com un mecanisme per a adquirir quimioresistència. S'han desenvolupat mimètics de BH3 específics per a modular la seua activitat anti apoptòtica en cèl·lules canceroses. No obstant això, encara no disposem de dades científiques que informen sobre la seua toxicitat i eficàcia en humans. Per això, proposem la nova interacció dels TMDs de Mcl-1 i Bok com un lloc d'actuació de fàrmacs quimioterapèutiques. Hem identificat tres inhibidors d'aquesta interacció amb característiques que els fan prometedors candidats per al desenvolupament farmacèutic, així com bones eines moleculars per a estudiar la interacció dels TMDs de Mcl-1 i Bok. Per a modular l'apoptosi, les cèl·lules tumorals també presenten versions mutades de les proteïnes anti apoptòtiques Bcl-2 i Bcl-xL. En el nostre coneixement, aquest és el primer estudi que analitza mutacions somàtiques de les seues TMDs. El nostre treball demostra com aquestes mutacions alteren l'equilibri en membrana de les proteïnes. A més, els nostres resultats expliquen la influència que alguns mutants somàtics exerceixen en la regulació de l'apoptosi. En general, els resultats científics que apareixen en aquesta tesi ressalten el paper dels Bcl TMDs en l'interactoma de les proteïnes Bcl-2. Aquestes troballes corroboren que les interaccions laterals entre els TMDs són específiques de la seqüència i contribueixen activament a la funcionalitat de la proteïna. Per tant, comprendre els Bcl TMDs pot proporcionar nous coneixements sobre la biologia de les proteïnes Bcl[EN] The family of the Bcl-2 proteins modulates the apoptotic pathway by a complex network of interactions. Tumor cells frequently present mutations that affect Bcl-2 proteins expression or interactions to enhance cancer progression. Dysregulation of these proteins also promotes cancer cell migration, invasion, and metastasis. To execute their functions, Bcl-2 proteins interact in both the cytosol and intracellular membranes. Binding equilibria of Bcl extramembrane domains has been largely investigated and recently proposed as chemotherapeutic targets. However, the interactome of transmembrane domains (TMDs) remains poorly understood. In this scenario, a deep knowledge of the biology of Bcl-2 proteins is needed to exploit efficiently their binding surfaces for cancer treatment. To address this aim, our research focuses on three areas: 1. The detailed comprehension of the TMD contribution to both the Mcl-1 membrane interactome and protein functionality. 2. The discovery of new Mcl-1 inhibitors that target the transmembrane surface to develop a class of anticancer drugs currently unexplored. 3. The molecular characterization of cancer-related mutations within the Bcl-2 and Bcl-xL TMDs and their implications for the survival of cancer cells. Antiapoptotic Mcl-1 protein inhibits the proapoptotic members Bak, Bax, Bok, and Noxa, among others. Although its prosurvival activity has been well studied, the molecular mechanism to prevent Bok-mediated apoptosis remains unclear. Furthermore, understanding of Mcl-1 activities described to date is only based on water-soluble structures and studies focused on extramembrane domains. For the first time, we uncover the relevance of the Mcl-1 TMD in the interaction equilibria of the protein. In the present work, we describe its specific capacity to self-associate and hetero-oligomerize with the Bok TMD. We also explain the influence of these interactions in the apoptotic pathway and highlight the clinical relevance of Mcl-1 TMD mutants identified in tumor patients. Many hematological and solid malignancies overexpress Mcl-1 as an acquired chemoresistance mechanism. To modulate its antiapoptotic activity in cancer cells, specific BH3 mimetics have been developed; however, there is no scientific data yet regarding human toxicity and efficacy. In this work, we propose the novel Mcl-1 and Bok TMDs interaction interface as a drugging site in the development of chemotherapeutics. We identify three potential inhibitors of such molecular interface with promising features to become both drug candidates for pharmaceutical development and research toosl for the molecular study of the Mcl-1 and Bok TMDs interaction. To take advantage of apoptosis modulation, tumor cells also present mutated versions of the antiapoptotic members Bcl-2 and Bcl-xL. To our knowledge, this is the first study that analyzes patient-derived mutations within Bcl-2 and Bcl-xL TMDs and demonstrates how said mutations alter the membrane equilibria of these proteins. The results presented here also explain the functional influence of some somatic mutants in apoptosis regulation. Overall, the scientific results exhibited in this Thesis highlight the role of Bcl TMDs in the interactome of Bcl-2 proteins. These findings corroborate that lateral interactions between TMDs are sequence-specific and actively contribute to protein functionality. Therefore, understanding of Bcl transmembrane segments may provide new insights into the biology of Bcl 2 proteins for their pharmaceutical modulation in antitumoral therapy.The student has been granted with a PhD fellowship and a short-term fellowship from the Generalitat Valenciana (Subvenciones para la contratación de personal investigador de carácter predoctoral, 2016-2019, and Grant for predoctoral stays out of the Comunitat Valenciana, 2019). This work has been supported by the Spanish Ministry of Economy and Competitiveness (projects SAF2014-52614-R and SAF2017-84689-RLucendo Gutiérrez, E. (2020). Understanding and Drugging the Bcl-2 Transmembrane Interactome for Tumor Treatment [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/155914TESI

    A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation

    Get PDF
    Like Bcl-2, Mcl-1 is an important survival factor for many cancers, its expression contributing to chemoresistance and disease relapse. However, unlike other prosurvival Bcl-2–like proteins, Mcl-1 stability is acutely regulated. For example, the Bcl-2 homology 3 (BH3)–only protein Noxa, which preferentially binds to Mcl-1, also targets it for proteasomal degradation. In this paper, we describe the discovery and characterization of a novel BH3-like ligand derived from Bim, BimS2A, which is highly selective for Mcl-1. Unlike Noxa, BimS2A is unable to trigger Mcl-1 degradation, yet, like Noxa, BimS2A promotes cell killing only when Bcl-xL is absent or neutralized. Furthermore, killing by endogenous Bim is not associated with Mcl-1 degradation. Thus, functional inactivation of Mcl-1 does not always require its elimination. Rather, it can be efficiently antagonized by a BH3-like ligand tightly engaging its binding groove, which is confirmed here with a structural study. Our data have important implications for the discovery of compounds that might kill cells whose survival depends on Mcl-1
    corecore