

S p e c i f i c a t i o n - d r i v e n D e s i g n o f C u s t o m H a r d w a r e i n H O P

G a n e s h C . G o p a l a k r i s h n a n , R i c h a r d M . F u j i m o t o ,

V e n k a t e s h A k e l l a , N . S . M a n i , a n d K e v i n N . S m i t h

D e p t , o f C o m p u t e r S c i e n c e , U n i v e r s i t y o f U ta h

S a l t L a k e C i t y , U ta h 8 4 1 1 2 , U . S .A

A bstract. We present a language uHardware viewed as Objects and Processes”
(HOP) for specifying the structure, behavior, and timing of hardware systems. HOP
embodies a simple process model for lock-step synchronous processes. Processes may
be described both as a black-box and as a collection of interacting sub-processes. The
latter can be statically simplified using an algorithm ‘PAR CO M P’. PARCOM P sym
bolically simulates a collection of interacting processes. The advantages claimed for
HOP include simple semantics, intuitiveness, high expressive power, and numerous
provisions to support easily verifiable designs all the way to VLSI layout.

After introducing HOP, and presenting some of the results obtained from experi
menting with the HOP design system, we present the design of a large hardware system
(the uUtah Simulation Engine”) currently being developed to speed-up distributed dis
crete event simulation using Time Warp. Issues in the specification driven design of
this system are discussed and illustrated using HOP.

1 I n t r o d u c t i o n

The use of formal specifications for specifying, verifying, manually designing, and
automatically synthesizing hardware systems is becoming widespread. Not only are
there different formal specification languages, but also there are a number of dif
ferent formalisms in use: Functional Programming [JBB88,She85] Prolog [WFC87],
Petri Nets [Chu87], Temporal Logic [BCDM85], various Calculii of Communicating
Systems [Mil83,Hen84] Trace Theory [Sne85], Higher Order Logic [CGM86,JB85],
Algebraic Specifications and Equational Techniques [GSS87,Sub83,NS88], Synchro
nized Transition Systems [GGS88], and Path Expressions [ACFM85], to name a few.
Enough impressive results have been demonstrated to justify the use of formal speci
fications for VLSI design. However, as will be discussed momentarily, many problems
remain unsolved.

Our research is aimed at solving some of these problems. We have designed a
simple hardware description language called HOP (Hardware viewed as Objects and
Processes) that embodies solutions to these problems. HOP deals with the structure,
behavior, and timing of digital hardware systems. We are also using HOP to specify
VLSI circuits that are designed and implemented by various student groups. One
such design called the Roll Back Chip (RBC) is described in this paper. Our research
thus involves developing HOP as well as using it in many ways for designing real-life
hardware.

Our effort to date has given us the following insights, as well as specific results.

Insights

Complex designs evolve in several dimensions. When designing custom computer
architectures, many major design decisions are taken over a prolonged duration of

time. Some of these decisions are: (i) should a computation be implemented in
hardware, firmware, or software? (ii) should a hardware unit be asynchronous or
synchronous? (iii) how should the data and control interactions be organized? The
problem of effective communication among the various hardware designers of a project
(and also between the same designer, over many days!) is often as severe as reported
in [Bro75].

There is no satisfactory design language that specifies a finished hardware archi
tecture completely and formally, or accomodates the evolving nature of the design of
a custom computer architecture and helps facilitate communication among designers.
Although some impressive work has been reported, (e.g. [Bae86]), most works either
focus on control flow and ignore data flow, or ignore resource utilization, or ignore
complications such as interrupts, exception handling, etc.

What we require is a simple and semantically well understood hardware descrip
tion language (HDL) that can be used to capture the structural, behavioral, and
temporal aspects of an evolving hardware-fsoftware design. In addition, a VLSI de
sign system (an assemblage of tools) that supports the simulation and validation of
descriptions in such a language is also inevitable [Seq87].

It has been reported that the complete formal verification of even extremely simple
ICs is really hard [Coh88]. More importantly, impressive results with theorem provers
have almost always been exhibited by persons who played a major role in developing
the theorem prover (and hence knew its innards)— not by end-users. Until this situa
tion changes dramatically, custom architectures would at best partially proven correct
for certain critical safety properties. Therefore formal specification will be used to
a large extent for its indirect benefits— better understanding, better communication
among hardware designers and system software writers, better testing, the ability to
measure what exactly has been tested, etc.

Given this, it is unquestionable that well designed HDLs, that help the designers
think effectively using high-level abstractions and thereby intuitively establish the
correctness of designs, have a major role to play. To paraphrase Stoy [Sto77, Page 7],
“well designed HDLs of the above nature will help write specifications that will more
probably be correct because we will less likely have forgotten about the crucial little
exception to some general rule that applies in our particular case.”

Finally, computations are often done in custom hardware for gaining speed. Thus,
lack of throughput is also a design error. Hardware Verification does not yet address
performance issues.

Specific R esults

1. We have designed a version of HOP that can describe lockstep synchronous pro
cesses. Specific instances of such processes are: (i) synchronous hardware sys
tems; (ii) hardware systems studied under the unit-delay timing model. (Note:
In this paper the language “HOP” refers to the lockstep synchronous version of
HOP.)

2. We have described the semantics of HOP both operationally as well as through
linear-time temporal logic.

3. We have discovered several new techniques for simulating and debugging (via
static analysis) specifications. These procedures have been implemented, and
experimental results are presented.

4. An implementation the HOP VLSI design system is in progress, with some parts
already operational.

5 . We have designed a number of VLSI chips, and have also specified them in
HOP.

O r g a n i z a t i o n o f t h e P a p e r

Section 2 presents the HOP language. Section 3 presents the semantics of HOP. Sec
tion 4 presents the HOP design system, and some results obtained to date. Section 5
presents the specification-driven design of the RBC. Section 6 presents the detailed
design of one of the submodules of the RBC. Section 7 presents our concluding re
marks, and an outline of the planned extensions to HOP. The Appendix describes
the algorithms PARCOMP and PARCOMP-DC.

R e l a t e d W o r k

The HOP language is inspired in many ways by the work of Milner [Mil82] and Milne
[Mil83]. The SBL language designed by the first author under Smith and Srivas
also [GSS87,Gop86] influenced HOP. Our work is different from related work in these
respects: (i) we have focussed on lock-step synchronous timing model,thus obtaining
results useful for synchronous hardware; (ii) we model value communications using
data queries and data assertions (as opposed to existing ways of value communication
in CSP or CCS); doing so has several advantages, to be discussed; (iii) our work
addresses a number of practical design issues in a formal framework.

Broadly speaking, there are two kinds of design automation researchers: (a) Those
who take one formalism (such as lazy functional languages or HOL), “piously” believe
in it, and “get the most mileage out of it” , at the risk of making some practically
unrealistic assumptions; (b) those who don’t carry such pious beliefs, but treat all
formalisms with equal interest, use them as “tools” , assimilate group (a)’s results and
render them more practical. We belong more in group (b) than in group (a).

ABSPROC <ModuleNajne> [<formal params pertaining to s iz e s ft types>]
CONST < l i s t o f constants o f the same value>
TYPE < l i s t of type id e n tifie r s o f the same type>
PORT < l i s t o f ports o f the same type>
CLOCK <a clock agent and the ports imported from it>
EVENT <events and th e ir encodings in terms of port values>
PROTOCOL <a l i s t o f process d efin ition s>
DEFUN <a l i s t o f function d efin itio n s>
END <ModuleName>

Figure 1 : The Skeleton of an Absproc Specification

REALPROC <ModuleName> [<formal params pertaining to s iz e s ft types>]
CONST < l i s t o f constants o f the same value>
TYPE < l i s t o f type id e n tifie r s o f the same type>
PORT <the external ports o f the module being defined>
SUBPROCESS in s ta n t ia t io n s of prev. defined a b s /r e a l/v e c processes>
CONNECT <the set of interconnections among the subprocesses>
END <ModuleName>

Figure 2 : The Skeleton of an Realproc Specification

2 T h e H O P L a n g u a g e

The basic unit of specification in HOP is an module. The external attributes of a
module are:

• Zero or more uni- or bi-directional data ports;
• Zero or more uni-directional events;
• An external protocol specification.

A module specified as a black box is called an absproc, standing for abstract
process. The skeleton of an ABSPROC is shown in figure 1 . A module specified as a
network of subprocesses is called a realproc, the skeleton of which appears in figure 2 .
(Note: For ease of parsing, currently we use a lisp-like syntax for HOP; we have

VECPROC <ModuleName> [<formal params pertaining to s iz e s ft types>]
CONST < l i s t o f constants o f the Bame value>
TYPE < l i s t o f type id e n tifie r s o f the Bame type>
PORT <the external ports o f the module being defined>
SUBPROCESS in s t a n t ia t io n s o f prev. defined a b s /r e a l/v e c processes>
DIMENSIONS <the SIZES o f each dimensions o f regularity>
CONNECT in te rc o n n e c tio n s betn. subprocesses, via recurrence eqns.>
END <ModuleName>

Figure 3: The Skeleton of a Vecproc Specification

hand edited almost all syntactic descriptions in this paper to an easier-to-understand
higher-level syntax.)

Since topologically regular realprocs (e.g. single and two-dimensional arrays of
modules) occur very frequently in practice we identify a sub-category of realprocs
called vecprocs (figure 3). Vecprocs in HOP may best be regarded as “arhythmic
arrays”— geometrically regular arrays in which computations aren’t regular, or rhyth
mic, as in systolic arrays. Previous work involving regular arrays ([She84,She85],
[Pat85], [MH85]) has dealt more with systolic arrays than with arythmic arrays. We
will show that having the special category of Vecprocs is useful in many ways.

A realproc is built using one or more absprocs by connecting some of the ports
and events of the absprocs, by composing the external protocols of the absprocs, and
by internalizing (hiding) some of the events and ports of the absprocs. A syntacti
cally sugered notation (DATANODE and EVENTNODE) mitigates the burden of specifying
the renaming and hiding ([Mil80]) information for large systems. A vecproc is essen
tially built in the same fashion; however a notation based on recurrence relations
is provided for easily specifing the regular placement of modules as well as regular
interconnections among them.

An algorithm called PARCOMP (“Parallel Composition”) has been designed. It
takes as input a realproc or a vecproc and produces as output an absproc. It works
by symbolically simulating all possible interactions between the subprocesses of a
realproc or vecproc. PACOMP implements the operational rules of HOP presented
in section 3.

The absproc inferred by PARCOMP captures, via symbolic expressions, the the
behavior of the realproc or vecproc for all possible starting states of the submodules,
and for all external inputs. The text of the inferred absproc can be manually studied
to see if the system behaves as understood by the designer. Thus, PARCOMP greatly
facilitates the understanding of the collective behavior of a collection of synchronous
systems.

PARCOMP, as well as its planned uses, are similar to the work reported in [HK87],
and to the idea of constructive simulation reported in [Mil85]. However our work
is done for a much higher level language that includes user-defined abstract data
types. Our algorithm embodies useful static checks of timing protocols. Our algo
rithm capitalizes on the structural information (specifically, knowledge about events
that are completely hidden within a module) to save on computation time. This is
accomplished thus (explained in detail later): “states reachable via transitions la
beled by unsynchronized and hidden events are never visited, and consequently the
search-space is pruned.” Further, we have developed a version of PARCOMP called
PARCOMP-DC that can exploit the regularity of vecprocs using a divide-and-conquer
technique. The complexity analysis of PARCOMP-DC shows that it could often be
faster. Finally, PARCOMP can save the time of simulation; we can perform a “pre
simulation” of the tester and the testee using PARCOMP, and run the resultant
process. These computational-effort saving measures are believed to be new.

Due to the availability of PARCOMP, it is helpful to think of HOP realprocs
and vecprocs as having only absprocs as their submodules (i.e. if the submodules
are themselves realprocs or vecprocs, one could infer equivalent absprocs using PAR
COMP).

We now examine the specification of an absproc in detail.

PI
!p l = E l

C l

i
X = ? c l

D U 0 t i
y s ? c 2

P 2
!p 2 * E 2

C2

x o f C l = y o f
C2 = In b (E 1 , E2)

E. g. of i l i t l i ce
for c o m p u t i n g l ub

Figure 4: Use of Data Assertions and Queries for Value Communication

2 . 1 S p e c i f y i n g a n A b s p r o c

An absproc is specified by its ports, its events, and its protocol.

2 .1 .1 Ports and Value Com m unication

The mechanism of synchronized communication as used in [Mil83] does not accurately
model the value communication in hardware systems. As an example, consider figure 4
which depicts a system consisting of two producer processes P i and P2 that can
communicate with two consumer processes C l and C 2 over a bus. In this system,
it is perfectly acceptable to have a query without a simultaneous assertion, or vice
versa. It is even permissible to have two simultaneously active data assertions (say,
with compatible “strengths" [Bry84]) on the bus.

In HOP, value communication is performed through a mechanism called data
assertions and queries. A data assertion, written as !p*E , binds an individual
variable p representing the output port to the value E at the time the data assertion
is made. In general, data assertions are of the form !p*E u n til •, where • is a
future event, where the u n til operator has the same meaning as the until operator
of temporal logic. (Events are discussed shortly.) The lack of an assertion can be
modeled by the assertion • p*Z, where Z denotes high impedance.

A data query, written as X“ ?q, binds x to the value bound to the input port q
at the time the query is made. Multiple data assertions (as in bus connections) end
up asserting the least upper bound (LUB) of the asserted values on the port. For
handling multiple data assertions, the type of values communicable via ports in HOP
must be organized into a strength lattice [Bry84]. For example the bit type of HOP
includes the weakest value Z (high-impedance), truth values T and F, an unknown
value U, and the most dominant value E, error. T ,F , and U are incomparable amongst
themselves and lie in-between Z and E.

The mechanism of data assertions and queries is satisfactory for modeling bidi
rectionality and bussing at the architectural level where “sufficient time is given for

combinational paths to settle” . Pass transistors can be modeled as idealized switches,
ignoring the threshold drop (as in HOL[CGM86]). Busses can be semantically mod
eled as logical variables [Lin85] (as pointed out to us by the author of the cited paper).
By having two processes interaction mechanisms (events and data assertions) we have
essentially separated synchronization from communication.

A dvantages o f D ata Assertions and Queries

We now show through an example that this separation is advantageous for hardware
modeling. Consider a counter with two commands reset and up that are triggered
via events with the same names. After the counter has been subject to the reset
event and until it is subject to the up event, it asserts a data of 0 on its output
port. The process that is responsible for the reset and the up events can, after it
has applied the reset event (but before it has applied the up event) safely assume
that the output will be well-defined (and equal to zero) and sample this output
as many times as it wishes, without any participation of the counter. In contrast,
if value communication is bundled up with rendezvous— as is the case with CSP,
CCS, and Circal, the counter would have to actually rendezvous, causing the counter
process to make progress in its computation. The writer of the counter process thus
has to anticipate all possible places where such rendezvous are possible, and make
provisions for them in the specification. Our experience is that this renders hardware
specifications unnatural and more complicated. In contrast, with data assertions,
once the counter has asserted 0 on its output, it has “discharged all its duties” .

One may complain that the separation of communication from synchronization is
error-prone. In our experience, this is not true. We have written specifications of sys
tems using data assertions as well as traditional synchronization-plus-communication
constructs; the former proved to be much more elegant for modeling value communi
cations hardware. The spirit in which this extension to communication mechanisms
was made, is similar to the extension made by Martin to CSP to include Probes
[Mar85]. Both these mechanisms show that concurrency constructs developed for
software may not be the best possible ones for hardware modeling.

Data assertions and queries have well-understood and simple semantics. They can
model “thru connections” (to be discussed shortly). Interactions such as shown in
figure 4 are too awkward to model using existing “CCS/CSP like” languages.

2 .1 .2 Thru Connections

Now we turn our attention to an important (but hitherto neglected) class of ports
called through connections. Through connections are wires that pass through a mod
ule with or without touching an internal node. It is not satisfactory to model a
through connection as a node resident outside the module because by doing so the
correspondence between the layout and the high-level specification is not maintained
at module boundaries. Maintaining this correspondence would simplify the imple
mentation of a VLSI design system considerably, as has been our experience so far
in our use HOP to model Path Programmable Logic (see section 6). In addition, we
believe that mixed-mode simulation, layout synthesis, formal verification etc. would
be greatly facilitated by maintaining identical interfaces for modules at all levels.

Information regarding through connections is used while compiling a realproc
and a vecproc, as well as during PARCOMP. Often thru connections result in bus
structures that are embedded within modules. These effects of thru connections are

handled appropriately.

2 .1 .3 Events

Events are of two kinds: input, and output. An input event e (written Ie) denotes
a condition that a module senses via wires. An output event e (written Oe) denotes
a condition that a module generates via wires. Most modules have, at every point
in time, a set of events GE (“good events”) that would steer the module into well
defined modes of activity. Modules also have, at every point in time, a set of events
BE (“bad events”) for which they do not have any useful behavior defined. We call
the GEs at every point in time as the “synchronization points” of the module.

Events help in making implicit synchronization points explicit. For illustration,
consider a clocked synchronous system supporting multiple operations. In traditional
designs of synchronous systems, the completion of an operation is not explicitly no
tified, but is tacitly assumed after the elapse of a certain interval of time from the
start of the operation. However this approach is worse than hard-wiring literal con
stants in programs leading to programs that are hard to debug or modify. A better
approach would be to encourage the writers of module specifications to “highlight”
these synchronization points by introducing events. These events may be thought of
as being implemented by fictitious control and status wires.

Events have a conceptual reality even at very early stages of the design; however
they attain implementational reality (e.g. “should an event be represented in unary,
or in binary?” , etc.) only much later. The latter decision is influenced by the nature
of the controller, and this is typically decided much later in a design life-cycle.

Some of the advantages of using events are:

1. It becomes possible to statically check for sequencing errors. We show some
examples in section 4.

2. It highlights the allowed modes of usage of a module. Hardware specifications
must not merely attempt to model hardware as it is; rather they must model
hardware as it is expected to be used. Hardware systems have astronomically
more useless combinations of inputs (as well as sequences of combinations of
inputs) than useful ones.

3. As digital designs evolve, the events that were originally thought to represent
fictitious control wires may be implemented as combinations of control signals
and clocks. Combinational logic necessary to decode these combinations and
raise the corresponding input event will be tacitly assumed, and not modeled
explicitly. This is of advantage on two occasions: (i) when these encodings
haven’t been decided; (ii) in later stages of a design, when these encodings
would be excess baggage to carry around.

4. Event connections between modules is achieved via renaming. The actual im
plementation of renaming is through combinational logic that translates a con
dition in one module to a condition in another. This could pave the way for
the synthesis of “glue logic” that connect modules. This connection between
a language operator (renaming) and its hardware interpretation (glue logic) is
pleasant.

2 .1 .4 D a ta P a th S ta tes

In the specification of an absproc, the data path state of the system being specified
can be modeled using an appropriate high-level ADT. In our experience, (and as illus
trated by the Roll Back Chip (section 5), the use of ADTs having simple definitions
can make reference specifications far more reliable and easier to understand.

The introduction of new abstract data types into HOP is greatly facilitated by
using an underlying object oriented language called FROBS [Mue87]. The class mech
anism of FROBS is used to implement generic types (such as the class of stacks over
various sizes and element types). Each class acts as a repository of the attributes of
the type concerned. Subtyping is realized through class inheritance. The creation of
an instance of a generic type amounts to creating an instance of a class. The values of
a type themselves are implemented as “(type-descriptor . lisp-data-structure)” pairs.
(Overloadable) class methods implement the data type operations. These decisions
have made HOP’s AD T library very well organized.

2 .1 .5 T h e T im ing M odel

Time is a way to order events. In HOP, processes are lockstep synchronous. Therefore
the time of every process advances at the same rate, and thus the event ordering we
have can be described via three relations: simultaneous, before, and after. A HOP
specification may or may not refer to a central clock depending on whether it models
a clocked synchronous system or a unit-delay combinational system. Currently we do
not have the ability to model some subsystems at the unit-delay combinational level,
and the remaining subsystems at the clocked level. We hope to add this capability
later on, by specifying clock periods to be fixed integral multiples of unit-delays (an
idea proposed in [ISD88]).

In later versions of HOP, we will provide a “clock library” , i.e. an expandable
library of various clocking schemes. Each entry in this library would specify a clock
generator of a certain kind; for instance there would be a two-phase clock generator
in this library.

2 .1 .6 A n E xam ple o f an A bsproc: A Pipelined M em ory

Consider memory module MEM which has an address input port ?addr, a data
input ?din port, and a data output port !dout. It can, in its “quiescent state” ,
entertain events Inop, Iv r ite , and Iread, each of which implement the commands
nop (no op), write, and read. MEM is pipelined thus: the delivery of the result of a
read request is overlapped with waiting for the next command. Operation write as
well as operation nop (no operation) aren’t pipelined.

Let us study figure 5. The header declares two size parameters. The PORT section
declares the I /O ports. The EVENT section defines three events, and equates them
to “To Be Defined” (TBD). Thus, the designer of MEM doesn’t yet care about the
encodings of the control inputs as well as clocks (if any). He/she assumes that Iwrite,
Iread, and Inop are three control wires coming in.

Consider the PROTOCOL section. This section can always be depicted as shown
in figure 6. This is because HOP processes are finitely representable processes (that
is, they have a finite-state control skeleton, and this control skeleton can be annotated
(“decorated”) with data path state changes and port value assertions.) These anno
tations are done in a purely functional notation. The functional notation improves

— This is a comment.
ABSPROC MEM [a d d re ss .s ize , d a ta .s iz e : in t] — Note-0

TYPE
addressType ■ 0 . . a d d ress .size - 1
dataType = 0 . . d a ta .s iz e - 1
memoryType ■ array[addressType] o f dataType

PORT
?d in , Idout : array [d ata_size] o f b it
?ain : array [ad d ress .size] o f b it

EVENT
Imnop, Iread, Iw rite ■ TBD

PROTOCOL

MEM [ms : nemoryType] <*
Imnop -> MEM [ms]

I Iw rite , va*?addr, vd=?din -> MEM [w rite(m s, va ,vd)]
I Iread, va=?addr -> MEMl[ms, va] — *— Note-1

MEM1 [ms : nemoryType, oa : addressType] <*
Imnop, !dout*read(ms,oa) -> MEM [ns]

I Iw rite , na=?addr, vd=?din,
!dout*read(ms,oa) -> MEM [w rite(m s,na,vd)]

I Iread, na*?addr, !dout=read(ms,oa) -> MEMl[ms, na]
DEFUN

w rite : : m : memoryType, a: addressType, drdataType -> ml : memoryType
IF (> addr memSize)

(prin t " I l le g a l memory address")
(error-ob j memType) — Note-2

ELSE (update-vector memType m a d) — Note-3

read : m memoryType, a : addressType -> d : dataType
IF (> addr nemSize)

(p rin t " I l l e g a l memory address")
(error-ob j in t)

ELSE (index-vector memType m a)
— Note-2

— Note-3

END MEM
— Note-0
— Note-1
— Note-2
— Note-3

Upper and Lower Cases are Treated the Same in HOP.
w rite (defined in DEFUN) computes the new data path s ta te ,
error-ob j i s supported fo r memoryType by our ADT lib ra ry
index-vector and update-vector supported by memoryType
which is defined in ADT Library.

Figure 5: Specifications of a Memory

the readability and conciseness of specifications considerably.
The functional expressions used in the PROTOCOL section are defined in the DE

FUN section and/or in the ADT library. Since the ADT library is implemented using
object oriented techniques (our technique: “generic types are classes”), functions are
overloaded and dispatched correctly. Besides, subtyping is available for free through
class inheritance. The data types support both immutable and mutable constructors.
We are currently implementing the in situ evaluation technique [GS88] to use mutable
constructors whenever possible, while preserving the referential transparency of HOP
functional expressions.

Let us study the text of the PROTOCOL section. This section is also depicted
in figure 6. In this figure, we have annotated the transitions with current events,
data queries and assertions, and the next data path state; the next data path state is
shown only if it is different from the current data path state. Process MEM begins in
control state MEM and in datapath state ms. It offers a choice of three events, Imnop,
Iv r ite , and Iv r ite . If none of these events is asserted from outside, the behavior
of MEM is undefined. Event Imnop (realized by the unasserted combination of the
read and write controls) causes MEM to go back to its top control state; Event Iw rite
when asserted from outside must be accompanied by data assertions va on the ?addr
bus, and vd on the data bus ?din. It causes MEM to go back to the control state
MEM; however its datapath state changes to write (ms ,v a ,v d). Event Iread must be
accompanied by a data assertion va on port ?addr. The next control state attained
is MEMl, and the next data path state is a pair [m s,va].

In control state MEMl, process MEMl is in data path state [ms,oa]. It again offers
the choice of three events. However note that while waiting here, the data assertion
!dout=read(ms, oa) is made (this is the pipelining effect). This assertion corresponds
to the result of the previously requested read. A Iw rite or Imnop takes MEMl back
to MEM; however while reads keep coming, MEMl goes back to MEMl.

In this specification, the user can model datapath states using an abstract data
type of his/her choice. The unit of time is unspecified. If this memory were to
be used in a clocked system, the events Iw rite, Iread, etc. would be generated
at the appropriate clock phases. Thus, details such as multiphase clocking would
be described in the EVENT section of an ABSPROC by replacing the “TBD” s by
boolean expressions involving input control wires and clocks.

We assume that Inop is a special event that is asserted if none of the other events
are asserted. Such an event exists in most modules, and should be defined to be the
“unasserted combination of control+clock inputs” .

2 . 2 S p e c i f y i n g R e a l p r o c s a n d V e c p r o c s

A realproc specifies a system’s realization. As an example let us use the memory
unit in figure 5 to build a stack using an absproc CTR to implement the stack pointer
and a controller SCTL to control the stack. The design of the stack would be specified
by writing a realproc specification, as shown in figure 9. This specification captures
the schematic shown in figure 8. Let us now discuss the sections that are important
to highlight the roles played by a Realproc.

In the PORT and EVENT sections, the external ports and events of the realproc
are declared. All other ports and events are assumed to be internal, and hence hidden
from the outside world.

In the SUBPROCESS section of a Realproc, previously specified abs/real/vec pro

cesses are instantiated to the required sizes as well as types. For example we could
now instantiate a generic stack to be a stack over bytes. The subprocesses themselves
are described in figure 7. We present only the PROTOCOL section of the subpro
cesses. In the CONNECT section, interconnections between ports as well as events
among the submodules, and between the submodules and the external ports/events
of the stack are specified. Semantically, connections are treated as renamings, in the
style of [Mil80]. That is, connected entities are renamed to common names that are
unique.

Let us look at the first two lines of the DATANODE subsection of the CONNECT
section. (The remainder of the realproc is similar.) The node that connects ?cdo of
MEM and ! cdo of CTR is hidden. The ?din port of MEM connects to ?din of the
stack.

Given the above stack realproc specification and given the specifications for CTR
and SCTL shown in figure 7, we can use PARCOMP to infer the equivalent absproc
specification STACK shown in figure 10. (Again, only the PROTOCOL section of the
inferred process is shown.) This description was obtained automatically, using our
implementation of PARCOMP. Inferring the behavior of the stack takes less than ten
seconds of elapsed time running on an HP-Bobcat running compiled HP Common
Lisp.

The inferred PROTOCOL specification asserts that the STACK system offers a
choice of events Ire se t, Ipush, Itop, Ipop, and Inop.

Let us study Itop. After asserting this event, the external world (say, the “tester
process” of the stack) has to idle for one tick. No event is entertained by the stack
(signified by the absence of any input events following Itop), as it is internally busy.
During the second tick, it asserts the data value read(ms, cs) on the Idout port. This
symbolic expression confirms that the stack would output the correct result on port
Idout following the top command. Finally, the STACK[cs,ms] process continues to
behave like STACK [c s , ms] itself, meaning that the STACK process did not suffer any
state changes.

Now let us study the push operation. The external world is expected to supply
the item to be pushed two ticks after it applied the Opush trigger that matched with
the Ipush event. If this value were vd, then the future behavior of STACK would be
like that of STACK[addl(cs),write(ms,addl(cs),vd)]. This symbolic expression shows
that the push operation was implemented correctly. This is because the counter state
has advanced from cs to a d d l(cs), and the memory state has advanced from ms
to w rite (ms, addl (cs) ,vd). Informally, the stack pointer was incremented, and the
memory location pointed to by the new stack pointer was written with vd.

The other operations are similarly correct. (Note: While doing the reset, the
initial stack pointer value has to be fed from outside via ?cdi.)

2 . 3 L i n k s t o F o r m a l V e r i f i c a t i o n

PARCOMP can be used to simplify the task of verifying hardware realizations.
Suppose that the designer had written an independent ABSPROC specification for
the stack, as shown in figure 11. Here, the operator "> signifies “indefinite delay” —
the designer doesn’t know the exact timings. The designer also uses an Abstract Data
Type “stackType” to model the data path state. We can then prove that STKREQ and
STACK are indistinguishable with respect to the set of commands they can perform
and the results they would deliver. We omit further details.

An up/down Counter

CTR [cs] <« Icnop, !cdo«cs -> CTE [cs]
I I lo a d , vdin«?cdi -> CTR [vdin]
I Iup, !cdo*cs -> CTR [ad d l(cs)]
I Idovn, !cdo*cs -> CTR [su b l(c 6)]

--- A stack co n tro ller ---

SCTL <* Isnop, Onnop, Ocnop -> SCTL
I Ir e s e t , Onnop, Ocnop -> Oload, Onnop -> SCTL
I Ipush, Onnop, Ocnop -> Oup, Onnop -> O vrite , Ocnop

-> SCTL
I Ipop, Onnop, Ocnop -> Odovn, Onnop -> SCTL
I Ito p , Onnop, Ocnop -> Oread, Ocnop -> Onnop, Ocnop

-> SCTL

— Note: the ''n o p ' 1 events have to be sp ecified at present.
— Could be sp ecified as d efau lts la te r .

Figure 7: Specifications of the Submodules of the stack

X reiet, Ipush,Ipop, Itop , Inop

Figure 8: Schematic of the Realproc of a Stack

REALPROC stack [<various s iz e k type parameters>]
PORT

? c d i, ?d in , !dout : <su itab le types>
EVENT

Ir e s e t , Ipush, Ipop, Ito p , Inop ■ TBD
SUBPROCESS — Note-4

MEM : men [<actual s iz e parameters>]
CTR : c tr [<actual Bize parameters>]
SCTL : s c t l

CONNECT
DATANODE
— Note-1

HIDDEN CONNECTS ((MEM ?cdo) (CTR !cdo))
?din CONNECTS ((MEM ?d in))
?cdi CONNECTS ((CTR ?c d i))
jdout CONNECTS ((MEM Idout))

EVENTNODE
— N o tes-2 ,3

HIDDEN CONNECTS ((MEM
HIDDEN CONNECTS ((MEM
HIDDEN CONNECTS ((MEM
HIDDEN CONNECTS ((CTR
HIDDEN CONNECTS ((CTR
HIDDEN CONNECTS ((CTR
HIDDEN CONNECTS ((CTR

Imnop) (SCTL Omnop))
Iread) (SCTL Oread))
Iw rite) (SCTL Owrite))
Icnop) (SCTL Ocnop))
Iload) (SCTL Oload))
Iup) (SCTL Oup))
Idown) (SCTL Odovn))

Ipush CONNECTS ((SCTL Ipush))
Ir e se t CONNECTS ((SCTL Ir e s e t))
Ipop CONNECTS ((SCTL Ipop))
Itop CONNECTS ((SCTL Ito p))
Inop CONNECTS ((SCTL Isnop))

END stack
— N ote-1 : Each lin e of form <extport>/<hidden> CONNECTS <ports>
- N o t e - 2 : Each lin e of form <extevent>/<hidden> CONNECTS <events>
— N ote-3 : Currently we have to sp ecify even ''o b v io u s d e f a u l t s ' ' .
— Later such d efau lts (such as unasserted values of events e t c .)
— w ill be autom atically provided.
— N ote-4 : In general module instance names and module type names
— are d iffe r e n t . Here they are the same. E .g . SCTL and s c t l .

Figure 9: Realproc of a Stack

PROTOCOL
STACK [cs,ms] <*

Ireset -> di ■ ?cdi -> STACK [di.ms]
I Ipush -> Oidle -> vd*?din -> STACK [addl(cs), write(m s,addl(cs),vd)]
I Itop -> Oidle -> !dout»read(ms,cs) -> STACK [cs,ms]
I Ipop -> Oidle -> STACK [su bl(cs), ms]
I Inop -> STACK [cs,ms]

Figure 10: Absproc Automatically Inferred from stkreal using PARCOMP

STKREQ [dps : stackType] <®
Ire se t “ > Ofree -> STKREQ[reset(dps)]

I Ipush ~> Id a ta .a v a il , vdin * ?din "> Ofree -> STKREQ[push(dps,vdin)]
I Ipop ~> Ofree -> STKREQ[pop(dps)]
I Itop "> O to p .a v a il, ! dout*top(dps) “ > Ofree -> STKREQ[dps]
I Isd ef *■> Ofree -> STKREQ [dps]

Figure 11: Requirements Specification for a Stack

3 S e m a n t i c s o f H O P

3 . 1 A n O p e r a t i o n a l S e m a n t i c s f o r H O P

In this section, we provide an operational semantics for HOP, using many of the con
ventions presented by Plotkin [Plo81] for writing operational definitions. In addition
to describing HOP unambiguously, these rules form the basis for implementing design
tools based on HOP. For instance, PARCOMP is written by following these opera
tional rules. Towards the end of this section, we also briefly touch upon the subject
of viewing HOP specifications as Temporal Logic formulae or as Higher-Order Logic
specifications.

The operational meaning of a HOP process is its transition relation -^+= Proc x
act x Proc where the domain of actions for a process is act and that of processes
is Proc. This relation is defined via structural induction using the notation ml*

© conse
where ante is an already defined HOP process (the “antecedent”), and const (the
“consequent”) introduces the next syntactic category of processes that has not been
defined so far.

3 .1 .1 A ction Product

Action product captures how simultaneous actions (events and data actions) interact.
An input event I t represents a logical condition that is awaited (at some time)

by a module. An output event O t represents the assertion of a logical condition at a
particular time instant. Event product, written el, e2 captures how two simultaneous
events interact.

Data actions have only one simplification rule defined for them by action product:
when two different data assertions \p — Ei and \p = E 2 are made, the resultant value
on the port \p is defined by the function lub(Ei, E 2). The lub function computes
the least upper bound of its two arguments over a value lattice. (See figure 4 for an

Ie, Ie => Ie (1)
Ie , Oe => Oe (2)

Oe, Oe => Oe (3)
Oidle, e => e (4)

\p = E\, Ip — => \p = bus(Eu E2) (5)

Figure 12: Definition of Action Product in HOP

example.) A complete definition of the action product operator is given in figure 12.

S .1.2 Definition o f the Transition R elation ^

In this section, we define the transition relation by structural induction. Before these
definitions are applied to a realproc or a vecproc, all the port and event names in their
submodules are assumed to be renamed so as to be distinct. Also every compound
action used in a definition is assumed to have been reduced to an irreducible form by
repeated applications of the action product operator *,’•

Process S T O P

STOP is the simplest of HOP processes. It has a null transition relation; i.e. it
always remains halted.

A finite process is defined to be one that will become STOP in a finite number
of steps. A finite process does not usually represent any practically useful hardware
system. Therefore if PARCOMP results in a finite process starting from non-finite
processes, there is room for suspicion that there are sequencing errors in the system.
When none of the input events in the branches of a CHOICE process P are synchro
nized, and when these input events are all hidden, process P is turned into a finite
process. This can happen (for example) due to the erroneous sequencing of control
inputs.

Sequential Processes

Action: (ca —► P) P
If P is a process, ca —► P is a process that first performs the compound action

ca and then behaves like P . Sequential Processes are a special case of deterministic
choices where there is exactly one choice available.

D eterm inistic Choice

Det-cboice: (|, ca,- —► Pi) Pi
A process P =|, caj —♦ P,, where i ranges over an index set I is one that offers a

deterministic choice consisting of the compound actions ca, during its first computa
tional step. If choice cm is accepted, P continues to behave like Pm -

If I has more than one element, then there must be an input event e, present in
each ca,. Since the e,s govern the selection of one of the alternatives of the choices,
the e,s must have pairwise mutually exclusive definitions for their control encodings.

Adding Actions To Initials

If P is a process, c a l,P is a process which adds cal to the initials of P.

P - ^ P '
Add-to-initials:

Hiding

“Hiding an event c” is a shorthand for saying that both 7e and O t are hidden from
a process. Rule Hidmg-sync considers the hiding of Ot. Oe is replaced by Oidle.

p p '
Hiding-sync

Hide c in P /°ê Hide c in P'

The notation u[new/old]” is used to mean that “new” replaces “old” .
Hiding 7c from a process prevents it from synchronizing on this event. This can

be captured by pruning those branches of the synchronization tree that are labeled
by It :

p " , c € ca l
h i d m g - u n s y n c --------------------------------r------------------------------

(Hide e in P) (Hide e in P ")

Hiding a data output port removes data assertions made on that port from the cur
rent compound-action of the process. This would affect those processes that perform
a data query from a connected port at the same time:

H i d l n g - d o u t

p ca,!p=E p >

Hide p in P — ► Hide p in P '

Hiding a data input port causes those variables that would have been bound by a
data query on this port to remain unbound:

H i d i n g - d i n

p c a £ = 7 p p>

Hide p in P — ► Hide p in P ' w i t h x f r t e i n P ’

Renam ing

Processes are made to interact with each other either via events or via data actions
(cfa) on ports by renaming their individual event and port names to common names:

P - ^ P ’
Ren&ming-t

Rena,ming-port

Rename c to el in P Rename c to cl in P '

P p ', da uses p

Rename p to pi in P Rename p to pi in P'

Parallel Composition

The parallel composition operator || models the process of realizing a system by
putting together several sub-processes, and permitting their interaction through events
and ports that are connected.

Parcomp

After performing parallel composition according to the above rule, we may simplify
the result by using the following rule (if applicable). This rule captures the effect of
value communication:

P (r=?p),(!p=E),ca p ,

Value Communication During Parallel Composition
P P' [E /x]

Conditionals

HOP processes are usually defined as process schemas P[<fps], where for each value
of dps we have one specific process, dps usually represents the data path state of the
process. We have the notion of conditional processes in HOP that allows us to specify
the behavior of a process based on its dps variable. Thus we may define a process P
as:

P[<fps] <= i f p(dps) then Pl[f(dps)] else P2[g(dps)].

After reducing the predicate application p(dps) to true or false, one of the following
rules would apply:

P l p ' p o P'
Conditional

(i f true then P i else P 2) — ► P ' (i f false then P i else P2) — ► P'

Recursion

A collection of one or more processes may be defined recursively. Since only ta.il-
recursion is allowed, recursion can be modeled as iteration. .

Indefinite Delay

The constructs introduced so far are all deterministic. However, nondeterminism
seems to be unavoidable at really high-levels of specification when specifying an or
dering between every event in the system can be tedious, or may not be possible.
Besides this can also over-constrain the specification, thus leading to inefficient hard
ware designs.

We have begun using an “indefinite delay” operator for writing a priori specifica
tions. The phrase e” stands for: “Delay indefinitely until e occurs.” Its definition
is as follows:

P i <= cal e,ca2 —» i l l
is equivalent to

P i <= cal —» Ql

Q l *= not(e) -* Q l

| e, ca2 —> i l l

(In the syntactic rules of the action product operation, a definition not(Ie), not(Oe) =>
not(Oe) should be introduced. As we will show below, events can be semantically
interpreted as propositional temporal logic variables.)

An indefinite delay before producing an output event is an instance of nonde-
terministic behavior. Currently we use only in writing requirements specification

for a module. The corresponding implementation of the module may have any spe
cific delay at all, corresponding to every use of the indefinite delay operator in the
requirements specification.

We are working on extensions of HOP to include con currency-related constructs,
as briefly discussed in section 7.

S o m e R e l a t i o n s h i p s o f H O P w i t h O t h e r L a n g u a g e s

It is possible to view HOP as stylized formulae in either Temporal Logic or in HOL.
For instance the specification in figure 13 can be modeled in temporal logic as shown
in figure 14, or in Higher Order Logic [CGM86] as shown in figure 15. In the Tem

P [s] <■ Ie l -> !dout ■ 55 -> P [f (s)]
I I e 2 , x « ? d in -> Q [g (s , x)]

Figure 13: An Example HOP Specification

P (s) = □ ((/ e l D 0((\dout = 55) A C W O O)))

A(/e2 D (x =1din A O Q (g (s , z))))

A (n o t (/ e l) A n o t(Ie2)) D D ERRO R).

Figure 14: Temporal Logic Equivalent of the Example HOP Specification

P (s yt) = I e l D (\dout(t + 1) = 55) A P (f (s) , t + 2)

A Ie2 D (i (t) =1din(t) A Q (g(s, x (t)), t + 1))

A (n o t(Ie l) A n ot(Ie2)) D V t E R R O R {i + k)

Figure 15: H O L equivalent of the Example HOP Specification

poral Logic specification, we treat port names Idin and !din as individual variables.
Renaming and hiding are modeled in an obvious way. The effect of simultaneous data
assertions and queries on a bus can be handled by first computing the LUB of the
asserted values (over the value-lattice of the data items asserted), and then binding
this LUB to the variables involved in all the queries on this bus.

In the H O L description, ports are treated as streams, and explicit quantification
over time is used. Hiding is modeled in HOL using existential quantification, as
described by Gordon in [CGM 86].

One benefit of using pragmatically oriented HDLs that have a clean semantics (like
H OP), as opposed to directly using universal functional/relational calculii, is simplic
ity. HOP processes may be viewed as a collection of communicating automatons.

Figure 16: Data Flow Diagram of the HOP Design System

The operational semantics provided in this section define the rules of communication,
and they may be understood syntactically. Milner [Mil82] and Plotkin [PI0 8 I] have
extolled the virtues of this approach.

Another major benefit of using HDLs is the following. Useful “idioms”— commonly
occurring patterns in H D L descriptions— can be identified by trying out a large num
ber of examples. Then we can identify a subset of Temporal Logic (or another for
malism) that matches these idioms. The advantages of identifying such subsets of
(inherently undecidable) theories is obvious— we can make a focussed attack on the
problem of verification and testing of hardware.

4 T h e H O P D e s i g n S y s t e m

Figure 16 illustrates the data flow diagram of the HOP design system that is currently
under development. Subsystems for which prototypes currently do not exist are shown
in dashed boxes. Rectangular boxes indicate functional units, and boxes with curved
sides indicate intermediate storage units. Dotted lines show the flow of control, and
solid lines show the flow of data.

Input specifications are entered through text editors. File name extensions .ap,
.rp , and .vp refer to absproc, realproc, and vecproc. Cell specifications are entered
using the PPL layout editor called Tiler [JS86]. HOP specifications are compiled into
FROBS representations using the H O P —►FROBS compiler. The algorithm PAR-
COMP can now be applied on realprocs and vecprocs (presently implemented only

STACK+TESTER [MS, CS] <« O id le -> O id le -> STACK+TESTER-1 [MS, 0]

STACK+TESTER-1 [MS, CS] <« O id le -> O id le -> STACK+TESTER-2 [MS, (Addl 0)]

STACK+TESTER-2 [MS, CS] <« O id le -> ‘ d o t » 1
-> STACK+TESTER-3 [(W r ite MS (Addl 0) 1) , (Addl 0)]

STACK+TESTER-3 [MS, CS] <«
O id le -> STACK+TESTER-4 [(W r it e MS (Addl 0) 1) , (Addl (Addl 0))]

STACK+TESTER-4 [MS, CS] <« O id le -> !d o t « 2
-> STACK+TESTER-5 [(w r i t e (W rite MS (Addl 0) 1) (Addl (Addl 0)) 2) ,

(Addl (Addl 0))]

STACK+TESTER-5 [MS, CS] <« O id le -> O id le
-> STACK+TESTER-6 [(w r i t e (W rite MS (Addl 0) 1) (Addl (Addl 0)) 2) ,

(Sub l (Addl (Addl 0)))]

STACK+TESTER-6 [MS, CS] <« O id le -> O id le ->
! r e s u l t »

(READ
(WRITE (WRITE MS (Addl 0) 1) (Addl (Addl 0)) 2)
(Subl (Addl (Addl 0)))

)
-> STACK+TESTER

Figure 18: Inferred Behavior of the Stack Interacting with the Tester

STACK [M S,cs]
<« I t o p -> STOP [MS,CS]

I Ip op . . . sane as b e f o r e . . .
I Ipush . . . same as b e f o r e . . .
I Isn op . . . same as b e f o r e . . .

** P r o t o c o l E rror in Input S p e c i f i c a t i o n s **

Figure 19: Inferred Behavior o f the Stack using an Erroneous SCTL

TESTER <« O reset -> •cot • 0
-> Opush -> O id le -> ! d o t » 1
-> Opush -> O id le -> I d o t « 2
-> Opop -> O id le
-> Otop -> O id le -> t o p v a l -
-> TESTER

? d i t , ! r e s u l t * t o p v a l

Figure 17: Description of the Stack Tester Process

for realprocs). PARCOM P infers functionally equivalent absproc specifications from
realproc and vecproc specifications. The inferred behavior will be much faster to sim
ulate. The simulator preprocessor compiles the FROBS database into a form suitable
for the simulator (under development). A data type definition mechanism has been
implemented using FROBS [MLG]. During simulation, the simulator will be called
upon to evaluate functional expressions that compute new datapath states as well as
output port values. These will be achieved by invoking the operations defined on the
various data types.

We now list specific results obtained to date. Details have been omitted.

• The stack realproc was subject to PARCOMP. The result is shown in figure 10.
Considerable pruning of the state space was obtained by capitalizing on the
event hiding information. See appendix 8.1 for details of PARCOMP.

• We deliberately introduced mistakes into the stack controller. Here is a specific
experiment: do not generate the Oread event after synchronizing on event Itop,
in process SCTL. PARCOMP is able to detect this as an error.

This is possible because at this point in time, the MEM process offers a choice
of input events, none of which is asserted by any other process. Thus, the
behavior of the MEM process, and hence the stack process beyond this point
is undefined. See figure 19 which shows the STACK process entering a state
called STOP. A STOP control state in a process is indicative of a design error,
because a hardware system’s behavior must be defined for every time instant.

• We composed the stack with a tester process, and deduced the behavior of the
“tester+testee” system using PARCOMP. The particular tester we used, and
the results we obtained are shown in figure 18. We now explain this result in
some depth.

Figure 17 shows the stack tester designed by the designer to test the stack for the
following sequence of operations: apply reset; then push 1 into the stack; then push
2 ; then pop the stack, and finally observe the top of the stack and return it through
the Iresult port. In order for this experiment to succeed, the design of the stack has
to be correct, and more importantly, the timing protocol followed by the tester in
using the stack should also be correct! The result of PARCOMP shown in figure 18
shows that both are correct in this case.

As a specific example, the final result delivered has been inferred completely sym
bolically to be:

I r e s u l t =

H I . H 2 H
i i (Dashes indicate Equivalence i

i i i
' ' Under Functional Simulation.)^

i t i
i i i
1 1 C o n n e c t 1

C 1 . C 2 * C

Figure 20: HOP Provides & Compositional Model

(READ
(WRITE (WRITE MS (ADD1 0) 1) (ADD1 (ADD1 0)) 2)
(SUB1 (ADDl (ADD1 0)))

)

From this inferred behavior it is clear that all value communications that would
occur between the various modules have been “compiled away”— i.e. statically deter
mined via symbolic simulation, and are represented as function calls. Since function
calls are much cheaper than maintaining and propagating node values, simulation can
be greatly speeded-up.

Further, it can be noted that many of the functional expressions contained in the
inferred behavior can be simplified using simple rewrite rules. For example, Addl
and Subl cancel.

This optimization needs to be implemented in our system. Since FROBS comes
with a forward-chaining inference engine, and since the A D T library is implemented
using FROBS, the implementation of the expression simplifier will be very modular
in the HOP design system.

5 F r o m H O P S p e c i f i c a t i o n s t o V L S I L a y o u t

In this section, we present a VLSI design technique that is supported by HOP. In this
approach, the circuit/layout level is realized using PPL (path programmable logic).
(The use of a high-level language for PPL has previously been studied by [SR85].)

PPL is a cellular grid-based design methodology. The layout is accomplished
by tiling a plane with predefined cells, called the PPL cells. Until recently, one
disadvantage of PPL was the limited set of predefined cells; however the capability
for users to add (compact) custom cells is planned. Considering this, HOP seems to
be an attractive PPL cell library specification language.

Figure 20 illustrates the correspondence we will aim for between the PPL and
HOP levels; if this correspondence were to be established in some rigorous way, it
could pave the way for the development of provably correct circuits from verified
HOP specifications. PARCOM P could then serve as a “high-level circuit extractor.”

For illustration we show how a D flip-flop fed through a tri-state driver can be
described both in PPL and HOP. Figure 21 shows the PPL circuit schematic of the

Iqb«r»n1 ?l*c1 vW<*n3 ?d»n5
?teeOwir*<*nO i Iq®n2 . .

i I i I I

_ ?ph1G*7

?toirt$n1
?l«Owfr*$nO , Mr*®n2

I I I

— ?k'3vW$*3

— tlr2v1r***2

_ ? e \) 9 t O

?»out<?s1

21: T he Circuit Schem atic of a ‘D ’ cell Connected to a ‘3 ’ cell

ABSPROC d f f [] — a D f l i p f l o p
PORT

?ph i® e7 , ?ph i® v7 , ?d®s5, ?d®n5, !q®n2, !q®s2, !qbar® n l, !q b a r ® s l ,
? !scOvire®nO, ? Is c 0 v ir e ® s0 , ? ! s c lv i r e ® n 3 , ? ! s c lw ire® n 3 ,
? ! c l v i r e ® n 4 , ? ! c l v i r e ® s 4 : b i t

CLOCK s in g le p h a s e ?p h i
EVENT

I lo a d * (? p h i)
I h o ld * (b i t - n o t ? p h i)

PROTOCOL
d f f [d p s l , d p s 2] <=

I l o a d , vd=?d , !q * dps2 , !qbajr ■ n o t (d p s 2) -> d f f [n o t (v d) , dps2]
I I h o l d , !q « n o t (d p s l) , Iqbar * d p s l -> d f f [d p s l , n o t (d p s l)]

END d f f

ABSPROC 3 [] — a t r i s t a t e d r iv e r
PORT

? in ® s2 , ? in f in 2 , ? ! o u t f i s l , ? ! o u t ® n l , ? c t l® w o , ? c t l® e O ,
? ! r 2 w ir e ® e 2 , ? !r2 w ire fiw 2 , ? ! r 3 w ir e f ie 3 , ? !r3w ire® w 3,
? ! r 4 v i r e f i e 4 , ? !r4w ire fiw 4 , ?!cOwire®nO, ?!cOwire®sO : b i t

PROTOCOL
lou t (i f ? c t l ? i n Z)

END 3

Figure 22: HOP Specifications of the ‘D ’ and ‘3’ cells

Fi
gu

re

24
:

Th
e

La
yo

ut

of
the

RB

HC

Ch
ip

in

P
P

L

“3” cell (a tristate driver) and the “D ” cell (a D flip-flop). Shown in figure 22 are the
HOP descriptions for these cells. The HOP description gives a physical description
of the location of ports along with a behavioral description of the cell. For example,
the port labeled ”?ctl@wO” in the ‘3’ cell corresponds to the an input port named
"c tr located at the west side of the zero’th row location. All of the port numbers
are relative to the lower left hand corner of the cell. In PPL the connections between
ports are implied based on their placement in the circuit plane.

Figure 23 shows a PPL circuit as viewed when tiling a circuit using PPL tools.
Such an ASCII file is all that is needed to generate the CIF code and have the chip
fabricated (of course there are no pads shown in this figure, but they could be easily
placed). This figure is an excerpt from the design of a large chip called the Rollback
History Chip (RBHC) which we have conducted. The corresponding schematic is also
shown in the same figure. PARCOMP could be run on the realproc generated from
the PPL description, thus giving a new behavioral and physical description of the
circuit. PARCOM P-DC (section 8.2) also seems promising since PPL systems often
possess high degrees of geometrical regularity. As can be seen, layout composition
is paralleled by PARCOMP at the HOP level. This process could be repeated to
any level of design. Simulation can then be performed on the realproc with much
improved speed. Verification can also be performed by the designer.

To illustrate that this technique can be used even for non-trivial designs, we
present the complete layout of the RBHC in figure 24.

6 T h e D e s i g n o f t h e R o l l B a c k C h i p (R B C)

In this section we present a case study of specification driven design. The example
considered is called the Roll Back Chip, which forms part of the Utah Simulation
Engine. Our presentation will be qualitative in nature, and is intended to highlight
the issues that arise during the design of a large hardware system. We present four
levels of refinement of the RBC.

Introduction to the RBC

Simulation plays an important role in the study of systems. For instance, a proposed
computer architecture must be evaluated through simulation before it is built; an
assembly-line simulated before it is put into operation. Such simulations are usually
conducted using discrete event simulation techniques. Processes in the real-world
are modeled as logical processes in the simulator. These processes communicate
using time-stamped messages. A (fairly strong) sufficient condition for correctness in
discrete event simulation is that messages be processed in non-decreasing time-stamp
order, thus preserving data dependency relations.

Due to the decreasing cost of computers, there has been growing interest in speed
ing up simulation by spreading the logical processes of a simulation in the various
nodes of a multiprocessor. A central global clock cannot be used if the simulation
is asynchronous, forcing one to use independent, local clocks. Unfortunately many
strategies that have been proposed for doing so are fraught with problems such as the
proliferation of null messages, the risk of running into a deadlock, etc. [Fuj88]. Time-
Warp is a promising alternative that doesn’t suffer from the problems due to null
messages or deadlock. To support time-warp, the following capabilities are necessary:

• It must be possible to take a snapshot of a process’s data segment at any instance
of time, and save this snapshot.

• It must be possible to restore a saved snapshot; by restoring a snapshot we
mean throwing away the current data segment and reverting to a previously
saved data segment.

Doing the above operations in software has proven to be extremely expensive. On
the other hand it has also been observed that if the above operations could be made
negligibly expensive, then time-warp would be one of the best possible approaches to
distributed discrete event simulation.

To
Other
Nodes

Figure 25: Configuration for each node of the Utah Simulation Engine

At the University of Utah, a hardware architecture called the USE (Utah Simula
tion Engine) has been under development for the past year for speeding up distributed
discrete event simulation using time-warp. The Roll Back Chip (RBC) is a key com
ponent in USE. A node of the USE is shown in figure 25.

In this section we present the development of the RBC to date. The vesion of RBC
presented in this paper corresponds to that presented in [F TG 88]. Chronologically,
the development of the RBC progressed along the following lines:

• We studied the problem at hand and captured the behavior of the intended
architecture in pseudo-code;

• We specified the early design of the RBC in HOP. In this specification we used
a data type similar to an ordinary stack to model the data path state of the
RBC (discussed in section 6 .1). This reference specification has proven to be
valuable in many ways (to be discussed).

• We identified heuristics for speeding-up the initial design specification by identi
fying “clever data structures and algorithms’’— i.e. by adopting problem-specific
heuristics;

• For each such heuristic, we informally argued why each optimization strategy
adopted is sound;

• We evaluated the architecture by writing a simulation of the chip in the C pro
gramming language. (The implementation of the HOP simulator isn’t complete
yet.)

• We coded the original reference specification in C and compared the behavior
of the detailed description of the RBC against the reference specification via
simulation. Both systems were subject to over a million operations, and the

Figure 26: The Architectural Context of the RBC Chip

results produced were compared. (A form of “bisimulation” .) Though not as
effective as formal verification, we did discover a few bugs via this process. This
supports the observation that formal reference specification directed simulation
is useful in practice.

• A key component of the Roll Back Chip, the “Roll Back Cache” (RBCache) was
designed, laid out, and simulated using the Path Programmable Logic (PPL)
Tools [NM]. A complete specification of the T L B in HOP is currently being
written. Currently another major component, the “Roll Back History Unit”
has been fully designed and simulated in parts, and is being laid out in PPL.

The purpose of the remainder of this section is to reenact the development of the
RBC (Parnas calls this “faking a rational design process” [PC86]). It has been our
experience (hopefully shared by many of you) that as opposed to the development of
relatively well-known architectures such as microprocessors, etc. the development of
large, non-conventional VLSI architectures involves several iterations of the design,
adjusting it to newly discovered opportunities as well as newly discovered hindrances
almost on a day-to-day basis. Although one hopes that such changes be discovered
as well as performed automatically on a formal specification of the system without
human involvement, a more tangible hope seems to be that formal specifications be
used in the following roles:

• Provide a notation for the digital system architect that is f o r m a] , e a s i l y a m e n a b l e

t o v e r i f i c a t i o n , and p r a c t i c a l l y o r i e n t e d ;

• Support the recording of “hunches” leading to optimizations as i n v a r i a n t s , o r

J e m m a s to be proved subsequently; The LP theorem prover [GG 88] can be used
for reasoning about such equational formulae. (See also [GGS88].)

• Support the evaluation of performance (speed etc.) of the design using sim
ulation studies; conduct only informal design verification at this stage, as the
proposed design may not be selected owing to poor performance;

• Conduct a formal verification of the entire system when the final architecture
has been selected.

Some of the levels of refinement of the RBC system are now examined.

6 . 1 T h e F i r s t L e v e l : S y s t e m R M 1

j

Mark Frame Stack

AFRAME

Figure 27: The First Two Levels: Systems RM l and RM2

One way to understand the RBC is as a memory management unit situated be
tween the CPU and the memory, as shown in figure 26. The behavior of the RBC
plus a memory module from the point of view of the CPU is now described (Note:
the name “R M l” corresponds to RBC plus Memory, level 1 .)

• A program P running in the above system uses a data segment ranging from
address Amin to Amax. This is called the version controlled memory of which
snapshots can be taken and restored.

• At any time P can read from the data segment from address A (operation
Read(A)).

• At any time program P can write into the data segment at address A the data
d.

• Periodically, program P issues a request to the ‘R M l’ system to take a ver
sion (“snap-shot”) of the data segment contents; P then continues with the
computation; this operation is called MarkQ.

• At some future time, P encounters an error and wants to revert to an earlier
version of the data segment state, effectively restarting the computation at some
time in the past. This operation is called Rollback.

• At any time P can discard very old versions of checkpointed state that are no
longer needed. This operation is called Advance.

Figure 27 shows a data structure similar to an ordinary stack that was used to
model the above requirements specification. (Please ignore the WB array and the
Aframe for now.) Specifically, the data type used is:

ty p e RMltype *
RECORD

STK : a rra y [nfram es] o f a rra y [n l in e s] o f <data ,vb>
CMF, OMF : in t

END

The data type consists of a stack STK and two pointers CMF and OMF. STK
contains nframes frames, each of which is as large as the data segment. STK is used
to hold the multiple snapshots of the data segment. CMF points to the current “mark
frame”, or the current data segment. OM F points to the oldest mark frame in use.
Each frame of the stack holds n l in e s “lines” of data. A line is a group of bytes, and
is similar to the lines in a cache. Actually pairs <data,wb> are maintained. The wb
stands for “written bit”, and is set only if the line has been written into. A wb*0
corresponds to a “hole”; e.g. if location i of a frame F has a zero written bit, then
location i was not written into while F was the “current” mark frame.

(For simplicity assume that the fields of the record correspond to variables with
the same names as the fields.) The operations of the RBC are:

read(a) finds the least / starting from / = C M F such that STK[f][a].wb is set; it
then returns the data item STK[f][a].data. Frame f in this example corresponds
to the most recent version (MRV) of the data at line address a. Hence we will
call such a frame the “MRV frame”.

write(a,d) updates STK[CMF][a].data with d, and also sets STK[CMF][a].wb.

mark(k) increments CMF by k.

rollback(k) decrements CMF by k, and if CMF falls behind OM F, an error is re
ported.

advance does nothing at all— we are not interested in garbage collecting the concep
tual stack!

6 . 2 T h e S e c o n d L e v e l : S y s t e m R M 2

We move towards practical reality by making the following changes (see figure 27):

• We detach the written bits from the stack and pool them into a matrix;
• We treat the stack as a circular buffer; the data area is shown side-by-side with

the WB array;
• We make a provision for garbage collection by introducing the frame called

Aframe. The idea behind garbage collection is simple. When the OM F frame
is no longer needed (this happens when the Global Virtual 7tme(GVT) [Jef85]
exceeds the the time-stamp of the OM F frame), we may free-up the OM F frame
provided we are not throwing away a legal version of any data. The steps in
archiving are the following:

Suppose th e GVT advances t o frame OMF+K. Then
For e v e ry l i n e 1 th a t d o e s n ' t have a s e t w r i t t e n b i t in frame OMF+k

determ ine th e MRV o f th e d a ta l o o k in g back from OMF+K;
cop y t h i s MRV d a ta t o Aframe[1]

end F or;
Free up fram es from OMF t o OMF+k.

All the operations in level RM 2 are implemented as in level RM l except for the
MRV computation. In RM2 , if no set written bits exist for a line / between positions
CMF and OM F, then the MRV is read from Aframe[/].

From the point of view of the user, all the levels of the RM system are best regarded
as abstract data types with c o n s t r u c t o r s w r i t e , m a r k , r o l l b a c k , and a d v a n c e , and the
only observer r e a d . Hence the verification condition for f u n c t i o n a l c o r r e c t n e s s can be
stated using d a t a t y p e i n d u c t i o n [GHM78]. For example, the verification condition
going from level RM l to level RM2 is:

For all constructor operations o p defined at level RM l (o p r m i) and RM2
(°PRM2) and their arguments o p a r g

_________________ r e a d R M i (d p s R M i , Q = r e a d R M 2 (d p s R M 2 j) _________________
readRMi(opRMi (dpsRMl, opargs), I) = read/u/2(opRM2 (dpsRM2, opargs), I) '

Each level following RM2 has to be similarly verified with respect to R M l.
For an earlier design of the RBC chip, we did prove some of these invariants by

hand by unfolding the consequent part (the portion below the line) using the definition
of r e a d and o p at the lower level, performing a case analysis on it, and showing that
in each of these c a s e s the consequent either reduces to an instance of the antecedent
or follows from the antecedent. In a few cases, proof by contradiction proved to be
much easier.

Our current focus is in formulating verification criteria, and understanding what
exactly verification means in the context of complex timings.

6 . 3 T h e T h i r d L e v e l : S y s t e m R M 3

Obviously, searching down the stack for every r e a d operation is inefficient. Hence
we introduce a cache unit to cache the data in the MRV frame (see figure 28). The
management of this cache is quite different from traditional cache units because we
have to guarantee that whenever there is a cache hit, we do return the MRV data
item. This also means that when a roll-back or advance occurs, suitable invalidations
of the cache entries are performed.

At level RM3 we have three processes, LRU, RBCache, and C TR LR commu
nicating via their interface protocols. The process C TR LR may not realized a s a
stand-alone unit; it simply represents the portion of the microcode devoted to the
management of level RM3.

It is possible to model the system state as a three tuple of the states of these
modules and specify the RBC operations as mappings on these states. A more useful
approach— the one we plan to use— would be to model these as stand-alone pro
cesses, compose them using PARCOMP, and then compare the process inferred by
PARCOM P with a process representation of level RM2. While we have begun work
ing in this direction, we do not have a satisfactory solution yet. The questions we
would like to answer are: (i) how best to write a prior specifications in a manner
that permits systematic refinement to more detailed timing? (ii) how to discover
optimizations such as pipelining in this process? (ii) What forms of nondeterminism
are useful at the architectural level of specification?

6 . 4 T h e F o u r t h L e v e l : S y s t e m R M 4

When a cache miss occurs in the RBCache, the MRV entry has to be retrieved from
the memory. A backward search beginning at CMF searching for the first set written
bit has to be performed. Is it possible to keep a good estimate of the point from which
to begin the backwards scan? The answer is 'yes', and incorporating this optimization
leads to model RM4.

In this scheme (shown in figure 28), a frame full of pointers (one for each line)
is maintained in the array LastWa. The contents of LastWa are updated whenever
a cache entry is evicted. Our simulation studies show that the use of LastWa cuts
down the average distance of backscan for the MRV dramatically.

6 . 5 T h e F i f t h L e v e l : S y s t e m R M 5

When a Rollback occurs, not only must we invalidate entries in the cache that corre
spond to frames that have been “rolled over” , but we must also clear the written bits
in the memory corresponding to these “rolled over” frames. This is because we are
effectively forgetting the existence of these frames. However, industriously clearing
the written bits isn’t wise. We have developed a lazy approach to clearing the written
bits. In figure 28 the addition to our “data structures” for achieving this optimization
is shown. The mechanism is called the “Roll Back History Unit” , or the RBhistory
unit.

Section 5 presents the design of the RBH unit.

S e c t i o n S u m m a r y

The current design of the RBC chip is still at least five more such refinement steps
away! The five steps shown so far make it amply clear to us that digital system
architects routinely think of data abstractions and are aware of optimization invari
ants. However they don’t seem to document these thoughts in a formal specification
language. Here is where specification driven design approaches have a definite con
tribution to make. Also as we mentioned in section 1, lack of performance is also a
design error. (Interestingly, the USE system could be used to conduct performance
studies of digital architectures— even of itself— quite rapidly!)

7 S u m m a r y

• We have developed a hardware specification language HOP, and are using it for
the specification driven design of a large custom architecture. This cooperative
research is expected to lead to a language well balanced in formal details as well
as pragmatic ones.

• One of the key results so far has been the recognition of the importance of data
and structural abstraction mechanisms in real-world design. HOP seems to be
satisfactory in these respects.

• Constructs for modeling truly concurrent processes (fork/join, barrier synchro
nization, mutual exclusion of resources, etc.) are missing in the present version
of HOP. We are designing a successor to HOP called “H O P-CP” (CP for con
current processes) that includes these constructs. The present version of HOP

would be truly compatible with HOP-CP. Specifications for the components of
USE will be written in HOP-CP.

• A library based design approach where certified circuit/layout “tiles” are stored
along with high-level specifications is believed to be an effective way to translate
correctness proofs at the high-level into correctness assurances regarding the
circuit/layout. Our experiments with PPL substantiate this observation.

A c k n o w l e d g e m e n t s

The first author acknowledges the support of his research by the National Science
Foundation under Grant No.MIP-8710874. The second author acknowledges the sup
port of his research by ONR, under contract number 00014-87K-0184.

8 A p p e n d i x

8 . 1 A S p e c i f i c a t i o n o f P A R C O M P

Input: An expression Hide H S in || {P,[^7|,..., Cj[A ^),...} for i E { l . .m },
j E { l . .n } . Cj are conditional processes of the form
Cj{X]\ = i f qj then 7)[<7j (X J)]e l s e Fj[^j(^7)] and P, are non-conditional
processes of the form
P P ^ = Vi '■ initialsi -* P,(yO;
Each P, offers a set of initial choices initialsi and for each choice t/< that is
offered, the future behavior of P, is P,(y,). H S is the Hidden Set, the set of
events and ports hidden from the parallel composition.
Output: A behaviorally identical process PfYJ, ...].

Method: A done-list is maintained for each parallel composition || {P,-fXi],...}
that has already been computed. Upon getting a call for performing parallel
composition, the done-list is first consulted.

• If the requested parallel composition is in the done-list, return. Else enter it in
the done-list and proceed as follows.

• Combine all conditional processes into one conditional process C. Combining
two conditional processes is done as follows:

C\ [A'i] = i f qt then else F i[^ i(^ 7)]

C 2\X2] — i f q2 then T2[g2(X 2)] else F 2[fc2(^ 2)]

C][A'i] || C2[X 2] = i f (91 A q2) then T1] ^ (XT)] || T2[g2(X^)]

else i f (91 hnot(q2)) then T j f ^ ^)] || F2[/i2P Q]
else ...etc. (all four combinations)

• Now we are left with the task of computing Hide H S in || {P,-pYi],..., C). Let
C be of the form

i f 91 then C 1[5f1(^ 7)]else i f q2 then C2\t

|| { P j [X ,] , C } reduces to a conditional process with g, as the conditions.
This conditional has in it parallel compositions of the form || {P^p^i],..., C ,}.
that is (recursively) computed. Eventually we are faced with composing non
conditional processes in parallel. We take this up next.

• Consider || {P t[X7|,...}. Let each P, be

PiTO = ca}-> R'ilftCXi)]

I

I -
I c a ? - > # ? [/ ? m i

• Generate tuples
T = < caf1, cal2, - “ m >

i.e. a tuple of the a^th initial compound action offered by Plt the ar2th ini
tial compound action offered by P2, etc. This tuple T is assumed to be the
irreducible form arrived at after applying the action product rules of figure 1 2 .
According to the rule for parallel composition Parcomp all such tuples would be
come the initial choices of the resultant process. Following such choices, the re
sultant process would continue to behave like || {R f1 [ff1 •••}•
However using the hiding information H S, we can prune many of these choices.
In particular,

- those tuples T that contain unsynchronized events Ie that belong to H S
are dropped, and the corresponding arm of the synchronization tree is
pruned;

- those tuples T that contain O t that belong to H S are replaced via the
substitution T[Oidle/Oe].

• In computing

the bindings generated by taking action products of the members of T are taken
into account. □

8 . 2 A D i v i d e - a n d - c o n q u e r P A R C O M P , P A R C O M P - D C

Consider the array A shown in figure 29. It consists of a collection of modules M
connected in a regular interconnection pattern. For simplicity of explanation, assume
a nearest-neighbor connection that is regular in both the dimensions.

Consider the problem of computing P A R C O M P (A)\ i.e. the composition of all
the M s constituting A. P A R C O M P is both commutative and associative. Hence,
we can split A into two halves, say A j standing for “the top of A n and A&, standing
for “the bottom of A ” , and assert:

P A R C O M P (A) = P A R C O M P (P A R C O M P (A T), P A R C O M P (A B)).

Since A x and A s differ only in the names of their external ports, we need compute
only P A R C O M P (A t). P A R C O M P (A b) can be obtained from this, by renaming
the ports of A j to the corresponding ports of A b -

A T

A B

ii

Each cell is ‘M ’

A tl Atr

Abl Abr

via copying and renaming.

Figure 29: Divide and Conquer PARCOMP

This division process can be carried down to the leaf cells, as depicted in figure 29.

PARCOM P-DC is often more efficient than PARCOMP. Let us make an approxi
mate cost analysis. The worst-case time complexity of PARCOMP is primarily depen
dent on the number of control states that we have in a process diagram. Specifically,
it can be equal to the cross-product of the number of control states in each of the
processes. Suppose for simplicity that array A is square, and has N modules of type
A/, A/ has C control states in it, and that N be a power of 2. Then

costjxircomp(A) = 0 (C N)

because we may, in the worst-case, end-up taking a full cross-product of the process
diagrams of the N modules.

Suppose that the modules formed during the division process of PARCOM P-DC
are M , ..., A j i , A j , A. Let ncs(M) denote the number of control states in a module
M . Further let C x o p y i n g denote the cost of copying the process descriptions (see
figure 29). Then

costjxircompjIc(A) = 0(n c s(M)*+ ... +ncs(ATL)7+ncs(AT)7+n cs(A)7+Cjx>pying).

The above sum has log?(N) terms. Let D be the root mean square (RMS) value
of the number of control states in M , ..., A jli A.?, A. Let the cost of copying and
applying renamings to a process description not exceed the number of control states in
it. (This is the case for our data structures that represent processes.) The number of
queries and assertions in a compound action is assumed to be bounded by a constant.
Then,

c o s t 4 > a r c o m p J l c (A) = 0 (lo g 2(./V) x (D 2 + D 2)) = 0 (lo g 2(./V) x D 7).

Firstly we note that D does not tend to increase as the size of the modules grow.
This is a fact of practical systems because when designing a module using several
submodules, only very few of the astronomically large number of sequences of the
submodule operations are actually used. Hence the number of control states in a
module is often vastly smaller than what it could be. (Consider for example the
total number of possible microprograms for a typical datapath .vs. the number of
microroutines that are actually ever used!) Thus if D is close to C and if M is large,
then there is a significant payoff by using PARCOM P-DC.

In conclusion, the following approach is suggested for handling arhythmic arrays:

• Perform PARCOM P of two modules of the array;
• Study the inferred behavior and see if it is verifiable manually or through ex

haustive simulation.
• The behavior inferred by PARCOMP (or PARCOM P-DC) will have complex

if-then-else functions. Construct tabular functions corresponding to these.
• Use these tabular functions for efficient simulation.
• T ry to perform formal verification of the whole array by setting up an induction.

R e f e r e n c e s

[ACFM85] T .S . Anantharaman, E .M . Clarke, M .J. Foster, and B. Mishra. Compiling Path
Expressions into VLSI Circuits. In Proceedings o f the 12th Symposium on Prin
ciples o f Programming Languages, A C M , January 1985.

[Bae86] Jean-Loup Baer. Modelling Architectural Features W ith Petri Nets. In
Petri Nets: Applications and Relationships to Other Models o f Concurrency,
pages 258-275, Springer Verlag, September 1986. LNCS 255.

[BCDM85] M . Browne, Edmund Clarke, D. Dill, and B. Mishra. Automatic Verification of
Sequential Circuits using Temporal Logic. In Proceedings of the Seventh Inter
national Conference on Computer Hardware Description Languages, pages 98
113, North-Holland, 1985.

[Bro75] Frederick P. Brooks. The Mythical Man-month. Addison-Wesley, 1975.

[Bry84] Randall E. Bryant. A Switch Level Model and Simulator for M OS Digital
Systems. IEEE Transactions on Computer, C -33:160-177, February 1984.

[CGM86] Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware Specifica
tion and Verification using Higher Order Logic. In Processings o f the IFIP WG
10.2 Working Conference on “From HDL Descriptions to Guaranteed Correct
Circuit Designs”, Grenoble, August 1986, North-Holland, 1986.

[Chu87] Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic
Specifications. In International Workshop on Petri Nets and Performance Mod
els, Madison, Wisconsin, August 1987. See also M IT VLSI Memo no.87-410,
September 1987, with the same title.

[Coh88] Avra Cohn. Correctness Properties of the Viper Block Model: The Sec
ond Level. In 1988 Banff Workshop on Hardware Verification (this volume),
Springer Verlag, 1988.

[Fuj88]

[GG88]

[GGS88]

[GHM78]

[Gop86]

[GS88]

[GSS87]

[Hen84]

[HK87]

[ISD88]

[JB85]

[JBB88]

[FTG88] Richard Fujimoto, Jya-Jang Tsai, and Ganesh Gopalakrishnan. Design and
Performance of Special Purpose Hardware for Time Warp. In 15th Annual
International Symposium on Computer Architecture, Honolulu, pages 401-408,
1988.

R. M. Fujimoto. Performance Measurements of Distributed Simulation Pro
grams. 1988 Society for Computer Simulation Multiconference, feb 1988.

Stephen J. Garland and John Guttag. Inductive Methods for Reasoning About
Abstract Data Types. In 15th ACM Conference on Principles o f Programming
Languages, January 1988. San Diego, C A , January 13-15.; This article describes
the theory behind the Larch theorem prover (LP).

Stephen Garland, John Guttag, and Jorgen Staunstrup. Verification of VLSI
circuits using LP. In George Milne, editor, 1988 Glasgow Workshop (IFIP WG
10.2) on Hardware Verification, 1988.

John V . Guttag, Ellis Horowitz, and David R. Musser. Abstract Data Types
and Software Validation. Communications o f the ACM, 21(12):1048-1064, De
cember 1978.

Ganesh C. Gopalakrishnan. From Algebraic Specifications to Correct VLSI Sys
tems. PhD thesis, Dept, of Computer Science, State University of New York,
December 1986. (Also Tech. Report UU-CS-86-117 of Univ. of Utah).

Ganesh C. Gopalakrishnan and Mandayam K. Srivas. Implementing Functional
Programs Using Mutable Abstract Data Types. Information Processing Letters,
26(6):277-286, January 1988.

Ganesh C. Gopalakrishnan, Mandayam K. Srivas, and David R. Smith. From
Algebraic Specifications to Correct VLSI Circuits. In D.Borrione, editor, From
HDL Descriptions to Guaranted Correct Circuit Designs, pages 197-225, North-
Holland, 1987. (Proc of the IFIP W G 10.2 Working Conference with the same
title.).

Matthew Hennessy. Proving Systolic Systems Correct. Technical Report CSR-
162-84, Department of Computer Science, University of Edinburg, June 1984.

Richard H. Lathrop Robert J. Hall and Robert S. Kirk. Functional Abstraction
from Structure in VLSI Simulation Models. In Proc. 24st Design Automation
Conference, pages 822-828, 1987.

I.S.Dhingra. Formal Verification of a Design Style. In Graham Birtwistle and
P.A.Subrahmanyam, editors, VLSI Specification, Verification and Synthesis,
pages 293-321, Kluwer Academic Publishers, Boston, 1988. ISBN-0-89838-246
7.

Jeffrey Joyce and Graham Birtwistle. Proving a Computer Correct in Higher
Order Logic. Technical Report 8 5 /2 0 8 /2 1 , Dept, of Computer Science, Univ. of
Calgary, August 1985.

Stephen Johnson, B. Bose, and C. Boyer. A Tactical Framework for Hardware
Design. In Graham Birtwistle and P.A.Subrahmanyam, editors, VLSI Specifica
tion, Verification and Synthesis, pages 349-383, Kluwer Academic Publishers,
Boston, 1988. ISBN-0-89838-246-7.

[Jef85] D. R. Jefferson. Virtual Time. ACM Transactions on Programming Languages
and Systems, 7(3):404-425, July 1985.

[Lin85]

[Mar85]

[MH85]

[Mil80]

[Mil82]

[Mil83]

[Mil85]

[MLG]

[Mue87]

[NM]

[NS88]

[Pat85]

[PC86]

[PI08I]

[JS86]

[Seq87]

Steve Jacobs and Kent Smith. TELER User’s Guide. 1986. User’s Manual
Available from the Univ. of Utah, Dept, of Computer Science VLSI Group.

Gary Lindstrom. Functional Programming and the Logical Variable. In Pro
ceedings o f the 12th ACM Symposium on Principles o f Programming Languages,
pages 266-280, January 1985.

Alain J. Martin. The Probe: An Addition to Communication Primitives. In
formation Processing Letters, 20(3):125-130, April 1985. An Erratum related
to this article appeared in the August 1985 issue of the Info. Proc. Letters.

M.Lam and H.T.Kung. A Transformational Approach to Systolic System De
sign. IEEE Computer, 18(2), 1985.

Robin Milner. A Calculus o f Communicating Systems. Springer-Verlag, 1980.
LNCS 92.

Robin Milner. Calculii for Synchrony and Asynchrony. Technical Report CSR-
104-82, Univ. of Edinburg, 1982. Internal Report.

George J. Milne. CIRCAL: A calculus for circuit description. Integration,
(1):121—160, 1983.

George J. Milne. Simulation and Verification: Related Techniques for Hardware
Analysis. In Proceedings of the Seventh International Conference on Computer
Hardware Description Languages, pages 404^417, North-Holland, 1985.

John Merk, John Lalonde, and Ganesh Gopalakrishnan. A D TP User’s Man
ual. Requirements Specification and User Manual for the Abstract Data Type
definition Package (A D T P), Software Engineering Lab., Spring 1988.

Eric G. Muehle. FROBS: A Merger o f Two Knowledge Representation
Paradigms. Master’s thesis, Dept, of Computer Science, University of Utah,
Salt Lake City, U T 84112, December 1987. FROBS Stands for Frames-)-Objects.

Mani Narayana and Surya Mantha. The Design of a TLB for the Roll Back
Chip. VLSI Class Project Report, Winter 1988.

P. Narendran and J. Stillman. Hardware Verification in the Interactive VHDL
Workstation. In Graham Birtwistle and P.A.Subrahmanyam, editors, VLSI
Specification, Verification and Synthesis, pages 235-255, Kluwer Academic Pub
lishers, Boston, 1988. ISBN-0-89838-246-7.

Dorab Patel. nuFP: An Environment for the Multi-level Specification, Analysis
and Synthesis of Hardware Algorithms. In Proceedings o f the Functional Pro
gramming and Computer Architecture Conference, Springer-Verlag, LNCS 2 0 1 ,
September 1985. Nancy, France.

David Lorge Parnas and Paul C. Clements. A Rational Design Process:
How and W hy to Fake It. IEEE Transactions on Software Engineering, SE-
12(2):251-257, February 1986.

Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report D AIM I FN-19, Aarhus University, Denmark, September 1981.

Carlo H. Sequin. VLSI Design Strategies. In Wolfgang Fichtner and Martin
Morf, editors, VLSI CAD Tools and Applications, pages 1-16, Kluwer Academic
Press, 1987.

[She84] Mary Sheeran. muFP, a Language for VLSI Design. In Proceedings of the ACM
Symposium on Lisp and Functional Programming, pages 104-112, 1984.

[She85] Mary Sheeran. Design of Regular Hardware Structures Using Higher Order
Functions. In Proceedings of the Functional Programming and Computer Ar
chitecture Conference, Springer-Verlag, LNCS 201, September 1985. Nancy,
France.

[Sne85] Jan Snepscheut. Trace Theory and VLSI Design. Springer Verlag, 1985. LNCS
200.

[SR85] Pashupathy A . Subramaniam and Sanjay Rajopadhye. Formal Semantics for a
Symbolic IC Design Technique: Examples and Applications. Integration: The
VLSI Journal, (3):13-32, March 1985.

[Sto77] Joseph E. Stoy. Denotational Semantics. The M IT Press, 1977.

[Sub83] Pashupathy A . Subramaniam. Overview of a Conceptual and Formal Basis
for An Automatable High Level Design Paradigm for Integrated Systems. In
Proceedings o f the International Conference for Computer Design and VLSI,
Westchester, pages 647-651, 1983.

[\VFC87] W.F.Clocksin. Logic Programming and Digital Circuit Analysis. Journal o f
Logic Programming, (4):59-82 , 1987.

