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Different stressful conditions such as hypoxia, nutrient deprivation, pH changes, or reduced vascularization, potentially able to
act as growth-limiting factors for tumor cells, activate the unfolded protein response (UPR). UPR is therefore involved in tumor
growth and adaptation to severe environments and is generally cytoprotective in cancer. The present review describes the molecular
mechanisms underlying UPR and able to promote survival and proliferation in cancer. The critical role of UPR activation in tumor
growth promotion is discussed in detail for a few paradigmatic tumors such as prostate cancer and melanoma.

1. Introduction

The cellular environment is constantly changing; thus phys-
iological adaptive responses arise in order to maintain the
overall cellular equilibrium and tissue homeostasis. Within
such framework, numerous ways have evolved to allow
optimal adaptation to environmental stress or, under extreme
damage conditions, to remove diseased cells and to prevent
toxicity [1].

The endoplasmic reticulum (ER) is the intracellular
organelle controlling intracellular Ca** homeostasis, lipid
synthesis, and protein folding. Protein folding occurring
in the ER is extremely sensitive to environmental changes
regarding redox state, nutrient and Ca®" levels, protein
synthesis rate, occurrence of pathogens or inflammatory
stimuli, altering protein folding, and ultimately causing accu-
mulation of unfolded or misfolded proteins. This condition is
generally known as “ER stress” [2] and a sensitive surveillance
mechanism ensures degradation of misfolded proteins [3]
preventing entry of misfolded proteins in the secretory
pathway. When ER stress occurs, ER functions are altered and
a number of molecular actions, collectively named “unfolded

protein response” (UPR), are activated to counteract the ER
stress-associated damages. The UPR has a dual function: it
mitigates damage associated with ER stress and, if this is not
possible, it activates apoptosis [1]. ER stress response/UPR
signaling pathways are activated in primary solid tumors as a
result of cell-intrinsic defects, such as dysregulation of protein
synthesis, folding, and secretion, and also as a consequence of
microenvironment changes. Solid tumors microenvironment
differs from normal tissues microenvironment, the former
being characterized by nutrient (e.g., glucose) deprivation,
low pH, hypoxia, and imbalance between production and
removal of reactive oxygen species (i.e., oxidative stress) [4,
5].

All such environmental factors contribute to ER stress
and cancer cells select effective ways to adapt and prevent ER
stress-induced apoptosis [6, 7].

Recent studies have investigated in detail the different
ways utilized by cancer cells, under ER stress conditions, to
perturb ER-associated cell death signaling and to promote
tumor growth [8, 9]. In the present review the known UPR
pathways are summarized; then the different ER stressors act-
ing in cancer microenvironment are reported and ultimately
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FIGURE 1: As a consequence of ER stress cells activate signal transduction pathways collectively known as unfolded protein response (UPR).
The figure represents the three branches of the UPR and the corresponding UPR sensors (PERK, IREL and ATF6).

the altered ER stress responses in cancer are described,
emphasizing their possible therapeutic implications.

2. ER Stress Response

Unfolded protein response (UPR) is a cellular response
connecting the ER to the nucleus [10]. It represents a key
cellular signaling process investigated since the early nineties
in yeast [11, 12].

As shown in Figurel, three ER-associated proteins are
key players of UPR, namely, Pancreatic ER Kinase (PERK)
[13], Inositol-Requiring Enzyme 1 (IREI) [14], and Activating
Transcription Factor 6 (ATF6) [15]. Under normal condi-
tions, such three transmembrane proteins are bound and
inactivated by a chaperone, Glucose Regulated Protein 78
(BiP, also known as GRP78) [16]. As response to ER stress,
BiP dissociates from the UPR sensors to allow their proper
signaling [17]. The activation of the ER stress sensors and
of their downstream targets halts new proteins transcription
and increases the synthesis of molecular chaperones. As a first
consequence, the UPR promotes cell survival by enhancing
ER ability to fold proteins and preventing further protein
accumulation that might exacerbate the ER damage. If such
response is not sufficient and the stress persists, the UPR
leads to apoptosis [18]. Although the exact molecular mech-
anisms involved are not known, several evidences suggest
that cell death induced by ER stress requires continuous
signals exchange between ER and mitochondria [19]. This
communication depends on the presence of a physical link
between the two organelles, represented by specific contact
sites between membranes of the ER and mitochondria,
known as Mitochondrial Associated Membranes (MAMs)
[20]. The integrity of this interaction is modulated by different

proteins, as we recently demonstrated [21], and is essential
to maintain cellular homeostasis and to modulate important
processes such as apoptosis, ER stress, and autophagy [22].

The three ER stress sensors PERK, IREl, and ATF6
are characterized by an amino-terminal domain important
for the stress perception, maintained in an inactive state
by interaction with the chaperone BiP under physiological
conditions, and a carboxy-terminal domain that interacts
with the transcriptional and translational apparatus [16].

PERK activation in response to ER stress leads to phos-
phorylation of the a-subunit of eukaryotic initiation factor
2 (elF2a) which, in turn, blocks protein translation. This
event promotes cell survival by preventing further ER damage
from other nascent proteins [13]. Thus PERK activation
initially leads toward a protective cell survival response;
however, stress persistence induces the transcription of
C/EBP homologous protein (CHOP), a transcription factor
positively controlled by the transcription factor 4 (ATF4).
Such event is critical to control the shift from survival to
apoptosis. Phosphorylated elF2« activates ATF4, which, in
turn, acts on target proapoptotic genes such as growth arrest
and DNA damage-inducible 34 (GADD34) and CHOP [23].
CHOP moves to the nucleus, upregulates its proapoptotic
target genes, and facilitates the programmed cell death upon
ER stress [24].

IRE], activated in response to unfolded proteins accumu-
lation, determines the splicing of a 26-nucleotide-long intron
from the mRNA encoding the transcription factor X box-
binding protein 1 (XBP1) [25]. The generated splicing variant,
XBPIs, acts as a transcription factor that moves to the nucleus
and causes the transcription of genes coding ER chaperones,
in order to mitigate the stress [26]. IREl overexpression
has been also shown to trigger apoptosis [27]. IREl has
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been demonstrated to recruit the adapter molecule TNE-
receptor-associated factor 2 (TRAF2); the complex TRAF2-
IREI activates a proapoptotic signal by inducing Apoptosis
Signal Regulated Kinase (ASKI1), which, in turn, transmits
the death signal to c-Jun N-terminal kinase (JNK). Once
activated, JNK is responsible for the phosphorylation of Bcl2
thus abolishing its antiapoptotic activity [28]; moreover, it is
able to determine the phosphorylation of the proapoptotic
proteins BAX and BIM [29, 30], enhancing their proapoptotic
effect. According to such complex mechanism, it can be
concluded that when the stress persists, PERK and IRElL
signaling cascades can converge, mediating the induction of
apoptosis. IRE1 RNase is also involved in a process called
RIDD (RNA IREl-Dependent Decay), consisting in cleavage
of mRNAs encoding many different proteins and aimed at
maintaining ER homeostasis. It has been found that RIDD
activity increases as function of ER stress and correlates with
apoptosis induction [31].

In response to ER stress, ATF6 dissociates from the
ER membrane and moves to the Golgi apparatus, where
its cytoplasmic domain undergoes a proteolytic cleavage by
serine proteases SIP and S2P, resulting in the formation of
an active transcription factor [15]. Activated ATF6 goes to
the nucleus and promotes the transcription of target genes
encoding for different proteins such as BiP, GRP94, protein-
disulfide isomerase (PDI), and XBPI that enhance ER ability
to fold accumulated proteins, contributing to restoring initial
homeostasis.

3. ER Stress Pathways and Cancer

Cancer cells are known to be very resistant to extreme
environmental stress and an increasing number of studies
indicate that this may be largely due to an altered state of
the UPR. The role ER stress and UPR play in cancer is still
not completely clarified; however different components are
known to be involved and may prove to be promising targets
in future anticancer therapy [1].

Cancer cells adaptation to adverse conditions mostly
relies on their ability to prevent ER stress-induced apoptosis
and perturb the ER stress-associated signaling. A selective
advantage occurs in premalignant cells harboring gene muta-
tions able to suppress UPR-induced apoptosis or senescence
[2].

Cancer cells have unique modifications enabling them to
exploit ER stress responses to promote survival and growth.
The ER protein chaperone BiP is commonly found to be
highly expressed in breast cancer, lung cancer, prostate can-
cer, melanoma, and other malignancies [32]. The increased
expression of BiP is functionally related to the prosurvival
response of cancer cells to major environmental stress. This
may occur through a molecular complex formation and
inhibition of BIK, a proapoptotic protein [33]. BiP has been
also shown to interact with and suppress the activation of
caspase-7, preventing apoptosis [34]. Furthermore, BiP is
positively regulated by the mitogen-activated protein kinase
(MAPK) pathway. In melanoma cells, inhibiting such path-
way decreases BiP expression leading to increased caspase-4

mediated ER stress induced apoptosis [35]. BiP is also respon-
sible for cancer resistance to different anticancer therapies.
Notably, BiP expression level in breast cancer may have a
prognostic value [36]. BiP can therefore represent a molecular
target; its inhibition may reduce its cytoprotective effects
in combination with photodynamic therapy [37]. In gastric
cancer cells treated with multidrug resistance cell-specific
binding peptide, decreased BiP expression has been reported
and this event prevents multidrug resistance [38].

Human lymphomas demonstrated significantly higher
levels of UPR activation compared with normal tissues. In
lymphoma models, c-Myc activates the PERK/eIF2a/ATF4
arm of the UPR, leading to increased cell survival via the
induction of cytoprotective autophagy by PERK activation
[39]. Accordingly PERK deletion inhibits mammary tumor
development and reduces lung metastases [40]. PERK/elF2«
pathway largely contributes to the growth and survival of
cancer under hypoxic stress [8]. In fact PERK is responsible
for activation of many angiogenic genes [41]. Accordingly,
PERK inhibition has been found to reduce tumor growth
both in vitro and in vivo [42].

XBPI1 increased expression and splicing have been found
in hepatocellular carcinoma and breast cancer. It contributes
to the adaptive response to ER stress and to survival under
hypoxic conditions through positive regulation of BiP. In
addition, XBP1 mutations have been described in tumor
cells from patients with multiple myeloma [43-45]. XBP1
overexpression in myeloma cells has also been demonstrated
and it seems to be critical for multiple myeloma induction.
XBP1 therefore represents a regulator of plasma cell differ-
entiation [46]. Interestingly, inhibition of XBP1 splicing has
been shown to reduce multiple myeloma cells growth [47].
Furthermore IRElx may induce XBP1 splicing thus inducing
cellular proliferation through increased expression of cyclin
Al, a cell cycle regulatory protein [48]. Accordingly IRElx
inhibition has been shown to sensitize multiple myeloma cells
to ER stress and reduce their survival [49].

ATF6 is overexpressed in many human solid tumors and
is involved in promoting proliferation and survival under
nutrient deprivation conditions [50]. The active Ser245-
phosphorylated ATF6 is overexpressed in non-small-cell lung
cancer cells [51]. Remarkably ATF6 expression contributes
to cancer formation by negatively regulating genes involved
in cellular senescence [52]. It also mediates survival through
upregulation of LC3B, a component of the autophagosomal
membrane. In liver cancer ATF6 is also responsible for
upregulation of XBP1 expression and the activity of both
ATF6 and XBPI increases BiP expression, leading to hepa-
tocarcinogenesis [45].

Altogether these data explain why the inhibition of ER
chaperones level or of one arm of the UPR components has
been recently suggested as potential cancer therapies [53].
These approaches may inhibit UPR adaptive and prosurvival
pathways leading to increased sensitivity to anticancer ther-
apy.

Remarkably, persistent ER stress and UPR activation
by pharmacological approaches can switch the cytoprotec-
tive functions of UPR into cell death programs. Therefore
both repression of UPR-dependent survival signals [54] and



sustained UPR induction may have beneficial and thera-
peutic effects against cancer. Some antitumoral agents (e.g.,
cannabinoids) activate ER stress as the primary mechanism
to promote cancer cell death [55, 56]. It is still not known if
sustained ER stress and UPR activation can induce tumor cell
death activating additional unknown cell death programs.
Future work needs to be done to address this issue in the
context of cancer therapy.

4. ER-Associated Degradation (ERAD)

ER-Associated Degradation (ERAD) represents an addi-
tional cellular adaptive pathway that contributes to restoring
ER homeostasis by targeting unfolded/misfolded proteins
toward proteasome-mediated degradation. By this pathway
such proteins are translocated from ER into the cytosol
where they are polyubiquitinated and degraded by the pro-
teasome [57]. The transport into the cytosol involves Sec61
translocation channel as well as other factors identified in
ERAD yeast mutants [58, 59]. Indeed the ERAD pathway
is conserved from yeast to humans and deletion of ERAD-
mediating factors leads to significant UPR induction [60],
thus showing significant cross talk between such two path-
ways. Proteins not correctly folded are firstly selected by
molecular chaperones. Then ERAD substrates are modified
through ubiquitin binding via specific E3 ubiquitin ligases
located near ER membrane. Such modification targets pro-
teins to the proteasome located in the cytoplasm [61].

Among the numerous molecular players in mammalian
ERAD pathways, the ER-membrane resident ubiquitin ligase
Hrdl forming a complex with SELIL [62] plays an important
role.

While the role of ERAD pathway in cancer is not fully
elucidated, SELIL has been shown to be involved in cancer
pathogenesis. Remarkably, SELIL overexpression inhibits cell
proliferation, growth, motility, and invasion in pancreatic
cancer cells. Furthermore, correlation between SELIL pro-
tein levels and poor prognosis has been reported in breast
carcinoma patients and other cancers [63]. However further
studies are needed to clarify mechanisms underlying SEL1
control of tumorigenesis.

5. ER Stressors in Cancer Microenvironment

UPR activation in transformed cells is attributed to both
intrinsic and extrinsic factors. Hyperactivation of oncogenes
or loss-of-function mutations in tumor suppressor genes may
increase protein synthesis and translocation into the ER in
response to high metabolic demand and consequently UPR
is activated. In addition, certain types of cancer cells are
highly secretory and therefore prone to constitutive UPR
activation. Defects in glycoprotein and lipid biosynthesis as
a consequence of DNA mutations might also contribute to
the induction of ER stress [2]. Mutations in oncogenes and
tumor suppressor genes have been shown to inhibit ER stress
induced apoptosis [39, 64]. In addition mutations in molec-
ular components of the UPR pathways may also directly
contribute to enhanced cancer cell survival upon stress. For
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example some IREla mutants, identified in human cancers,
are unable to display proapoptotic RIDD function, thus
showing increased cell survival [65]. Furthermore, enhanced
activation of IRE1 may have a cytoprotective effect leading to
cancer progression via XBP1 mRNA splicing [66]. In response
to chronic stress, normal cells usually attenuate the IREla—
XBPI and ATF6a pathways, so that the apoptotic signals
dominate. On the contrary, some cancer cells have constitu-
tive activation of IREloe—XBPI thus inhibiting apoptosis [67,
68]. Although tumors secrete angiogenic factors to promote
angiogenesis, this is often not sufficient to satisfy the elevated
tumor metabolic requirements. In addition to hypoxia, cells
in developing tumors are subject to glucose deprivation, lactic
acidosis, oxidative stress, and decreased amino acid supplies
[2]. All these changes in the microenvironment contribute to
activating the UPR (see Figure 2).

5.1 Hypoxia. Tumor growth with defective microcirculation
leads to hypoxia, which activates the UPR [69-72]. Since
UPR increases cellular survival and proliferation, these events
may produce a positive loop further promoting tumor growth
and increasing hypoxia within the tumor. Therefore, hypoxia-
mediated UPR activation appears to be essential for tumor
cell survival. Although there is a general inhibition of trans-
lation under moderate-extreme hypoxia, some proteins are
induced under low O, conditions including HIF-1 and its
downstream targets [73]. Hypoxia induces Ser51 phosphory-
lation of the translation initiation factor eIF2« via PERK acti-
vation, and this is required to downregulate protein synthesis.
Hypoxia tolerance is also dependent on the upregulation of
ATF4, a downstream effector of e[F2« phosphorylation, both
in vitro and in vivo. The UPR pathway mediated by activation
of IREl and its downstream target XBP1 is also required
to counteract hypoxic conditions leading to tumor growth.
Human fibrosarcoma and lung carcinoma cells upregulate
BiP level and XBP1 splicing under hypoxia, whereas human
colon cancer cells upregulate PERK-dependent phospho-
rylation of elF2a and ATF4 translation [74]. It has been
demonstrated that XBPl-deficient tumor cell survival is
reduced under hypoxic conditions in vitro, and these cells are
unable to develop tumors in vivo. Conversely, spliced XBP1
expression restores tumor growth [8]. Another potential UPR
trigger in hypoxic conditions is the ER oxidase la (EROl)
enzyme that catalyses disulfide bond formation in an oxygen-
dependent manner. EROle activity is reduced by low O,
conditions, thus compromising correct protein folding and
activating UPR [75]. All these hypoxic-modulated molecular
responses are differently activated depending on oxygen level
and hypoxia duration.

5.2. Oxidative Stress and Inflammatory Stress. ROS play
a causal role in tumor development and progression by
promoting genetic and epigenetic alterations and inducing
protumorigenic signaling [76].

Under protein overload conditions, ROS are generated in
the ER as a part of an oxidative folding process. ROS can
target ER resident proteins, enzymes, and ER based calcium
(Ca®") channels, leading to calcium release from the ER
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FIGURE 2: Tumor microenvironment factors activate ER stress and UPR responses leading to cancer development and metastases.

into the cytosol and ER stress signaling. Increased cytoso-
lic calcium and calcium entry in mitochondria from ER
via MAM-associated channels can stimulate mitochondria
metabolism to further ROS production [77]. Increased ROS
accumulation may also occur as a consequence of excessive
nutrients thus inducing ER stress and activating the UPR
[2]. As a consequence of ROS increase, PERK is activated.
PERK activation may limit oxidative DNA damage through
Nrf2 transcription factor induction, thus promoting cancer
cell proliferation [40].

ROS signaling cooperates with UPR pathway leading to
inflammatory responses [78]. Proinflammatory stimuli (e.g.,
TLR ligands and cytokines) trigger ER stress further amplify-
ing inflammatory responses. The IRElae-TRAF2 complex can
recruit apoptosis signal-regulating kinase 1 (ASK1) and acti-
vate JUN N-terminal kinase (JNK), increasing the expression
of proinflammatory genes through enhanced API1 activity
[79].

Interestingly, all three UPR branches activate NF-xB
which is an important transcriptional regulator of proin-
flammatory pathways [80]. The PERK-elF2« and ATF6«
branches of the UPR activate NF-«B through different mech-
anisms. PERK and elF2« signaling stops protein synthesis
and increases the NF-xB/IxB ratio, reducing IxB half-life
and leading to NF-«xB nuclear translocation [81, 82]. ATF6«

activates NF-xB via AKT phosphorylation [83, 84]. NF-xB
can be also activated through binding to the IREla-TNF
receptor-associated factor 2 (TRAF2) complex in response to
endoplasmic reticulum (ER) stress, leading to recruitment of
the IxB kinase (IKK), IxB phosphorylation and degradation,
and nuclear translocation of NF-«B [85].

ER stress also induces transcription of proinflamma-
tory cytokines in macrophages and promotes the type M2
macrophage phenotype that in turn supports tumor growth
[86]. In addition ER stress, in combination with TLR agonists,
by stimulating IL-23 in dendritic cells, may favour develop-
ment of T helper 17 (TH17) and tumor growth [87, 88].

5.3. Nutrient Deprivation and Acidosis. Some other envi-
ronmental factors indirectly induce ER stress and UPR
activation. Amino acid deprivation activates elF2K4 to
phosphorylate eIF2«. Low glucose availability affects protein
glycosylation and ATP production leading to misfolded
proteins accumulation within the ER [89]. Glucose short-
age also leads to disturbed ER-Ca** homeostasis that is
mediated by reduced sarcoplasmic/endoplasmic reticulum
calcium ATPase (SERCA) activity. At low glucose concen-
tration SERCA pump inhibition leads to PERK activation
[90]. BiP is also upregulated at low glucose concentra-
tion. Interestingly BiP identification was originally made



in low glucose experiments [91]. Also XBPI is involved
in response to glucose deprivation. In particular in the
XBP1s reporter mouse model, which develops spontaneous
mammary tumors, XBP1 splicing was found to increase upon
exposure to a nonmetabolizable glucose analog that simulates
glucose deprivation [92]. Tumor cells adapt to low glucose
levels by switching to a high rate of aerobic glycolysis, which
is known as the Warburg effect [93, 94]. The consequent lactic
acid production reduces the pH, and low pH is an important
feature of the tumor microenvironment, promoting tumor
survival and progression also via UPR by regulating several
BCL-2 family members and CHOP [95].

5.4. Angiogenic Growth Factors. Growth factors synthesized
and released within the tumor microenvironment may con-
tribute to UPR activation. In cancer cells a direct link of UPR
with growth factors is still to be investigated in detail; however
different forms of PDGF (i.e., both PDGF-B and PDGF-A)
are known to induce ER stress in nontumor models such as a
vascular injury model [96], transgenic mouse crystalline lens
models [97] and renal fibrosis [98]. Such data may suggest
that the observed role of PDGF family members in melanoma
and angiogenesis [99, 100] and in different tumors [101-103]
may relate, at least to some extent, to ER stress inducing
properties. As far as FGF family members are concerned,
one recently published study [104] demonstrates that FGF-
2 prevents ER stress induced cancer cell apoptosis in a Nck
1 (Src homology 2/3 domain-containing protein) mediated
way. Further, Wang and colleagues recently demonstrated
that glucose deprivation induces a PERK/ATF4-mediated
UPR which leads to a proangiogenic action by stimulat-
ing the expression of a number of proangiogenic factors
such as VEGF and FGF-2 and inhibiting the expression of
antiangiogenic factors such as THBSI, CXCL14, and CXCL10
[105]. Moreover, VEGF has been shown to induce UPR in
an ER stress independent manner, via PLCy and mTORCI,
indicating these players as constitutive parts of the VEGF
signaling machine [106]. On the other hand, UPR has been
shown to prevent inositol-requiring protein 1 (IRE1) o and
ATF6-mediated VEGF degradation [107]. Finally, UPR, via
IREla/XBP-1, PERK-ATF4, and ATF6« pathways, acts as an
upstream regulator of VEGF transcription, directly affecting
angiogenesis [108].

6. Recent Evidences on the Direct Role of
UPR Regulation in Counteracting Prostate
Cancer and Melanoma

Cancer cells generally display increased apoptosis resistance
as compared to normal cells, thus bypassing ER stress-
induced cell death [109]. Current strategies to counteract
cancer growth aim at exacerbating ER stress thus stimulating
prodeath UPR. Recent studies underlie the UPR targeting in
different cancers such as prostate cancer [110] or melanoma
[111]. While UPR role in tumors such as breast cancer [112]
and lung cancer [113] has been reviewed in the last three years,
recent reviews focused on “melanoma and UPR” or “prostate
cancer and UPR” are lacking.
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The key UPR relevance in response to cancer may be
underlined by the observation that UPR activators may
represent valuable novel therapeutic targets in a number of
cancer conditions. For instance, SMIP004, a potent inhibitor
of prostate and breast cancers growth, has been shown to
achieve its proapoptotic effect by altering mitochondrial
respiration and activating a MAPK-dependent proapoptotic
effect downstream UPR [110]. In addition, death of prostate
cancer cells such as PC3 and PNTla has been observed
upon treatment with a standardized green tea extract, acting
via UPR activation, leading to cell cycle arrest at G2/M
checkpoint in PC3 cells and at GO/GI checkpoint in PNTIa
cells [114]. Furthermore, subtilase cytotoxin catalytic subunit
has been shown to sensitize prostate as well as lung cancer
cells to photodynamic therapeutic treatments, mostly induc-
ing cell death rather than apoptosis. This effect is related
to subtilase targeting of GRP78, a major player in UPR
regulation [37]. GRP78 appears to be a potentially relevant
molecular target; in fact, also in melanoma, targeting GRP78
via subtilase has been shown to be an effective way to
increase the proapoptotic effect of drugs such as fenretinide
or bortezomib [115, 116]. Finally, combination of Pim kinase
inhibitor and BCL2-antagonist has been shown to induce a
strong in vitro and in vivo apoptosis in prostate cancer cells,
mediated by Noxa protein activating UPR [117]. Interestingly,
a Noxa-dependent proapoptotic effect has been also observed
in melanoma cells, induced by another UPR activator named
aurin [118].

7. Concluding Remarks

The UPR appears to adjust cancer microenvironment and
represents a mechanism underlying resistance against cancer
therapy [119]. Transformed cells may exploit UPR as a
survival strategy to survive in a stressful microenvironment.
While most studies demonstrate crucial roles for UPR signal-
ing in tumor growth and chemoresistance, only recently UPR
activation has been demonstrated to occur during oncogenic
transformation and cancer development since UPR signaling
molecules have been shown to interact with oncogenes
and tumor suppressor genes. Further studies are necessary
to understand in more detail the exact interaction of the
involved signaling pathways [2]. Identification of such key
players has the potential to select additional novel therapeutic
approaches to improve the antitumor treatments. Further,
selective inhibitors of the ER stress response may be revealed
to be useful to counteract drug resistance [89, 120].

Recently several IREl« inhibitors, namely, STF-083010,
3-ethoxy-5,6-dibromosalicylaldehyde, 2-hydroxy-1-naphtha-
ldehyde, toyocamycin, and irestatin, have been found to
induce apoptosis in pancreatic cancer cells [121] and in
malignant myeloma cells [122]. Such IREl« inhibitors have
shown promising in vitro effects, in combination with other
drugs [121]. IREl« inhibitors clinical potential also comes
from the observation that IREler inhibition sensitizes cancer
cells to apoptosis induced by oncolytic virus therapy [123]. As
an example, the novel therapeutic agent eeyarestatin I targets
p97, an ATPase involved in the transport of ubiquitinated
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proteins, and blocks ERAD pathway inducing cancer cell
death [124].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

Claudia Giampietri, Simonetta Petrungaro, and Silvia Conti
equally contributed to this work.

Acknowledgments

The authors apologize to all those investigators whose work
was not cited due to oversight or space constraints. This study
was supported by Fondazione Roma, PRIN, and “Ricerca
Scientifica Sapienza 2014” to Elio Ziparo.

References

[1] W. A. Wang, J. Groenendyk, and M. Michalak, “Endoplasmic
reticulum stress associated responses in cancer,” Biochimica et
Biophysica Acta—Molecular Cell Research, vol. 1843, no. 10, pp.
2143-2149, 2014.

[2] M. Wang and R. J. Kaufman, “The impact of the endoplasmic
reticulum protein-folding environment on cancer develop-
ment,” Nature Reviews Cancer, vol. 14, no. 9, pp. 581-597, 2014.

[3] R.K. Yadav, S. W. Chae, H. R. Kim, and H. J. Chae, “Endoplas-
mic reticulum stress and cancer,” Journal of Cancer Prevention,
vol. 19, no. 2, pp. 75-88, 2014.

[4] J. M. Brown and A. J. Giaccia, “The unique physiology of
solid tumors: opportunities (and problems) for cancer therapy;’
Cancer Research, vol. 58, no. 7, pp. 1408-1416, 1998.

[5] B. He, “Viruses, endoplasmic reticulum stress, and interferon
responses,” Cell Death and Differentiation, vol. 13, no. 3, pp. 393—
403, 2006.

[6] E Martinon, “Targeting endoplasmic reticulum signaling path-
ways in cancer;,” Acta Oncologica, vol. 51, no. 7, pp. 822-830, 2012.

[7] M. Moenner, O. Pluquet, M. Bouchecareilh, and E. Chevet,
“Integrated endoplasmic reticulum stress responses in cancer,’
Cancer Research, vol. 67, no. 22, pp. 10631-10634, 2007.

[8] C.Koumenis, “ER stress, hypoxia tolerance and tumor progres-
sion,” Current Molecular Medicine, vol. 6, no. 1, pp. 55-69, 2006.

[9] A. H. Schonthal, “Targeting endoplasmic reticulum stress for
cancer therapy;” Frontiers in Bioscience, vol. 4, pp. 412-431, 2012.

[10] I. Tabas and D. Ron, “Integrating the mechanisms of apoptosis
induced by endoplasmic reticulum stress,” Nature Cell Biology,
vol. 13, no. 3, pp- 184-190, 2011.

[11] K. Kohno, K. Normington, J. Sambrook, M.-J. Gething, and
K. Mori, “The promoter region of the yeast KAR2 (BiP) gene
contains a regulatory domain that responds to the presence of
unfolded proteins in the endoplasmic reticulum,” Molecular and
Cellular Biology, vol. 13, no. 2, pp. 877-890, 1993.

[12] C. E. Shamu, J. S. Cox, and P. Walter, “The unfolded-protein-
response pathway in yeast,” Trends in Cell Biology, vol. 4, no. 2,
pp. 56-60, 1994.

(13] H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron,
“Perk is essential for translational regulation and cell survival

during the unfolded protein response,” Molecular Cell, vol. 5,
no. 5, pp. 897-904, 2000.

[14] J.S. Cox, C. E. Shamu, and P. Walter, “Transcriptional induction
of genes encoding endoplasmic reticulum resident proteins
requires a transmembrane protein kinase,” Cell, vol. 73, no. 6,
pp. 1197-1206, 1993.

(15] K. Haze, H. Yoshida, H. Yanagi, T. Yura, and K. Mori,
“Mammalian transcription factor ATF6 is synthesized as a
transmembrane protein and activated by proteolysis in response
to endoplasmic reticulum stress,” Molecular Biology of the Cell,
vol. 10, no. 11, pp. 3787-3799, 1999.

[16] A.Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and D.
Ron, “Dynamic interaction of BiP and ER stress transducers in
the unfolded-protein response;” Nature Cell Biology, vol. 2, no.
6, pp. 326-332, 2000.

(17] D. Ron and P. Walter, “Signal integration in the endoplasmic
reticulum unfolded protein response;” Nature Reviews Molecu-
lar Cell Biology, vol. 8, no. 7, pp. 519-529, 2007.

[18] R. V. Rao, A. Peel, A. Logvinova et al., “Coupling endoplasmic
reticulum stress to the cell death program: role of the ER
chaperone GRP78,” FEBS Letters, vol. 514, no. 2-3, pp. 122-128,
2002.

[19] R. J. Kaufman and J. D. Malhotra, “Calcium trafficking inte-
grates endoplasmic reticulum function with mitochondrial
bioenergetics,” Biochimica et Biophysica Acta—Molecular Cell
Research, vol. 1843, no. 10, pp. 2233-2239, 2014.

[20] J. E. Vance, “Phospholipid synthesis in a membrane fraction
associated with mitochondria,” The Journal of Biological Chem-
istry, vol. 265, no. 13, pp. 7248-7256, 1990.

[21] E. S. Marini, C. Giampietri, S. Petrungaro et al., “The endoge-
nous caspase-8 inhibitor c-FLIP; regulates ER morphology
and crosstalk with mitochondria,” Cell Death & Differentiation,
2014.

[22] A.R. van Vliet, T. Verfaillie, and P. Agostinis, “New functions
of mitochondria associated membranes in cellular signaling,”
Biochimica et Biophysica Acta—Molecular Cell Research, vol.
1843, no. 10, pp. 2253-2262, 2014.

[23] T. W. Fawecett, J. L. Martindale, K. Z. Guyton, T. Hai, and N. J.
Holbrook, “Complexes containing activating transcription fac-
tor (ATF)/cAMP-responsive-element-binding protein (CREB)
interact with the CCAAT/enhancer-binding protein (C/EBP)-
ATF composite site to regulate Gadd153 expression during the
stress response,” Biochemical Journal, vol. 339, no. 1, pp. 135-141,
1999.

[24] Y. Ma and L. M. Hendershot, “The unfolding tale of the
unfolded protein response,” Cell, vol. 107, no. 7, pp. 827-830,
2001.

[25] M. Calfon, H. Zeng, F. Urano et al., “IRE1 couples endoplasmic
reticulum load to secretory capacity by processing the XBP-1
mRNA,” Nature, vol. 415, no. 6867, pp. 92-96, 2002.

[26] H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori,
“XBP1 mRNA is induced by ATF6 and spliced by IREl in
response to ER stress to produce a highly active transcription
factor;” Cell, vol. 107, no. 7, pp. 881-891, 2001.

[27] H. Nishitoh, A. Matsuzawa, K. Tobiume et al., “ASK1 is essen-
tial for endoplasmic reticulum stress-induced neuronal cell
death triggered by expanded polyglutamine repeats,” Genes and
Development, vol. 16, no. 11, pp. 1345-1355, 2002.

[28] M. C. Bassik, L. Scorrano, S. A. Oakes, T. Pozzan, and S.
J. Korsmeyer, “Phosphorylation of BCL-2 regulates ER Ca**
homeostasis and apoptosis,” EMBO Journal, vol. 23, no. 5, pp.
1207-1216, 2004.



[29] E.S.Papadakis, K. G. Finegan, X. Wang et al., “The regulation of

Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite
to the mitochondrial-induced apoptotic pathway;” FEBS Letters,
vol. 580, no. 5, pp. 1320-1326, 2006.

G. V. Putcha, S. Le, S. Frank et al., “JNK-mediated BIM phos-
phorylation potentiates BAX-dependent apoptosis;,” Neuron,
vol. 38, no. 6, pp. 899-914, 2003.

M. Maurel, E. Chevet, ]. Tavernier, and S. Gerlo, “Getting RIDD
of RNA: IREl in cell fate regulation,” Trends in Biochemical
Sciences, vol. 39, no. 5, pp. 245-254, 2014.

J. Dudek, J. Benedix, S. Cappel et al., “Functions and pathologies
of BiP and its interaction partners,” Cellular and Molecular Life
Sciences, vol. 66, no. 9, pp. 1556-1569, 2009.

Y. Fu, J. Li, and A. S. Lee, “GRP78/BiP inhibits endoplasmic
reticulum BIK and protects human breast cancer cells against
estrogen starvation-induced apoptosis,” Cancer Research, vol.
67, no. 8, pp. 3734-3740, 2007.

R. K. Reddy, C. Mao, P. Baumeister, R. C. Austin, R. J. Kaufman,
and A. S. Lee, “Endoplasmic reticulum chaperone protein
GRP78 protects cells from apoptosis induced by topoisomerase
inhibitors: role of ATP binding site in suppression of caspase-7
activation,” The Journal of Biological Chemistry, vol. 278, no. 23,
pp- 20915-20924, 2003.

C. C. Jiang, L. H. Chen, S. Gillespie et al., “Inhibition of MEK
sensitizes human melanoma cells to endoplasmic reticulum
stress-induced apoptosis,” Cancer Research, vol. 67, no. 20, pp.
9750-9761, 2007.

E. Lee, P. Nichols, D. Spicer, S. Groshen, M. C. Yu, and A. S. Lee,
“GRP78 as a novel predictor of responsiveness to chemotherapy
in breast cancer,” Cancer Research, vol. 66, no. 16, pp. 7849-7853,
2006.

M. Firczuk, M. Gabrysiak, J. Barankiewicz et al., “GRP78-
targeting subtilase cytotoxin sensitizes cancer cells to photody-
namic therapy;” Cell Death and Disease, vol. 4, no. 7, article €741,
2013.

J. Kang, G. Zhao, T. Lin et al., “A peptide derived from phage
display library exhibits anti-tumor activity by targeting GRP78
in gastric cancer multidrug resistance cells,” Cancer Letters, vol.
339, no. 2, pp. 247-259, 2013.

L. S. Hart, J. T. Cunningham, T. Datta et al., “ER stress-
mediated autophagy promotes Myc-dependent transformation
and tumor growth,” Journal of Clinical Investigation, vol. 122, no.
12, pp. 4621-4634, 2012.

E. Bobrovnikova-Marjon, C. Grigoriadou, D. Pytel et al., “PERK
promotes cancer cell proliferation and tumor growth by limiting
oxidative DNA damage,” Oncogene, vol. 29, no. 27, pp. 3881-
3895, 2010.

[41] J. D. Blais, C. L. Addison, R. Edge et al, “Perk-dependent

translational regulation promotes tumor cell adaptation and
angiogenesis in response to hypoxic stress,” Molecular and
Cellular Biology, vol. 26, no. 24, pp. 9517-9532, 2006.

J. M. Axten, J. R. Medina, Y. Feng et al., “Discovery of 7-methyl-
5-(1-[3-(trifluoromethyl) phenyl]acetyl-2,3-dihydro-1H-indol-
5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a
potent and selective first-in-class inhibitor of protein kinase R
(PKR)-like endoplasmic reticulum kinase (PERK),” Journal of
Medicinal Chemistry, vol. 55, no. 16, pp. 7193-7207, 2012.

T. Fujimoto, M. Onda, H. Nagai, T. Nagahata, K. Ogawa, and
M. Emi, “Upregulation and overexpression of human X-box
binding protein 1 (hXBP-1) gene in primary breast cancers,’
Breast Cancer, vol. 10, no. 4, pp. 301-306, 2003.

Mediators of Inflammation

[44] S. Y. Hong and T. Hagen, “Multiple myeloma Leul67Ile
(c.499C>A) mutation prevents XBP1 mRNA splicing,” British
Journal of Haematology, vol. 161, no. 6, pp. 898-901, 2013.

[45] M. Shuda, N. Kondoh, N. Imazeki et al., “Activation of the ATF6,
XBP1 and grp78 genes in human hepatocellular carcinoma: a
possible involvement of the ER stress pathway in hepatocarcino-
genesis,” Journal of Hepatology, vol. 38, no. 5, pp. 605-614, 2003.

[46] D. R. Carrasco, K. Sukhdeo, M. Protopopova et al., “The
differentiation and stress response factor XBP-1 drives multiple
myeloma pathogenesis,” Cancer Cell, vol. 11, no. 4, pp. 349-360,
2007.

[47] N. Mimura, M. Fulciniti, G. Gorgun et al., “Blockade of XBP1
splicing by inhibition of IREl« is a promising therapeutic option
in multiple myeloma,” Blood, vol. 119, no. 24, pp. 5772-5781,
2012.

[48] J. A. Thorpe and S. R. Schwarze, “IRElalpha controls cyclin Al
expression and promotes cell proliferation through XBP-1,” Cell
Stress and Chaperones, vol. 15, no. 5, pp. 497-508, 2010.

[49] I.Papandreou, N. C. Denko, M. Olson et al., “Identification of an
Irelalpha endonuclease specific inhibitor with cytotoxic activity
against human multiple myeloma,” Blood, vol. 117, no. 4, pp. 1311-
1314, 2011.

[50] J. Ye, M. Kumanova, L. S. Hart et al., “The GCN2-ATF4 pathway
is critical for tumour cell survival and proliferation in response
to nutrient deprivation,” The EMBO Journal, vol. 29, no. 12, pp.
2082-2096, 2010.

[51] C.-E Fan, Y. Miao, X.-Y. Lin, D. Zhang, and E.-H. Wang,
“Expression of a phosphorylated form of ATF4 in lung and non-
small cell lung cancer tissues,” Tumor Biology, vol. 35, no. 1, pp.
765-771, 2014.

[52] M. Horiguchi, S. Koyanagi, A. Okamoto, S. O. Suzuki, N.
Matsunaga, and S. Ohdo, “Stress-regulated transcription fac-
tor ATF4 promotes neoplastic transformation by suppressing
expression of the INK4a/ARF cell senescence factors,” Cancer
Research, vol. 72, no. 2, pp. 395-401, 2012.

[53] B. Luo and A. S. Lee, “The critical roles of endoplasmic
reticulum chaperones and unfolded protein response in tumori-
genesis and anticancer therapies,” Oncogene, vol. 32, no. 7, pp.
805-818, 2013.

[54] C. Hetz, E. Chevet, and H. P. Harding, “Targeting the unfolded

protein response in disease,” Nature Reviews Drug Discovery,
vol. 12, no. 9, pp- 703-719, 2013.

[55] M. Guzmadn, “Cannabinoids: potential anticancer agents;
Nature Reviews Cancer, vol. 3, no. 10, pp. 745-755, 2003.

[56] G. Velasco, T. Verfaillie, M. Salazar, and P. Agostinis, “Linking

ER stress to autophagy: potential implications for cancer ther-

apy, International Journal of Cell Biology, vol. 2010, Article ID

930509, 19 pages, 2010.

J. L. Brodsky, “Cleaning Up: ER-associated degradation to the

rescue,” Cell, vol. 151, no. 6, pp. 1163-1167, 2012.

[58] R. Y. Hampton, R. G. Gardner, and J. Rine, “Role of 26S
proteasome and HRD genes in the degradation of 3-hydroxy-3-
methylglutaryl-CoA reductase, an integral endoplasmic reticu-
lum membrane protein,” Molecular Biology of the Cell, vol. 7, no.
12, pp. 2029-2044, 1996.

[59] M. Knop, A. Finger, T. Braun, K. Hellmuth, and D. H. Wolf,

“Derl, a novel protein specifically required for endoplasmic

reticulum degradation in yeast,” The EMBO Journal, vol. 15, no.

4, pp. 753-763, 1996.

R. Friedlander, E. Jarosch, J. Urban, C. Volkwein, and T.

Sommer, “A regulatory link between ER-associated protein

a
s

(60



Mediators of Inflammation

(61]

(62]

(63]

[67]

(73]

(74]

(75]

(76]

degradation and the unfolded-protein response;,” Nature Cell
Biology, vol. 2, no. 7, pp. 379-384, 2000.

S.S. Vembar and J. L. Brodsky, “One step at a time: endoplasmic
reticulum-associated degradation,” Nature Reviews Molecular
Cell Biology, vol. 9, no. 12, pp. 944-957, 2008.

B. Mueller, E. J. Klemm, E. Spooner, J. H. Claessen, and
H. L. Ploegh, “SELIL nucleates a protein complex required
for dislocation of misfolded glycoproteins,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 105, no. 34, pp. 12325-12330, 2008.

H. Kim, A. Bhattacharya, and L. Qi, “Endoplasmic reticulum
quality control in cancer: friend or foe,” Seminars in Cancer
Biology, 2015.

C. Denoyelle, G. Abou-Rjaily, V. Bezrookove et al., “Anti-
oncogenic role of the endoplasmic reticulum differentially
activated by mutations in the MAPK pathway,” Nature Cell
Biology, vol. 8, no. 10, pp. 1053-1063, 2006.

R. Ghosh, L. Wang, E. Wang et al., “Allosteric inhibition of the
IRElalpha RNase preserves cell viability and function during
endoplasmic reticulum stress,” Cell, vol. 158, no. 3, pp. 534-548,
2014.

S. Ranatunga, C.-H. A. Tang, C. W. Kang et al., “Synthesis of
novel tricyclic chromenone-based inhibitors of IRE-1 RNase
activity, Journal of Medicinal Chemistry, vol. 57, no. 10, pp.
4289-4301, 2014.

A. Bruchmann, C. Roller, T. V. Walther et al., “Bcl-2 associated
athanogene 5 (Bag5) is overexpressed in prostate cancer and
inhibits ER-stress induced apoptosis,” BMC Cancer, vol. 13,
article 96, 2013.

K. H. Tay, Q. Luan, A. Croft et al, “Sustained IREl and
ATF6 signaling is important for survival of melanoma cells
undergoing ER stress,” Cellular Signalling, vol. 26, no. 2, pp. 287-
294, 2014.

D. Cojocari, R. N. Vellanki, B. Sit, D. Uehling, M. Koritzinsky,
and B. G. Wouters, “New small molecule inhibitors of UPR
activation demonstrate that PERK, but not IRElalpha signaling
is essential for promoting adaptation and survival to hypoxia,”
Radiotherapy and Oncology, vol. 108, no. 3, pp. 541-547, 2013.
D. R. Fels and C. Koumenis, “The PERK/eIF2alpha/ATF4
module of the UPR in hypoxia resistance and tumor growth,”
Cancer Biology and Therapy, vol. 5, no. 7, pp. 723-728, 2006.

C. Koumenis, C. Naczki, M. Koritzinsky et al., “Regulation of
protein synthesis by hypoxia via activation of the endoplasmic
reticulum kinase PERK and phosphorylation of the translation
initiation factor eIF2«,” Molecular and Cellular Biology, vol. 22,
no. 21, pp. 7405-7416, 2002.

L. Romero-Ramirez, H. Cao, D. Nelson et al., “XBP1 is essential
for survival under hypoxic conditions and is required for tumor
growth,” Cancer Research, vol. 64, no. 17, pp. 5943-5947, 2004.
J. Brocato, Y. Chervona, and M. Costa, “Molecular responses to
hypoxia-inducible factor 1o and beyond,” Molecular Pharmacol-
ogy, vol. 85, no. 5, pp. 651-657, 2014.

Y.-P. Vandewynckel, D. Laukens, A. Geerts et al., “The para-
dox of the unfolded protein response in cancer,” Anticancer
Research, vol. 33, no. 11, pp. 4683-4694, 2013.

B. Gess, K. H. Hofbauer, R. H. Wenger, C. Lohaus, H. E. Meyer,
and A. Kurtz, “The cellular oxygen tension regulates expression
of the endoplasmic oxidoreductase EROI-La,” European Journal
of Biochemistry, vol. 270, no. 10, pp. 2228-2235, 2003.

A. Glasauer and N. S. Chandel, “Targeting antioxidants for
cancer therapy,” Biochemical Pharmacology, vol. 92, no. 1, pp.
90-101, 2014.

(77]

(78]

(79]

(80]

(81]

(82

(83]

(85]

(87]

T.-I. Peng and M.-]. Jou, “Oxidative stress caused by mitochon-
drial calcium overload,” Annals of the New York Academy of
Sciences, vol. 1201, pp. 183-188, 2010.

J. H. Yu and H. Kim, “Oxidative stress and cytokines in the
pathogenesis of pancreatic cancer;” Journal of Cancer Preven-
tion, vol. 19, no. 2, pp. 97-102, 2014.

R. Eferl and E. E Wagner, “AP-1: a double-edged sword in
tumorigenesis,” Nature Reviews Cancer, vol. 3, no. 11, pp. 859-
868, 2003.

K. Zhang, X. Shen, J. Wu et al., “Endoplasmic reticulum stress
activates cleavage of CREBH to induce a systemic inflammatory
response,” Cell, vol. 124, no. 3, pp. 587-599, 2006.

A.B. Tam, E. L. Mercado, A. Hoffmann, and M. Niwa, “ER stress
activates NF-xB by integrating functions of basal IKK activity,
IRE1 and PERK,” PLoS ONE, vol. 7, no. 10, Article ID 45078,
2012.

Y. Zhang, H. Wang, J. Li et al., “Peroxynitrite-induced neuronal
apoptosis is mediated by intracellular zinc release and 12-
lipoxygenase activation,” Journal of Neuroscience, vol. 24, no. 47,
pp- 10616-10627, 2004.

S. Nakajima, N. Hiramatsu, K. Hayakawa et al., “Selective
abrogation of BiP/GRP78 blunts activation of NF-fB through
the ATF6 branch of the UPR: involvement of C/EBPS and
mTOR-dependent dephosphorylation of Akt;” Molecular and
Cellular Biology, vol. 31, no. 8, pp. 1710-1718, 2011.

H. Yamazaki, N. Hiramatsu, K. Hayakawa et al., “Activation
of the Akt-NF-«xB pathway by subtilase cytotoxin through the
ATF6 branch of the unfolded protein response,” The Journal of
Immunology, vol. 183, no. 2, pp. 1480-1487, 2009.

P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton,
“Autocrine tumor necrosis factor « links endoplasmic reticulum
stress to the membrane death receptor pathway through IREl«-
mediated NF-xB activation and down-regulation of TRAF2
expression,” Molecular and Cellular Biology, vol. 26, no. 8, pp.
3071-3084, 2006.

J. Oh, A. E. Riek, S. Weng et al,, “Endoplasmic reticulum
stress controls M2 macrophage differentiation and foam cell
formation,” The Journal of Biological Chemistry, vol. 287, no. 15,
pp. 11629-11641, 2012.

J. C. Goodall, C. Wu, Y. Zhang et al., “Endoplasmic reticu-
lum stress-induced transcription factor, CHOP, is crucial for
dendritic cell IL-23 expression,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 107, no.
41, pp. 17698-17703, 2010.

L. Wang, T. Yi, M. Kortylewski, D. M. Pardoll, D. Zeng, and
H. Yu, “IL-17 can promote tumor growth through an IL-6-Stat3
signaling pathway;” Journal of Experimental Medicine, vol. 206,
no. 7, pp. 1457-1464, 2009.

H. R. Park, A. Tomida, S. Sato et al., “Effect on tumor cells of
blocking survival response to glucose deprivation,” Journal of
the National Cancer Institute, vol. 96, no. 17, pp. 1300-1310, 2004.
C. E. Moore, O. Omikorede, E. Gomez, G. B. Willars, and T.
P. Herbert, “PERK activation at low glucose concentration is
mediated by SERCA pump inhibition and confers preemptive
cytoprotection to pancreatic 3-cells,” Molecular Endocrinology,
vol. 25, no. 2, pp. 315-326, 2011.

R. P. C. Shiu, J. Pouyssegur, and I. Pastan, “Glucose depletion
accounts for the induction of two transformation-sensitive
membrane proteins in Rous sarcoma virus-transformed chick
embryo fibroblasts,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 74, no. 9, pp. 3840-
3844, 1977.



10

[92]

[95]

(98]

(100]

[101]

[102]

[103]

[104]

[105]

(106]

M. T. Spiotto, A. Banh, I. Papandreou et al., “Imaging the
unfolded protein response in primary tumors reveals microen-
vironments with metabolic variations that predict tumor
growth,” Cancer Research, vol. 70, no. 1, pp. 78-88, 2010.

T. Amann, U. Maegdefrau, A. Hartmann et al., “GLUTI expres-
sion is increased in hepatocellular carcinoma and promotes
tumorigenesis;,” The American Journal of Pathology, vol. 174, no.
4, pp. 1544-1552, 2009.

C. Ryder, K. McColls, F. Zhongs, and C. W. Distelhorst,
“Acidosis promotes Bcl-2 family-mediated evasion of apoptosis:
involvement of acid-sensing G protein-coupled receptor GPR65
signaling to MEK/ERK,” The Journal of Biological Chemistry,
vol. 287, no. 33, pp. 27863-27875, 2012.

C. B. Ryder, K. McColl, and C. W. Distelhorst, “Acidosis
blocks CCAAT/enhancer-binding protein homologous protein
(CHOP)- and c-Jun-mediated induction of p53-upregulated
mediator of apoptosis (PUMA) during amino acid starvation,”
Biochemical and Biophysical Research Communications, vol. 430,
no. 4, pp. 12831288, 2013.

S. Ishimura, T. Mita, Y. Watanabe et al., “Reduction of endoplas-
mic reticulum stress inhibits neointima formation after vascular
injury;” Scientific Reports, vol. 4, article 6943, 2014.

L. W. Reneker, H. Chen, and P. A. Overbeek, “Activation
of unfolded protein response in transgenic mouse lenses;
Investigative Ophthalmology and Visual Science, vol. 52, no. 5,
pp. 2100-2108, 2011.

H. Dihazi, G. H. Dihazi, A. Bibi et al., “Secretion of ERP57 is
important for extracellular matrix accumulation and progres-
sion of renal fibrosis, and is an early sign of disease onset,”
Journal of Cell Science, vol. 126, no. 16, pp. 3649-3663, 2013.

E de Marchis, D. Ribatti, C. Giampietri et al., “Platelet-derived
growth factor inhibits basic fibroblast growth factor angiogenic
properties in vitro and in vivo through its « receptor;” Blood, vol.
99, no. 6, pp. 2045-2053, 2002.

D. Faraone, M. S. Aguzzi, G. Toietta et al., “Platelet-derived
growth factor-receptor « strongly inhibits melanoma growth in
vitro and in vivo,” Neoplasia, vol. 11, no. 8, pp. 732-742, 2009.
C. Cenciarelli, H. E. Marei, M. Zonfrillo et al., “PDGF receptor
alpha inhibition induces apoptosis in glioblastoma cancer
stem cells refractory to anti-Notch and anti-EGFR treatment,’
Molecular Cancer, vol. 13, no. 1, article 247, 2014.

N. A. Luo, Y. Q. Qu, G. D. Yang et al., “Post-transcriptional up-
regulation of PDGF-C by HuR in advanced and stressed breast
cancer, International Journal of Molecular Sciences, vol. 15, no.
11, pp. 20306-20320, 2014.

O. M. Tudoran, O. Soritau, L. Balacescu et al., “PDGF beta
targeting in cervical cancer cells suggest a fine-tuning of
compensatory signalling pathways to sustain tumourigenic
stimulation,” Journal of Cellular and Molecular Medicine, vol. 19,
no. 2, pp. 371-382, 2015.

B. Li, Z. Pi, L. Liu et al., “FGF-2 prevents cancer cells from ER
stress-mediated apoptosis via enhancing proteasome-mediated
Nck degradation,” Biochemical Journal, vol. 452, no. 1, pp. 139—-
145, 2013.

Y. Wang, G. N. Alam, Y. Ning et al., “The unfolded protein
response induces the angiogenic switch in human tumor cells
through the PERK/ATF4 pathway,” Cancer Research, vol. 72, no.
20, pp. 5396-5406, 2012.

E. Karali, S. Bellou, D. Stellas, A. Klinakis, C. Murphy, and T.
Fotsis, “VEGF Signals through ATF6 and PERK to Promote
Endothelial Cell Survival and Angiogenesis in the Absence of
ER Stress,” Molecular Cell, vol. 54, no. 4, pp. 559-572, 2014.

(107]

[108]

[109]

[110]

[111]

(112]

[113]

(114

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Mediators of Inflammation

L. Liu, X. Qi, Z. Chen et al., “Targeting the IREla/XBP1 and
ATF6 arms of the unfolded protein response enhances VEGF
blockade to prevent retinal and choroidal neovascularization,”
The American Journal of Pathology, vol. 182, no. 4, pp. 1412-1424,
2013.

R. Ghosh, K. L. Lipson, K. E. Sargent et al., “Transcriptional reg-
ulation of VEGF-A by the unfolded protein response pathway,’
PLoS ONE, vol. 5, no. 3, Article ID €9575, 2010.

M. Maurel, E. P. McGrath, K. Mnich, S. Healy, E. Chevet, and A.
Samali, “Controlling the unfolded protein response-mediated
life and death decisions in cancer,” Seminars in Cancer Biology,
2015.

E. Rico-Bautista, W. Zhu, S. Kitada et al., “Small molecule-
induced mitochondrial disruption directs prostate cancer inhi-
bition via unfolded protein response signaling,” Oncotarget, vol.
4, no. 8, pp. 1212-1229, 2013.

S. Qiao, C. M. Cabello, S. D. Lamore, J. L. Lesson, and G. T. Won-
drak, “D-Penicillamine targets metastatic melanoma cells with
induction of the unfolded protein response (UPR) and Noxa
(PMAIP1)-dependent mitochondrial apoptosis,” Apoptosis, vol.
17, no. 10, pp. 1079-1094, 2012.

L. Papa, G. Manfredi, and D. Germain, “SOD], an unexpected
novel target for cancer therapy;,” Genes Cancer, vol. 5, no. 1-2, pp.
15-21, 2014.

S. G. Kelsen, “Respiratory epithelial cell responses to cigarette
smoke: the unfolded protein response,” Pulmonary Pharmacol-
ogy and Therapeutics, vol. 25, no. 6, pp. 447-452, 2012.

E Rizzi, V. Naponelli, A. Silva et al., “Polyphenon E, a standard-
ized green tea extract, induces endoplasmic reticulum stress,
leading to death of immortalized PNT1a cells by anoikis and
tumorigenic PC3 by necroptosis,” Carcinogenesis, vol. 35, no. 4,
pp. 828-839, 2014.

S. Martin, D. S. Hill, J. C. Paton et al., “Targeting GRP78 to
enhance melanoma cell death,” Pigment Cell and Melanoma
Research, vol. 23, no. 5, pp. 675-682, 2010.

S. Martin, P. E. Lovat, and C. P. Redfern, “Cell-type variation
in stress responses as a consequence of manipulating GRP78
expression in neuroectodermal cells,” Journal of Cellular Bio-
chemistry, vol. 116, no. 3, pp. 438-449, 2015.

J. H. Song and A. S. Kraft, “Pim kinase inhibitors sensitize
prostate cancer cells to apoptosis triggered by Bcl-2 family
inhibitor ABT-737, Cancer Research, vol. 72, no. 1, pp. 294-303,
2012.

A. L. Davis, S. Qiao, J. L. Lesson et al., “The quinone methide
aurin is a heat shock response inducer that causes proteotoxic
stress and Noxa-dependent apoptosis in malignant melanoma
cells,” Journal of Biological Chemistry, vol. 290, no. 3, pp. 1623-
1638, 2015.

R. K. Yadav, S. W. Chae, H. R. Kim, and H. J. Chae, “Endoplas-
mic reticulum stress and cancer;,” Journal of Cancer Prevention,
vol. 19, no. 2, pp. 75-88, 2014.

A. Tomida and T. Tsuruo, “Drug resistance mediated by cellular
stress response to the microenvironment of solid tumors,” Anti-
Cancer Drug Design, vol. 14, no. 2, pp. 169-177, 1999.

W. Chien, L. W. Ding, Q. Y. Sun et al., “Selective inhibition
of unfolded protein response induces apoptosis in pancreatic
cancer cells,” Oncotarget, vol. 5, no. 13, pp. 4881-4894, 2014.
X.Li, K. Zhang, and Z. Li, “Unfolded protein response in cancer:
the Physician’s perspective,” Journal of Hematology & Oncology,
vol. 4, article 8, 2011.



Mediators of Inflammation

[123]

[124]

D. J. Mahoney, C. Lefebvre, K. Allan et al, “Virus-tumor
interactome screen reveals ER stress response can reprogram
resistant cancers for oncolytic virus-triggered caspase-2 cell
death,” Cancer Cell, vol. 20, no. 4, pp. 443-456, 2011.

B. C. S. Cross, C. McKibbin, A. C. Callan et al., “Eeyarestatin I
inhibits Sec61-mediated protein translocation at the endoplas-
mic reticulum,” Journal of Cell Science, vol. 122, part 23, pp.
4393-4400, 2009.

1



