
Massachusetts Institute of Technology
Artificial Intelligence Laboratory

Working Paper 225 January 1982

The Assq Chip and Its Progeny

Philip E. Agre

Abstract

'The Assq Chip lives on the memory bus of the Schemc-81 chip of Sussman el al and serves as a utility for
the computation of a number of functions concerned with the maintenance of linear tables and lists.
Motivated by a desire to apply the design irrethodology implicit in Schemc-81, it was designed in about two
months, has a very simple architecture and layout, and is primarily machine-generated. 'he chip and the
design process are described and evaluated in the context of a proposal to construct a Scheme-to-silicon
compiler that automates the design methodology used in the Assq Chip.

A.I. Laboratory Working Papers are produced for internal circulation, and may contain information that is,
for example, too preliminary or too detailed for fonial publication. It is not intended that they should be
considered papers to which reference can be made in the literature.

iMAS IUSETTS INSTITUTE OF TECHIHOLI(I

Acknowledgements. Clark Baker, John 1Batali, I lowic Shrobe. and Gerry Sussman vwere extremely helpful
during the design of the Assq Chip. I)aniel Weise and John Ilatali read and commented upon various drafts,
bat the remaining obscurity is my fault.

Overview
The Assq Chip is an nMOS chip, approximately 6mm x 6mm in size, which is capable of computing a

number of common Lisp functions associat:d with the maintenance of linear lists and tables. It was designed
as a project for MIT course 6.371 for the Fall 1981 term, as an auxiliary to the Scheme-81 chip of Sussman el
a! (Scheme 1981). It acts as a utility, living on Schcme-81's bus and talking to its list-structured memory. It
was motivated by a desire to determnnine whether the design methodology which produced the Schemc-81 chip
could allow a relatively inexperienced designer to produce a complete design from a high-level specification
in a short period and to inquire into the possibility of using such a methodology to write a silicon compiler
which, given the definition of a simple Scheme fiunction, will produce a chip layout. Thcre is hope on each
point. The Assq Chip behaves as a set of memory registers mapped onto Scheme-81's memory that allow a
programmer to compute the lisp functions assq, rassq, delassq, delrassq, nimemq..delq, and circularp simply by
placing the arguments in ordinary memory locations and fetching another memory location until a legal result
is found. 'IThe Assq Chip contains extensive error checking to avoid infinite loops and illegal memory
operations and may be interrupted, halted, or redirected to a new problem on any iteration of its algorithm.
'1 he main considerations in the design were the short period of time available and the constraints imposed by
process and packaging; speed was not an important consideration due to the flct that the clock will be
synchronized with that of the much larger Scheme-81 chip. The architecture of the chip is simple, consisting
of a finite-state machine implemented with a PLA and one level of subroutining, a small array of flip-flops for
internal state, a large data path incorporating much automatic condition-testing circuitry, 60 pads, a small
amount of random logic, and a considerable amount of wiring. The PL.A and register array were
machine-generated, and many routing functions were done automatically. The microcode in the PLA was
generated by a small compiler operating on a low-level microcode source language. Tle input specification
for the data path generator was abstracted from a high-level description of the microcode which specified
what registers were needed and what sorts of specific operations were required to be performed on each.
Placement and routing decisions were dictated almost entirely by the PLA and data path which were by far
the largest blocks in the layout. Extensive testing and debugging functions have been incorporated in the
microcode, and assuming minimal finite-state machine functionality testing will be done over the Scheme-81's
bus by a program written in Scheme. The relative independence of the low-level design details from the
functionality of the chip indicates that the methodology employed in its design would, if automated, be the
basis of a reasonably powerful Scheme-to-silicon compiler. It was concluded that the design methodology
used in Scheme-81 was generalizable at least as far as assq, but that it is not, or not yet, reasonable to expect
hardware-innocent users to be able to design chips using the existing tools.

The Assq Chip will produce offspring later on this year by means of a Scheme-to-silicon compiler that 1
propose to write. (Scheme, of course, is a dialect of Lisp distinguished by its use of lexical scoping.) This
program will produce chips that have the same basic organization as the Assq Chip and talk to Scheme-81 in
the same way, but which implement different functions. 'Ihe ability to customize the data path introduces
some interesting compiler issues, and these are described briefly.

Current State of the Implementation
The chip is described as of the first week in December, 1981. The design appears to pass design-rule and

static analyses. The simulation that has been performed to date indicates that the various parts of the chip
have reasonable finctionality (the finite-state machine really is a finite-state machine and so on), but the fine
details of the algorithms have not been simulated due to a shortage of time and the presence of a few
unresolved issues with regard to the interactions between the Assq and Scheme-81 chips. 'I'The design will be
completed and cooked in early 1982.

This Document
'Ihis document is meant to serve a number of disparate purposes. First, it is meant as a fairly complete

documentation of the Assq Chip project. The various structures and algorithms involxed in the Assq Chip are
motivated and described in some detail. Second, it is meant as a study in integrýAted circuit design, one
small-to-middling project by a novice. Third, it is meant as a proposal and argument for the construction of a
silicon compiler based on lessons learned in the design of the Assq Chip. An attempt has been made to
organize this paper so that a reader who is not interested in all three aspects need not read everything. If a
paragraph seems boring, it is reasonably safe to go on to the next one. Because the Assq Chip and its
prospective progeny are so intimately related to the Scheme-81 chip, this paper contains some rather detailed
descriptions of various aspects of the Scheme-81 chip. As of this date, however, the fine details of the design
of the Scheme-81 chip have not yet been settled, so a reader wishing the definitive word on the details
Scheme-81 chip and system sliould wait for the final report on that project.

Motivation for the Project
The choice of the Assq Chip as my term project was motivated by two questions of computer science. My

hope is to allow ordinary computer users to cause chips to be fabricated by simply entering an editor
command over a Scheme function definition. In order for this to happen, we must understand more about
high-level VLSI design methodology. The Scheme-81 chip of Sussman el al, which was nearing completion
in the Al Lab at the time of the start of the Fall 1981 term, had scouted some new territory in high-level
design. Both a set of VLSI design tools and something that looked like a design methodology had taken shape
and I wanted to determine (1) whether the tools that had been developed would allow a computer person with
minimal VLSI experience (such as myself) td design a relatively large chip in a short period, and (2) whether I

could use those tools in such a way that the low-level design and layout details were relatively independent of
the actual functionality implemented by the chip. If I were successful in the latter, it would follow that by
automating what I did and adding a relatively straightforward translator from source code to circuit
fimctionality specification one could build a Scheme-to-silicon compiler.

The design environment. The available design tools fell into three groups. At the high-level end were two

programs to automatically generate various circuits according to high-level specifications, Howie Sirobe's
data path generator (Shrobe 1982) and John Batali's PLA generator (Batali 1982). Both are immensely

powerful and my design made only fairly rudimentary use of each. At a lower level were two well-de\ eloped
design tools, Shrobe's D)acdalus graphic editing system and the)Design Procedure Language for circuit

description (DPL 1980) (DPL/l)acdalus 1980). These two programs build in turn on the advanced interactive

capabilities of the Lisp Machine. Also available were a number of low-level design aids including Daniel
Weise's node extractor and Ned Goodhuc's adaptation to the Dacdalus environment of Clark Baker's design

rule checker. Heavy use was not made of these tools because their development was not complete and

because the ease of sending CIF over the ChaosNet from the Lisp Machine to machines which had more

highly developed tools made them dispensable until they are completed and integrated into the l)aedalus

environment.
Scheme-81 is a system. Scheme-81 was designed to make use of "hardware subroutine" utility chips such as

the Assq Chip and to support general parallel computation, both arong utility chips on a single Scheme-81

chip's bus and among different interconnected Scheme-81 machines (Scheme 1981). Machines would

coordinate through ports, implemented as utilities on the busses of two different Scheme-81 machines. The

Schcmc-81 garbage collector is capable of supporting cross-machine pointer references to allow the sharing of

data and the communication of information in s-expression format. Each machine in such an organization

would be based on a Scheme-81 chip and specialized by the incorporation of specialized utilities such as the

Assq Chip. There is interest in building chips for doing symbolic pattern matching, infinite-precision

arithmetic, and other common and useful operations. Indeed, some of these will be generated by the

proposed silicon compiler described at dithe end of this paper. Even aside from the possibilities for parallelism

amongst utility chips, the main justification for having specialized chips to perfolrm commonl operations is the
gain in speed and storage utilization efficiency that would result from elimina;ting thdie overhead of Scheme-81
ilnterpretation (Scheme-81 has no compiler). The specialized design of the Assq Chip and its brethren will
allow all computation aside from the memory operations absolutely necessary to manipulate the
list-structured data to be hard-wired, thus allowing bus-utilization efficiency to approach 100 percent (a
condition more humbly known as the von Neumann bottleneck).

Generalizing to silicon compilation. 'lere have been many proposals for silicon compilers. The approach
to the problem I decided to explore involves a high-level source language, the Scheme language in fact,
extremely simple and regular chip architectures, mostly machine-generated, and an absolute minimum of
complicated wiring and random logic. A major advantage of this approach is that techniques for translating
symbolic descriptions of process and data into specifications at the level of input to a PLA generator or data
path generator are well-developed and widely understood. Such techniques include register allocation,
peephole optimization, source-to-source translations, modular semantic routines, and various other standard
methods in !he construction of traditional compilers. Optimization techniques derived from traditional
Boolean logic design might also be of use. Once a silicon compiler, any silicon compiler, is running, one can
experiment at leisure with silicon analogs of these methods as well as develop new ones as suggested by
experience. The question is one of trading back and forth between what sorts of representations can be
provided by a source-to-middle-level compiler and what sorts of structures can be compiled from
middle-level descriptions. The short period of time available to complete the design of the Assq Chip
prevented any tendencies to complexify the layout portion of the design in the name of efficiency; it was
always a better use of my time to add extra features at the high level than in specific circuitry. Later sections
outline the course the design took, describe how one might build a silicon compiler, and consider what the
first steps in developing a silicon compiler culture might be.

What It Does - The High Level
The Assq chip is meant as a server for a Scheme-81 chip. It communicates with its owner on two levels:

Considered from the level of abstraction at which a user's Scheme programs are to be written, the Assq chip
performs a number of common .isp functions. Considered from the level of abstraction at which the bus
protocols operate, the Assq chip supports most but not all of the features of the Scheme-81 bus.

Choosing the functions. The Assq chip implements seven Lisp functions, commonly called assq, rassq,
delassq, delrassq, memq, delq, and circularp. This list was chosen in the following way: I wanted to implement
a set of functions that formed a module or a complete set of functions for performing some sort of operation
or manipulating some sort of data structure. In order to simplify interactions between the chip and the bus, I
made the constraint that the functions do no consing and maintain no arbitrary-depth stack. In order to avoid
having to handle interrupts, I made the constraint that the algorithms that implement the functions be
decomposable into small parts so that the chip could give up control of the bus frequently to allow Scheme-81
a chance to halt or redirect it or to give other utility chips a chance to use the memory. A third constraint was
that the algorithm involve no arithmetic that could not be handled by a Shrobe-style data path.

What the functions do. A set of functions that satisfies these constraints is the standard module for
handling what are known in Lisp as association lists (also known as assoc lists or tables), lists of cons; cells each

of whose car is an atoml and each of whose cdr is some s-expression which is said to be associaled with its

1. Actually, any sort of data structure can be used, but the equality test employed by the algorithms which search in the tables is eq,
not equal. Assq et al are distinguished from their cousins, assoc el al by the use of eq rather than equal. The reason why my

chip does assq and not assoc is that eq can be done with simple combinational logic whereas equal requires a general recursion

capability if arbitrarily deep structures are to be handled.

-4-

respective atom. Given an atom and an association list, assq(atom,list) returns the first cons cell which
associates atom with a value on list, and nil if there is no such cell, delassq(atoni,list) returns a version of list
from which the first cons cell in list, if any. which associates atom with some value has been spliced out
destnlctively, and setassq(aton,list,sexp) destructively alters the first cons cell on list which associates atom
with some value so that it comes to associate atom with sexp (if no such cell exist it conses a new cons pair
onto the front of list). The analogous "reverse assoc" functions rassq, delrassq, and selrassq perform the same
operations on rassoc lists, which are like assoc lists except that the atom with which a value is associated is
stored in the cdr part of each cons cell. While such a data structure is sometimes a useful alternative to a
straightforward assoc list in its own right, more frequently the reverse assoc finctions are used to invert the
ordinary assoc functions, so that if one wishes to find the first atom on an assoc list whose associated value is
YELLOW, one can say rassq(YELLOW,tablc). The functions memq. delq, and circularp were added in the
design when it was noticed that they could be incorporated without any major change to the design or layout,
and without violating any of the design constraints. The memq and delq functions, with cons, form a module

for the handling of basic list operations 1. Given an atomll and a list, nmemnq(atom,list) returns the first sublist of
list whose car is atom, and nil if atom is not an element of list and delq(:ltom.list) returns list with the first
occurrence of atom spliced out destructively. Given a list, circularp(list) returns t if list is a circular list and nil
otherwise.

Algorithms - first pass. All of the assoc list and atom list fuinctions are implemented using the obvious
linear search algorithms. The circularp function and circularity tests done by the algorithms for the other six
functions are implemented by means of an algorithm reputedly due to Floyd which works as follows: two
pointers, A and B begin at the first cons node in the list. On each operation, A is moved ahead in the list by
one list element and B is moved ahead by two list elements. If A and B ever come to point at the same cell
after the start of the algorithm, this means that 13 has traversed the circular portion of the list and has "lapped"
A. If on the other hand the B pointer ever becomes anything but a cons cell, then the list is not circular. It is
easy to show that all of these algorithms always terminate within time linear in the number of list elements. In
order to minimize the complexity of the chip only those parts of the various algorithms which are repeated for
each element of the list are implemented, so that, for example, once the algorithm for delramssq finds the
element of the list to splice out, instead of doing the required rplacd operation itself it simply returns the
previous sublist and allows the calling Scheme-81 code to do with the result as it wishes.

Formal definitions. In lieu of a formal semantic definition of the various fiunctions implemented by the
Assq Chip, the equivalent Lisp code is given in Appendix One. (In this code, a function name that begins
with a single asterisk refers to a function actually implemented on the Assq Chip, while a function name that
does not refers to a function which is part of the module as presented to the user.) To Scheme-81, the
*-functions are just memory locations that can be set with rplaca and read with car. Appendix Two defines
the functions that will actually be employed by Scheme-81 to call the Assq Chip. (In each definition there,
atoms whose printed representations begin with two asterisks refer to cons cells upon whose car pointers the
various operations of the Assq Chip are memory-mapped.)

What It Does -The Low Level
The bus and the system. Below the level of Scheme algorithms, the Assq Chip must be able to

communicate with Scheme-81 and with the memory using Scheme-81's bus, the sbus. The Scheme-81 chip is
designed to be only one part of a complex computer system. Each Scheme-81 chip has an sbus, which
appears to the Scheme-81 chip's bus protocol mechanisms to be a simple memory bus but which has in
addition to actual memory units an arbitrary number of servers, such as Assq chips or pattern-matcher chips.

1. Note that memq and delq are to member and delete as assq and delassq are to assoc and delassoc.

Each Scheme-81 - sbus - memory - server collection is called a Schemc-81 computer. Up to 31 such
computers can be connected together into a network by means of portals, dual-ported servers on the various
sbusses which recognize requests for memory operations on memory words belonging to other computers and
route those requests to other sbusses, all the while pretending to be memory units or servers on all the busses
to which they are connected. By means of portals the various computers in a network can share list-structured
data simply by pointing at it. The bus protocol is designed to allow the garbage collectors on the various
Schemc-81 chips in a network to cooperate in following inter-computer pointers. Because it does no consing,

the Assq chip does not have to worry about the garbage collector1 . Inter-computer memory references are
transparent to the Assq chip.

Sbus organization. The sbus has a simple linear organization, with a single Scheme-81 chip which is. in
charge, memory units which respond to addresses within their respective ranges and an arbitrary number of
utility chips such as the Assq Chip. Each operation that can be performed by some utility chip is mapped
onto a memory address, allowing any chip to make a request of a utility chip by pretending that it is
performing a memory operation. (In this way the bus structure is similar to that of the I/O bus of the
PDIP-11.) Although any number of chips on the sbus can be active at a given time, the sbus always belongs to
exactly one of them, and only that one may make requests on the sbus. By convention, a utility chip that does
not handle interrupts (none discussed in this paper do) gives up the sbus from time to time to allow others to
make use of it.

The shus according to the master. l'o Scheme-81 or any other chip wishing to make use of utility chips, the
bus appears as a large memory, segmented into Iup to 32 parts by the uppermost five bits of every 29-bit
address. The segment codes are known as "machine numbers" because the memory addresses on a given
Scheme-81 chip's sbus must all have as their upper five bits a code which distinguishes that Scheme-81 chip
from its brethren on other sbusses. Memory references across segment boundaries are perfectly legal and
handled properly by the garbage collector, but are somewhat expensive and are not intended to be used
liberally. The exception to these rnles is the memory segment for machine number -1, that is, 1111 -base-2.
This segment is reserved for dithe memory-mapped addresses of the various functions performed by utility
chips. The "-1 space" addresses, as they are known, are local to each sbus and the garbage collector ignores
them. A Scheme-81 or other calling chip sends data to a utility chip by performing a memory write operation
on a -1 space address recognized by that chip and fetches data from a utility chip by performing a read
operation on another such address. In the case of the Assq Chip, a two-argument function call is made by
writing the first argument to an address which causes the Assq Chip to load its first-argument register (called
atom) and then by writing the second argument to another address that corresponds to the desired function,
whereupon the chip commences processing by attempting to gain control of the sbus.

The sbus according to the slave. To an Assq Chip waiting to be told what to do, each address going by on
the bus appears to be made up of a machine number (it is looking for -1), 14 bits of "chip type" code (one
particular chip type code means "Assq Chip"), five bits of "identity" code (each of up to 32 Assq Chips on an
sbus has its own identity code), and five bits of "opcode" (there are 32 different operations that can be
performed by each Assq Chip, a few of them illegal). The input value of the cdr bit is always ignored by the
Assq Chip. Each Assq Chip, on each phil when -read-mar or -write-mar is low (that is, a memory read or
write operation is being attempted by some chip on the sbus) and the chip is waiting to be told what to do,
tests whether the topmost five bits are all l's, whether the next 14 bits have the appropriate values, and
whether the next five bits match the inputs from the lines coming from the five identity pads. If all of these
conditions hold, then on the succeeding phi2 the PLA will dispatch on the lowest five (opcode) bits and

1. Were a garbage collection to happen with an Assq Chip function in progress, the pointers kept by the chip would not be relocated

and disaster would follow. The Scheme-81 software is aware of the problem and can choose among a number of painless methods of

avoiding it. Anyone interested in this corner of Scheme-81 theory and practice should wait for the final report on Scheme-81.

perform the appropriate actions.
Assq and the outside world (begin gory details). The Scheme-81 sbus, for present purposes, has 44 lines,

including 37 data lines (7 bits of type field, 29 bits of address, and 1 cdr bit) and lines for the bus protocol
called -read-mar, -write-mar, -read-mbr, -write-mbr, -dma-request, -sbus-error, and -wait. All of these lines
are high by default, and a chip "asserts" one of them by pulling it down. The Assq chip has one pad for each
of these bus lines. Part of the bus protocol but not part of the bus itself are the lines that connect to the pads
dma-grant-in-pad and dma-grant-out-pad; these implement the daisy-chaining mechanism used by
Scheme-81 to give control over the bus to a utility chip which is requesting I)MA (direct memory access).
Five pads of the Assq Chip are set by DIP switches to give each of a possible 32 Assq Chips on a given
Schcme-81's bus a separate identity. Finally, there is an init-pad, which should be driven high for one clock
cycle whenever the Assq Chip needs to be initialized or re-initialized.

Gaining control of the sbus. For a utility chip such as the Assq Chip, the protocol for obtaining direct
memory access (D)MA) privileges is: First it must wait for the -dma-request sbus line to go high, indicating
that all utility chips which requested DMA the last time around have finished and control has been recovered
by Scheme-81. Then it lowers the -dma-request sbus line by turning on its dma-request flip-flop, whose
output sense line is connected directly to the output-enable line of -dma-request-pad, the output-data line
being wired to GND. When Scheme-81 wishes to allow those who have made i)MA requests to be granted
them, it raises its dma-grant-out line, which causes a high input on the dma-grant-in-pad of the first utility
chip in line. (A strict priority among utility chips is maintained by this daisy-chain ordering.) When a chip
receives a high signal on its dma-grant-in-pad it will allow the signal to propagate to the next chip along unless
it had requested I)MA privileges by lowering its -dma-rcquest line. A chip that requests I)MA privileges and
is granted them may use the sbus for as long as it wishes (although courtesy requires moderation); when it is
done it ceases pulling down its -dma-request line and the grant signal is thereby allowed to propagate to the
next chip along. Because this propagation of D)MA grant signals must proceed with great speed, each chip
which supports it must have two gates of random logic to constantly compute the relation dma-grant-out-pad
:= and(dma-grant-in-pad, not(-dma-request)).

Memory read protocol. The bus protocol for memory read operations (cars and cdrs) is as follows: First the
requesting chip, A, gains control of the bus by doing a D)MA request in the manner just described. Then on
some phi2 A lowers the -read-mar line (for one cycle only) and sets the bus address/data lines to the address
to be read, including the cdr bit. The memory unit or utility chip upon which the read is occurring, B,
recognizes this signal on phi i, pulls down the -wait line, and computes the answer. When the answer is ready,
13 lets the -wait line go high and assigns the address/data lines to whatever the answer is, not including the cdr
bit. Meanwhile, upon ceasing to pull down -read-mar, A has lowered the -read-mbr line, letting it raise one
cycle after the rise of -wait, having read in the answer. During the time when A is holding down the
-read-mbr line, it is latching the contents of the address/data lines on every phil, on the chance that the real
answer is there. If an error of some kind occurs within B, it lowers the -sbus-crror line in addition to setting
the address/data lines; A must check for this.

Memory write protocol. The bus protocol for memory write operations (rplacas and rplacds) is: First the
requesting chip, A, gains control of the bus by doing a DMA request in the manner described above. Then
on some phi2 A lowers the -write-mar line (for one cycle only) and sets the bus address/data lines to the
address to be written to, including the cdr bit. 'lhe memory unit or utility chip upon which the write is
occurring, B, recognizes this signal on phil and pulls down the -wait line. On the following phi2 A lowers the
-write-mbr line and sets the address/data lines to whatever is to be written in the word it has specified, not
including the cdr bit. It maintains these values until it finds -wait high again on some phil, whereupon it
checks to see if B has generated an sbus error.

Other sbus features. The bus protocol can also handle everything needed to do garbage collecting and the
creation of new cons nodes (which is done by Scheme-81), but the Assq Chip supports neither of these
features.

Sbus function calling protocol (one step up). A great deal of complexity is introduced into the Assq Chip's

algorithms for bus line handling because at diffcrent times it must play both memory and user of memory. In
fact the Schemc-81 bus protocol has a subtle flaw in this respect: if Schemne-81 were to make a request to a
utility chip to, say, look up entries in a data base, and if this chip were in turn to make a request to the Assq
Chip to, say, retrieve a variable binding, the Assq Chip would not be able to hold down the -wait line while
working and then allow it to rise when done because this would be misinterpreted by Scheme-81 as meaning
that the lookup chip itself was done. There is no clean resolution to this problem, especially given current
constraints on the number of pins an integrated circuit's package can have, and so a convention has been
established that utility chips such as the Assq Chip must provide an answer to all requests on the very next
phil after they are called. Since thdie Assq Chip in general needs to perform I)MA operations and the like, this
means that a request to an Assq Chip from another chip that cannot be satisfied immediately must be
answered with a "not ready yet" code (which in the case of the Assq Chip is an object of the UN BOUND
type). The requesting chip must make periodic result requests until a legal value is returned. All of this, of
course, can be made invisible to the ordinary user.

A utility chip has two modes. To summarize so far, tl-. Assq Chip has two operating modes, a passive mode
in which it waits for commands from Scheme-81 in the form of "memory requests", and an active mode in
which it performs some useful work. During the active mode it has control of the sbus. Its state alternates
between active and passive with some frequency to allow others a chance to use the bus, but if there is still
more work to be done it will try to get the bus back as soon as it is legal to try. Once it has control of the bus it
turns the bus protocols around and makes memory requests of its own. Although in principle it could
perform any bus operations when it is in its active mode, it actually has need only for memory reads. Thus the
Assq Chip supports the slave end of memory read and write operations and the master end of memory read
operations.

Important opcodes and others. All 32 possible five-bit opcodes are recognized and handled by the Assq
Chip. (Although 64 opcodes could be coded by using the cdr bit, this is not done in order to avoid undue
complexity.) 'Thus the Scheme code to do a memory write on the virtual memory location corresponding to
one of these opcodes would be (rplaca **assq-op-opcode) and the Scheme code to do a memory read on the
location would be (car **assq-op-opcode). The opcodcs fall into six groups. A set named tablc-loc, atom-loc,
and so on for each register are virtual memory locations which can be read to retrieve the value of the
corresponding Assq Chip register or written to store a value in that register. A set named assq-op, rassq-op,
and so on after the various functions the chip can perform are the virtual memory locations into which a table
is written to begin processing. (The calling Scheme program should take care to have put a legal value in the
atom register beforehand by doing a write on atom-loc.) A read on result-op returns either the result of the

'last function call to the chip or a not-ready value. lnt-assq-op, int-rassq-op, and so on are interruptible
versions of the standard function ops which differ only in that if a result-op request is made before the answer
is ready the current contents of the table register are returned anyway; this is just for debugging. Also for
debugging are the ops called dma-request-loc, working-loc, and so on after the various internal state flip-flops.
Doing a read on one of these virtual memory locations returns either tI or nil according to whether the
flip-flop in question is in state 1 or state 0. Doing a write on one of these virtual memory locations inverts the
state of the relevant flip-flop (the data for the write operation is ignored for simplicity, though it must, of
course, be provided). The debugging ops allow all testing of the Assq Chip to be done over the sbus by a
Scheme program running on Scheme-81. T'lhe remaining three opcodes are illegal. Attempting to perform a
read or write on an address corresponding to an illegal opcode will result in the generation of an sbus error, as
will attempting, for example, a write operation on the address corresponding to result-op, which is defined
only for reads.

1. Actually not t but a fixnum that serves the same purpose.

Design Considerations
Constraints on the design process. This design project had an unusual set of constraints. The primary

constraint was time: the functional specification was laid out in early October and the final deadline was in
early December, leaving eight weeks to design a chip of very great fiunctional complexity. An early constraint
that the design fit within a 2mm x 4rmm portion of a multi-project chip was abandoned early on as impossible.
However, the ultimate packaging limitation of 6mm x 6mm in size and 64 pads at most 16 to a side was more
rigid. Unlike most design projects, the speed of the circuit was not a major consideration in the design of the
Assq Chip because for reasons of bus protocol timing the chip is tied to Scheme-81's clock. Since Scheme-81
is a much larger chip with, among other things, a 30-bit carry chain, it was assumed that the Assq Chip could
be made no slower than Schemc-81 by paying attention to only the grossest dctails of timing and by
performing such local optimizations as trying to turn long polysilicon and diffusion wires into metal.

Under pressure, complexit, flows upward. 'IThis conlbination of design constraints made a highly regular
design not only desirable but necessary if the project was to be finished. The collection of available tools
(listed above) imnnmediately dictated the outlines of the design. As a result, there were only two decisions in
the entire design process that could be considered major: the selection of the functionality and a decision to
change the chip architecture to the simplest possible form from one that had seemed more efficient and
aesthectically appealing at the start. Another result was that the wiring became largely modular, as sets of wires
went from arrays of starting points to arrays of ending points in "ribbons". Although an automated router
existed, I did the routing myself for compactness, since the design looked like it would just barely make 6mm
x 6mm. Whenever faced with a choice between adding a feature to the physical layout of the chip or to the
more abstract structures from which the machine-generated parts of the layout were created, it was always
easier to go the latter route. An extra PLA output line or even an extra register was preferable to an extra gate
of random logic in terms of the efficient use of my time, and thdie design constraints made this decision less
reprehensible than it would have been otherwise. Tlhe abstract is better understood than the concrete.

Architecture -- Summary
The architecture is trivial. The Assq Chip has two major components, a finite-state machine incorporating

a one-deep stack and an array of flip-flops for maintaining internal state, and a data path incorporating a
number of condition tests on the registers and the bus.

Finite-state machine statistics. The finite-state machine consists of a PLA with 32 input lines, 52 output
lines, and 140 minterms among. 20 state labels. The stack is an array of 5 single-bit load-read Mead&Conway
register cells. 'Ihere are 9 set-clear Mead&Conway register cells which serve as internal state; the 18 inputsý
and 9 outputs are finite-state machine outputs and inputs, respectively. There are control lines from the PLA
which determine whether to push a state on the stack and whether to take the next state from the stack or
friom PLA outputs.

Data path statistics. The data path is an array of five 36-bit registers with buffered control lines. Predicate
circuitry constantly provides listp tests on three registers (i.e., equal-to-constant tests on the type fields of
those registers) and equality tests between two pairs of registers. In addition, various circuitry tests the
incoming bus lines to determine if a request is being made of the Assq Chip by Scheme-81 (or, perhaps
someday, some other device on Scheme-81's bus).

Clocking. The chip uses a two-phase non-overlapping clock. By Scheme-81 convention, state changes
occur on phi2 and everything has a meaningful state on phil. In particular, bus operations happen on phil,
and everything in the register array changes state on phi2. Thus a bit of state code making its way around the
finite-state machine loop might go out the push state output field of the PLA, which is clocked on phi2, into
the stack, whose input is clocked on: phil, through one of the stack register cells, which pass data between
their inverters on phi2, and into the input of the PLA, which is clocked on phil.

The Finite-state Machine
Control on the Assq Chip is provided by a finite-state machine made of a PLA with 32 input lines, 51

cutput lines, and 140 minterms, a one-deep stack, and an array of 9 flip-flops for internal state. The PI.A was
generated by Batali's PLA generator from a specification provided by a simple compiler from a fairly
low-level microcode language. The stack and flip-flops were custom-designed although they are not unusual
in their design or layout. This section discusses the process by which the original high-level description of the
algorithm was converted into the final finite-state machine circuitry. The retelling will be somewhat
idealized; one major false start will be left out. The reader should consider at each point the plausibility of
automating the design process described here.

Algorithm to PLA. T'lhe translation from algorithm to PI.A proceeded in four steps, two manual and two
automated. Tlie design began with a description of the algorithms to be performed in an informal Algol-like
notation. From this description was taken a list of all the registers and internal state bits that the algorithm
required. The algorithm was then rewritten so that memory operations alternated with other computations
such as tests and the setting and clearing of flip-flops. From this description was extracted a list of the
operations tllat the various registers had to be able to perform between each memory reference. Memory
operations, such as "take the cdr of the table register", were subroutinized. The algorithms were then
rewritten again in the source microcode language. A compiler was run on this code to tabulate some lists, do
some error checking, and remove some syntactic sugar to produce the object microcode language. Another
compiler was then run on the object microcode language to produce input to the PLA generator. The details
follow.

The algorithm - bear with me. The original high-level algorithm was no more than the iterative versions of
assq and circularp; the other functions were included because their algorithms were slight variants on that of
assq that could be encoded in various flip-flops: the seven functions chosen "ring changes" on the steps of the
assq algorithm. After the seven functions had all been intggrated, the algorithm consisted of a loop with a
"top" and a "bottom". In between was the code that was to be executed on each iteration of the algorithm; if
a given table is 47 elements long, then up to 47 iterations will be required to finish the operation. The
algorithm begins each iteration by gaining control of the bus (through the DMA protocol) and pushing
forward by two (when possible) the ilreg register, which serves only as the "faster" of the two pointers in the
circularity testing algorithm. There are three cases: ilreg hits a non-nil sublist (in which case the list is not
circular), comes to be equal to the table register (in which case it is; this will cause an appropriate value to be
put into the table register, which by convention is where answers come from), or neither (in which case the
algorithm proceeds normally). 'IThen the circularp flip-flop is tested to see if that is all that is required; if so
the algorithm goes to the bottom, where the table register is cdr'cd, the bus is given up, and control returns to
the top. If the function being executed is not a circularity test and if table is not discovered to be either empty
or circular then the body of the algorithm executes. 'The body does one iteration of assq, delassq, rassq,
delrassq, memq, or delq, depending upon the settings of three flip-flops called shallowp, car-version, and
deletep. The body of the algorithm is: set the table-element register to the car of the table register, if
not-shallowp then set the table-element register to its (if car-version then car else edr), if the table-element and
atom registers are cq then we have won, so move the appropriate result value (which can be t, nil, the table
register, or the previous-table register depending on the various flip-flops1) into the table register, otherwise if
deletep is on then move previous-table into table, and then go on in any event to the bottom of the loop, where
table will be cdr'cd and the iteration will end with the surrendering of the bus. If at any point a result value is
moved to the table register a flip-flop called working, which indicates that usefiul work is still to be done, is
cleared, the bus is surrendered, and control is returned to the top of the loop. If any of the memory operation
subroutines gets an error, it is assumed that the got-sbus-eror flip-flop is set (by the memory operation

1. There are lots of special cases here; see the more formal definitions in Appendix One for more details.

subroutines) and the algorithm proceeds as if a value were ready to be rcturned. The code at the top of the
algorithm that listens to the bus, waiting for commands and setting registers and flip-flops when they arrive, is
totally magical at this point in the design process, as is all of the mechanics of how bus operations happen, in
particular memory fetches and the getting and giving up of the bus. All reasoning about the functionality of
the chip is done at this level; all else is compilation by hand and program. From this code, a list was made of
the registers, register tests, and flip-flops required:

table -- the table argument to every function
atom -- the atom argument to the searching functions
table-element -- the car of table on each iteration
previous-table -- the previous value of table, used by deletion functions: cdr(previous-table)= table

ilreg -- "fast" table register for doing the circularity test

listp-table -- does the table register point to a cons cell?

lisip-table-element -- likewise for table-element (error checking)
listp-ilrcg -- likewise for ilreg

table-clement=atom -- have we found what we're looking for?
ilreg= table -- is the table actually circular?

circularp -- is the request a circularp call?

shallowp -- if not. is it either memnq or delq?

car-version -- if not, does it work with car's or cdr's?

deletep -- is it a deletion operation?

flrst-elementp -- is this the first iteration on this job?

working -- is there useful work to be done?

interruptible -- can partial results be returned?

got-sbus-error -- have I gotten an sbus error from memory?

dma-request -- am I trying to get the bus?

The first five of the flip-flops are dependent on the algorithm being implemented in the chip, but the last four

are not.
Abstraction of memory operations. Five different memory operations must be performed in different

places in the code; each of these was made into a subroutine so as to make the code halfways manageable:

ilreg : = cdr(ilreg), table : = cdr(table), table-element : = car(lable), table-element : = car(table-elemeni), and

table-element := edr(table-element). Each iteration of the algorithm is seen to be an alternation of memory

operations and tests and dispatches on various conditions, both of the flip-flops and of the registers. Only
when the contents of the previous-table register are moved into the table register or vice-versa need anything

happen in the data path besides memory operations. Even these movements could have been done without,

given a bit of microcode and data path hackery, but this is the sort of complexity that doubles the

error-proneness of hand-coded microcode while one's back is turned. (It is also what computers are for.) In
principle, though, the algorithm could do all the data path transfonnations and condition tests it needed

in-between or in parallel with bus operations.
You look like you could use an example. Let us consider what happens according to the analysis so far

when the Assq Chip is asked to compute (assq 'b '((a . x) (b. y) (c. z))). (Strict type checking is maintained

throughout, but most of it will be suppressed here for clarity.) The algorithm wakes up at the top of the loop,

the (as. yet unanalyzed) bus operations having arranged for b to appear in the atom register and for ((a . x)

(b .y) (c . z)) to appear in the table register and the ilreg register as well. Flip-flops: circularp is 0 because it

isn't a circularp operation, shallowp is 0 because it isn't a memq operation, car-version is I because it isn't a

rassq operation, deletep is 0 because it isn't a delassq operation, working is 1 because the job is not yet done,

ihtcrnri-)tible is 0 because we're not in a debugging mode, first-clementp is irrelevant because it isn't a deletion
operation, and got-sbus-error and dma-request are part of the low-level bus protocols and effectively hidden
by subroutines. Control of the bus is obtained, possibly after a few cycles. On thdie first iteration, ilreg is set to
((h. y) (c . z)) and then ((c . z)) without becoming eq to table, so the table isn't circular (yet). Tablc-register is
set to (a . x), the car of table. Because it is a list (it would be an error otherwise) and because shallow) is 0 and
car-version is 1, table-register is set to a, its car. But table-element and atom aren't eq, so table is set to ((b .y)
(c . z)), its cdr, (first-elementp, incidentally, is set to 0), dithe bus is given up, and control is returned to the top of
the loop. Because working is still 1, the top of the loop tries between requests to get ahold of the bus, and
assuming that it receives no commands to change the chip's internal state (as it might if, for example, the
calling program has gotten tired of waiting and decided to clear working or set table to nil) it eventually gets
ahold of the bus again. Ilreg is set to nil, its edr, and then ignored, as it is thereby established that the table
was not circular. As before, lable-element is set to the car. (b . y), of table, and then to its own car, h. Since
table-element and atom is at this point discovered to be eq, the working flip-flop is set to 0, the bus is given tip,
and the chip sits back and waits for the answer, ((b . y) (c. z)), to be requested. Quite a bit happens between
successive memory operations, but the bus rarely gets a rest because tests are performed instantly and because
large numbers of flip-flop and data path operations can happen at once without interfering with one another.
The algorithm can be analyzed in terms of what needs to happen in each interval between successive memory
instructions, and it turns out that each set of operations produced by this analysis can be performed
simultaneously will little fuss.
The source microcode roriat. After this analysis, the algorithm was recoded in the microcode source

language. A program in the microcode source language is a list of instructions and commands, where an
instruction has the format:

(state predicate where-to ups-and-downs), where
state is either X (= don't care) or a state mnemonic like SEARCII3
predicate is a list of conditions, where a condilion is
-- the name of an input sense line, like ilreg=table
-- the form (OPCODE op-mnemonic)

-- (NOT condition) for the negation of one of those two
where-to is made up of one or more of
-- NEXT state, meaning go to this state next

-- CALL state THEN state, meaning call here returning there
-- RETURN, meaning do a popj from the stack

ups-and-downs is a sequence of commands to turn outputs on or off
-- (+ line line line) turns those lines on the next cycle
- (- line line line) turns those lines off the next cycle

The commands are only used to relieve some of the drudgery of microcoding; the various command types
are:

(MN-ON state-mnemonic) = use this as the default NEX r

(MN-OFF) = no more default NEXT
(MC-ON input input) = make all conditions use these by default
(MC-OFF input input) = turn off some default conditions
(Mi-ON output output) = make all instructions turn these on by default
(Mi-OFF output output) = remove some default on outputs
(M0-ON output output) = make all instructions turn there off by default
(M0-OFF output output) = remove some default off outputs

-12-

Originally, the high-level code was compiled direcily into this format. Eventually I gave up doing it that way
because in the limited time available it was not possible to write a compiler able to produce sufficiently
compact code and because the functions were so small that they could be easily hand-coded. No attempt was
made to write the microcode source in a way that might have been generated by a compiler, on the grounds
that writing a compiler would have been easier. H-land-coding actually produced worse code than a properly
written compiler would have, largely because there are optimizations available which increase bus-utilization
efficiency and decrease the total number of instructions but which produce code that is hard to read and
impossible to modify by hand. One such optimization is to move the data path commands from the first
instruction of a subroutine to each instruction that calls it, redirecting the call to the second line of the
subroutine. 'This allows the subroutine to begin using the bus immediately, the initial conditions for doing so
having been computed "during" the jump. Deciding when and how such optimizations can be done depends
upon, among other things, a representation of the timing and ordering constraints on the various actions, and
such information is not represented explicitly in any of the algorithm notations I defined.

Translatio;- to a more primitive form. A small compiler was constructed to take this source microcode and
remove the syntactic sugar to produce a uniform, order-independent microcode format which maps directly
onto the fields of the PLA. 'Ihe object microcode is organized as a simple list of instructions, each of which is
made up of various PLA fields, in this format:

(state pred popjp ncxtp next holdp pushp push actions), where

the instruction fires if the current state is right and pred holds

state is a state mnemonic, such as SEARCH3

pred is a list of conditions, like before
popjp says whether to get the next state from the stack

ncxtp says whether to get the next state from the PLA output

next is a state mnemonic for where to go to if nextp is on.
holdp says whether the stack should keep its current contents

pushp says whether to take new stack contents from the PLA output 1

actions is a list of output lines to turn high (the rest go low)

A program was run on the object microcode to make sure that every possible combination of inputs to the
PLA would be handled by some microcode instruction, so as to avoid having the chip shut down completely

in case of a design error or electrical glitch2

And then to the PLA. The object microcode instructions were translated into the input format of the PLA
generator by yet another program, which assigned binary values to the opcodes and state names, computed
the widths of the various fields, and other such bookkeeping. The result of this process was a list of PLA
minterms, organized in the format required by Batali's PLA generator, with I's and O's and X's. 'rhe format of
the microcode word that was imposed on the PLA's bits can be read from the object microcode instruction
format:

opcode -- 5 bits, X's if it doesn't matter

input lines -- 22 in number

1. Yes, holdp and pushp are always complements of one another. This is a crock to save a gate of random logic.

2. An exception to this is in the case of an illegal microcode state being generated somehow: the extra microcode instructions to

handle all the illegal state codes would probably not be such a good investment, because state codes are generated internally in quite

well-understood ways. Were general recursion to be implemented, frequent memory fetches to get microcode states would seem like a

much better excuse to handle this particular contingency.

- 13 4

current state -- 5 bits

popjp and nextp -- one bit each

next state field -- 5 bits

holdp and pushp -- one bit each
push state field -- 5 bits

output lines -- 37 in number

The orderings of dithe input and output lines to and from the pads and data path and flip-flops and so on was
given by a collection of lists, which had the effect of further decomposing the microcode word so that the
input sense lines fell into the following fields:

input lines from various pads -- 6 in number

sense lines front the data path -- 7 in number
sense lines from the flip-flops -- 9in number

and the output control lines fell into the following fields:

control lines for various pads -- 6 in number

alternating clear and set lines for the flip-flops -- 18 in number

control lines for the data path -- 1.3 in number

The lists of O's, l's, and X's generated by this last compiler were then fed to the PA generator, which made
the PLA. The various structures created as side-effects by the various compilers were used in deciding where
to connect all the wires. Among these wires were control lines that computed the next state, deciding whether
to use the next-state field of the output or the contents of the stack and whether to load the stack with the
push-state field of the output or to have it maintain its existing value. D)PL code was written to route these
wires explicitly.

'The density of the PLA iL not high, about 16 percent. 'This could presumably be improved by the use of
encoders and decoders of the sort created more or less automatically by the PLA generator for Schemnc-81.
This was not done because of time constraints.

The Data Path
The formi of the data path is already decided. It was determined in analysis of the algorithms used in the

Assq Chip that there would be required five registers, ilreg, table, atom, table-element, and previous-table, and
various condition tests on the registers and the bus: ilreg= table, table-elemen=t=atom, listp-ilreg, listp-table,
and listp-table-element. The rest is easy; these specifications (together with the magic required by the
bus-watching microcode to notice that a request is being made of it) were converted into source code for
Shrobe's data path generator; this code is in Appendix 'Three. The data path generator returned a list of all
the places where wires needed to be connected; this list was used by the various routing routines:

Input control lines driven by the PLA
-- Write the bus into the table register

-- Read the table register onto the bus

-- Read nil onto the bus

-- Read t onto the bus

-- Read unbound onto the bus
-- Read the ilreg register onto the bus

- 14-

-- Write the bus into the ilreg register

-- Write the bus into the table-clement register

-- Read the table-clement register onto the bus

- Read the atom register onto the bus

-- Write the bus into the atom register

-- Write the bus into the previous-table register
-- Read the previous-table register onto the bus

Unused input control lines tied to ground so they won't float
-- load the table register from its local bus

-- load the ilreg register from its local bus

-- load the table-element register froin its local bus
-- Load the atom register from its local bus

-- I Kad the previous-table register from its local bus

-- Freeze all data transactions within the data path

Input lines to be sent to pads
-- 36 bus lines (horizontal)

-- 5 identity lines (vertical)

Output sense lines used as inputs to the PLA
-- The proper identity code appears on the bus lines

-- The proper chip-type code appears on the bus lines -

-- table-element= atom

-- listp-table-element

-- listp-ilreg

-- ilreg =table

-- listp-table

The data path generator can do obvious things easily. The important point here is that once the algorithm
had been written in a high-level form, a first version of the data path was fully generated within half an hour.
Although a data path designed manually would probably have been more compact, it is doubtful whether its
design could have been changed as radically as the design of the Assq data path was between its various
incarnations with as little difficulty.

A few notes regarding my use of the data path generator:
1. For reasons of routing, the ordering of the bits in the data word was reversed from that of Scheme-81;

here bit 0 is at the top near the input drivers and bit 35 is at the bottom. This change was implemented by
simply rewriting the constant definitions at the top of the data path generator's input file.

2. Because it turns out that at most one register-to-register data movement happens between any two
memory operations in the Assq Chip algorithms, the local-bus feature of the data path generator is not used.
Time permitting, the library of cells used by the data path generator could have been expanded to include
cells without circuitry to handle the local busses. This could have been done without changing the data path
generator at all, and would have resulted in a somewhat smaller data path.

3. Another result of the algorithms' not using all of the features provided by the data path is that some of
the control lines are not driven by outputs from the PLA. These lines are grounded so as to prevent spurious
data path operations due to random electrical floating.

4. Unlike Scheme-81, the Assq data path has no 37th row for the cdr bit, due to the fact that the latter is
only used when requesting a car or cdr from the memory. Instead, pad for the cdr !it is driven directly by an
output from the PLA.

- 15 -

Placement and routing
Almost all of the placement decisions in this design were dictated by the PI.A and the data path, which

were the two dominant blocks in the design. Given their shapes, there were only two plausible placements for
these two blocks, the one chosen with the PiA "pointing down" and the same one with the 1I.A "pointing
up". Subjective case-of-routing was the determining factor in the choice between the two. The objects to be
placed and routed among were:

the finite-state machine: the PLA. 5 stack cells, 9 flip-flops

the data path

60 pads: 37 bus lines, 9 bus protocol pads, 5 chip identity pads, 2 clock pads, 4 GNDI pads, and 3 VDD pads

2 gates of random logic

the logo

The placeme;.t of the various parts was done by trial-and-error. The result is reasonably compact, although
considerable further local compaction is prevented only by time constraints. 'llhe choice of 4 GND and 3
VDI) pads was dictated by the unavoidable difficulty of routing the stack and flip-flop power lines, given that
they are buried in amongst so much wiring, by the desire to make sure that GND is not allowed to come
much above OV in real operation, and by a general policy of extreme conservatism in all electrical matters.

Wiring was primarily regular. All but a few of the wires were routed in "ribbons", i.e., collections of wires
which go from consecutive points along some row of objects to consecutive points along some other row, or
"rings", i.e., wires tracing most or all of the outer circumference of thdie circuit in the vicinity of the pads. The
ribbons, numbering 15 and averaging about 8 wires, were each implemented by means of a I)O loop in the
DPL code for the top-level circuit. 'lle rings correspond to the signals vdd, gnd, phil, phi2, bus-input-enable,
and bus-output-enable, and each was implemented by n.cans of its own D)PI. WIRIEQ command. 'The
random logic wires, the power, ground, and clock lines, and the lines connecting the PLA's bus-input-enable
and bus-output-enable outputs and the clock pads' inputs to their respective rings were routed individually.

Parameterized wiring doesn't get in the way. The wiring programs, written in DPL, were parameterized so
as to allow wires to stretch or shrink with movements in the various components of the design. An
almost-general-purpose program was written to make the connections between the 16 pads on the right-hand
side of the chip and the 16 corresponding bus line connections on the right-hand side of the data path. Much
of the rest of the routing was done with the aid of a "careful router", a set of alternative versions of the DPL
wiring commands which try to run a line in metal as much as possible but which avoid collisions by moving a
new metal line into poly when it approaches an existing metal line. This was useful because the various
ribbons had much opportunity to cross one another, and explicit programming of the jumps to poly was very
difficult.

Random logic and logo. The two gates of random logic necessary to implement the daisy-chaining of DMA
grant signals were placed above the relevant pads near the upper-left-hand corner of the chip. As mentioned,
these were placed and routed in separate DPL code. The logo for the design, which represents the Scheme
definition of the assq function, runs vertically between the right-hand pads and the metal wires that connect
them to the data path bus lines. It was laid out using a program written by Batali that converts AST format
font files into D)PL's internal format.

Discussion -- The project as a high-level design experiment
Half an environment. Although I am a fan of silicon compilers, more traditional design methods will

probably never be completely replaced, and will certainly be around for some time. If some of the chips.we
are to design are to be very large, it would seem that we are stuck with Mead and Conway abstractions,
machine generated structures, hierarchical representations, design rule checkers, and so on. In designing the
Assq chip, I dealt with a particular set of these: DPL, Daedalus, the Shrobe data path generator, the Batali

- 16-

PLA generator, Baker's node extractor, design rule checker, and static analyzer, and Chris Tenrman's
simulator. Since one of the main reasons for designing the Assq Chip was to test out the available design
environment, it will be worthwhile to consider briefly how that environment held up. The programs I
mentioned all have their strengths and weaknesses, but those aside, everything in my experience with the
design of the Assq chip has convinced me of the need for completely integrated design environments in which
all the various representations of a chip -- geometric, electrical, even raster-scan -- are hung from the same
hierarchical representation of cell types and cell tokens.

I feel like an ingrate analyzing)IPL, but... D)PI. is a fantastically expressive language for describing
hierarchical layouts, but I encountered three difficulties with it that require attention. First, it takes a large
amount of memory to run. This, it seems, can probably be fixed. Second, designing with)DPI. needs to be
somewhat more incremental. Presently, small changes frequently require large amounts of recomputation.
'Ihis is partially because the full potential of the already heavily exploited idea of caching of partial results was
not realized, but more because the great expressive power of D)PL allows one to express such intricate
interrelationships between objects that such caching :.;on't avoid the need for much rccomputation. The
worst case of this phenomenon, it would seem, is the sort of involved routing done in the Assq chip. It is an
interesting question how much of a tradcoff there is between expressive power and incrementality. The third
problem is a conceptual one. Because of the necessity of augmenting D)PL structures when instances are
aligned and realigned, DPI. sets up a system of variable evaluation separate from that of Lisp. This leads to
confusion when Lisp and lDPL are mixed. For example, there is no DI)PL analog of nulpc, and there is no
clean way to augment arbitrarily complicated data structures made up of l)PL objects, such as those created
by the careful router mentioned above. Either some design language should be built on top of DPL, or DPL
should be changed to be more friendly in this respect; I would favor the former.

Circuit-generation tools. The PLA and data path generators worked pretty much the way I expected they
-would. The major disappointment was that it was not feasible for me to redesign the cells used by the data
path generator so as to eliminate functions I didn't use. The library of cells available to the data path

generator will need to be extended beyond the set used in the Scheme-81 and Assq chips if it is to find wider
application.

Design environments must be integrated. (Surprise!) The most important flaw in the design environment I
used was the low bandwidth of communication between those parts of the world we might divide into the
design tools and the analysis tools. The output of the node extractor, design-rule checker, static analyzer, and
simulator was nearly meaningless in many cases because the considerable structural information available in

DPL's internal structures was not used by the node extractor, which took a rectangle file generated from CIF
as its input. Sufficient information is available in the system for, say, the static analysis program to say that

"the output of the right-inverter of the 17th register-cell of the table-register of the main-register-array cannot
be set to zero" instead of "the electrical node at coordinates (1324,2048) cannot be set to zero". This
information would allow iterated errors to be recognized and summarized instead of being listed separately.

Just about every piece of information that DPL has about a design could used to advantage by these other
programs. (Consider a simulator that labels the color display with the values on each electrical node after

each cycle.) In the limit, this argues for every part of the design process to live on the same machine and use

the same data structures.
Replicated bogus design rule violations are no fun. Finally, until silicon compilers take over most integrated

circuit design tasks, large portions of most designs are likely to be machine-generated, as were the PLA and

data path for the Assq chip, or taken directly from cell libraries, as were the Assq chip's pads. Creators of

design environments must come up with ways to make apparent errors and the like inside such structures

meaningful to the designer without recourse the expedient of asking advice of the author of the cell layout or

its generating program. (I got this observation from Clark Baker.) Perhaps a structured on-line

documentation system is called for. High-level design needs to proceed at the high level; otherwise the

complexity of the process is guaranteed t t be prohibitive.

- 17-

A Modest Proposal
Why Al Research Needs Silicon Compilers

The debate over whether the real world needs custom ISI is not yet done, but it seems clear to me that it
will quite soon become a necessity in artificial intelligence research. Computers of traditional design would
have to operate at or beyond theoretical limitations in order to support some of the programs we want to write

right now, so we're going to have to build our own. Building a machine with, say, 1010 transistors1 in it is
going to be impractical without custom I.S[, at the very least because of the physical size of such a machine
built out of off-the-self TI'L. Microprocessor networks will be a workable stopgap, but a network of 1024
[pP's is at best 1024 times faster than one j&P (which, by the way, is many times slower than a KI.-10), and
current off-the-shelf plP's have not proven themselves well-adapted to large-scale networking. Al should
never count on dithe real world to provide its processing needs.

Economics of silicon compilation. Custom LSI design is an extraordinarily painful and time-consuming
process, labor-intensive in a labor-bound field. As a solution to this problem, I propose to build a silicon
compiler. This program will remove all human labor from the process of turning a description of chip
behavior into a layout specification suitable for cooking. Given that we need to build custom LSI circuits, I
believe that the economics of LSI design in Al research will favor silicon compilers over hand design in
almost all cases. This is because of the trade-off between dithe effort expended in a design and the size and
efficiency of the resulting circuit. An ordinary person, such as a novice designer or a compiler, can produce
on short notice sonme design that will work, but with few promises as to size or efficiency; the Assq Chip is an
example. A group of experienced designers can produce a design for an extremely small and fast
microprocessor in two years. The real world puts so much effort into size and efficiency because (1) when
you're selling millions of copies of a chip, processing rivals or overtakes design on the balance sheet, and a
10% smaller chip saves 10% of processing costs in these conditions; and (2) a customer will just go across the
valley if someone else's product is faster. Neither consideration is as important for custom LSI design in Al
research. The small numbers involved will make size-dependent costs a much smaller proportion of the total
cost, and the experimental nature of the applications will allow some inefficiencies to be tolerated, especially
when those who must tolerate the inefficiencies would have to redc:,ign the chips themselves to eliminate
them. Turn-around is another important consideration. Researchers want their custom chips right now and
manual design takes time; the program I propose to write should take a few hours to a day. And so it would
seem that silicon compilation is the way of the future.

What I propose to do
Big lambda to little lambda. The program I propose to write will take as input a function definition in the

Scheme language and produce as output a representation suitable for cooking of a circuit that will perform
that function when placed in an. appropriately configured Scheme-81 computer (Scheme 1981). (The
program will also provide all the information necessary to perform a simulation of the chip layout.) Although
some modifications to the Scheme input format may be forced upon me by harsh reality, my hope is to write
an editor command that will convert a function definition into a chip without requiring any special knowledge
of its user. My reason for using the Scheme language as an input format is quite straightforward:
programming languages are the only proven way to express ideas about how a computing machine should
work, and Scheme is the best programming language going. The reason why the output chips will be

1. Human brains have 109 to 1011 neurons in them, depending on how you count, and most neurons are considerably more complex
than transistors, so we're talking about artificial iguanas here.

- 18-

designed to live in the Schmce-81 environment is also straightforward: the Scheme-81 computer will solve all

problems of storage allocation, speed 1, interrupt handling, testing2, and input/output for me, allowing me to
concentrate on compiler issues.

Assq's progeny. This proposal took shape during the process of designing the Assq Chip. While working
on the design I noticed that it had the interesting property that the particular set of functions being
implemented was cffectively a parameter of the design, having almost no impact on the physical layout of the
chip. The only function-dependent details of the layout are the dimensions and contents of the microcode
PLA (assuming non-recursive microcode) and the data path, and the numbers of flip-flops and register cells.
'llese details were generated in an ad hoc manner, partly by hand and partly by a variety of somewhat general
programs, but in at no point was any deep thought involved. This was encouraging even as it was boring.

The form of the compiled chips. My compiler will take advantage of these observations by producing chips
which are physically similar in most respects and whose variable parts will be determined by analysis of the
source program. The layout will be somewhat more general than that of the Assq Chip. The major change
will be the elimination of the hardwired microcode stack in favor of a stack being kept in cons cells, as in the
Scheme-81 chip. Other changes will involve modifications in routing to allow for potentially much larger
PI.A's and data paths and for the increased number of functions the chips might have to perform. (The Assq
Chip performs 29 functions, each with a five-bit opcode. Most, of course, are for debugging. Chips produced
by the compiler may require larger opcodes.)

Compilation with customizable registers. The technically interesting work to be performed by the compiler
involves the translation of the source program into a set of microcode instructions to be fed to the PLA
generator and a description of the data path to be fed to the data path generator. What makes this program
more than a routine exercise in compiler writing is the great flexibility available in the design of the data path.
Whereas the machine languages of most object computers provide a fixed number of standard,
interchangeable general purpose registers which can only be used in a small number of ways and usually at

most two at a time, a silicon compiler can design special-purpose register arrays which can perform large
numbers of moderately complicated register operations in parallel. For example, a data path could be
designed so as to allow one microcode instruction to add A to 13, move C to I), decrement E, and exchange F

and G in one cycle, producing condition bits for listp(A), B=0, C=D, and I•F: for use in tests by the next
instruction. Close analysis of the source program can thus result in a chip design made highly efficient by
data path parallelism. Indeed, given the memory-intensive nature of most Lisp programs, it seems plausible

that 100 percent bus utilization efficiency can be attained by designing chips that can perform all the

operations that need to occur between any two successive memory references in a single cycle.

Three sets of issues arise. 'lhe first are matters of representation: how best to represent potential

parallelism at intermediate levels of compilation? One possibility is to represent a program as a directed

graph whose links represent ordering constraints. The second set of issues has to do with the process of

reasoning with the various possible data path designs. These designs are constrained by planarity, by the set

of available register operations and tests, and by other factors as well. The program must execute a mapping
between the sets of operations which need to occur in one cycle and the possible data path designs, and not

every such collection of sets of operations can be simultaneously accommodated in a single data path design.
If a good theory of the possible data path designs can be constructed, it can be used to reason about what

collections of sets of operations can and cannot be accommodated. The third set of issues has to do with the

algorithmic efficiency of the resulting design. Indeed, the compilation process can be thought of as a very

1. The chips will be tied to the Scheme-81 chip's glacial clock, so electrical speed will not be an important consideration.

Algorithmic speed, of course, is another thing entirely.

2. The chips will be tested by programs written for the Scheme-81 chip which will use functions of the chip designed specifically for

the purpose.

- 19-

fancy optimizer, taking a straightforward translation of the source program and attempting to squeeze out
redundant register capabilities and unnecessary microinstructions. Of particular concern is the consed stack.
With luck, the tail-recursion elimination techniqucs applied by Stccle in his traditional (if it can be called
that) Scheme compiler (Steele 1978) can be adapted to the silicon domain in order to reduce stack consing,
but this will interact with the other considerations in as yet unknown ways.

Plan of action. Th'le tack I will take in writing this compiler will be to begin by getting up a version which
produces correct chips without worrying much about issues of optimization. From that point I will
experiment with a variety of compilation techniques such as suggested by the speculations just mentioned and
by experience. I plan to give the program a series of tests, beginning with the relatively simple equal function,
followed by a simple pattern matching program, a number of modules to implement the AMORD language,
and finally a number of functions for symbolic algebra, such as an algebraic simplifier and (should a miracle
occur and I get this far) a polynomial GCD algorithm. Once the program is running it should not matter
much to it how large are the functions it is being asked to compile. Hlowever, I do not yet know how quickly
tlle sine of the resulting chips will grow with the size of ihe source programs. In the Assq Chip, that portion of
the microcode not devoted to fixed bus protocol and testing operations amounted to about 15 percent of the
total, so it seems reasonable expect that thdie PLA will not double from its Assq Chip size until the fiunctions
involved become quite complex indeed.

Other work. Of the existing work on silicon compilation, the project most similar to mine is the quite
exciting MacPitts project of Siskind el al (1982). The chips that will be produced by our two compilers will be
similar in consisting of a control machine and a data path. The data path generators used are quite similar,
the major difference being that that of Siskind et al allows more complicated internal bus structures. Their
control machine uses Weinberger array logic instead of a P LA, thus allowing microcode multiprocessing. The
MacPitts chips will differ firom mine in electrical details (three-phase clocking and dynamic logic as opposed
to the more conservative Mead-and-Conway scheme), but will be quite similar in spirit, with much concern
for modularity. The most important difference between our two projects is that Siskind et al have in mind a
general-purpose compiler applicable to a very large class of VLSI design problems, whereas my concern is
more with building an integrated system of chips, based on the Scheme-81 environment. Thus their input
language, although also a Lisp dialect, is stated in tennms of numerical operations and synchronization logic,
whereas mine will be in tenis of Lisp data structures. It is fully conceivable that one might attempt to write a
compiler from Scheme to the MacPitts input language that would provide the necessary bus-protocol logic
and so forth; I hope someone attempts this. Depending on the application, my compiler will either eliminate
the bother of specifying routine details of memory operations or provide inconvenient restrictions to be
circumvented. The former view is probably justified because the applications I have in mind are Al-oriented
operations such as pattern matching, and these are usually programmed in symbolic languages such as
Scheme.

A Concluding Note
Compiler cultures. My silicon compiler will not be the first and it will not be the last; its chips could be

better in many and varied ways; why write it? Because there are so many source and object languages, the
development of compilers has always been very much a social phenomenon. Tricks are discovered which
work in specific situations but don't generalize interestingly, yet a compiler written using only generalized
theory is no good. The writer of a new compiler must size up a list of the tricks that seem applicable and stir
them up with wlat little formal theory is available. In such a world, the vagaries of experience achieve
obvious importance. The old tricks generally will not translate well into the terms of silicon compilers. The
list of obvious tricks for customizing data paths is endless, but which ones are really useful? What is needed is
a silicon compiler culture, and within it a Scheme-to-silicon analog of the Lisp-to-PDP-10 compiler
subculture of the last fifteen years.

The future. So let's put up a Scheme-to-silicon compiler and start using it for real applications in AI.

- 20-

Analysis of the chips it produces will suggest better ways to write it. Hlow useful is encoding of lie input and
output fields of microcode PLA's? flow useful are generalized placement and interconnect programs? When
are predicate selector boxes a la Scheme-81 useful? I could provide guesses as to the answers to these
questions and many others now, but they would only be guesses and my answers would only bring on
exponentially more questions of the same sort. As an informed user community develops, so will the social
mechanism that can let experience answer these questions and translate the answers into new and better
compilers. In order for there to be a user community, there must be solmething to use, and I claim little for
my proposed compiler other than that it can be used.

Appendix One: Lisp-level semantics for the Assq chip

(defun assq (atom table)

(let ((result (*assq atom table)))

(cond ((null result) nil)

(t (car result)))))

(defun *assq (atom table (ilreg table)) ; ilreg has default value table

(cond ((nlistp table) nil)

((and (listp ilreg) (eq table ilreg)) nil)

((and (listp (cdr ilreg)) (eq table (cdr ilreg))) nil)

((nlistp (car table)) nil)

((eq atom (caar table)) table)

(t (*assq atm (cdr table)

(cond ((nlistp ilreg) ilreg)

((nlistp (cdr ilreg)) (cdr tlreg))

(t (cddr ilreg)))))))

;;; analogously for rassq

(defun delassq (atom table)

(let ((result (*delassq atom table)))

(cond ((null result) nil)

((eq result t) (cdr table))

(t (rplacd result (cddr result)) table))))

(defun *delassq (atom table (previous-table nil) (ilreg table))

(cond ((nlistp table) nil)

((and (listp ilreg) (eq table ilreg)) nil)

((and (listp (cdr ilreg)) (eq table (cdr ilreg))) nil)

((nlistp (car table)) nil)

((eq atom (caar table)) (if previous-tablb previous-table t))

(t (*delassq atm (cdr table) table

(cond ((nlistp ilreg) ilreg)

((nlistp (cdr ilreg)) (cdr ilreg))

(t (cddr ilreg))))).))

;;; analogously for delrassq

(defun memq (atom list)

(*memq atom list))

(defun *memq (atom table (ilreg list)) ; ilreg has default value table

(cond ((nlistp list) nil)

((and (listp ilreg) (eqg list ilreg)) nil)

((and (listp (cdr ilreg)) (eq list (cdr ilreg))) nil)

((eq atom (car list)) list)

(t (*assq atm (cdr list)

(cond ((nlistp ilreg) ilreg)

((nlistp (cdr ilreg)) (cdr ilreg))

(t (cddr ilreg)))))))

(defun delq (atom list)

(let ((result (*delq atom list)))

(cond ((null result) nil)

((eq result t) (cdr list))

(t (rplacd result (cddr result)) list))))

(defun *delq (atom list (previous-list nil) (ilreg table))

(cond ((nlistp list) nil)

((and (listp ilreg) (eq list ilreg)) nil)

((and (listp (cdr ilreg)) (eq list (cdr ilreg))) nil)

((eq atom (car list)) (if previous-list previous-list t))

(t (*delq atm(cdr list) list

(cond ((nlistp ilreg) ilreg)

((nlistp (cdr ilreg)) (cdr ilreg))

(t (cddr ilreg)))))))

(defun circularp (list)

(*circularp list))

(defun *circularp (list (ilreg list))

(cond ((nlistp ilreg) nil)

((eq ilreg list) t)

((nlistp (cdr ilreg)) nil)

((eq (cdr ilreg) list) t)

(t (*circularp (cdr list) (cddr ilreg)))))

Appendix Two: Lisp-level interface to the chip

(defun assq (atom table)

(rplaca **atom-loc atom)

(rpiaca **assq-table-loc table)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch) (car fetch))))

(defun rassq (atom table)

(rplaca **atom-loc atom)

(rplaca **rassq-table-loc table)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch) (car fetch))))

(defun delassq (atom table)

(rplaca **atom-loc atom)

(rplaca **delassq-table-loc table)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch)

(cond ((null fetch) nil)

((eq fetch t) (cdr table))

(t (rplacd fetch (cddr fetch)) table)))))

-22-

(defun delrassq (atom table)

(rplaca **atom-loc atom)

(rplaca **delrassq-table-loc table)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch)

(cond ((null fetch) nil)

((eq fetch t) (cdr table))

(t (rplacd fetch (cddr fetch)) table)))))

(defun memq (atom list)

(rplaca **atom-loc atom)

(rplaca **memq-list-loc list)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch) fetch)))

(defun delq (atom list)

(rplaca **atom-loc atom)

(rplaca **delq-list-loc list)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch) fetch)))

(defun circularp (list)

(rplaca **circularp-llst-loc list)

(do ((fetch (car **result-loc) (car **result-loc)))

((boundp 'fetch) fetch)))

Appendix Three: The input to the data path generator

;; What each register looks like:

;;; Physical top of the word is bit 0

;;;Bits 0 -6 typefield

;;; 7 - 35 data field

;;; The data field for a request by Scheme to the assq machine looks like:

;;; 7 - 11 5 bits, "-1 region" machine number

;;; 12 - 26 14 bits, its-assq code

;;; 26 - 30 5 bits, its-me code, names this particular assq chip

;;; 31-35 5bits, opcode

(defconst type-size 7.)

(defconst type-start 0.)

(defconst type-end type-size)

(defconst datum-start type-end)

(defconst datum-size 29.)

(defconst datum-end (+ datum-size datum-start))

(defconst machine-number-size 5.)

(defconst its-me-size 5.)

(defconst opcode-size 5.)

(defconst its-assq-size (- datum-size (+machine-number-size its-me-size opcode-size)))

-23-

(defconst machine-number-start datum-start)

(defconst machine-number-end (+ machine-number-start machine-number-size))

(defconst its-assq-start machine-number-end)

(defconst its-assq-end (+ its-assq-start its-assq-size))

(defconst constant-part-start machine-number-start)

(defconst constant-part-size (+machine-number-size its-assq-size))

(defconst constant-part-end (+ constant-part-start constant-part-size))

(defconst its-me-start its-assq-end)

(defconst its-me-end (+ its'-me-start its-me-size))

(defconst opcode-start its-me-end)

(defconst opcode-end (+ opcode-start opcode-size))

;;; Remember that the bits are in the opposite order from the Scheme chip's data path.

(defconst word-start 0.)

(defconst word-size (+ type-size datum-size))

(defconst word-end (+ word-start word-size))

;; Bit pattern for machine number plus its-assq code.

(defconst constant-part-bit-pattern (+ #o76 (ash #o37 its-assq-size)))

;; The type number for integers is 2 and the type number for unbound is 4. Send back

;;; unbound when you're not done yet, and an integer as the non-nil value. Make sure that

;; these type constants get put in the right places in the final layout. Note that

;; all of these constants must be "backwards" in their field because the bits are
;; numbered in reverse. For example, type 2 is fixnum, but the aicual constant is

;;; #2r0100000, i.e., seven bits which when reversed in order make 2.

(defconst list-type-constant #2r1000000) ;type LIST

(defconst datum-constant-1 #o-1) ;datum -1

(defconst unbound-type-constant #2r0010000) ;type UNBOUND

(defconst datum-constant-2 #o0)

(defconst fixnum-type-constant #2r0100000)

(defconst nil-pattern (+ (ash #o0 (1- type-start)) (ash #o0 (1- datum-start))).)

(defconst non-nil-pattern (+ (ash fixnum-type-constant (1- type-start))

(ash #o0 (1- datum-start))))

(defconst not-yet-pattern (+ (ash unbound-type-constant (1- type-start))

(ash #oO (1- datum-start))))

;; Note that this register array has no cdr bit because the assq chip doesn't need one.

(defconst assq-regs

((table normal-register (size ,word-size) (starting-position ,word-start)

(associates

(listp-table bit-tester (size ,type-size) (starting-position ,type-start)

(bit-pattern , 1 ist-type-constant))))
(ilreg=table eq-test (size ,word-size) (starting-position ,word-start))

(ilreg normal-register (size ,word-size) (starting-position ,word-start)

-24-

(associates

(listp-ilreg bit-tester (size ,type-size) (starting-position ,type-start)

(bit-pattern ,list-type-constant))))

(nil-source constant-source
(size ,word-size) (starting-position ,word-start)

(bit-pattern ,nil-pattern))

(non--nil-source constant-source
(size ,word-size) (starting -position ,word-start)

(bit-pattern ,non-nil-pattern))

(not-yet-source constant-source
(size ,word-size) (starting-position ,word-start)
(bit-pattern ,not-yet-pattern))

(table-element normal-register (size ,word-size) (starting-position ,word-start)

(associates

(listp-table-element bit-tester (size ,type-size)

(starting-position ,type-start)

(bit-pattern ,list-type-constant))))

(table-element=atom eq-test (size ,word-size) (starting-position ,word-start))

(atom normal-register (size ,word-size) (starting-position ,word-start))

(previous-table normal-register (size ,word-size) (starting-position ,word-start))

(its-assq bit-tester (size ,constant-part-size) (starting-position ,constant-part-start)

(bit-pattern ,constant-part-bit-pattern))
(its-me top-level-literal (starting-position ,its-me-start)

(size ,its-me-size) (bus-size ,its-me-size) (field-start ,its-me-start)

(field-size ,its-me-size)

(associates

(test eq-test (starting-position ,its-me-start) (size ,its-me-size))))))

References

(Batali 1982) John Batali, Forthcoming documentation of the PLA generator, 1982.

(DPL 1980) John Batali and Anne Hartheimer, The Design Procedure Language Manual, MIT AI Memo 598,
VLSI Memo 80-31, September 1980.

(DPI./Dacdalus 1980) John Batali, Neil Mayle, Howie Shrobe, Gerald Jay Sussman, and Daniel Wcise, The
DP./Daedalus Design Environment, Proc. VLSI-81, Edinburgh, August 1981.

(Scheme 1981) John Batali, Edmund Goodhue, Chris Hanson, Howie Shrobe, Richard Stallman, and Gerald
Jay Sussman, The Scheme-81 Architecture -- System and Chip, Proc. MIT Conference on Advanced Research

in VLSI, January 1982.

(Shrobe 1982) Howard E. Shrobe, The Datapath Generator, Proc. MIT Conference on Advanced Research in
VLSI, January 1982.

(Siskind 1982) Jeffrey Mark Siskind, Jay Roger Southard, and Kenneth Walter Crouch, Generating Custom
High Performance VLSI Designs From Succinct Algorithmic Descriptions, Proc. MIT Conference of

- 25-

Advanced Research in VI.SI, January 1982.

(Stecle 1978) Guy Stcclc, Rabbit: A Compiler for Scheme, MIT Al Lab TR-474, May 1978.

