553 research outputs found

    The Rolf of Test Chips in Coordinating Logic and Circuit Design and Layout Aids for VLSI

    Get PDF
    This paper emphasizes the need for multipurpose test chips and comprehensive procedures for use in supplying accurate input data to both logic and circuit simulators and chip layout aids. It is shown that the location of test structures within test chips is critical in obtaining representative data, because geometrical distortions introduced during the photomasking process can lead to significant intrachip parameter variations. In order to transfer test chip designs quickly, accurately, and economically, a commonly accepted portable chip layout notation and commonly accepted parametric tester language are needed. In order to measure test chips more accurately and more rapidly, parametric testers with improved architecture need to be developed in conjunction with innovative test structures with on-chip signal conditioning

    Specification-driven design of custom hardware in HOP

    Get PDF
    technical reportWe present a language "Hardware viewed as Objects and Processes" (HOP) for specifying the structure, behavior, and timing of hardware systems. HOP embodies a simple process model for lock-step synchronous processes. Processes may be described both as a black-box and as a collection of interacting sub-processes. The latter can be statically simplified using an algorithm 'PARCOMP'. PARCOMP symbolically simulates a collection of interacting processes. The advantages claimed for HOP include simple semantics, intuitiveness, high expressive power, and numerous provisions to support easily verifiable designs all the way to VLSI layout. After introducing HOP, and presenting some of the results obtained from experimenting with the HOP design system, we present the design of a large hardware system (the "Utah Simulation Engine") currently being developed to speed-up distributed discrete event simulation using Time Warp. Issues in the specification driven design of this system are discussed and illustrated using HOP

    Specification and validation of control-intensive integrated circuits in hopCP

    Get PDF
    technical reportControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a seraantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Specification and validation of control intensive ICs in hopCP

    Get PDF
    technical reportControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations polling and interrupt driven modes of operation multiple concurrent threads of execution non-trivial computational requirements and programmability. In this paper we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous / Asynchronous Receiver Transmitter (USART), using our hardware description language 'hopCP'. A feature of hopCP is that it supports communication via synchronous ports in addition to synchronous message passing Asynchronous ports are distributed shared variables writable by exactly one process We show the usefulness of this combination of communication constructs We outline algorithms to determine safe usages of asynchronous ports and also to discover other static properties of the specification We discuss a compiled code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design Group

    Get PDF
    VLSI testing poses a number of problems which includes the selection of test techniques, the determination of acceptable fault coverage levels, and test vector generation. Available device test techniques are examined and compared. Design rules should be employed to assure the design is testable. Logic simulation systems and available test utilities are compared. The various methods of test vector generation are also examined. The selection criteria for test techniques are identified. A table of proposed design rules is included. Testability measurement utilities can be used to statistically predict the test generation effort. Field reject rates and fault coverage are statistically related. Acceptable field reject rates can be achieved with less than full test vector fault coverage. The methods and techniques which are examined form the basis of the recommended integrated test plan. The methods of automatic test vector generation are relatively primitive but are improving

    DIVA, a data flow language

    Get PDF
    The underlying principles of concurrency and data flow are summarized along with a survey of the current data flow languages. A high level data flow language, DIVA, is developed that provides the basic data types and language constructs of traditional languages as well as some unique features of data flow. The organization and data structures of the compiler and assembler are also discussed

    High level behavioural modelling of boundary scan architecture.

    Get PDF
    This project involves the development of a software tool which enables the integration of the IEEE 1149.1/JTAG Boundary Scan Test Architecture automatically into an ASIC (Application Specific Integrated Circuit) design. The tool requires the original design (the ASIC) to be described in VHDL-IEEE 1076 Hardware Description Language. The tool consists of the two major elements: i) A parsing and insertion algorithm developed and implemented in 'C'; ii) A high level model of the Boundary Scan Test Architecture implemented in 'VHDL'. The parsing and insertion algorithm is developed to deal with identifying the design Input/Output (I/O) terminals, their types and the order they appear in the ASIC design. It then attaches suitable Boundary Scan Cells to each I/O, except power and ground and inserts the high level models of the full Boundary Scan Architecture into the ASIC without altering the design core structure

    The Assq Chip and Its Progeny

    Get PDF
    The Assq Chip lives on the memory bus of the Scheme-81 chip of Sussman et al and serves as a utility for the computation of a number of functions concerned with the maintenance of linear tables and lists. Motivated by a desire to apply the design methodology implicit in Scheme-81, it was designed in about two months, has a very simple architecture and layout, and is primarily machine-generated. The chip and the design process are described and evaluated in the context of a proposal to construct a Scheme-to-silicon compiler that automates the design methodology used in the Assq Chip.MIT Artificial Intelligence Laborator

    Digital parametric testing

    Get PDF
    corecore