
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1984

An Integrated Test Plan for an Advanced Very Large Scale An Integrated Test Plan for an Advanced Very Large Scale

Integrated Circuit Design Group Integrated Circuit Design Group

William S. Didden
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Didden, William S., "An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design
Group" (1984). Retrospective Theses and Dissertations. 4703.
https://stars.library.ucf.edu/rtd/4703

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Frtd%2F4703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4703?utm_source=stars.library.ucf.edu%2Frtd%2F4703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

AN INTEGRATED TEST PLAN FOR AN ADVANCED VERY
LARGE SCALE INTEGRATED CIRCUIT DESIGN GROUP

BY

WILLIAM S. DIDDEN
B.S., Lehigh University, 1973

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in the Graduate Studies Program
of the College of Engineering
University of Central Florida

Orlando, Florida

Fall Term
1984

ABSTRACT

VLSI testing poses a number of problems which

includes the selection of test techniques, the

determination of acceptable fault coverage levels, and

test vector generation. Available device test techniques

are examined and compared. Design rules should be

employed to assure the design is testable. Logic

simulation systems and available test utilities are

compared. The various methods of test vector generation

are also examined.

The selection criteria for test techniques are

identified. A table of proposed design rules is included.

Testability measurement utilities can be used to

statistically predict the test generatio~ effort. Field

reject rates and fault coverage are statistically related.

Acceptable field reject rates can be achieved with less

than full test vector fault coverage. The methods and

techniques which are examined form the basis of the

recommended integrated test plan. The methods of

automatic test vector generation are relatively primitive

but are improving.

ii

ACKNOWLEDGEMENTS

The infor ma t ion provided in this report is

the work and t heories of a great many

specialists who have contributed much toward

based on

technical

furthering

the state of very l a rg e scal e integrated circuit testing.

Their contributions are gratefu l ly acknowledged.

The author is especiall y indeb ted to Torn Hoffman and

Dan Scheflin who guided and e n co uraged him, Brian Petrasko

for his guidance and s uggestions in organizing the

information, Willie Ma ck f or her assistance in word

processing, and Mary Jo Didden fo r her proofreading and

patience.

iii

PREFACE

Testing is becoming a major portion of the AVLSI

design effort. As many smaller design groups begin to

design VLSI circuits, they encounter testing problems,

often from a lack of information or attempting to follow

older methods established for board level designs.

The old methods of testing focused on board level

designs which employed largely combinatorial, small and

medium scale integrated circuits installed on assemblies

with numerous, easily probed test points. The test

strategies and their development were frequently relegated

to a test engineer. The simplicity of the board function

often permitted the test engineer to work independently of

the design engineer. Test development often did not begin

until after the design was completed and possibly even

assembled. However, the resulting test coverage was often

fairly high for a small number of test vectors. As a

result, this method of testing was considered adequate.

The development of Very Large Scale Integrated (VLSI)

circuits created a number of testing problems. The

circuits are often sequential, difficult to probe, and

iv

have an extremely limited number of input/output pins

which can serve as test points. Frequently, the available

test points must be shared with other functions during

normal operation. The device complexity requires the

designer and test engineer to exchange considerable

amounts of information. Adequate test coverage typically

requires several thousand test vectors.

These testing problems have been solved by a number

of new methods. More I/O economical test design

strategies are applied during the early design phases.

The information transfer between the design and test

engineers is avoided by requiring the designer to assume

all the test development responsibilities. Test vectors

must be developed in the logic simulation phase to verify

correct circuit operation. As a result, testing is

becoming a major design effort which requires integration

at most design levels.

This effort is an attempt to suggest an integrated

test development plan. The test development plan includes

a number of steps which are not currently performed.

Their inclusion will reduce the surprise element

previously associated with VLSI circuit test.

v

Table of Contents

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

Chapter

Testing Requirements of the AVLSI
Design Group .

Approach .

I. VLSI TEST METHODS AND TECHNIQUES

Approach .
CMOS LSI Faults
Fault Models
Test Methods
Test Techniques

Built-in, Off-line Test Techniques
Self-Oscillation .
Self-Comparison
Partition
Scan •

•

Built-In Block Observer/Highly
Integrated Logic Device Observer •

Advantages/Disadvantages of Built-In,
Off-line Test Techniques

Built-in, On-line Test Techniques •
Testability Design Goals

Test Model
Probability of Accepting a Faulty Device
Experimental Determination of the Average

Number of Faults •
Field Reject Rate and Desired Fault

Coverage •

II. DESIGN GUIDELINES

Approach •
Design Rules

vi

•

ix

x

1

1
2

4

4
4
6
7
8

1 0
1 0
1 1
12
13

1 4

1 5
1 5
19
20
21

23

26

29

29
30

Block Hardware Design Phase
General Test Technique Selection
Concurrent Testing

Register Transfer/Computer Hardware
Description Language .

Detailed Hardware Design Phase
Concurrent Testing •

Breadboard .
Logic Simulation Systems

Testability Measurement Utilities
Interpretation of Testability Merit

Figures
Logic Fault Simulation Utilities .
Fault Reduction Utilities
Toggle Test Utilities
Timing Analysis Verifier

Conclusions •
Available Logic Simulation Systems
Verification of Testability Design Goals

III. TEST VECTOR GENERATION .

Approach .
Methods of Obtaining Test Vectors

Manual Test Vector Generation
Manual Mode
Purchase
Conversion .

Automatic Test Vector Generation
Path Sensitization
D Algorithm
Derivatives of Functions
Algebraic Expression
Signature Analysis
Learn Mode •
Heuristic Algorithms
Random Patterns

Sequential Circuits .

•

Available Test Generation Utilities •
Suggested Applications .
Test Data Augmentation and Conversion

IV. CONCLUSIONS

vii

37
38
40

41
42
45
45
46
46

49
53
55
55
56
57
58
61

63

63
63
65
65
65
67
67
67
68
69
73
75
76
78
79
79
80
82
83

84

Appendices
A. DEFINITIONS 88

B. EXAMPLES OF OFF-LINE, BUILT-IN TEST TECHNIQUES . 93

C. EXAMPLE OF THE HILDO TEST TECHNIQUE • 124

LIST OF REFERENCES • 132

viii

LIST OF TABLES

1 . Principle Fa ilure Me chanisms

2 . Relative Merits o f Bu ilt-in, Off-line
Test Techniques

3 . Design Rules

4 . Applications of Logic S i mul a t ion

5 . Logic Simulation System Capabilities .

6. Logic Fault Simul a t ion Utilities

7. Test Sequence a nd Fau l t s Detected for
the Self - Oscillat i on Test Circuit

8 . HILDO State Transitions

ix

5

1 6

31

43

59

60

• 106

• 128

LIST OF FIGURES

1. A Taxonomical Representation of Test Techniques 9

2. Failure Probability as a Function of Fault
Coverage and the Average Number of Failures . 25

3. Fault Coverage Required for a Field Reject
Rate of R=0.01

4. Fault Coverage Required for a Field Reject
Rate of R=0.001

5. Logic Simulation System Process

6. Manual Method of Test Vector Generation .
7. Elements of the D Algorithm

8. Example Circuit .

9. Finite State Machine

10. Block Diagram of Adder Circuit .

11. Gate Level Representation of Adder

12. Fault Analysis of Adder Circuit

13. Self-Oscillation Test Circuit

14. Oscillation Path Through Adder Circuit

15. Oscillation Sequence for the
Self-Oscillation Test Circuit.

16. Self-Comparison Test Circuit

17. Operation of a Totally Self-Checking
Checker Circuit

18. A Totally Self-Checking Comparator

x

27

28

47

68

70

72

94

95

96

98

• 103

• 104

• 105

• 108

• 11 0

• 1 1 1

19 Fault Analysis for a Totally
Self-Checking Comparator

20. Partition Test Circuit

21. Multiplexer Circuit for the Partition
Test Circuit

22. Fault Analysis for the Multiplexer

23. Test Sequence for 100 Percent Fault
Coverage for the Partition Test Circuit

24. Scan Path Test Circuit

25. BILBO Test Circuit •

26. HILDO Test Circuit •

xi

• 11 3

• 11 5

• 11 7

• 11 8

• 11 9

• 120

• 123

• 125

INTRODUCTION

Testing Requirements of the AVLSI Design Group

An integrated test plan is required for AVLSI

designs. The test plan must provide both design guidance

and recommended testing to the VLSI designer

design, manufacturing and assembly phases.

and recommended testing required during each

discussed below.

during all

The guidance

phase are

The integrated test plan must aid the designer's

selection of a test technique and guide the designer to

assure the IC design is easily testable.

test plan should recommend methods

In addition, the

to assess the

testability of the final design. The achieved testability

levels should be compared to previously established design

goals.

The test plan must include a method to verify the new

IC design. The test results will be used to correct the

manufacturing process.

test must be provided

In addition, a reduced, go/no go

for device acceptance tests and

subsequent go/no go device tests administered prior to

final assembly.

2

The integrated test plan must provide information to

aid other testing groups. The information, provided

according to the test plan, must aid in the development of

board level tests on existing test systems. In addition,

the test plan should provide information to aid in

developing system tests.

Approach

The test plan requirements can be achieved by:

1. providing a handbook of test methods and

techniques,

2. establishing economical testability design goals,

3. providing design guidelines during the design

phase to assure the device is testable,

4. requiring the designer to verify by simulation

that testability design goals have been achieved,

and

5. discussing the currently available methods of

test vector generation.

The first two items are addressed in Chapter I.

Appropriate design examples are included in Appendices B

and C. The design guidelines and verification by

3

simulation are examined in Chapter II. The simulation

requirements are intended for and are applicable to TEGAS

design simulations. The currently available methods of

test vector generation are explored in Chapter III.

CHAPTER I

VLSI TEST METHODS AND TECHNIQUES

Approach

The VLSI test methods and techniques can best be

examined by:

1. determining the types of faults common to CMOS

LSI,

2. postulating appropriate fault models,

3. identifying effective test methods,

4. examining known test techniques, and

5. developing testability design goals.

CMOS LSI Faults

Frequently, initial LSI circuit faults are the result

of an imperfect manufacturing process. Prototype devices

may simultaneously contain a number and variety of

physical defects. The failure mechanisms which afflict

MOS LSI logic circuits are varied. Galiay (1980)

5

identified the principle failure mechanisms, shown in

Table 1, of an LSI microprocessor. The failure sites were

randomly distributed within the device. The insignificant

failures were due to very large imperfections (e.g., a

scratch across the entire chip's surface) and could be

detected by almost any method.

TABLE 1

PRINCIPLE FAILURE MECHANISMS
(DERIVED FROM GALIAY 1980)

Failure Mechanism

Short Between Metallizations

Open Metallizations

Short Between diffusions

Open Diffusion

Short Between Metallization and Substrate

Inobservable

Insignificant

Observed
Frequency

39%

14%

14%

6%

2%

10%

15%

The faults associated with each failure mechanism can

be reduced to two primary types. See Reddy (1983), Beh

(1982), and Galiay (1980). The first type consists of a

circuit open which, if tested statically, produces a

constant voltage at the circuit output. Typically, the

6

open run permits leakage currents to drive the associated

floating transistor gates to the power rail voltage

potentials. The second fault type consists of shorts

which can introduce an asynchronous

modify the realized function, or

sequential loop,

introduce analog

behavior. Typically, the short

metallizations. Frequently,

occurs between adjacent

the short causes the

resulting circuit to behave as a wired-OR.

Fault Models

VLSI fault effects can be divided into two areas,

parametric and logical. A logical fault causes the logic

function of a circuit to be altered to some other. One

prevalent type of logical fault causes the circuit signal

to be fixed at a constant value. If the signal is fixed

at logical one, the circuit is said to be stuck-at-one.

Conversely, if the signal is fixed at logical zero, the

circuit is stuck-at-zero. Another common logical fault

causes two signals to behave as a wired-OR function.

Parametric fault effects typically alter the magnitude of

a circuit parameter causing a change in circuit speed,

current, or voltage. A frequently encountered parametric

fault is excessive gate delay.

7

Test Methods

Testing methods can be divided into three types. DC

testing, also known as

consists of applying test

static or functional testing,

input vectors to the device

under test and analyzing the corresponding steady state

outputs to determine correct functional behavior. AC

testing, also known as dynamic or parametric testing,

verifies the time-related behavior of the circuit elements

and/or the magnitudes of voltage and current levels. See

Barzilai (1983). Clock rate testing is similar to DC

testing but occurs at clock frequencies near the device

maximum. Clock rate testing is performed to reduce device

test time and to prevent data loss in time dependent

circuits such as MOS memories.

The DC and AC test methods should both be employed.

The combination of the two techniques will detect

stuck-at-faults and excessive gate delay conditions. The

AC test vectors should be alternated to induce gate input

transitions at clock rates. The alternation of vectors

increases the probability of detecting excessive gate

delays. See Barzilai (1983).

8

Test Techniques

A taxonomical representation of all test techniques

is shown in Figure 1. The VLSI test techniques of

interest to the design group require specialized hardware

for implementation. These techniques can be divided into

built-in, on-line and built-in, off-line approaches.

These approaches are discussed in the works of Muehldorf

(1981), Williams (1982), and Buehler (1982). The relative

advantages

summarized.

and disadvantages of

The five principal off-line

applicable to VLSI devices, are :

1. self-oscillation,

2. self-comparison,

3. partition,

4. scan, and

each method are

test techniques,

5. built-in logic block observer/highly integrated

logic device observer.

Examples of the built-in, off-line techniques are included

in Buehler (1982). See Appendix B. The example of a new

off-line test technique, HILDO, is included in Appendix C.

DIGITAL
TEST TECHNIQUES

·---------------------------· . .
BUILT-IN TEST

:-----------------:

. .
EXTERNAL

TEST

ON-LINE
(CONCURRENT)

OFF-LINE
(NON-CONCURRENT)

:-------------:
INFORMATION

REDUNDANT
(CODING)

HARDWARE
REDUNDANT

(REPLICATION)

:--------------:
RESIDENT
SOFTWARE

RESIDENT
HARDWARE

·------------· . .
SOFTWARE AUTOMATIC

DIAGNOSTICS TEST
EQUIPMENT

Figure 1. Digital Test Techniques (derived
from Bueheler 1982)

9

VLSI

The built-in on-line test techniques,

devices, will be briefly discussed

1 0

applicable to

due to their

limited applications within custom VLSI devices. The

principal techniques are :

1. duplicate hardware with comparators and

2. totally self-checking circuits.

Built-in, Off-Line Test Techniques

Self-Oscillation. The self-oscillation test technique

consists of establishing feedback paths through the device

under test. Typically, the elements of the feedback path

will oscillate at a frequency determined by the gate

delays and stray circuit capacitance. If the elements in

the path oscillate, then the logic in the feedback path is

presumed to be free of stuck-at-level faults.

The self-oscillation method requires a sensitized

path to be established in the device under test. The

technique of Susskind (1973) may be adapted for this

procedure. Oscillation testing, although largely

unexplored in theoretical work, offers a relatively simple

method of testing high-speed logic such as gallium

arsenide ICs (Long 1980).

1 1

In the worst case, an N input combinatorial logic

block with M outputs will require an M input multiplexer

and an N output decoder. In addition, an exclusive-OR

function may be required to establish the proper feedback

polarity. At least six I/O pins must be provided for

external control of the multiplexer, decoder and

exclusive-OR functions.

Self-Comparison.

the device under

identical modules

The self-comparison technique partitions

test into a number of functionally

during test. The modules may be

constructed by circuit reconfiguration or the designer may.

identify functionally similar modules within the

undisturbed circuit. Optionally, the modules may be

considered functionally similar for a limited set of test

vectors.

Test vectors are simultaneously applied to the inputs

of the functionally identical modules. The outputs of the

modules are compared by a self-checking checker circuit.

See Anderson (1973) and Breuer (1976). If the checker

results are identical, then the circuit is considered

functional.

Each identical output requires a dedicated, totally

self-checking checker. The additional checker hardware is

approximately six gates and two I/O pins per pair of

12

signal inputs. The ad hoc reconfiguration logic, if any,

must also be added to the device.

Partition. The partitioning technique divides the device

under test into a number of functionally independent

modules during

constructed by

test. The

reconfiguring

independent

the device

modules are

under test to

eliminate connections between modules. The connections

are terminated in new outputs and inputs. This method

reduces the number of test vectors which must be applied

and also permits the test vectors to be applied

simultaneously. For example, if a circuit with seven

inputs is to be exhaustively tested, then at most

7
2 = 128 unique test vectors (1)

must be applied. If the circuit can be partitioned into a

three input and a four input set of modules, then the

number of unique test vectors is reduced to

4
2 = 16 test vectors

or less. See McClusky (1980).

(2)

The partition technique may require a number of

additional I/O pins. The number of I/O pins is equal to

twice the number of connections which must be severed. Up

to six gates of additional hardware must be included for

each severed connection.

1 3

Scan. The scan test technique has a number of variations

(Williams 1982). The variations include Level Sensitive

Scan Design (LSSD), Scan/Set Logic, Scan Path, and Random

Access Scan. The LSSD and Scan Path methods convert all

the memory storage elements of a device to a single shift

register during the test cycle. Test vectors are

sequentially applied by shifting the vector into the

appropriate memory elements, returning the device to the

normal operation configuration, operating the device for a

number of cycles, and then returning to the test mode and

retrieving the new memory element data. The new memory

element data is compared to a previously determined,

correct response. See Eichelberger (1978).

The Scan Path and LSSD techniques are identical

except for the hardware implementation of the memory

storage elements. The Random Access Scan technique

employs a direct addressing scheme which permits any latch

element to be randomly selected then sampled or set. The

Scan/Set technique does not use the existing registers but

adds additional test registers. The additional registers

are used as supplemental test points.

The additional I/O requirements are four pins for the

LSSD, Scan Path, and Scan/Set methods. The I/0

requirements can be reduced by combining test and normal

1 4

functions. The additional test hardware requirements are

estimated to be four to twenty percent of the device

hardware (Williams 1982). The I/O requirements of the

Random Access Scan technique can be reduced to as few as

six pins if two onboard scan address decoders are

included.

Built-In Block Observer/Highly Integrated Logic Device

Observer. The Built-in Logic Block Observer, BILBO, is an

on-chip signature analyzer. The BILBO develops a

pseudo-random test vector, applies it to the device under

test, and compresses the response into a characteristic

signa t ure. The random test vectors can be generated by a

linear feedback shift register (LFSR). Alternately,

precalculated vectors can be stored in a dedicated, test

ROM. Another LFSR is used to compress and store the

circuit response. The LFSRs are initialized with a fixed

seed prior to running the test. The compressed response

is then compared to the expected response. See Bhavsar

(1981), Konernann (1980), and Frohwerk (1977).

The Highly Integrated Logic Device Observer, HILDO,

is similar in operation to the BILBO. However, the HILDO

uses a single LFSR to generate the test vectors and store

the compressed response. The device's circuitry is used

as the feedback path within the shift register. The HILDO

1 5

method uses less hardware than the BILBO but the test

vector patterns are

additional simulation

testing (Beucler 1984).

less predictable and require

effort to confirm the adequacy of

The BILBO technique requires four additional I/O pins

per device, an input data latch, and an output data latch.

Existing latches may be modified by adding approximately

six gates per latch element. The HILDO hardware

requirements are similar except that only a single data

latch is required.

Advantages/Disadvantages of Built-in, Off-line Test

Techniques. The relative merits of each off-line test

technique were compared in the test implementations of

Appendices B and C. Each test technique was implemented

on a device containing a half adder and a full adder

circuit. The merits of each technique are summarized in

Table 2.

Built-in, On-line Test Techniques

The built-in, on-line test techniques can be further

divided into information redundant and hardware redundant

approaches. Both approaches are capable of detecting and

correcting errors due to

addition, most errors are

intermittent failures. In

detected almost immediately

T
A

B
L

E

2

R
E

L
A

T
IV

E

M
E

R
IT

S

O
F

B
U

IL
T

-I
N

,
O

F
F

-L
IN

E

T
E

S
T

T

E
C

H
N

IQ
U

E
S

D
E

R
IV

E
D

FR

O
M

B

U
E

H
E

L
E

R

(1
9

8
2

)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

A
d

d
e
r

an
d

S

e
lf

S

e
lf

B

IL
B

O
/

F
a
c
to

r
R

e
g

is
te

rs

O
s
c
il

la
ti

o
n

C

o
m

p
a
ri

so
n

P

a
rt

it
io

n

S
c
a
n

P

a
th

H

IL
D

O

-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

T
e
s
t

G
e
n

e
ra

to
r

E
x

te
rn

a
l

L
o

c
a
l

E
x

te
rn

a
l

E
x

te
rn

a
l

E
x

te
rn

a
l

L
o

c
a
l

T
e
s
t

A
n

a
ly

z
e
r

E
x

te
rn

a
l

E
x

te
rn

a
l

L
o

c
a
l

E
x

te
rn

a
l

E
x

te
rn

a
l

L
o

c
a
l

G
a
te

s*

6
3

2

12

18

3
6

49

T
ra

n
s
is

to
rs

1

8
8

3

48

5
2

1

4
9

1

5
3

F
a
u

lt

C
o

v
e
ra

g
e
(%

)
1

0
0

8

0
*

*
*

1

0
0

1

0
0

1

0
0

1

0
0

*
*

T
o

ta
l

N
u

m
b

er

o
f

fa
u

lt
s

5
2

5

4

8
0

7

6

48

48

T
o

ta
l

N
u

m
b

er

o
f

T
e
s
ts

5

4
7

5
5

1
5

O
'\

T
A

B
L

E

2-
C

O
N

T
IN

U
E

D

N
o

te
s

*
F

o
r

th
e

te

s
t

te
c
h

n
iq

u
e
s,

th

e

n
u

m
b

er
s

in
d

ic
a
te

th

e

n
u

m
b

er

o
f

g
a
te

s
an

d

tr

a
n

s
is

to
rs

n

ee
d

ed

to

im
p

le
m

en
t

th
e

te

s
t

c
ir

c
u

it
ry

.

**
 T

e
st

in
g

is

e
x

c
e
s
s
iv

e
,

15

te
s
ts

a
re

e
x

e
c
u

te
d

w

he
n

o
n

ly

fi
v

e

a
re

n

ee
d

ed

fo
r

10
0

p
e
rc

e
n

t
fa

u
lt

c
o

v
e
ra

g
e

o
f

th
e

a
d

d
e
r.

**
*

A
s

e
x

p
la

in
e
d

in

A

p
p

en
d

ix

B
,

o
n

ly

80

p
e
rc

e
n

t
fa

u
lt

c
o

v
e
ra

g
e

is

p
o

s
s
ib

le

in

th
e

o

s
c
il

la
ti

o
n

m

o
d

e,

b
u

t
10

0
p

e
rc

e
n

t
fa

u
lt

c
o

v
e
ra

g
e

is

p

o
s
s
ib

le

if

th

e

ad
d

m

od
e

is

a
ls

o

u
se

d
.

--
A

....
.J

1 8

after occurrence and before substantial data corruption

has occurred.

The information redundant test techniques typically

employ parity checks and Hamming codes to detect and

correct errors. The information redundant techniques

employ a fixed number of code bits which must be

maintained with the data. Frequently, specialized

hardware is employed to generate and check the code bits.

See Breuer (1976).

The hardware redundant test techniques consist of

duplicate hardware with comparators and totally

self-checking circuits. If the hardware is doubled and a

comparator verifies that the outputs agree, then the

s y stem can only detect a failure. Additional hardware is

required to correct a faulted output. A triplicate voting

system contains tripled hardware and a comparator which

selects the majority output and ignores the dissenting

output. Breuer (1976) has shown that triplicate voting

systems have a limited operating time in which the

reliability is greater than that of a simplex system.

The comparator used in the redundant hardware

techniques is vulnerable to failure. Thus, the question

of who checks the checker must be addressed. Anderson

(1973) proved that a class of totally self-checking

19

circuits exist. The circuits are characterized by

multiple outputs. Valid outputs are represented by M high

level outputs out of N outputs. The comparator is

referred to as an M out of N totally self-checking

circuit.

Testability Design Goals

The adequacy of a test program should be compared to

a test coverage design goal. Often, the ideal test goal

is considered to be 100% test coverage. The ideal goal is

difficult to achieve in practice. Work by Agrawal (1982b)

suggests that 100% test coverage is usually excessive.

The design goal should be to minimize total cost.

The minimum cost occurs when the cost to develop

additional test vectors approximates the total repair cost

for the defective units which are not detected during the

test. The principal test development cost is dominated by

the test vector's engineering development time. If the

defect is detected before final test, then

rV
Cdrtv = Trc = Npu R(F) Cr (3)

or

R(F) "'\,/ Cdrt ----Npu Cr (4)

where

20

Cdrtv is the cost, in dollars, to develop the

remaining test vectors,

Trc is the total repair cost in dollars,

Npu is number of production units,

Cr is the repair cost per unit in dollars, and

R(F) is the field reject rate.

The desired test coverage is dependent on the desired

field reject rate and the process yield. The desired test

coverage can now be calculated by the method of Agrawal

(1982b). This method is briefly outlined below.

Test Model

The device may contain a number of physical defects.

The number of physical defects is assumed to be

proportional to the area of the device. Further, the

average size of the physical defects is large compared to

logic structures on the device. Thus, each defect will

induce a number of logical faults and the number of faults

per device will have a Poisson distribution.

chip yield can be approximated by

- (1 /L)
Y = (1 + L*Do*A)

where
2

Do L is the variance of Do,

Thus, the

(5)

21

Do is the physical defect density

in defects per square mil,

A is the device area in square mils, and

y is the device yield in percent.

Probability of Accepting a Faulty Device

A device is assumed to possess n individual stuck-at

or other faults out of a maximum possible N faults. The

fault probability is

n - 1 -(No - 1)
P (n) = (1 -Y) (No - 1) e

(n - 1) ! (6)

for n = 1, 2, 3, and

P(O)= Y (7)

where

P(n) is the probability of n logical faults and

No is the average number of faults on a

defective device.

The average number of faults, No, can be estimated from a

previous process run or can be experimentally determined

during the initial process run. The experimental

derivation procedure is given below.

22

The hypergeometric probability of accepting the

device during testing is

Qo(n) =
(8)

where

Qo(n) is the probability of accepting a device with

n logical faults.

For large values of N, equation (8) can be approximated by

the binomial probability

m n n
Qo(n) = (1 - n/N) rv (1 - m/N) = (1 - F) (9)

where

F=m/N is the ratio of faults tested, m, to the

maximum possible number of faults, N.

The probability of testing and accepting a defective

device is

N
Ybg (F) = L Qo (n) P (n)

n=1

where

-(No-1)F
~ (1 - F) (1 - Y) e

Ybg(F) is the probability of a accepting a faulty

device tested to fault coverage F.

(1 0)

(1 1)

23

Experimental Determination of the Average Number of Faults

The average number of faults can be experimentally

determined from a small number of devices and a limited

set of test vectors. Typically, 100 to 200 devices and 20

to 30 test vectors are required for VLSI devices. The

fault coverage of each test vector need not be great but

the fault coverage must be known.

The devices are set up for test and each test vector

is sequentially applied. The test is halted at the first

test wh ich the device fails or when the vectors are

exhausted. The vector at which the test halts is

recorded. From this information, a graph of failure

probability as a function of fault coverage is

constructed.

The average number of faults can be determined from

the graph by two methods. The first method is by

graphical comparison with theoretically derived curves.

The theoretical probability of device failure is

P(F) = 1 - Y - Ybg(F) (1 2)

where

P(F) is the probability of failure of a device when

tested to fault coverage F.

Substituting equation (11) yields

-(No - 1)F
P(F) = (1 - Y) [1 - (1 - F)e]. (1 3)

24

A failure probability curve can be generated by evaluating

equation (13) over the range of F. A family of curves is

constructed by evaluating equation (13) for several

different values of No. The family of curves is

superimposed on the experimentally derived graphs and the

best curve fit is selected. The corresponding value of No

is selected as the average number of faults on a defective

device. See Figure 2.

The second method of extracting the average number of

faults is to estimate the derivative of the failure rate.

The derivative can be obtained by differentiating equation

(13) with respect to F. Thus,

P'(F) = dP(F)
dF (1 4)

-(No - 1)F
= (1 - Y) [1 + (1 - F) (No -1)] e (1 5)

and

P' (0) = (1 - Y) No • (1 6)

P'(O) is the slope of the probability curve near the

origin and can easily be approximated. Thus, No can be

determined from the derivative. If the yield is unknown,

equation (16) can be approximated as

I\/
No = P' (0) • (1 7)

0

-.:-i

·-------·--------

0) (I) r'--- - l!.-::• •.!.-' -w:t- ~) (•J -.r:-i r:::•
•

0 (:::- _--.,
I (=) ·===-·--- -- -- (==• (--I c) c) C) -

LL
.... -
C1 ..

25

·w::-1

u)

0)

r---,

... _

(£• 111
• •::n

c) m
~:.__

I.!.-::• •11
-~ :

- -(- I --I -· -I_ I --
·1-

a +D
(=) -

i
r ..) m

LL
(_)

.:=:-

Figure 2. Failure Probability as a Function of Fault
Coverage and the Average Number of Failures

26

Field Reject Rate and Desired Fault Coverage

The field reject rate is the ratio of defective

devices which are accepted to the total number of devices

which pass the acceptance test. Thus,

R(F) = Ybg(F)
Y + Ybg(F) (1 8)

where

R(F) is the field reject ratio.

Substitution of equation (11) yields

-(No -1) F
R(F) = (1 - F) (1 - Y) e

-(No -1) F , (1 9)
Y + (1 - F) (1 - Y) e

the field reject rate. The desired fault coverage can be

obtained by rewriting equation (19) as

-(No -1) F
y = (1 - F) (1 - R) e

-(No -1) F (2 0)
R + (1 - F) (1 - R) e

Equation (2 0) is plotted for two different field reject

rates and two values of No. The results are shown in

Figure 3 and Figure 4.

27

(_)

-~-- --------- - --~=-=-~==-:====;~3~~:;~=-~ _..... _,_..,....,..., . -- -- -- -/ -- -- -- -- ~---1--
.J'..-- _,.-- ____ __, ------ ---- -- .--- _.--- •• - ".J':..--:-·:::w;;

11 .• ,,.,,,-,.,,- - __ __ .- ---- -· --- .I' .- .- -· ,,,._. ,_. .,,,---- _ .. --- --- .---- .-.r ... • _.~ •••• • •• ·g
- / ./ ... - -- . . -· .· • .

I I ..--• / , .-- -·- -· • _. •
1

• " 1~· -7 _./ ... --- .-· ,,.-- ~ •· .· .. · · "·'
..£__ I •• ••• .-··} ,,· •. • .• ·"I.· •. ' I J l / •. -·· .. -·· ,/· • .1 / ... 1

1
,• •• 1

1
1' I 1

I I / - .r·-·· / ,.. ,.l l / / / •' •',•'1',•,,,,.
I I 1'· •·· .. ·' ,• .~ •• •• Jl .i I ~

I I •• ,, / .• •• •• j
1

c I I I I I I

i' ,l // //. // ,/
11

/

1

•• ···'.////:1~~1;,·:,:h·,~
I

r ' • • • ~ I . ~ • I I r Lt

I
I / ~' I •• / ,/· ./ / ,///1 / l l/11,1/11

1

, ,_, / J ,· , , l 1 1 ' • t' 1 1 r
I ll • :z I ' I .• { I J f ,. I I ~ I I

I I •• I I f I I I I (
,1 I ~ ,• I •' I I I .• I I 1 I

111 / ,/ •• / /.· ,./ ,/ / / l ///,Iii' /1~~
I I / .· (I •' ,• / I I I •' ,1 I 11

1
1 I / / / / l .. / I / ,1 ,1 ,Ii 111 (

I I
11 ~ 1

1
1
1

1
1 I ~ 1

1 (f I 11 I 1 I i' l ,.. ,.. l l ,' l .. . , , , , n '
I r' ~ l l / 1

1 11
•' 1

1
1
1

,• I I 111 1

11
11

/ / 11 •1 11 l ,' 1
1

/ 1
1 1 ~ JI f 11

1

I I J I • I I I I I I • 1 I '1 I 1 / • / / l / ' / 1 / •' r / ,ii,
I I I I I ,· • I l I I / ' I

co
(_)

r·----

(..!:=•

(_)

(_) _::-

~ .. _

- u
111

- __ :-

i / / / / / I .. /l ~/ / ~, /•/ ~
I / / .. / .. / ,/ /. ,,.. l .i'.·!0/l~ln'

·' l •. .I .f / / / // • / • ./"/; •/./
.• • -· .- / / _,;-• _/ f / • ,.,..- ./• _____ _.... ___ _.,.- _,;-- ____ __ ~-~<--<:..-~---:--·:.-:~/

. - - · _ _r- __ __,...-_ __, ---- - -- -- - ...--

0

(_)

(_)

uJ
(._)

.r-... . ___ _. 0

Figure 3. Fault Coverage Required for a Field Reject
Rate of R=0.01

•::)

~

U) co r---.. (£• 11--:1

·==) (::;. (- -· a:::• -I ·--· -

F ¥3J lt.

~ f-t) (•.J
•

a:::a (y (==•

" 1u •Ja.1 t:!I' ·3:j er F

28

IJ)

co

r··---

--•._..•

1£)

• Li

- :::-

(•.J

.,..-.

·---·

I-(:~
~ c)

Figure 4. Fault Coverage Required for a Field Reject
Rate of R=0.001

Chapter II

DESIGN GUIDELINES

Approach

The design of a testable VLSI device can best be

executed by:

1. observing a set of design guidelines throughout

the design phase,

2. measuring the relative testability of a design

simulation, and

3. estimating the test generation effort which must

be expended to meet the fault coverage goals of

Chapter I.

If the relative testability of the design is too low or

the test generation effort is excessive then the following

remedial actions should be taken:

1. locate regions of logic which are difficult to

test,

30

2. apply remedial design rules to improve device

testability, and

3. repeat the

testability

cycle until the desired relative

figure or the test generation effort

goal is achieved.

The relative testability figure of a device is frequently

determined by a testability measurement utility. The

measurement program is an optional utility in several VLSI

logic simulation software packages.

Design Rules

Quality is designed, not tested into products. Thus,

the design of testable VLSI devices can be simplified by

observing a number of empirical design rules during the

block hardware and detailed design phases. The design

rules can be applied at several design levels. The

empirically derived design rules and their intended

applicability are shown in Table 3. The design rules can

be divided into three major groups: placement of scan

path test point flip-flops, general design practices, and

clock distribution related rules. The placement of test

point flip-flops, TPFFs, and related restrictions may be

relaxed for pipeline delay registers and in other cases

indicated by experience. Where applicable, possible

31

TABLE 3

DESIGN RULES
(DERIVED FROM GENERAL ELECTRIC 1981)

Rule
No. Description

Test Access Rules

1 *
R1*
R1A*
R1B*

2*
2A*
2B*
2C*

3*
4*
5*
6*

Test Point Flip-Flop (TPFF)
Relaxation of Rule 1
Topographical Loops
Maximum Sequential Depth

Adding TPFFs
Difficult to Test Networks
Maximum Logic Block Size
Primary Inputs and Outputs

Organization of TPFFs
Accessing TPFFs
IC Interface
Circuits Requiring Special

Access

General Design Rules

1
2
3
4
5
6
7
8
9
1 0
1 1

Note

Asynchronous Loops
Critical Hazards and Races
Latch Design
One-Shots
Clock Generators
Error-Correcting Logic
Unused Gate Inputs
Unspecified ROM fields
Bus Conflict in Test Mode
Dynamic Storage
Tri-State Bus Receivers

Level of Application
Circuit Device

x

x
x
x

x

x
x

Macro Board

x
x
x
x

x
x
x
x

x

x
x

x

x
x

x
x
x
x

x
x
x
x

x
x
x
x

x
x

x
x
x
x
x
x

x
x
x
x

x

x
x

x
x

x

* This rule is applicable to Scan methods only.

Rule
No.

Clock

1
2
3
4
5
6
7
8

32

TABLE 3--CONTINUED

Description

Distribution

Critical Hazards and Races
Flip-Flop Type
One Clock Input
Clock Skew
Clock Inputs Free of Hazards
Static Inputs to Latches
Independent Clock and Data
ANDing of Clocks

Level of Application
Circuit Device

x
x

Macro Board

x
x
x
x
x
x
x
x

x

x
x
x
x
x
x

x

x
x
x
x
x

33

TABLE 3--CONTINUED

Rule No. Rule

Test Access Rules

1 *

R1A*

R1B*

2A*

2B*

2C*

3*

Test Point Flip-Flop (TPFF) -
Each latch and flip-flop that is not part of

a memory array shall be part of a test point
flip-flop (TPFF) string.

Relaxation of Rule 1 - Topographical Loops
A few internal flip-flops can be omitted but

not under the following conditions: TPFFs must be
retained when it is required to observe a
topographical loop.

Relaxation of Rule 1 - Maximum Sequential Depth
A few internal flip-flops can be omitted but

not under the following conditions: A maximum
sequential depth of three layers may exist in any
of the block of logic not containing TPFFs.

Adding TPFFs - Difficult to Test Networks
TPFFs should be added (beyond those required

by Rule 1): When a network has been identified as
difficult to test by a testability measurement
utility.

Adding TPFFs - Maximum Logic Block Size
TPFFs should be added (beyond those required

by Rule 1): When the block size surrounded by
TPFFs is larger than 1000 gates. Maximum block
size shall be 200 gates for control logic and
unique random logic between macros.

Adding TPFFs - Primary Inputs and Outputs
All primary device input and outputs shall

have a TPFF on the them. Exceptions are clocks
and real time control signals.

Organization of TPFFs -
TPFFs shall be organized in a single serial

string except where chip organization makes
parallel test access more attractive.

34

TABLE 3--CONTINUED

Rule No. Rule

Test Access Rules - Continued

4* Accessing TPFFs -
The test access scheme of the network must

have the property of simultaneous inclusion of
TPFFs in a chain and mutual exclusion of chains
in a group.

5* IC Interface
The device shall have a test mode and a

test interface with the following capabilities:
1. ability to turn on the test mode,
2. interface should be independent of mission

processing when in the test mode,
3. means of injecting signals into the TPFFs, and
4. means of retrieving test response data from

the TPFFs.

6* Circuits Requiring Special Access -
Direct test access shall be provided to all

RAMs and ROMs. PLAs and the digital I/O of
analog functions shall have TPFFs on their inputs
and outputs.

General Design Rules

1 Asynchronous Loops
Asynchronous loops shall exist only within
latches.

2 Critical Hazards and Races
No critical hazard or race shall exist. (Sarne

as Clock Distribution Rule 1)

3 Latch Design
All non-array memory elements shall be binary

latches that are free of critical races and
hazards on clock transition and indeterminate
states.

35

TABLE 3--CONTINUED

Rule No. Rule

General Design Rules - Continued

4 One-Shots
One shot multivibrators shall not be used

unless externally controllable degating logic
capable of disabling the one shot and
substituting a controllable level is incorporated.

5 Clock Generators
Clock generators shall not be used unless

externally controllable degating logic capable
of disabling the clock and substituting a
controllable level is incorporated.

6 Error-Correcting Logic -
When error-correcting logic is used, test

access shall be provided to the uncorrected data.·

7 Unused Gate Inputs
All unused gate inputs shall be tied to a

constant logic state.

8 Unspecified ROM fields
Unspecified ROM fields shall produce a

consistent logic state.

9 Bus Conflict in Test Mode -
The test mode control shall not cause two

(CMOS) outputs tied together to be active and
complementary at the same time.

10 Dynamic Storage
The dynamic state of a node shall not be

used for storage.

11 Tri-State Bus Receivers
Tri-state buses shall be designed so that

each receiver will have a logical output value
when all drivers are disabled (to avoid
potential oscillation problems).

36

TABLE 3--CONTINUED

Rule No. Rule

Clock Distribution Rules

1 Critical Hazards and Races -
No critical hazards and races shall exist.

2 Flip-Flop Type -
Flip-flops shall be two-phase level sensitive

flip-flops. The second choice is single phase
level sensitive flip-flops. Edge triggered
flip-flops shall not be used.

3 One Clock Input -
The clock input to a latch must depend on one

and only one clock primary input.

4 Clock Skew -
The inactive interval of the external primary

clock shall include the worst case clock skew.

5 Clock Inputs Free of Hazards -
All clock inputs shall be free of pulses due

to critical hazards. In conjunction with Rule 3,
this can be insured by the following equivalent
rule. The primary clock signal feeding a latch
shall not reconverge with odd parity.

6 Static Inputs to Latches -
All data inputs of a latch shall have reached

their final value when the active phase of the
clock begins.

7 Independent Clock and Data -
The clock and data input of a latch shall not

depend on a common global clock.

8 ANDing of Clocks -

Note

Two combinational functions may be ANDed with
each other and then ANDed with the clock. They
shall not be ANDed with the clock and then ANDed
with each other.

* This rule is applicable to Scan methods only.

37

alternate implementations are suggested to the designer,

e.g., the use of degating logic for clocks and one shot

circuits. Many of the general design rules were developed

from good practice rules of thumb.

Other less obvious design rules have been included to

avoid subtle design problems. For example, the

error-correcting rule prevents failed logic from reducing

overall device reliability. The bus conflict rule was

mentioned to avoid test vector induced bus conflicts. A

better approach is to decode a bus enable word into

individual bus transmit enables, thus assuring that only

one bus enable is active. The clock distribution rules

were included to insure good design practices. The design

rules should also serve as a checklist during design

reviews.

Block Hardware Design Phase

A design test technique can be selected after system

test techniques have been selected and general functional

definition, e.g., placement of ALUs, registers, counters,

etc., has occurred. The designer should then:

1. have the general, functional block definition of

the device,

38

2. consider the relevant factors and select a device

test technique,

3. implement the test technique within the block

definition as suggested by the rules of the

technique,

4. observe the design rules during the block design,

5. capture the design in a high-level register

transfer language (RTL), and

6. verify the algorithm of the test technique.

General Test Technique Selection

The selection of a system compatible, test technique

should be based on a number of relevant factors. Among

these are:

1. the device architecture,

2. the desired fault coverage,

3. compatibility with the test strategy of the next

higher assembly level,

39

4. the available test generators,

5. the available test analyzers, and

6. the remaining device capacity.

A close examination of the relevant items will prevent the

designer from re-inventing a number of pitfalls. Often,

the selection is not obvious due to the large number of

factors and available test techniques. The additional

hardware required to implement the most desirable test

techniques should be identified and the hardware impact

estimated to insure the required test

exceed the available device capacity.

also determine the availability and

hardware does not

The designer should

capabilities of the

device test facilities. Insufficient capacity may force

the test strategy to be altered, e.g., selection of an

oscillation testing technique over a scan technique.

Similarly, particularly low field reject rate goals which

require unachievable fault coverage figures of some test

methods may alter the selection. Frequently, a

combination of techniques are employed, e.g., a 32 bit

adder is split into two 16 bit adders for a scan test

cycle. The information obtained during the examination

can be used in conjunction with Table 2 to determine the

40

best possible test technique or combination of techniques

for the device.

Concurrent Testing

The algorithm embodied by the hardware should be

verified. At the block design stage, a number of

high-level programming languages can adequately represent

the design. A better approach is to employ a high-level

register transfer/computer hardware description language

with low-level constructs and fault simulation

capabilities. The high-level portions of the device's

algorithm can be expanded during the block hardware design

process. The expansion process reduces transition effort

and assures the device's architecture is retained during

the transition.

The device's model must include specific test

hardware algorithms to permit test modeling during the

block hardware design phase. This is particularly true

for the HILDO technique. Early algorithm tests can

determine the optimum connections of the HILDO register.

The algorithm testing will also substantiate the choice of

test strategy.

41

Register Transfer/Computer Hardware Description Languages.

Levendel (1982) notes the division of computer hardware

description languages into procedural and non-procedural

types. In a non-procedural language, the order of the

statements in a function is not critical. All statements

within the function are effectively executed in parallel

and specified delays are associated with the transfer. In

a procedural language, all statements of a function are

executed sequentially as in a conventional programming

language.

Levendel (1982) noted the fault processing

capabilities of several existing languages and proposed

several methods of simulating faults within computer

hardware description languages, CHDL. Levendel also

proposed a method of extending test pattern generation to

both procedural and non-procedural languages.

AHPL was an early procedural language which did not

incorporate fault handling procedures (Hill 1978). The

non-procedural language ISPS provides for data, control,

and operational fault simulation {Barbacci 1981). Control

faults are simulated in the conditional section of

behavior definition statements. In addition, the user can

insert operational faults to simulate data failures within

arithmetic, logic, and other functional units. Both hard

42

and transient fault models may be inserted at runtime.

Presently, ISPS does not incorporate an ATG utility.

NmPc is a set of functional design and simulation

tools intended for VLSI design. The modeling utility is

based on the non-procedural language ISP (Rose 1984).

NmPc can perform low-level emulation using constructs.

NmPc can also perform stuck at fault simulation for state

registers. Both control and data failures can be

simulated. The faults may be inserted and removed at

runtime. NmpC can also simulate state interactions, e.g.,

shorted conductors. Both logical OR and AND state

interactions can be simulated. In addition, NmPc can

e s timate fault coverage by determining the lineB of ISP

code which are executed during simulated hardware

activity. At present, Nmpc does not incorporate an ATG

utility.

Detailed Hardware Design Phase

Several functions must be performed in the detailed

design phase. Among the functions noted by Breuer (1976)

are the test related functions of fault coverage

measurement and evaluation of test point alternatives.

See Table 4. Test point effectiveness can be viewed as a

portion of the general problem of obtaining adequate fault

coverage. The major functions of the detailed hardware

1 •

2.

TABLE 4

APPLICATIONS OF LOGIC SIMULATION
(DERIVED FROM BREUER 1976)

Hardware Design Verification

a. Verify Logical Correctness

b. Timing Analysis

Delay Models

Race and Hazard Analysis

c. Initialization Analysis

Fault Analysis

a. Fault Coverage

b. Timing Analysis Under Fault Conditions

c. Initialization Under Fault Conditions

d. Fault Induced Races and Hazards

e. Evaluation of Test Point Effectiveness

f. Evaluation of Self Checking Circuitry

g. Evaluation of Fail-Safe Circuitry

h. Evaluation of Roll Back* Hardware-Software

3. Software Development

a. Debugging Software to Run on Hardware Not Yet

Implemented

b. Development of Diagnostic Software Programs

and Microcode for Computer Systems
Notes

* The detection of failure causes the system to roll
back to the last fault free state and retry the
operation.

43

44

design phase are:

1. conversion of RTL to the gate level logic design

language (LDL),

2. verification that the language crossover was

accurately implemented,

3. performing a timing analysis,

4. adherence to the applicable design rules, and

5. determining the fault coverage of the device.

The design must now cross over to a specific logic design

language. At present, an RTL to LDL crossover utility

does not exist and the designer must perform this step

manually. The RTL simulation results can assure design

fidelity in the LDL representation. That is, the block

design phase algorithm test can be repeated and the

results compared. The designer should continue to observe

the detailed design rules of Table 3. The timing analysis

should be performed when the possibility of hazards and

races exists.

45

Concurrent Testing

The concurrent testing of the detailed hardware

design phase must verify the adequacy of the test strategy

and calculate the fault coverage of the design. Adequate

fault coverage will permit the design to achieve the field

reject rate goal. Two methods of testing, which can be

used during the detailed design phase, are software logic

simulation systems and SS I/MS I/LSI breadboards.

Breadboards enjoyed wider acceptance before the

development of faster, more versatile logic simulators.

Breadboard. Breadboards employ easily alterable wiring

and readily available SSI/MSI/LSI devices to simulate a

VLSI design. Time scaling is often employed to permit

signals to be distributed over the larger breadboard

assembly. Frequently, the breadboard also serves as a

prototype in higher assembly levels.

Two breadboards may be preferred. Although . the

multiple copies

the effort is

must be updated when revisions are made,

not exceptional. Multiple breadboards

provide additional user access and permit a side by side

hardware verification. Hardware verification can

discriminate between design failures and random noise or

test berth problems, e.g., bad conductors and !Cs (Kidder

1981).

46

When the design is implemented on a breadboard, a

guided probe signature analyzer can verify the

controllability of test points. Similarly, manual fault

insertion can be used to roughly estimate the fault

coverage of the design. Accurate estimates are difficult

to obtain due to the inaccessible internal IC node nets.

Logic Simulation Systems. Logic simulation systems are a

collection of software utilities. The device design is

initially captured and then processed through the software

utilities. The general process flow was outlined by

Everett (1984) and is shown in Figure 5.

Testability Measurement Utilities. A testability

measurement utility can assess the relative testability of

a device. The utility infers the difficulty of testing a

device through a simple algorithm. The algorithm assigns

a testability figure of merit to each device node

independently of test vector selection. The SCOAP and

COPTR test measurement utilities, cited by Hess (1982) and

Kirkland (1984) respectively, employ virtually identical

algorithms. The COPTR utility, which is applicable to

TEGAS, will be explored.

COPTR uses controllability and observability figures

to generate a testability merit figure. The

controllability figure measures the relative difficulty of

·----------------· . . ·--------------· . .
System
Design

:<----: Product

·----------------· . .
v

·----------------· . .

Definition
:--------------:

:--------------:
Logic
Design

:<--->: Testability
Analysis

·----------------· . . :--------------:
v

47

:----------------: :--------------: :------------:
Logic-Decision :<--->: Test Pattern :<--->: Fault
Verification Generation : Simulation :
(Functional :--------------: :------------:
Simulation)

:----------------:
v

:----------------:
Logic Timing :
Verification :

:----------------:
v

:----------------:
Physical

Layout
:----------------:

v
:----------------:

Manufacturing :
:----------------:

v
:--------~-------:

v
:--------------:

Test
: Pattern Post-:

Processing
:--------------:

v
:--------------:

Test
Program

Development
·----------------· . .

Test :<------------
:----------------:

Figure 5. Logic Simulation System Process
(derived from Everett 1984)

48

setting a particular device node to a desired level. Four

figures are computed for each node:

1. combinational 0 controllability,

2. combinational 1 controllability,

3. sequential 0 controllability, and

4. sequential 1 controllability.

The controllability figure

nodes that must be set

represents

to control

the quantity of

the desired node.

Sequential controllability is a number of states into

which the device must be set before the desired level

appears at the node. The complete analysis must compute

both levels for the sequential and combinational modes.

The observability figure represents the quantity of

nodes which must be set to permit the observed node's

level to propagate to a device output. Observability has

both combinational and sequential values, but does not

examine levels.

The controllability figures are computed before the

observability figures. Nodes which are completely

uncontrollable or unobservable are distinguished by

assigned merit figures of -1. The node testability

figure, also referred to as the test observability figure,

49

is derived from the quantity of additional nodes which

must be controlled, their predictability, and the

observability of the test node. Hess (1984) defines a

node's predictability as a measure of the degree to which

internal nodes can be controlled to a known state by

primary inputs. Predictability can be considered

synonymous with initialization of sequential circuits.

The results of a testability measurement analysis are

typically printed in tabular form. The controllability

and observability figures of merit are included for each

node. Average node controllability, observability, and

other summary statistics, are included. Typically, the

cost of running a complete testability measurement

analysis on a previously captured device design is small.

Hnatek (1984) estimated the cost of using a measurement

utility to examine a 1000 node circuit in engineering

hours and CPU minutes.

Interpretation of Testability Merit Figures. The

testability merit figures produced by the testability

measurement utilities are not strongly related to the

potential fault coverage of the device. Agrawal (1982a)

concluded that the SCOAP algorithm provides some

correlation between the testability analysis figure of a

class of nodes and the difficulty of generating test

50

vectors for the class. However, Agrawal also concluded

that the correlation of the testability analysis figure of

a specific node and the probability of generating a test

vector for the node is much weaker. Specifically, he also

suggested that efforts to improve the testability figure

of singular nodes with large testability figures are

pointless. In one test case, approximately 70% fault

coverage of all nodes with high testability figures was

achieved after a small number of test vectors was applied.

Thus, 70% of such an effort could be wasted.

The probability of detecting a fault is related to

the testability figure of the node. Agrawal (1982a)

suggested a method of estimating the test generation

effort for the device. Assume

P(Ti) = e

where

-a Ti
(21)

P(Ti) is the probability of detecting a fault at a

node with a testability figure of Ti and

a is a model characterization parameter.

Untestable nodes must substitute a very large number for

the commonly used merit figure of -1. If the design has N

possible, distinct faults with respective testability

measures of T1, T2, T3, ••• Ti •.• TN and if the fault

detection performance of each test vector is statistically

independent, then

v
P(i) = [1 - (1 - P(Ti))]

where

P(i) is the probability of detecting the ith fault

after V vectors and

V is the number of vectors applied.

51

(2 2)

The total fault coverage provided by the set of vectors is

N
f (V) = 1 L

-w- i=1

N
f {V) = 1 - 1 C

---r:r-i=1

where

v
[1 - { 1 - P(Ti))]

v
[1 - P{Ti)]

or

f(V) is the fault coverage provided by V vectors.

Substituting equation (21) into (24) yields

N
f(V) = 1 c

N i=1

-aTiV
[1 - (1 - e)]

{23)

{24)

(25)

The model characterization constant, a, can be

obtained by the following procedure. Assume the ith fault

is detected on the Vith vector, then

Vi-1
P(Vi) = (1 - P(Ti)) P(Ti) (2 6)

where

P(Vi) is the probability of the ith vector detecting

the fault with testability measure Ti.

52

The joint or maximum probability of detecting the fault in

this order is

N Vi-1
L = L [1 - P(Ti)] P(Ti) (27)

i=1

where

L is the likelihood function.

The maximum probability can be determined by taking the

natural logarithm of equation (27),

-a Ti N
ln(L) = -a L

i=1

N
\' Ti + G (Vi - 1) ln [1 - e] , (2 8)
i=1

and differentiating to obtain

o L =
L a

or

N N

- L Ti + 2=
i=1 i=1

N
\1 L Ti [1 - (Vi

i=1

-a Ti
(Vi - 1 e ------

-a Ti
1 - e

-a Ti
1) e]

-a Ti
e

= 0 (2 9)

= 0 (30)

Equation (30) can be used to calculate a. The fault

simulation utility output should associate the testability

figure of a node with the number of the first vector which

detects the fault. Equation (30) is then iteratively

solved for the characterization constant. This method

will yield the minimum variance unbiased estimator of a as

V approaches infinity (Freund 1971).

53

Logic Fault Simulation Utilities. An alternate method of

assessing the testability of a device is by manual fault

generation and logic fault simulation. A set of test

vectors is manually prepared and the fault coverage of the

set is evaluated with a logic fault simulator utility.

The associated cost for a 1000 node device is reflected in

estimates by Hnatek (1984). The estimate included manual

test development times in hundreds of hours and computer

fault simulation costs in tens of CPU hours.

Most major logic simulation systems possess a

standard fault simulation utility. Breuer (1976)

recognized three methods of fault simulation; parallel,

concurrent, and deductive (or fault list propagation).

The parallel simulation of many faults can increase

the simulation speed. In an example cited by Breuer

{1976), an AND gate has two inputs A and B. Each input is

represented as the ith bit of a respective register. The

output is equivalent to the ith bit of the AND product of

the A and B registers. If the width of the registers is W

bits, then a single operation can simultaneously perform W

simulations of the gate. Thus, as many as W fault

simulations may be processed in parallel.

54

Concurrent simulation is performed by assigning each

faulted gate a particular set of input and output values

in a super fault list (Breuer 1976). Each fault is

assigned a unique position within the super fault list and

the list is sorted by fault index. If the fault alters a

gate output, the inputs associated with the node are

examined and the fault propagates through the fault lists

of succeeding gates. Concurrent simulation is event

directed, that is, only the portion of the circuit

affected by the fault is processed.

Deductive fault simulation processes all faults

simultaneously. A storage area reduction is achieved by

storing only the faults associated with each gate (Breuer

1976). Generally, the number of faults associated with a

specific gate is small. A list of faults which affect

each gate is developed by fault list propagation. Logic

values which do not agree with the fault free device

values are propagated to succeeding gate lists until

blocked at gates with controlling values on one or more

remaining inputs. The lists of gates with controlling

values are examined to insure that propagated fault

effects do not alter the controlling values. Only the

fault logic values which propagate to a device output are

considered detectable (Muehldorf 1981).

55

Fault Reduction Utilities. The burden of fault simulation

can be reduced by preprocessing the design with a fault

reduction utility. Fault reduction or, more commonly,

fault collapsing utilities combine distinct logic faults

into equivalent sets. Breuer (1976) noted that an N input

gate has 2(N+1) possible, distinct faults. Consider an N

input AND gate which has N possible stuck at 0 input

faults. Each input fault is equivalent to the output

stuck at 0 fault. Thus, the N stuck at 0 input faults

need not be considered. Similarly, a gate output stuck at

1 fault will be detected by any test for a gate input

stuck at 1 fault. The gate output stuck at 1 fault is

said to dominate the gate input stuck at 1 faults and need

not be considered. Thus, the 2(N+1) distinct faults

within the gate can be replaced by an equivalent set of

N+1 distinct faults. Breuer (1976) also suggests that

fault collapsing can substantially reduce the number of

simulated faults. Everett (1984) implies fault collapsing

can yield fault reductions of up to 30 percent.

Toggle Test Utilities. Toggle test utilities are a

computationally inexpensive means of determining circuit

controllability and assessing test vector performance.

Typically, the user supplies a list of faults associated

with the device nodes and a set of test vectors as utility

56

inputs. A fault is c o n s idered detectable if the

associated node can be drive n t o the opposite logic value

of a stuck at fault.

Toggle tests evaluate the con t rol lab ility of faulted

nodes. The results do not ind icate the relative

difficulty of controlling a spe c ific nod e or observing the

node response. However, toggle t es t s can be used to

inexpensively estimate test vector performance and

determine if fault simulation is warr a nted. Toggle tests

can also determine the regions of the d e vi ce which are

covered by the test vector set.

Timing Analysis Verifier. The internal timing delays of a

device are normally proportional. Howe ver, process

variations and capacitive loading of MOS gates can induce

gate timing skew. A logic verifier ut ility can predict

the circuit timing based on user d e fi ned circuits and

inputs. Functional specifications may be used for

repeated blocks. The timing verifier will assess the

worst case minimum/maximum delay times f or both the rising

and falling edges of a node. A s ing l e period test is then

iterated until the test produces pred i ctable data. That

is, the output signal at every gate i s consistent with the

inputs and the timing definitio n s .

57

Timing verifiers are excellent for the examining the

synchronous devices of interest. The timing verifier

results will detect possible hazard and race conditions.

In addition, the timing verifier will detect . setup and

hold time violations. All aspects of device activity in

the clock cycle can be viewed in a relative fashion

(Rappaport 1983).

Conclusions. Testability merit figures and fault coverage

can be calculated more accurately by logic simulations

than by breadboard methods. In addition, the cost of

running a testability measurement utility is far less than

the cost of manually generating test vectors and

performing fault simulations. Better testability

measurement utilities, faster fault coverage algorithms,

and specialized hardware accelerators are being developed.

Thus, logic simulation systems can be expected to improve.

In contrast, rough breadboard estimates of fault coverage

are unsuitable for the required accuracy of field reject

rate calculations.

little promise of

Furthermore, breadboard methods have

future improvement and are becoming

increasingly complex as device density increases.

58

Available Logic Simulation Systems

Although most logic simulation systems operate on

general purpose computers, several types are designed to

execute on specialized hardware accelerators. Dramatic

simulation speed improvements in logic simulation

utilities have recently occurred as a result. Another

recent improvement is physical modeling. Physical

modeling systems characterize higher function VLSI

hardware by employing adapter modules containing test

c omponents. The adapter modules permit test component

interaction with device simulations. Hardware

accelerators, physical modelers, and most of the

capabilities noted in Table 4 have been incorporated in

most major logic simulation systems. Current logic

simulation system capabilities have been compiled by

Werner (1984b and 1984c) and Everett (1984). Their

results are condensed in Table 5. The faults simulation

utilities available on major systems have also been

compiled. The results are listed in Table 6.

The utilities of particular interest to Tegas system

users include two testability measurement packages. The

SCOAP utility will be incorporated as an adjunct to TEGAS

6 (Hnatek 1984). The COPTR/ATG utility is presently

available with TEGAS products (Kirkland 1983). Kirkland

T
A

B
L

E

5

L
O

G
IC

SI

M
U

L
A

T
IO

N

SY
ST

E
M

C

A
P

A
B

IL
IT

IE
S

(D

E
R

IV
E

D

FR
O

M

W
ER

N
ER

1

9
8

4
c

A
N

D

E
V

E
R

E
T

T

1
9

8
4

)

S
y

s
te

m

M
a
n

u
fa

c
tu

re
r

H
a
rd

w
a
re

A

c
c
e
le

ra
to

r
A

v
a
il

a
b

le

P
h

y
s
ic

a
l

M
o

d
e
le

r
A

v
a
il

a
b

le

C
al

m
a/

G
E

N

o
N

o

D
a
is

y

Y
es

o

n

PM
X

M

e
g

a
L

o
g

ic
ia

n

M
e
n

to
r

X
si

m
*

*

M
id

as

M
et

h
e

u
s

N
o

N
o

S
il

v
a
r-

L
is

c
o

N

o
N

o

V
a
li

d

R
e
a
l f

a
s
t

R
e
a
lc

h
ip

*
*

*

N
o

te
s

T
e
s
ta

b
il

it
y

M

e
a
su

re
m

e
n

t
U

ti
li

ty

C
O

PT
R

*

SC
O

A
P

N
o

N
o

N
o

N
o

F
a
u

lt

S
im

u
la

to
r

U
ti

li
ty

T
ex

si
m

T

e
g

a
s$

Y
es

F
si

m

G
en

R

ad

H
il

o
-2

B
i f

a
s

p
/o

B

im
o

s

T
e
ra

d
y

n
e

LA
S

A
R

$
in

c
lu

d
e
s

a
n

a
u

to
m

a
ti

c

fa
u

lt

c
o

ll
a
p

s
in

g

u

ti
li

ty

*
SC

O
A

P
w

il
l

b
e

a
d

d
e
d

to

T

e
g

a
s

6
.

**

D
e
ri

v
e
d

fr

o
m

Z

y
c
a
d

.
*

*
*

W

il
l

li
n

k

to

R

e
a
lf

a
s
t.

A
u

to
m

a
ti

c

T
e
s
t

V
e
c
to

r
G

e
n

e
ra

ti
o

n

p
/o

C

O
PT

R

N
o

N
o

p
/o

H

il
o

-2

N
o

p
/o

H

il
o

-2

U
1

 ""

T
A

B
L

E

6

L
O

G
IC

FA

U
L

T

SI
M

U
L

A
T

IO
N

U

T
IL

IT
IE

S

(D
E

R
IV

E
D

FR

O
M

W

ER
N

ER

1
9

8
4

a
)

S
y

st
e
m

M

a
n

u
fa

c
tu

re
r

C
al

m
a/

G
E

D
a
is

y

M
e
n

to
r

M
et

h
e

u
s

S
il

v
a
r-

L
is

c
o

V
a
li

d

Z
y

ca
d

N
o

te
s

F
a
u

lt

S
im

u
la

ti
o

n

U
ti

li
ty

T
e
g

a
s-

5

T
e
x

si
m

D
a
is

y

L
o

g
ic

S

im
u

la
to

r

N
o

n
e

*
*

*

B
im

o
s

SC
A

L
D

L
E

1
0

0
1

/
L

E
1

0
0

2

T
y

p
e

o
f

E
st

im
a
te

d

M
em

or
y

F
a
u

lt

S
p

e
e
d

#

R
e
q

u
ir

e
d

S

im
u

la
ti

o
n

(e

v
e
n

ts
/s

e
c
)

(b
y

te
s
/

g
a
te

s
)

P
a
ra

ll
e
l

2
0

0
0

1

0
K

/1
0

0
0

-

2
0

0
0

1

0
K

/1
0

0
0

Y
es

*

L
o

g
ic

ia
n

4

0
K

/1
0

0
0

1

0
0

0
/

M
e
g

a
L

o
g

ic
ia

n

1
0

0
,0

0
0

-
1

0
0

0

2M
/1

0K

P
a
ra

ll
e
l

1
0

0
0

5

0
K

/1
0

0
0

P
a
ra

ll
e
l$

4

5
0

3

0
0

K
/1

0
0

0

C
o

n
c
u

rr
e
n

t
1

2
0

0

6
0

K
/1

0
0

0

S
e
ri

a
l

5
0

0
,0

0
0

/
n

o
t

1
,0

0
0

,0
0

0

a
p

p
li

c
a
b

le

I
L

o
g

ic

s
im

u
la

ti
o

n

sp
e
e
d

$

O
p

ti
o

n
a
l

*
N

o
t

y
e
t

a
v

a
il

a
b

le

*
*

P

a
rt

o

f
lo

g
ic

s
im

u
la

ti
o

n

u

ti
li

ty
.

*
*

*

H
a
rd

w
a
re

d

e
s
c
ri

p
ti

o
n

la

n
g

u
a
g

e

T
im

in
g

V

e
ri

fi
e
r

Y
es

N

o

Y
es

*
*

Y
es

Y
es

*
*

N
o

Y
es

N
o

°' 0

61

(1983) also noted additional synergistic effects between

the COPTR testability analysis utility and an automatic

test vector generation utility operating on previously

captured design information. The ATG utility will not

attempt to generate test vectors for untestable nodes.

This additional property of COPTR/ATG utility makes it the

preferred testability measurement program for Tegas

systems. The forthcoming addition of the SCOAP

testability measurement utility to Tegas will enlarge the

selection of available testability measurement utilities.

Verification of Testability Design Goals

The device must achieve the testability design goals

to realize the field reject rate goals. The testability

can be verified by a number of procedures. An efficient

approach which Agrawal's (1982a) and Everett's (1984) work

suggests is:

1. Apply a testability measurement utility.

2. Alter completely untestable nodes if possible.

Some nodes, e.g., those which employ pull up and

pull down lines, will always be untestable.

3. If a region of circuitry is highly untestable

then:

3A. verify that the design guidelines have been

observed,

62

3B. consider additional design modifications to

improve testability, and

3C. rerun the testability measurement utility

on the modified design and repeat steps 3B

and 3C until satisfactory results are

obtained.

4. Run a fault collapsing utility, if available.

S. Estimate the test vector generation effort by:

SA. developing a trial number of ATG vectors,

SB. simulating the vectors in a logic fault

simulation utility and characterizing the

design, and

SC. estimating the remaining test vector

generation effort. Agrawal's (1982a)

method can be employed.

6. Use the test vector generation estimate to

determine whether the design's testability

figure should be increased or additional test

vectors generated.

The choice between additional test vector generation and

increasing the testability figure of the design should

favor the lowest cost solution which achieves the desired

field reject rate.

Chapter III

TEST VECTOR GENERATION

Approach

Three methods of obtaining and

test vectors will be examined.

manually generating

Eight methods of

automatically generating test vectors will also be

examined. The capabilities and applications of an

available automatic test vector generation logic utility

will be discussed. The final steps of test data

augmentation and conversion will be considered.

Methods of Obtaining Test Vectors

Muehldorf (1981) and Middleton (1983) identified the

following

vectors:

methods of obtaining and generating test

1. manual methods,

2. purchase,

64

3. conversion ,

4 . path sensitization ,

5. D algorithm,

6. derivatives of function s ,

7. algebraic expression,

8. heuristic algorithms,

9. learn mode,

10. random patterns, and

11. signature analysis.

The first three methods of the l i st are manual methods.

Manual methods are distingui s hed by the absence of

available algorithms. The eigh t remaining automatic

methods can be expressed as algorithms. Several have been

incorporated in automati c t est vector generation

utilities.

65

Manual Te st Ve c t o r Generation

The manual methods of t e s t vector generation share

the common problems of highly v ar i a b le risk and methods of

implementation. The methods o f manual test vector

generation include manual mode , p urch ase and conversion.

Each method is examined below.

Manual Mode. The designer prepares t es t information in a

high level description language such a s s t imulus, tester,

or native assembly language. Stimulus language inputs are

prepared for fault simulation utilities . Native assembly

language, e.g., microprocessor a ssemb l y code, can be

loaded into RAM/ROM and be executed fo r immediate testing

or hardware learn modes. Tester languag e can be directly

loaded to the ATE tester. The informa tio n is converted to

tester object language by special p ur pose compilers. The

methods of conversion are shown in Figure 6.

Purchase. If the device has been previously designed or

assembled by another manufacturer, device test vector sets

may exist. Frequently, the lowest risk and most cost

effective solution is to purch ase the test vector set.

The buyer must carefully dete rm i ne the fault coverage

afforded by the purch a sed test vector set. Potential

vendo rs incl ude the orig i nal device vendor, consultants,

and ATE man u f a c turers.

~

lO

c t1

(I
) "' •

-
3

a

,
tu

(I

)
;:

)

t1

c
.....

°'
<:

~

(I
) a
,

3 (I
)

H
'\

('1
"

t1

::r

0
0

3
a

,

3
0

...

..
H

'\
a

,
a

,
1-3

...

...
.

(I
)

(I
)

(/
)

('1
"

('1
"

0 ;:)
<

<t>

-
n

\0

('1

"

CX
>

0
w

l'1

C
l

(I
)

;:
) <t>

t1

Q
I

('1
"

0 ::l

:
M

an
u

al

T
e
s
t

V
e
c
to

r
G

e
n

e
ra

ti
o

n

:

:-
--

--
--

--
--

--
--

:
v

:
S

ti
m

u
lu

s

:
:

L
a
n

g
u

a
g

e

:

v

:
P

a
tt

e
rn

:

C
o

m
p

il
e
r

:

v

N
a
ti

v
e

:
L

a
n

g
u

a
g

e

:
:

L
a
n

g
u

a
g

e

:

v

M
O

S
:

C
o

m
p

il
e
r

:

·-
--

--
--

--
-·

.

. v

T
a
rg

e
t

T
e
s
te

r

v

T
e
s
t

:
L

a
n

g
u

a
g

e

:
:

C
o

m
p

il
e
r

:

:-
-
:

:-
--

--
--

--
--

:
:-

-·
-
-
-
-
:

:
-
-
-
-
-
:

v

:
S

im
u

la
to

r
:

:
A

PG

v

v
v

S
im

u
la

to
r

P
re

d
ic

t
O

u
tp

u
ts

v

v

S
im

u
la

to
r

L
e
a
rn

(I

/O
)

v

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
:

v
v

v

H
a
rd

w
a
re

L

e
a
rn

:<

(I

/0
)

--
-·
--

--
--

--
-

:
. -

--
.

.
.

v H
a
rd

w
a
re

->

:
L

e
a
rn

(I

/O
)

:
--

--
--

--
--

--
:
-
-
-
:

v
:-

--
--

--
--

:
:-

--
--

--
--

-:

v
v

F
a
u

lt

:
:

F
a
u

lt

:
P

o
s
t

:
V

e
c
to

rs

:
:

A
n

a
ly

z
e
r

:-
-
-
-
-
>

:
C

o
v

e
ra

g
e

:
:

P
ro

c
e
s
s
o

r
:-

-
-
-
-
>

:

"' "'

67

Conversion. Frequently , tes t vector sets are obtained

from another test unit. A conve r sion between the tester

languages is often required. Although the conversion

process may

methods of ten

Several ATE

be automated,

necessitate

vendors

the wide variations in test

manu a l postprocessing steps.

provide t r anslators which

semi-automatically translate other tester languages to the

target tester language (Middleton 19 8 3) .

Automatic Test Vector Ge ne r ation

The automatic test vector gene r a t ion methods can be

implemented in an algorithmic fashion . The majority of

available utilities implement combina t i o n s of algorithms.

Often, the utilities employ heuristi c and iterative

algorithms. Thus, the results are highly dependent on the

particluar algorithm implementation .

Path Sensitization. The path sensi t i zation algorithm is

implemented by:

1. provoking the faulted g ate input to be tested

with a logic value i nverse to the modeled stuck

at fault,

68

2. creating a forward drive path by which the gate

output signal can be propagated to a device

output, and

3. verifying that the output is only a function of

the signal change resulting from the stuck at

fault.

The path sensitization procedure

disadvantages. The search for a

has

forward

two primary

drive path

resembles a tree search. The associated path propagation

algorithms make arbitrary choices

When a conflict is encountered,

at the branch nodes.

the algorithm must

backtrace and remake decisions at the branch nodes until a

suitable solution is obtained or the search tree is

exhausted. The second disadvantage is that alternate test

vectors may not be detected. That is, test vectors for

faults with reconvergent paths may not be detected because

the tree search algorithms are following single rather

than multiple paths (Breuer 1976).

D Algorithm. The D algorithm overcomes the problems

associated with the path sensitization method. The D

algorithm employs a multivalued logic calculus which

behaves in accordance with the rules of Boolean algebra

for a Boolean variable (Roth 1980). The term D denotes a

69

signal which has a high value at a fault free node and a

low value at a faulted node. Similarly, the logical

inverse of D denotes a signal with a low value at a fault

free node and a high value at a faulted node. See Figure

7.

Multiple paths can be searched by propagating the

effects of the fault through the device in a parallel

manner. However, only one fault at a time can be

propagated. Furthermore, an untestable fault initiates a

large, fruitless computational effort which ceases only

when all search possibilities have been exhausted.

Derivatives of Functions. The derivatives of Boolean

functions can be used to generate test vectors. Susskind

(1973) noted the following partial derivative procedure.

Assume a Boolean expression of the form,

z = Z(X1,X2,X3, .•. ,Xi, ••. Xn)

where

Z is an n input, single output Boolean function,

z is the output of the Boolean function, and

Xi is the ith input of the Boolean function.

(31)

The EXCLUSIVE OR operation, also referred to as the ring

sum or the Boolean difference of z with respect to x, is

expressed as

AN
D

N
A

N
D

O

R
N

O
R

~

/•,

A

A

,• .
..

.-.

L
:

H
 '~

 ~
'°

}-
L

'
'

"'
.._

c
-·,

•,
y:

..,
_

_f
(:

I

~
~
-

'1

-
.'

_
,

'
ro

E

,
r

B

.
C

B

.
-

,-
,,

B

--
I

I
'..

,/

·-·

...
.J . tX
l

A

B

C

A
 B

 C

A
 B

 C

A
 B

 C

....
....

ro

--
--

-
--

--
--

--
--

-
~
-
-
-
-
-

a ro :::>

r1
"

-
--

CJ
)

PR
O

P.

D
 1

 D

D
 1

 D

D

0
D

D

 0

D

0 t-
h

CU
BE

-

-
r1

"
::J

"
1

D
 D

1

D
 D

0

D
 D

0

D

D

ro 0
-

-
-

-
-

)i
i

D
 1

 D

D
 1

 D

D
 0

D

D

0

D

.....
...

\.
0 0 '1

 .-.
-

-
-

-
-

-
r1

"
1

D
 D

1

D
 D

0

D
 D

0

D
 D

::J

" a

TE
S

T
1

1
D

1

1
D

0

0
D

0

0
D

CU

BE

...
.J

0

71

dz = Z(X1,X2, .•. ,o, ... xn) ® Z(X1,X2, ..• ,1, •.• Xn) (32)
dxi

A sensitive path from the ith input to the output exists

if

1 = Z(X1 ,X2 ... ,0, ... Xn) (!> Z(X1 ,X2 ..• ,1, •.. Xn). (33)

Thus, a sensitive path from Xi to z can be constructed if

the other input variables can be selected in accordance

with Equation (33).

The formal procedure can be stated as follows. Given

a fault on lead i which is provoked if and only if the

Boolean function P is true, then the test for the fault

can be found by determining the solutions to

Pi dz = 1
dXi

where

Pi is the ith input of the Boolean function P.

(3 4)

This method is not restricted to stuck at fault models.

Consider the circuit of Figure 8 with the function,

z = a b + b c a
'

then the tests which sensitize input a must satisfy

dz. = (b + b c d) <!') (b c d) =1
da

= b c + b d = 1.

and

(3 5)

(3 6)

(3 7)

72

.. ---- ~
/ \

IJ)

ro

/

(\.I LO

Figure 8. Example Circuit

73

The path sensitizing test vectors which satisfy Equation

(37) are

Z(a,0,1 ,X) = Z(a,b,c,d)

and

Z(a,O,X,1) = Z(a,b,c,d)

where

X is the don't care state.

The derivative method suffers from two probl ems.

the algorithm must manipulate formid able

equations. The second problem is the inabil ity to

multiple faults.

(38)

(39)

First,

Boolean

handle

Algebraic Expression.

employs subscripted

The algebraic express ion technique

variables which ret ain the circuit

topographical information. In this method, also referred

to as Poage's method, the Boolean vari ables must be

subscripted according to the device nets i n which they

appear. Susskind (1973)

Structure Parity Observing

expressions. A sensitized

following procedure.

introduced the term SPOOF,

Output Function, for the

path c a n be extracted by the

Consider the circuit of Figure 8. The lead 9,

standard Boolean expression is

z = b + c + d

where

z is the circuit response at lead 9 and

b, c, d are the input variables.

The lead 9 SPOOF expression is

s = b + c + d
9 2,4,8,9 5,8,9 6,8,9

where

s
9

is the SPOOF response at lead 9 and

b is the SPOOF variable with a p a th list
2,4,8,9

of 2 - 4 - a - 9.

Similarly, the lead 12 SPOOF expression is

s = b * c * a
12 L:,4,lr,Trr,12 "5",'S",Trr, 12 b",-S-,T"IT, 12

The output SPOOF expression is

s = s + s or
13 11,13 12,13

S = a b b +
13 1,11,13 2,3,7,11,13 2,4,8,9,11,1 3

a b c +
1,11,13 ~,~,7,11,13 5,8,9,11,13

a b a
1,11,13 '"2',"!,7,11,13 6,8,9,1 1 ,13 +

b c a
'!,4,"S",10,12,13 "5",'S',Ttr,12,13 'b,"S',10, 12,13

74

(40)

(41)

(42)

(4 3)

(44)

Identical terms which contai n d ifferent path lists are

75

considered distinct. The first product term of Equation

(44) contains a term and its inverse. For the purpose of

determining test vectors, the equation is not reduced to

lowest form. Clearly, if lead 1 has a stuck at O fault

then the terms which contain a 1 in the path list become

zero. The terms which remain are:

1sa0
s = b c d

13 7,4,8,T0,12,13 "5°,8,TIJ,12,13 b","S",TIT,12,13

where
1sa0

(4 5)

S is the lead 13 response with lead 1 stuck at O.
1 3

The algebraic expression method can process multiple

faults. The test method can also be extended to develop

fault dictionaries and shorted run tests (Flornenhoft

1973). The principal disadvantage of the method is the

large computational effort associated with manipulating

the Boolean expressions (Chang 1974).

Signature Analysis. Signature analysis is implemented by

applying a pseudo-random, repeatable set of test vectors

to an initialized OUT. Frequently, the test vectors are

generated by LFSRs (Frohwerk 1977). During the test

sequence, the response of the device is compressed by a

second LFSR. The final result is compared to a known

correct response. Alternately, the number of level

transitions on each output can be determined. Susskind

76

(1981) has shown the transitio n c oun t is the lowest order

Walsh coefficient of the DUT's response. The

acceptability of the device is norma l l y inferred from the

single Walsh coefficient.

Susskind (1981) also proposed a n improved

inferring the DUT's condition . Two of

method of

the Walsh

coefficients of the DUT's response a r e evaluated and

compared to the coefficients of a corre c t model. The test

will detect any pin fault, e.g., an input or output stuck

at level condition. The correct d e vi ce response can be

determined throu~h simulation or, more commonly , by direct

comparison with a correctly functioning device. A fault

dictionary, which relates the device's signature to known

defects, can be compiled. The dictio na ry can serve as a

fault location guide.

Learn Mode. The learn mode consists o f t wo methods. The

first method compares a device under test to a known,

correctly functioning device, e. g . , hardware learn. The

hardware learn method is part icul a r ly important if the

device's responses have not been previously calculated.

In the second method, the DUT is compared to a software

model, e.g., software learn .

77

Two variations of hardwar e learn exist. The first

variation assumes the device's respo nse is unknown. user

prepared test vectors must be a ppl i e d to an initialized

device. The device must be init ialized to a repeatable,

predetermined state . The test ve c tors are applied in

sequential

assembled.

response

fashion and a list of correct responses is

The device is reinitiali zed after each new

is obtained and the test is repeated until the

next new response is encountered .

The second variation of hardware learn is primarily

intended for microprocessors. It requires a native

assembly language description of the d~vi ce. The device's

object program is stored in a RAM/ROM adap ter within the

ATE. The device is then operated and the tester observes

the device operation, e.g., read/wr i tes to the RAM/ROM.

The observations are used to const r uct a test program

written in the ATE's native langu a g e. Several ATE vendors

market utilities which perform t h is variation of the

hardware learn mode.

The software learn mode is characterized by the use

of a previously developed set of test vectors and

anticipated device responses. The test vectors are

applied a nd the devi c e re sponses are compared to the

anticipa ted d e v ice responses. Often, the device responses

78

are the results o f a fault simulation utility. One

variation of the softwa re l earn mode is of particular

importance to microprocessor s . The device's assembly

language program is compiled us ing the microprocessor

development system . The resulting binary object program

is simulated in a corresponding memory model and is

interconnected with a device model . State patterns from

the model are recognized by an ATE program and converted

by a postprocessing program . The pos tprocessing output

consists of ATE tester native langua ge commands.

Heuristic Algorithms. Heuristic algorithms employ high

level languages to automate the p roduction of test

vectors.. Often, the production rules are deduced from a

functional model or description of the device. High level

procedural languages, expansions , e .g ., Macro-T, Pascal-T,

etc. are frequently employed {M iddleton 1983). Recent

efforts have been directed a t e xtensions to CHOL (Son

1982). The

and guide the

vectors.

high level const ructs of CHOL are tabulated

automatic generat ion of behavioral test

79

Random Patterns. Random patterns are generated and

applied to a model of the DUT until simulation results

indicate sufficient fault coverage has been achieved. The

random patterns are usually generated by a seeded random

number generator. The cost associated with the method is

low. However, the achieved fault coverage is highly

variable unless Agrawal's (1982b) method is employed.

Many ATG utilities employ variations of the random pattern

generation algorithm.

Kirkland (1984) noted additional synergistic effects

between a testability measurement utility and a random

pattern generation utility operating on a previously

captured design. The ATG portion of the utility does not

attempt to generate vectors for untestable nodes. Agrawal

(1982b) noted that the first few test vectors detect a

great number of faults. Thus, it is possible to use

random test vectors to obtain a relatively high degree of

fault coverage.

Sequential Circuits

Sequential networks are distinguished by the

inclusion of memory elements. A pattern of test vectors

is required for adequate testing. There are three

principal methods of generating test vector patterns for

sequential circuits {Susskind 1973). The first method is

80

to verify the functional characteris tics of the device.

The second method is to translate the giv en sequential

network into a related iterative comb i n a t ional network.

The last method is to verify the sequentia l network ' s

state table.

Available Test Generation Util i ties

Many logic simulation systems incorpor ate test

generation utilities. The utilities av a il able with the

major systems are shown in Table 5. The tes t generation

capabilities of the available Te g as ut i lity are

representative and will be examined.

The Tegas test generator has two mode s . The path

sensitization test mode proceeds through th ree phases

which successively attempt to develop test vectors.

During the first phase, the test gene r a t or proceeds by

leveling the device circuitry. That i s , each element

within the device is assigned a numbe r starting at one at

the input pin and ending with n at the output pin.

Feedback path information is al s o gathered during this

process. The test generator will the n a ttempt to generate

vectors which detect stuck at faul ts on the device

outputs. Other node stuck at fault s which are detected

will also be recorded.

81

During the second phase of the path sensitization

mode, the test generator a t tempts to detect only the

remaining undetected faults. The test generator proceeds

by attempting to drive nodes to the desired value. No

effort is made to propagate the gate output to an

observable point. The third ph a s e is simi l ar to the

second except that the test g e nerator

propagate the signal to a device output.

attempts to

The second mode of the Teg a s test generator employs

heuristic generators which implement fo ur st r ategies. The

four strategies are: random, start , c heck , and DQUB. The

second test mode also employs a p ath sensitization

technique.

The random pattern generator d e velops a user

specified number of test vectors . The start strategy

initially fills the test vector with don 't care states.

In each consecutive pattern, the mos t significant don't

care is replaced by a low logic l e vel until all inputs are

low levels. The process is conti n ued by replacing the low

logic levels with high logic levels and then replacing the

high levels with low levels.

The check test generator produces checkerboard vector

sets. The first vector o f t h e checkerboard vector set is

constructed by shifting a hig h logic level into the most

82

significant bit of a ze ro v e c tor. The next vector has a

low level followed by a high l e vel shifted into the most

significant bits . The shifting i s repeated for succeeding

vectors until the last vector is f illed with alternating

low and high levels. The p r o cess is then repeated with

high and low input levels exch a ng e d .

The last method, DQUB, is similar to the start method

except that the vectors can be mod i fi ed to include more

than one change per vector . This me t hod does not utilize

don't care states.

Suggested Applications

The Tegas test vector generatio n utilities can be

applie in number of schemes. The p ath sensitization mode

of the test vector generator c a n b e applied to small

devices. However, the large computational effort

associated with the mode may pro h i b its its application to

large designs.

The random test generatio n mode and Agrawal's (1982b)

method can effectively be employed for larger devices.

Manually generated test vector s can probably be used in

conjunction with this method. The faults which are

detected by the manual l y generated patterns must be

eliminated fr om the faul ts considered by Agrawal's method.

83

The estimated costs of us ing the path sensitization

mode must be compared to the costs of randomly generating

the test vectors. The c o st o f the random generation

effort can be estimated by c h a r acterizing the device with

only a few hundred vectors . Subseque n t fault simulation

costs must also be considered for each method.

Test Data Augmentation a nd Conversion

The test vectors obtained are processed through a

final Test Data Augmentation and Conversion, TDAC, step

(Muehldorf 1981). The step is composed of two tasks. The

first task consists of converting ~he logic tests into

tester native languages. The second task consists of

augmenting the logic tests with p arametric tests which

check/ verify the voltage/current properties of the DUT I/0

pins. Typically, the parametri c tests are performed by

applying a constant voltage/curre nt to a pin and observing

the resulting current/voltage. The value obtained is

compared to previously defined limits. International

Microelectronic Products, a ga t e array vendor, performs

only DC parametric testing on devices. The tests reveal

power bus shorts and improperly functioning I/O pins but

do not detect logic f aults. The vendor achieves

surprising l y good res ult s (Rappaport 1984).

Chapter IV

CONCLUSIONS

CMOS LSI faults can be divided into two types,

logical and parametric. The three test methods which

exist are DC, AC (or parametric), and clock rate testing.

Five viable test techniques, which were discussed, exhibit

a great diversity of characteristics. Thus, the designer

must carefully consider each design's requirements and

test technique characteristics before making a selection.

The testability design goal need not be 100 percent

fault coverage. Agrawal's method can be employed to

determine the most cost effective tradeoff between field

reject rate and device fault coverage. Frequently, the

required fault coverage is significantly lower, e.g., 85

to 95 percent.

Design rules can help the designer avoid common

mistakes. The design rules can be applied during the

block and detail hardware design phases. Test technique

selection, which occurs in the block design phase, should

be based on five, design dependent criteria. The criteria

are: the device architecture, the desired fault coverage,

85

compatibility wi th the test strategy of the next higher

assembly level , available tes t ge nerators/analyzers, and

the remaining device capacity .

Logic simulation systems a re be tter than breadboards.

The gap between these simulation methods will continue to

widen with the development of i mproved software and

hardware for logic simulation s y stems. Presently, a

number of logic simulation systems are available. Most

s y stems contain a testability me as urement utility. The

testability measurement utilities s ho uld be employed and

the results processed as inputs to Agrawal's method. A

limited number of test vectors, e . g ., 100 to 300, should

be generated by a random method . Agrawal's method can

then be used to estimate the remaining test vector

generation effort. Remedial des i gn efforts can be

implemented to improve the device testability if the test

generation effort is excessive. These steps form the

basis of a procedure which v e rif ies the testability design

goal can be met and estimates the test generation effort.

A large variety of t est generation methods are

available. However, o n l y a few methods are available in

ATVG utilities. They are computationally expensive and

employ unsophisticated algorithms. The TEGAS test vector

86

generation utility , which emp loy s a path sensitization

method , should be applied to small devices.

Most logic simulation systems include a random test

pattern generator. The rand om tes t pattern generator can

provide a high degree of f a ult coverage and supports

Agrawal's method of estimating the t est generation effort.

This method should be applied to l a rger devices. Future

cost improvements in fault simul at i o n hardware and

software will make random pattern generation even more

attractive.

APPENDICES

APPENDIX A

DEFINITION OF TERMS AND ABBREVIATIONS

AC TESTING: Also known as dynamic or parametric testing,

verifies the time related behavior of the device and

the magnitudes of output voltage and current levels.

ALU: Arithmetic Logic Unit

ATE: Automatic Test Equipment

ATG: Automatic Test Generation

ATVG: Automatic Test Vector Generation

AVLSI: Advanced Very Large Scale Integration

BILBO: Built-In Logic Block Observer

CLOCK RATE TESTING: Similar to DC testing but occurs at

clock frequencies near the device maximum. Clock

rate testing is performed to reduce device test time

and to prevent data loss in time dependent circuits

such as MOS memories.

CHDL: Computer Hardware Description Language

CMOS: Complementary Metal Oxide Semiconductor

COMPLETE TEST: A test covering all stuck-at-faults that

can be accessed.

CONTROLLABILITY: The ability to force a selected circuit

node to a desired logic state.

89

DC TESTING: Also known as static or fu nct i onal testing,

consists of applying test vectors to t h e device and

analyzing the corresponding stea dy state outputs to

determine whether the functi o nal behavior is

correct.

DEVICE: A general term for an item of in terest s uch as an

LSI chip.

DUT: Device Under Test

FAILURE: The occurrence of an inability o f a device to

perform according to specification.

FAULT: A physical state or condition of a device which

may cause failure.

FAULTED MACHI E (MODEL): A logic network modeled with one

or more fault conditions.

FDM: Functional Data Modules

FUNCTIONAL TEST:

device to

A test which examines the ability of a

operate according to t he functional

specifications.

GOOD MACHINE (MODEL): A logic netwo rk modeled without a

fault.

HILDO: Highly Integrated Logic Device Observer

HOMING SEQUENCE: A series of input vectors which, when

applied to a sequent ia l circuit, bring it into a

previously defined s t ate.

IC : Integrated Circuit

I/0: Input/Output

LDL: Logic Design Langu age

LFSR: Linear Feedback Shift Regi s ter

90

LOGIC FAULT: A fault which c a us e s the logic function of a

device to be changed t o some other function. A

typical logical fault causes the circuit signal to

be fixed at a constant value .

LOGIC SHORT FAULT: A fault in l og ic circuitry in which a

short circuit exists betwe en logic nets.

LOGIC TEST: A test for the logi c o r switching function of

a device. The test may consist of many test

vectors.

LSI: Large Scale Integration

LSSD: Level Sensitive Scan Desig n

MOS: Metal Oxide Semiconductor

MSI: Medium Scale Integrat ion

NET: A group of intercon nec t ed circuit nodes.

OBSERVABILITY: The ab i lity to propagate the logic state

of a selected ci rcuit node to an accessible test

point.

PARAMETRIC FAULT: A parame tric fault typically alters the

magnit ude of a c ircuit parameter causing a change in

circu it speed, cur rent, or voltage.

PATTERN: A set of logic vectors describing the

input or output modes of a device.

expressed as a vector applied to a device

purpose of simulation or testing.

PLA: Programmable Logic Array

RAM: Random Access Memory

91

state of

Typically,

for the

READOUT SEQUENCE: A pattern sequence, applied to the

input of a sequential circuit, which propagates the

state of the device to an accessible test point.

ROM: Read Only Memory

RTL: Register Transfer Language

SENSITIZED PATH: The path from the failure site to an

accessible test point.

SIMULATION: Exercising a descriptive model of a logic

network on a computer to analyze its functional

behavior.

SPOOF: Structure Parity Observation Output Function

SSI: Small Scale Integration

STRUCTURAL TEST: A test based on the physical structure

or layout of a device.

STUCK-AT-FAULT: A signal which becomes fixed at a

constant value.

TEST: A procedure which examines the ability of a device

to conform to specification.

92

TESTABILITY: The percentage of detectable faults that can

possibly occur in a model which is accessible to

testing compared with the faults which can possibly

occur.

TEST COVERAGE: The percentage of possible faults for a

device for which test vectors are provided.

TESTABILITY MEASUREMENT UTILITY: A logic simulation

utility which infers the difficulty of testing a

circuit node by a simple algorithm.

TEST COVERAGE: The percentage of possible faults for a

device for which test vectors are provided.

TDAC: Test Data Augmentation and Conversion

TEST PATTERN: Logic vectors or states applied to the

inputs of a logic network and performing one or more

logic tests.

TEST SEQUENCE: A series of test vectors applied in a

specific order.

TEST VECTOR: A logic state applied to the input of a

logic network.

TPFF: Test Point Flip-Flop

TPG: Test Pattern Generation

VLSI: Very Large Scale Integration

APPENDIX B

TEST TECHNIQUE

(extracted from Buehler 1982)

The Test Circuit: A Two-bit Adder with Ripple Carry

For ease of analysis, the five techniques in the
study were compared by considering only the testing of the
combinational network in the classical finite-state
machine shown in Figure 9. To keep the network simple yet
meaningful, we chose the ripple carry adder with no
carry-in shown in Figure 10. This figure will be used
again in subsequent circuits. The adder adds two numbers,
A and B, each represented by two bits vectors, a=(a1,a0)
and b=(b1 ,bO), to produce the sum S represented by the
vector s=(s1,s0). As seen in Figure 10, the adder
consists of a half adder whose inputs are aO and bO, and
whose outputs are sO and c1. The carry out of the half
adder c1 is an input along with a1 and b1 to the full
adder which produces the carry out c2 and the sum bit s1.
The relevant switching expressions for the half adder are

sO = aO + bO

c1 = aO * bO

and for the ~ull adder are

s 1 = (a 1 + b1) + c1

c2 = (a 1 + b 1) * c 1 + a 1 * b 1

(46)

(4 7)

(48)

(49)

Figure 11 shows an implementation for the above switching
expressions that can be realized in hardware using NAND
and XOR gates.

To efficiently test for the structural integrity of
the adder circuit, a minimum test set was found that
detects all single stuc~ at faults. For the two bit adder
implementation shown in Figure 11, tests were devel~ped
assuming a stuck-fault model at each of 26 fault po7nts
indicated by X's. That is, for each of ~6 p~ss1ble
faults, the output was observed when the c1rcu1t was

Page 94

I~~PUTS

REGISTER 1

COMBINATIONAL ·
t~ETWDRt<

REGISTER 2
,

OUTPUTS FEEDBACK PATHS

Figure 9. Finite State Machine .

l.
I

---'

<I
I

-.

_J
_J
I
LL

er:
Lu
a:.=-l
.:=:.
<I:

lX
w
w
Q
<J:

~

CO

Figure 10. Block Diagram of Adder Circuit

95

w

C.>
(J)

0 0
<I: a::u

:.>< ~ .

' ...

CL~-- G

/ \
/ '• • •

I ..

(.) ~ Q

(\J
0

Figure 11. Gate Level Representation of Adder

96

97

faulted by both a stuck-a t -one and a stuck-at-zero fault
at each fault po int. It wi ll be assumed that when a point
is faulted , the point is disconnected from upstream
signals and is either s-a- 1 or s-a-0 with respect to
downstream signals . For example, a fault at E does not
affect the A to G signal path.

The result of a s t uck fa ult analysis for the adder
circuit shown in Figure 11 is given in Figure 12, which
shows the output at nodes Z,Y,X,W (GOOD) for each of 16
possible tests . The stuc k faults are indicated by the
notation listed in the le f t-hand column. For example,
(A/0) indicates that node A is stuck-at-zero, (A/1)
implies that node A is stuck-at-one, etc. A fault is
detected by a specific test when the output differs from
the good machine output; these are indicated by the
asterisks in Figure 12 .

In the following analys i s, a test set for the adder
circuit is determined that detects 100 percent of the
stuck faults. The test set can be obtained by inspection
of Figure 12. The proces s can be simplified by first
eliminating faults that produce identical output for all
16 tests. By inspecting Fig ure 12 or from a knowledge of
indistinguishable faults at each gate, the following fault
groups are detectable by the s ame test set:

(a) G/O, H/0, M/1, P/0
(b) K/O, L/O, 0/1
(c) T/O, U/O, V/1
(d) 0/0, V/O, Z/1
(e) M/0, P /1

This process, known a s fault collapsing, reduces the
number of faults listed i n Figure 12 from 52 to 42.

From this reduced l ist, a set of five tests [sic] was
found as follows . I nspection of a collapsed fault list
reveal that some faults are detected by only a few tests.
For example , U/1 is dete cted only by test T3, ~o this ~est
must be included i n the test set. As an intermediate
step, a test set wa s determined for those faults detected
by four or fe wer tests. When the rem~i~ing faults were
examined , this tes t set was found suff1c1ent to detect all
f au lts. The te s t set for 100 percent fault coverage of
the adder c i r cu i t consists of five tests: T3, T5, T7,
T10, and T1 2 .

98

ADD 9 10-JUN-1981 1 9: 1 6

TEST 0 1 2 3 4 5 6 7
INPUT A 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1
INPUT c 0 0 0 0 1 1 1 1
INPUT D 0 0 0 0 0 0 0 0

ZYXW(GOOD)OOOO 0001 0001 011 0 0100 0101 0101 1010

(A 0) 0000 000* 0001 O*** 0100 010* 0101 ****
(A 1) 000* 0001 0001 011 0 010* 0101 **** 101 0
(B 0) 0000 0001 0001 O*** 0100 0101 010* ****
(B 1) 000* O*** 0001 011 0 010* **** 0101 1010
(C 0) 0000 0001 0001 011 0 0*00 0*01 0*01 **10
(C 1) 0*00 0*01 0001 **10 0100 0101 0101 1010
(D 0) 0000 0001 0001 011 0 0100 0101 0101 1010
(D 1) 0*00 0*01 0001 **10 **00 **01 **01 1*10
(E 0) 0000 000* 0001 011 * 0100 010* 0101 101*
(E 1) 000* 0001 0001 011 0 010* 0101 010* 1010
(F 0) 0000 0001 0001 011 * 0100 0101 010* 101*
(F 1) 000* 000* 0001 011 0 010* 010* 0101 1010
(G 0) 0000 0001 0001 O**O 0100 0101 0101 ***O
{G 1) 0000 0001 0001 011 0 0100 0101 ** * 1 1010
(H 0) 0000 0001 0001 O**O 0100 0101 0101 ***O
(H 1) 0000 0**1 0001 011 0 0100 ***1 0101 1010
(I 0) 0000 0001 0001 011 0 0*00 0*01 0*01 **10
(I 1) 0*00 0*01 0001 **10 0100 0101 0101 1010
{J 0) 0000 0001 0001 011 0 0100 0101 0101 1010
(J 1) 0*00 0*01 0001 **10 0*00 0*01 0*01 **10
(K 0) 0000 0001 0001 011 0 0100 0101 0101 1010
(K 1) 0000 0001 0001 011 0 0100 0101 0101 1010
{L 0) 0000 0001 0001 0110 0100 0101 0101 1010
{L 1) 0000 0001 0001 011 0 *100 *101 *101 1010
(M 0) O**O 0**1 0001 011 0 ***O ***1 ***1 1010
(M 1) 0000 0001 0001 O**O 0100 0101 0101 ***O
{N 0) 0000 0001 0001 0110 0*00 0*01 0*01 **10
(N 1) 0*00 0*01 0001 **10 0100 0101 0101 1010
(0 0) *000 *001 0001 * 11 0 *100 *101 *101 1010
(0 1) 0000 0001 0001 011 0 0100 0101 0101 1010
(P 0) 0000 0001 0001 O**O 0100 0101 0101 ***O
(P 1) O**O 0**1 0001 011 0 ***O *** 1 ***1 1010

Figure 1 2. Fault Analysis of Adder Circuit

99

TEST 8 9 1 0 1 1 1 2 1 3 1 4 1 5
INPUT A 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1
INPUT c 0 0 0 0 1 1 1 1
INPUT D 1 1 1 1 1 1 1 1

ZYXW(GOOD)0100 0101 0101 1010 1000 1001 1001 111 0

(A 0) 0100 010* 0101 **** 1000 100* 1001 1***
(A 1) 010* 0101 **** 1010 100* 1001 1*** 111 0
(B 0) 0100 0101 010* **** 1000 1001 100* 1***
(B 1) 010* **** 0101 1010 100* 1*** 1001 1 1 1 0
(C 0) 0100 0101 0101 1010 **00 **01 **01 1*10
(C 1) **00 **01 **01 1*10 1000 1001 1001 111 0
(D 0) 0*00 0*01 0*01 **10 **00 **01 **01 1*10
(D 1) 0100 0101 0101 101 0 1000 1001 1001 111 0
(E 0) 0100 010* 0101 101 * 1000 100* 1001 111 *
(E 1) 010* 0101 010* 1010 100* 1001 100* 1 1 1 0
(F 0) 0100 0101 010* 101* 1000 1001 100* 111 *
(F 1) 010* 010* 0101 1010 100* 100* 1001 1 1 1 0
(G 0) 0100 0101 0101 ***O 1000 1001 1001 1**0
(G 1) 0100 0101 ***1 1010 1000 1001 1**1 111 0
(H 0) 0100 0101 0101 ***O 1000 1001 1001 1**0
(H 1) 0100 ***1 0101 1010 1000 1**1 1001 111 0
(I 0) 0100 0101 0101 1010 1*00 1*01 1*01 1*10
(I 1) 0*00 0*01 0*01 **10 1000 1001 1001 1 1 1 0
(J 0) 0*00 0*01 0*01 **10 1*00 1*O1 1*O1 1 * 1 0
(J 1) 0100 0101 0101 1010 1000 1001 1001 111 0
(K 0) 0100 0101 0101 1010 *000 *001 *001 * 11 0
(K 1) *100 *101 *101 1010 1000 1001 1001 1 1 1 0
(L 0) 0100 0101 0101 1010 *000 *001 *001 * 11 0
(L 1) 0100 0101 0101 101 0 1000 1001 1001 1 1 1 0
(M 0) ***O ***1 ***1 1010 1**0 1**1 1**1 1 1 1 0
(M 1) 0100 0101 0101 ***O 1000 1001 1001 1**0
(N 0) 0*00 0*01 0*01 **10 1000 1001 1001 111 0
(N 1) 0100 0101 0101 1010 1*00 1*01 1*01 1*1 0
(0 0) *100 *101 *101 1010 1000 1001 1001 111 0
(O 1) 0100 0101 0101 1010 *000 *001 *001 * 110
(P 0) 0100 0101 0101 ***O 1000 1001 1001 1**0
(P 1) ***O ***1 ***1 1010 1**0 1**1 1**1 1 1 1 0

Figure 12.--Continued

100

TEST 0 1 2 3 4 5 6 7
INPUT A 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1
INPUT c 0 0 0 0 1 1 1 1
INPUT D 0 0 0 0 0 0 0 0

ZYXW(GOOD)OOOO 0001 0001 011 0 0100 0101 0101 1010

(Q 0) 0000 0001 0001 0*10 0100 0101 0101 **10
(Q 1) 0*00 0*01 0*01 011 0 **00 **01 **01 1010
(R 0) 0000 0001 0001 0*10 0100 0101 0101 1*10
(R 1) 0*00 0*01 0*01 011 0 0*00 0*01 0*01 101 0
(S 0) 0000 0001 0001 011 0 0*00 0*01 0*01 1*10
(S 1) 0*00 0*01 0*01 0*10 0100 0101 0101 1010
(T 0) 0000 0001 0001 0110 0100 0101 0101 *010
(T 1) 0000 0001 0001 011 0 *100 *101 *101 1010
(U 0) 0000 0001 0001 011 0 0100 0101 0101 *010
(U 1) 0000 0001 0001 * 11 0 0100 0101 0101 1010
(V 0) *000 *001 *001 * 11 0 *100 *101 *101 1010
(V 1) 0000 0001 0001 011 0 0100 0101 0101 *010
(W 0) 0000 000* 000* 011 0 0100 010* 010* 1010
(W 1) 000* 0001 0001 011 * 010* 0101 0101 101*
(X 0) 0000 0001 0001 01*0 0100 0101 0101 10*0
(X 1) 00*0 00*1 00*1 0110 01*0 01*1 01*1 1010
(Y 0) 0000 0001 0001 0*10 0*00 0*01 0*01 1010
(Y 1) 0*00 0*01 0*01 0110 0100 0101 0101 1*1 0
(z 0) 0000 0001 0001 011 0 0100 0101 0101 *010
(z 1) *000 *001 *001 * 11 0 *100 *101 *101 1010

Figure 12.--Continued

101

TEST 8 9 1 0 1 1 1 2 1 3 14 1 5
INPUT A 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1
INPUT c 0 0 0 0 1 1 1 1
INPUT D 1 1 1 1 1 1 1 1

ZYXW(GOOD)0100 0101 0101 1010 1000 1001 1001 1 1 1 0

(Q 0) 0100 0101 0101 **10 1000 1001 1001 1*10
(Q 1) **00 **01 **01 1010 1*00 1*01 1*01 111 0
(R 0) 0100 0101 0101 1*1 0 1000 1001 1001 1*10
(R 1) 0*00 0*01 0*01 1010 1*00 1*01 1*01 111 0
(S 0) 0*00 0*01 0*01 1*1 0 1000 1001 1001 111 0
(S 1) 0100 0101 0101 1010 1*00 1*01 1*01 1*10
(T 0) 0100 0101 0101 *010 1000 1001 1001 111 0
(T 1) *100 *101 *101 1010 1000 1001 1001 111 0
(U 0) 0100 0101 0101 *010 1000 1001 1001 111 0
(U 1) 0100 0101 0101 101 0 1000 1001 1001 111 0
(V 0) *100 *101 *101 1010 1000 1001 1001 111 0
(V 1) 0100 0101 0101 *010 1000 1001 1001 111 0
(W 0) 0100 010* 010* 1010 1000 100* 100* 111 0
(W 1) 010* 0101 0101 101 * 100* 1001 1001 111 *
(X 0) 0100 0101 0101 10*0 1 oo·o 1001 1001 11 *O
(X 1) 01*0 01*1 01*1 101 0 10*0 10*1 10*1 111 0
(Y 0) 0*00 0*01 0*01 101 0 1000 1001 1001 1*10
(Y 1) 0100 0101 0101 1*1 0 1*00 1*01 1*01 111 0
(z 0) 0100 0101 0101 *010 *000 *001 *001 *110
(z 1) *100 * 101 *101 1010 1000 1001 1001 111 0

Figure 12.--Continued

102

Off-li ne Test Techniques

Self-Oscillation

For the adder of Figure 11 , the self-oscillation test
circuit is simple to impl eme nt as shown in Figure 13. In
the add mode (sigma =1), data are applied to the adder and
outputs obtained in the us ua l manner. In the oscillation
mode (sigma=1), the feedback path between c2 and bO is
activated, and the ci rcui t oscillates at a frequency
determined by the gate del ays and stray capacitances. As
seen in Figure 13, the c2 bi t is inverted, fed back and
inserted at bO. The path of oscillation through the adder
is illustrated by the heavy line in Figure 14.
Os cillations will stop if a f a ults occurs on the
oscillation path or if a gate is no t operational.

For oscillation to occur , certain gates in the adder
and feedback path must be sensit i zed. For

ob a b a = 00101, (50)
1 1 0 0

the circuit oscillates between t e sts TS and T7 listed in
Figure 1 2. For

= 01001, (51)

the circuit oscillates betwe en t ests T9 and T11. The path
of oscillation is illustra ted in Figure 14 by the heavy
line. Oscillations will cease if a fault occurs on the
oscillation path of if a g a t e i s not properly sensitized.
The oscillation is is illus t r a t ed by the two additions
shown in Figure 15. For the sensitizing condition

= 00101, (52)

the c2 bi is inverted a nd i nserted at bO, thus sustaining
the oscillations.

Results for a f ault anal ysis of the circuit, shown in
Figure 14, are listed in Table 7. For the fo~r
oscillation conditions listed, 80 percent of the faults in
the adder and fee dback circuits can be detected by
revert ing to the add mode and by applying tes t s T14 and
T3.

,· .. ·-·

.... _

C i

b

r-1r-----------1 ,---. er: .:-:-· w -

-~

.r .-. I ·a
l---J -- -c:. l_f)
-- ·T -. ..._

_J ---:-1
J ,,

.--, =J
(:L' I .J l -

-w:--t CL ,_, w
w t_i) t----+---1 w --=-'

·--- --------1 ~ <r <r _J (•.J ,__.....----41 Cl (::J
_I (_)

t---------~----' --=-' -, -·
C:ULL

'-'

--·----~---

Fi g ure 13. Self-Oscillation Test Circuit

103

(•J
u

b

w

0
(J)

0 · O
<I CQ

>- :·

I
L_ _ ---A

l_J ;. ~-

C.J. Q .

Figure 14. Oscillation Path Through Adder Circuit

104

_. B o

_... 0 0

I

\
\

•'

-·

0 0 0
......[co (J)

..,...... _... ~ ,-e
(_.1 <I a:Q (_(l

~

'-..

•• •

t

I
I

I

,/ \
I .

I

• '•
I

' \

Figure 15. Oscillation Sequence for the
Self-Oscillation Test Circuit

105

106

TABLE 7

TEST SEQUENCE AND FAULTS DETECTED FOR
THE SELF-OSCILLATION TEST CIRCUIT

INPUT EFFECT
MODE B A B A SIGMA FAULT DETECTED OF

1 1 0 0 FAULT
--------~-- ,---

osc. T =0101 0 A/0 B/0 B/1 C/0
AT 5 D/1 G/O H/O H/1

z I/0 J/1 L/1 M/O STOP
M/1 N/0 0/0 P/0 osc.
P/1 T/0 T/1 U/O
V/O V/1 Z/0 Z/1

osc. T =0101 0 R/0 R/1 Y/0 Y/1 STOP OSC.
AT 5 S/0 y IN PHASE

y WITH z

osc. T =0101 0 F/0 F/1 W/O W/1 STOP OSC.
AT 5 E/0 W IN PHASE
w WITH z

osc. T =1001 0 C/1 D/0 I/1 J/0 STOP OSC.
AT 9 K/1

z

ADD T = 111 0 A/1 E/1 G/1 K/0 ZYW I 101

1 4 L/0 N/1 0 / 1 S/1
/0 / 0

ADD T =0011 1 U/1 ZYW I 101

3

107

. The self-oscillation test circuit is simple and is
easily tested for faults. This technique has been used
successfully to test high-speed gallium arsenide res an
application for which commercial test equipment with the
required speed is unavailable. Long (1980) has used the
technique to verify the operation of SxS and 8x8-bit
parallel multipliers operating around 200 MHz.

Self-Comparison

The basic philosophy in a self-comparison scheme is
to partition the circuit under test in such a manner that
similar functional elements can be coerced into producing
identical outputs for a given set of input values in a
fault-free environment. Figure 16 shows how
self-comparison is applied to our [sic] adder example.
The figure shows a comparator that continuously monitors
the outputs of the half and full adder. Forcing equality
in the outputs of these modules may be accomplished in at
least two ways.

Circuit reconfiguration is the simplest way to obtain
equal output values. This scheme requires that, during
the test mode, the carry out from the half-adder c1 be
disconnected from the carry-in of the full adder. The
full adder carry-in is set to the value zero, thereby
causing the full adder to behave as if it were a half
adder. Inputs (a1,b1) and (aO,bO) are set equal, and the
output of the comparator is observed. There are three
basic problems with this approach. First, considerable
overhead is needed to accomplish reconfiguration. Second,
it is necessary to verify that the reconfiguration circuit
is functional, which may not be possible. Finally, since
the basic circuit is changed to perform testing, it is not
possible to check all paths through the "real"
configuration. For example, it will not be possible to
determine whether the carry-out c1 of the half adder is
correctly connected to the carry-in of the full adder.

The other method of creating equalities in the output
variables is to study the associated switching functions
and to carefully analyze the interaction of the modules in
the operational configuration. The goa~ is to find a ~et
of input values for which the modules being compared will
output identical results. This approach requires more
time to develop a test set but has t~e advantage. of
testing an undisturbed circuit. On the disadvantage side,

108

B A1 E' A .•. 1 '.-.
I I I I

~1-
D D D D
Q D Q G!
I l I

B1 A1 Ci ,•'•, ("1
H·.·

FULL ADDEF~ HALF ADDEF'.
C2 51 Ci ~30

r J

D c B l •.
H

CDMF'AF'.ATDF'.
T D

- L
-- t:i D D D D

0.~ D l~I C! fl 0 .-._ _ .. _ ..

F.'. I] • 1 • • • i:-1 ,-.. -.
I .. _, l

·-· L:.,1

Figure 16. Self-Comparison Test Circuit

109

however, it may be difficult to g e nerate a sufficient test
set to sensitize all paths through bo t h modules.

The hardcore of this testing method is the
comparator. That is, this circuit must be operating
correctly in order to successfully perform testing. It
would seem reasonable, therefore, t o require a procedure
to test the comparator. This last po in t is simply a
restatement of the famous questi on "who checks the
checker?" To a large degree this quest i on can be answered
by designing a checker that checks itsel f. These circuits
are called totally self-checking checkers and requ i re
special coding of their inputs such tha t t hese inputs fall
into two sets: G or good and B or bad (refer to Figure
17). Further, the output codewords f o rmed by these
circuits are elements of one of two sets : g and b. The
operation of a TSC checker when no internal faults are
present performs a mapping from

G - > g (53)

and

B - > b. (5 4)

In the case where an internal fault is present , there must
exist at least one element

g' G (5 5)

such that

g' -> b (56)

It is essential to note that it is impossible to
determine from the output of a TSC checke~ wh~ther ~he
source of a faults was the checker of the circuit being
checked. For this reason it wil l a lway s be.ass~med t~at
the checker is an integral part o f the circui~ being
checked, and therefore any fault ind i cation im~lies that
the unit is bad. Figure 18 s hows a typical TSC
comparator. Input codewords in the se t

.- '• ·-·
w
a:=:. t-
LI I

wr
~ _J
fl(L
(_) 1--

a:ct I_) (L

w

=· ·=·
. .
·1·

(~I

.- ~LY
J () w
w~

<r I C)
I- (_) w
,__. I I
1-- LL r:_:r

_J

w
co

. . ·1·

Q 1-
L 1 =•
(_) (L

Zl-

--.L.

t
w
co
...___

co
w
t--

·--~
LL
J--

1-
w
co
t-
(0
w
I--

I

=· (L

Figure 17. Operation of a Totally
Self-Checking Checker Circuit

11 0

... . _.-

··z ·· --. .·

-'• ·-±·· -· ·· --- - .- •• _.l_ --

·:... ... · ... ·r ··r· .-.-. -. .· · .. _

et: . -

(_) -- .-... · -..

-.... - .. __.__ ...

r....... · . • -.......... _ ... -.

Figure 18. A Totally Self-Checking Comparator

1 1 1

1 1 2

[a I b and c = d] (S7)

fall into the set G. All other codewords are considered
bad. The outputs

[' q I r] (S8)

are elements of g ; conversely,

q = r] (S9)

belong to b.

A fault analysis for the comparator shown in Figure
1 8 i s g iv en in Fig u re 1 9 • An ex am in at ion of Figure 1 9
indicates that valid codewords are obtained for tests TS,
T6, T9, and T10 . Noti ce t hat the requirements mentioned
above for good codeword s hold on ly for these tests.

The test set needed t o detect all single faults in
the adder circuit is developed to be compatible with the
codeword requirements of the comparator. (Recall that the
adder circuit is shown i n Figure 10, and its fault
analysis is given in Figure 12 .) An examination of Figure
12 indicates that nine t e s ts, T3, TS, T6, T7, T9, T10,
T11, T13, and T14, are cand i dates because they form valid
input codewords for t he comparator. Before determining
the test set, fault response s that produce codewords

(z I Y > (6 0)

and

(x I w) (61)

must be eliminated from Figure 12. These responses would
lead to the conclusion that the adder is fault free when
in fact it is faulty . An intermediate test set

1 1 3

COM 5 20-AUG-1981 10:49
TEST 0 1 2 3 4 5 6 7 8 9 10 1 1 12 1 3 14 15
INPUT A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
INPUT c 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
INPUT D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

RQ(GOOD)OO 00 00 00 00 10 01 1 1 00 01 1 0 1 1 00 1 1 1 1 1 1

(A 0) 00 00 00 00 00 *O 01 *1 00 O* 10 1 * 00 ** 1 1 1 1
(A 1) 00 00 00 00 *O 1 0 *1 1 1 O* 01 1 * 1 1 ** 1 1 1 1 1 1
(B 0) 00 00 00 00 00 1 0 O* 1 * 00 01 *O *1 00 1 1 ** 1 1
(B 1) 00 00 00 00 O* 1 * 01 1 1 *O *1 1 0 1 1 ** 1 1 1 1 1 1
(C 0) 00 00 00 00 00 *O O* ** 00 01 1 0 1 1 00 *1 1 * 1 1
(C 1) 00 *O O* ** 00 1 0 01 1 1 00 *1 1 * 1 1 00 1 1 1 1 1 1
(D 0) 00 00 00 00 00 1 0 01 1 1 00 O* *O ** 00 1* *1 1 1
(D 1) 00 O* *O ** 00 1 * *1 1 1 00 01 1 0 1 1 00 1 1 1 1 1 1
(E 0) 00 00 00 00 00 1 0 01 1 1 00 O* 1 0 1 * 00 1 * 1 1 1 1
(E 1) 00 00 00 00 00 10 01 1 1 O* 01 1 * 1 1 O* 1 1 1 1 1 1
(F 0) 00 00 00 00 00 1 0 01 1 1 00 O* 1 0 1 * 00 1* 1 1 1 1
(F 1) 00 O* 00 O* 00 1 * 01 1 1 00 01 1 0 1 1 00 1 1 1 1 1 1
(G 0) 00 00 00 00 00 1 0 O* 1 * 00 01 1 0 1 1 00 1 1 1* 1 1
(G 1) 00 00 00 00 O* 1 * 01 1 1 00 01 .1 0 1 1 O* 1 1 1 1 1 1
(H 0 } 00 00 00 00 00 1 0 O* 1 * 00 01 10 1 1 00 1 1 1* 1 1
(H 1) 00 00 O* O* 00 10 01 1 1 00 01 1 * 1 1 00 1 1 1 1 1 1
(I 0 } 00 00 00 00 00 *O 01 *1 00 01 10 1 1 00 *1 1 1 1 1
(I 1) 00 00 00 00 *O 1 0 *1 1 1 00 01 1 0 1 1 *O 1 1 1 1 1 1
(J 0) 00 00 00 00 00 *O 01 *1 00 01 10 1 1 00 *1 1 1 1 1
(J 1 } 00 *O 00 *O 00 10 01 1 1 00 *1 10 1 1 00 1 1 1 1 1 1
(K 0) 00 00 00 00 00 1 0 01 1 1 00 01 *O *1 00 1 1 *1 1 1
(K 1) 00 00 00 00 00 10 01 1 1 *O *1 10 1 1 *O 1 1 1 1 1 1
(L 0 } 00 00 00 00 00 1 0 01 1 1 00 01 *O *1 00 1 1 *1 1 1
(L 1) 00 00 *O *O 00 10 *1 1 1 00 01 1 0 1 1 00 1 1 1 1 1 1
(M 0) 00 00 00 00 00 1 0 01 1 1 00 O* 10 1 * 00 1 * 1 1 1 1
(M 1) O* O* O* O* O* 1 * 01 1 1 O* 01 1 * 1 1 O* 1 1 1 1 1 1
(N 0) 00 00 00 00 00 1 0 O* 1 * 00 01 10 1 1 00 1 1 1 * 1 1
(N 1) O* O* O* O* O* 1 * 01 1 1 O* 01 1* 1 1 O* 1 1 1 1 1 1
(O 0) 00 00 00 00 00 *O 01 *1 00 01 10 1 1 00 *1 1 1 1 1
(0 1) *O *O *O *O *O 10 *1 1 1 *O *1 1 0 1 1 *O 1 1 1 1 1 1
(P 0) 00 00 00 00 00 1 0 01 1 1 00 01 *O *1 00 1 1 *1 1 1
(P 1) *O *O *O *O *O 1 0 *1 1 1 *O *1 10 1 1 *O 1 1 1 1 1 1
(Q 0) 00 00 00 00 00 1 0 O* 1 * 00 O* 10 1* 00 1* 1* 1 *
(Q 1) O* O* O* O* O* 1* 01 1 1 O* 01 1 * 1 1 O* 1 1 1 1 1 1
(R 0) 00 00 00 00 00 *O 01 *1 00 01 *O *1 00 *1 *1 *1
(R 1) *O *O *O *O *O 10 *1 1 1 *O *1 10 1 1 *O 1 1 1 1 1 1

Figure 19. Fault Analysis for a Totally
Self-Checking Comparator

1 1 4

(T3, T7, T11, T13) (62)

was determined by identifying those faults detected by a
single test. A test set (TS and T9) was then determined
for the faults not covered by the previous test. The test
set for 100 percent fault coverage of the adder circuit
consists of seven tests (T3, TS, T7, T9, T11, T13, and
T14). In the self comparison test mode, these seven test
are generated, and if

q I r, (6 3)

then the adder and comparator are fault free.

Partition

The partition approach to testing is shown in Figure
20. In the add mode (sigma=O), the multiplexer
reconfigures the logic so that the full adder and half
adder can be tested independently of each other. In the
figure, this is accomplished by connecting c13 to c11 and
c14 to c12 when sigma equals 1 and c13 to c01 and c14 to
c02 when sigma equals O.

The partition principle states that the number of
tests required to exhaustively test the subcircuits of a
combinational circuit is fewer than the number of test
required to exhaustively test the entire circuit. For
example, the half adder with three input requires

2
2 = 4 tests, (64)

and the full adder with three inputs requires

3
2 = 8 tests. (6S)

Since the test of the half adder and full adder can be
performed in parallel, only eight tests are required to
exhaustively test the adder circuitry. This amount of
testing is less than the number of tests needed to
exhaustively test the unpartitioned adder with four
inputs, which requires

0:::

(=)
w r--:,
C...::a <I Cl

(_()

([

.-... LL (\J

1-U
_J -.;-f

~

<[(_)
I

0

~· ~ -·--- i. ~

([
-

~ "":-4 ,···.J (•.J
-w;-t . - I -.r:-4 . ,-. ·-· --·
(_) .. -·' •. ·' ' I - -

0 a::
l.J I

"':...:· .·
w
_ _J

-w;-t c:. CL ...-t .- ~
II II 1- i II

' - I l I . - r-1
_J

=-z=
r .. . , --:t . • -w;-t

I .. .- ., a:=:, - -
.-1,_

-
I t~•

fl I -or:-t .__ w .. I .. w i"\J ~

a: ::-.:a IJ) &
~

: [

::I . __ J
(\J _ I

'
f._ I

··-
- ·· J

u
()::}

Figure 20. Partition Test Circuit

0
(f)

1"""">j __

(\J
(_)

D .___

~
-f
(:a -

•:-2• >--··-

1 1 5

11 6

4
2 = 16 tests. (6 6)

When a structural test of the adder and multiplexer
was derived, it was discovered that only five tests were
needed.for 1~0 percent ~ault coverage. The multiplexer
used in this study is shown in Figure 21. The fault
analysis for the entire circuit consists of combining the
tests needed to detect 100 percent of the faults in the
half adder, the multiplexer, and the full adder. The
fault analysis for the multiplexer is given in Figure 22
and the fault analysis for the half adder and full adde;
can be derived . from Figure 12. The fault analysis (see
Figure 23) shows that five tests are required for 100
percent fault coverage.

When applied to the testing of a four bit ALU, the
partitioning approach dramatically reduced the number of
tests. The four bit ALU studied was a commercially
available 74181 with 14 control and data inputs. Such a
combinational circuit requires

1 4
2 = 16,384 tests (67)

to be exhaustively tested, but partitioning the circuit
into five parts and testing identical parts in parallel
reduced the number of tests required to only 356. This
circuit could be partitioned without additional circuitry.

Scan Path

The scan path approach to testing allows access to
internal circuit nodes without unduly increasing chip pin
count. The technique relies on a special test mode which
reconfigures on-chip flip-flops into a shift register.
Test patterns can be serially shifted through the
reconfigured flip-flops to control various combinational
networks and shift out their response vectors. Figure 24
shows an application of scan path testing to the adder
circuit in which the test control variable, sigma,
operates a multiplexer at the input of each flip-fl~P· In
normal operation, sigma equals 0 and the ~ult1plexer
selects parallel load data. The shift mode is selected
when sigma equals 1, and the multiplexers are configured

.L

LL .- 9l

-f-
~

C•

(\J
~

(_)

,,
t<1
~

'· ·, -·

--.. :. ~

_,
--1

u

Figure 21. Multiplexer Circuit for the
Partition Test Circuit

1 1 7

11 8

MUX 1 20-AUG-1981 10:46

TEST 0 1 2 3 4 5 6 7
INPUT A 0 1 0 1 0 1 0 1
INPUT B 0 0 1 1 0 0 1 1
INPUT C 0 0 0 0 1 1 1 1

ON(GOOD)OO 1 0 00 01 00 1 0 1 0 1 1

(A 0) 00 *O 00 O* 00 *O 1 0 1 *
(A 1) *O 1 0 O* 01 *O 10 1 * 1 1
(B 0) 00 1 0 00 ** 00 1 0 *O 1 *
(B 1) 00 ** 00 01 *O 1 * 1 0 1 1
(C 0) 00 1 0 00 01 00 1 0 *O *1
(C 1) 00 1 0 *O *1 00 10 10 1 1
(D 0) 00 1 0 00 ** 00 10 1 0 1 *
(D 1) 00 ** 00 01 00 ** 10 1 1
(E 0) 00 1 0 00 *1 00 1 0 1 0 1 1
(E 1) 00 *O 00 01 00 *O 10 1 1
(F 0) 00 1 0 00 O* 00 10 10 1 *
(F 1) 00 1 * 00 01 00 1 * 1 0 1 1
(G 0) 00 1 0 00 O* 00 1 0 1 0 1 *
(G 1) 00 10 O* 01 00 10 1* 1 1
(H 0) 00 *O 00 01 00 *O 1 0 1 1
(H 1) *O 1 0 00 01 *O 10 10 1 1
(I 0) 00 *O 00 01 00 *O 1 0 1 1
(I ,) 00 1 0 00 *1 00 1 0 10 , 1
(J 0) 00 1 0 00 01 00 1 0 *O *1
(J 1) 00 1 0 00 01 *O 1 0 10 1 1
(K 0) O* 1 * O* 01 O* 1 * 1 * 1 1
(K 1) 00 1 0 00 O* 00 1 0 10 1*
(L 0) *O 1 0 *O *1 *O 1 0 1 0 1 1
(L 1) 00 *O 00 01 00 *O 1 0 1 1
(M 0) *O 1 0 *O *1 *O 10 1 0 1 1
(M 1) 00 10 00 01 00 1 0 *O *1
(N 0) 00 1 0 00 O* 00 1 0 10 1 *
(N 1) O* 1 * O* 01 O* 1 * 1 * 1 1
(0 0) 00 *O 00 01 00 *O *O *1
(0 1) *O 1 0 *O *1 *O 10 1 0 1 1

Figure 22. Fault Analysis for the Multiplexer

1 1 9

HALF ADDER MULTIPLEXER FULL ADDER
A B W P a b c n o Q C D Y z

------·--- ----------- ------------
1 0 1 0 1 0 0 0 1 1 0 0 1 0
0 1 1 0 1 1 0 1 0 0 1 0 1 0
1 1 0 1 0 0 1 0 0 1 1 0 0 1

0 1 1 0 1 0 0 1 1 0
0 1 1 0 1

PARTITION TEST CIRCUIT
A B b c C D W X Y z

1 1 0 0 0 0 0 0 1 0
1 1 1 0 1 0 0 1 1 0
1 0 0 1 0 1 1 0 1 0
1 0 0 1 1 1 1 0 0 1
0 1 1 1 1 0 1 0 0 1

Figure 23. Test Sequence for 100 Percent Fault Coverage ·
for the Partition Test Circuit

0 <I t------1

-

-

-

-

z
H

l

0::: c:a w (::-,,
<I: Q I))

Q
'T

-

Figure 24. Scan Path Test Circuit

t-
_J

0

0

120

1 2 1

to shift data from the input pin, through the flip-flops,
to the output pin.

The connection of the output Q4 of the input register
to the serial input of the output reg ister is crucial to
the scan path methodology. This links t h e registers in
series and provides a means of verify ing t h e correct
operation of the flip-flops prior to inserti ng vectors to
check the combinational network. Pa t tern s ma y be shifted
through the register and the output c hecked. Having this
capability is important for large combina t ion al networks
containing many registers. It allows the r eg i sters to be
linked together, forming a long shift register with one
input and one output.

Once the flip-flops have been checked , t h e adder in
Figure 24 is probed by first setting t h e v al ue of sigma to
1. Data are applied at the serial inpu t port and fill the
input register in four clock pulse s . At t h e fifth clock
pulse, sigma is set to O, and the output of t h e adder is
loaded into the output register. Duri ng the next four
clock pulses, sigma is again set to 1, a nd the output
register is shifted out.

Although test time can be very l o ng i n the scan path
method because of the serial nature of the t est data I / O,
hardware overhead in practice i s relatively small
(typically less than 20 percent). So f ar, t h e technique
has been applied to relatively smal l c i rcuits (<4000
gates). In VLSI size chips, it ma y be necessary to
provide a sophisticated architec tu r e to i mplement the scan
path. Users of this method c ould probably utilize the
technique of major and minor l o ops employed in bubble
memories to reduce the time needed to shift patterns in
and out of the chip.

BILBO

The built-in logic block o bserv e r is the last testing
method we will examine . It i s based on the use of an
on-chip test generator and a n a lyzer. As such, it is well
suited to VLSI, since test ve c t ors and respon~es need not
be sent to input-output pins , f or only the signature of
the test is observed externally .

The BILBO method makes use of two linear feedback
shift registers. One LFSR creates ~ ps~udorandom data
pattern that is used as input to a cornb1nat1onal network.

122

The outpu t of tha t network is compressed into a signature
by the second LFSR . Th is signature can then be compared
with an expected signa ture also stored on-chip.

Figure 25 is a n ex ampl e of the BILBO approach. As in
the scan- path method, a control variable sigma directs the
chip to enter either a s el f -test mode (sigma=1) or normal
oper~tion mode (sigm a=O) . When sigma equals 1,
multiplexers at the front e nd of each flip-flop select
serial operation. Exclu s i ve OR gates in the serial paths
implement a polynomial div ision of the data in the adder
input and output paths. The input LFSR implements
division by the primitive pol ynomi al

4
x + ,

to generate a pseudorandom sequence of length

4
2 1 = , 5 •

(68)

(6 9)

(Clearly the input register c an never be in the all O
state, because this state can never be excited.) The
output register is similarly conf igured into an LFSR that
implements a hashing function on t he adder outputs.

The input and output r egi sters must be preset with a
"seed'' value prior to beginning the testing to guarantee
that the signature generated by the hashing function is
produced under the same in it i al conditions as the stored
signature. For example, if t he input register is preset
to all 1 's and the ou t pu t register is cleared, a
transition through the next 14 states will, with high
probability, result in

c s s = 100
2 1 0

(70)

if no faults are present in either the LFSRs or the adder.

c ·

0
w ,

I

c:

--4 0
<I: /I

I

C5

.......
f.ll 71

I

c.r::::
w

0 a

<I Q 1_(1
0

<I

LL
-'

0 __...
LU I

--f
(_)

f t:: --4 w (J) a
-.:-f

...:,
<I: <I:

_J
_ I f\J
::t u
LL

-~
&J.)

t>

Figure 25. BILBO Test Circuit

C>

0
l.f.I

--4

(\J
(_)

l!.-.'
--4

~(\j

l.J J
a:: - I

t-
<I
z
1'_'..1

~

L'

123

APPENDIX C

HILDO TEST TECHNIQUE

The HILDO technique is based on a single diagnostic

register which functions as the device's test generator

and analyzer. The technique is easily implemented in VLSI

devices because the number of test control pins is small

and only the diagnostic register signature is observed

externally.

The HILDO technique employs an on-board register as a

LFSR. The feedback circuitry is constructed from the

device circuitry. Thus, the register compresses the

device circuitry's response into a characteristic

signature. The signature is then compared with the

expected signature which can be stored on the device.

Figure 26 is an example of the HILDO technique. A

test control input (sigrna/X2) directs the device to enter

the self-test mode or normal operation. The register is

preset to a repeatable, seed value prior to the beginning

of the test. The clock is then advanced for a

predetermined number of cycles. The final diagnostic

register contents are compared with the expected result.

Xl
X2.

Bl Al

Q4 --

Bl

C2

Al

Sl

t---(1

FULL ADDER

SI CJtv\4

-----D3

CP - CP - Q3

C2 SI

Figure 26. HILDO Test Circuit

125

Xl
'/2~-.,-~-t--t-~~~-r-~-+--,l--.

Q3 ------ Q2

Bo
HALF ADDER

Q3

Cl

~-· D2
CP Q2

So

...____...n1

CP I QI

Figure 26. -- Continued

SIG1A

So

127

The HILDO diagnostic register states, for the two bit

adder circuit of Figure 11, are shown in Table 8. The

HILDO register states were generateo by a simple computer

program. If the device is functioning correctly, then the

HILDO register will generate the sequences shown in Table

8.

All but one fault can be detected by initializing the

diagnostic register to

Q(1,1,1,0) = Q(q ,q ,q ,q) (71)
1 2 3 4

where

Q(q ,q ,q ,q)
1 2 3 4

is the output vector of the individual registers.

The fault coverage, predicted from Figure 12 is 97.6

percent. The remaining fault can be covered in a single

additional test. The additional test

initializing the diagnostic register to

Q(O,O, 1,1) = Q(q ,q ,q ,q)
1 2 3 4

which will provide complete fault coverage.

consists of

(7 2)

The HILDO technique requires the addition of 36 gates

to the device circuitry. However, the gates associated

with the second register, which is required by most other

techniques, can be eliminated. The second register

128

TABLE 8 HILDO STATE TRANSITIONS

Register Vector Input Vector Adder Vector
Q4 Q3 Q2 Q1 I 1 I2 I3 I4 A1 A2 A3 A4

The new seed is 0 0 0 0 0 0 0 0 0 0 0 0
Repeat Vector 0 0 0 0

The new seed is 0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

The new seed is 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

Repeat Vector 0 0 0 0

The new seed is 0 0 1 1 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 0 1

Repeat Vector 0 0 1 1

The new seed is 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 0 1

Repeat Vector 0 0 1 1

The new seed is 0 1 0 1 1 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vec t or 1 1 0 0

The new seed is 0 1 1 0 0 0 1 1 0 1 1 0

0 1 0 1 1 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1

0 0 1 1 1 0 0 1 0 1 0 1
Re p e at Vector 1 1 0 0

129

TABLE 8 -- CONTINUED

Register Vecto r Input Vector Adder Vector
Q4 Q3 Q2 Q1 I 1 I2 I3 I4 A1 A2 A3 A4

The new seed lS 0 1 1 1 1 0 1 1 1 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

The new seed is 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Repeat Vector 0 0 0 0

The new seed is 1 0 0 1 1 1 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 0 1

Repeat Vector 0 0 1 1

The new seed is 1 0 1 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0

Repeat Vector 0 0 0 0

The new seed is 1 0 1 1 1 1 0 1 1 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 0 1 0 1 0 1
1 1 0 0 0 1 1 0 0 1 0 1

Repeat Vector 0 0 1 1

130

TABLE 8 -- CONTINUED

Register Vector Input Vector Adder Vector
Q4 Q3 Q2 Q1 I1 I2 I3 I4 A1 A2 A3 A4

The new seed is 1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

The new seed is 1 1 0 1 1 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1 1 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

The new seed is 1 1 1 0 0 1 1 1 1 0 1 0
1 1 0 1 1 1 1 0 1 0 0 1
0 1 1 1 1 0 1 1 1 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

The new seed is 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 1 1 0 0 0 0 1 0 0
1 1 0 0 0 1 1 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1

Repeat Vector 1 1 0 0

1 31

represents approx imatel y 20 gates. If the register gate

reduction is included, the overall gate count of the adder

circuit employ i ng the HI LDO technique is 16 gates. The 16

gates represent approx imately 48 additional transistors.

LIST OF REFERENCES

Agrawal, V.D and Mercer, M.R. 1982a. Testability measures
- What do they tell us? IEEE International Test
Conference Proceedings . p. 391-396. Los Angeles:
IEEE Press.

Agrawal, V.D, Seth, S.C, and Agrawal, P. 1982b. Fault
coverage requirement in production testing of LSI
circuits. IEEE Journal of Solid-State Circuits.
SC-1 7: 5 7-61 .

Anderson, D.A. and Metze, G. 1973. Design of totally
self-checking check circuits for m-out-of-n codes.
IEEE Transactions of Computers. C-22: 263-269.

Barbacci, M.R. 1981. The symbolic manipulation of computer
descriptions: An--r8PS simulator, p. 4-32. Pittsburgh:
Carnegie-Mellon-university.

Barzilai, z. and Rosen, B.K. 1983. Comparison of AC
self-testing procedures. IEEE International Test
Conference Proceedings. p. 89-94. Los Angel~s:
IEEE Press.

Beh, C.C., Arya, K.H., Radke, C.E., and Torku, K.E. 1982.
Do stuck fault models reflect manufacturing defects?
IEEE International Test Conference Proceedings.
p. 35-42. Los Angeles: IEEE Press.

Beucler, F.P. and Manner, M.J. 1984. HILDO: The highly
integrated logic device observer. VLSI Design.
V: 88-96.

Bhavsar, D.K. and Heckelman, R.W. 1981. Self-testing by
polyn~mial division. IEEE International Tes~
Con~erence Proceedings. p. 208-216. Los Angeles:
IEEE Press.

Breuer, M.A. and Friedman , A. D. 19 7 6. Diag nosis and
reliable design of digit a l pystems, p. 56-5~
174,175; 224-273. Rockvi l le , Maryland: Computer
Science Press .

133

Buehler, Martin G. and Sievers Mi ch ael w. 1982. Off-line,
built-in test techniques fo r VLSI circuits. IEEE
Transactions on Computers . C-3 1 : 69-82.

Chang, H.Y, Manning, E. , and Met ze, G. 1974. Fault
diagnosis of digital systems , New York : John Wiley
and Sons, 1970; reprint ed ., p . 49-54. New York:
Krieger.

Eichelberger, E.B. and Williams, T . W. 19 78 . A logic design
structure for LSI testability . J o ur nal of Design
Automation Fault Tolerant Computi ng 2: 165-178.

Everett, C. 1984. Testability a n alys is and fault
simulation spearhead CAT's e n try into CAE
environment. Electronic Design News, 29: 107-117.

~

Flomenhoft, M.J., Si, S . C. , and Sus s k ind, A.K. 1973.
Algebraic techniques for find i ng tests for several
fault types. IEEE Fault Tole rant Comput ing Conference
Proceedings. p. 227-235. Los Angeles: IEEE Press.

Freund, John E. 1971. Mathemati c a l stat i stics, 2nd ed.,
p. 266-270. New Jersey: Prent i c e-Hall Inc.

Frohwerk, R. 1977. Signature analysis: A new digital field
service method. Hewlett-Packard J ournal, 28: 2-8.

Galiey, J., Crouzet, Y., and Ve rg niault, M. 1980. Physical
versus logical fault mode l s MOS LSI circuits: Impact
on their testability . IEEE Transactions on Computers,
C-29: 527-531.

General Electric 1981 . "Dr a ft Standard 1981".
(Typewritten.) p. 1- 2 0.

Hess, R.D. 1982 . Testability analysis: an alternative to
structured design for tes tability. -VLSI Design
III: 22-29 .

Hill, F.J. and Peterson, G.R. 1978. Digital systems:
hardware organization and design, 2nd ed.,
p. 131-145. New York: John Wiley and Sons.

134

Hnatek , E . 1984. A merger of CAD and CAT is breaking the
VLSI bottleneck. Electronics, 57: 129-134.

Kidder , T . 1981. The soul of a new machine, p. 136-138,
258-259 . New York: Avon.-~-

Kirkland, T . and Flores, V. 1983. Software checks
testability and generates tests of VLSI design.
Electronics , 56: 120-124.

Konemann, B., Mucha, J., and Zwiehoff, G. 1980. Built-in
test for complex digital integrated circuits. IEEE
Journal of Solid-State Circuits, SC-15: 315-319.

Levendel , Y. H. and Menon, P.R. 1982. Test generation
algorithms for computer hardware description
languages . IEEE Transactions on Computers,
C-31: 577-588 .

Long, S.I. and Eisen, F. H. 1980. Ion implanted GaAs I.e.
process technology . Rockwell International Quarterly
Technical Report _!_]_. 22:7-16.

McClusky, E . J . and Bozorigui-Nesbat, S. 1980. Design for
Autonomous Test. IEEE International Test Conference
Proceedings . p . 15-21. Los Angeles: IEEE Press.

Middleton, T. 1983. Functional test vector generation for
digital LSI/VLSI devices. IEEE International Test
Conference Proceedings. p. 682-691. Los Angeles:
IEEE Press.

Muehldorf, E.I. and Savkar, A.D. 1981. LSI logic testing -
an overview. IEEE Transactions on Computers,
C-30 : 1-17.

Rappaport, A. 1984. Simple functional tester verifies chip
performance. Electronic Design News, 29: 151-162.

Rappaport, A. 1983. Hands-on timing verifier validates IC
design techniques. Electronic Design News,
28: 147-162.

135

Reddy , S.M, Reddy, M.K., and Kuhl, J.G. 1983. On testable
design f or CMOS logic circuits. IEEE International
Test Confere n c e Proceedings. p. 435-445. Los Angeles:
IEEE Press .

Rose, C.W., Ordy , G. W., and Drongowski, P.J. 1984. N.mPc:
A study in univers ity-industry technology transfer.
IEEE Design and Te s t, 1: 44-55.

Roth, P. 1980. Computer logic, testing, and verification,
p. 59-71. Rockville, Mary land: Computer Science
Press.

Son, K. and Fong, J.Y.O , 1982. Automatic behavioral test
generation. IEEE International Test Conference
Proceedings. p. 16 1- 165. Los Angeles: IEEE Press.

Susskind, Alfred K., 1981 . Tes t ing by verifying Walsh
coefficients. IEEE International Test Conference
Proceedings. p. 206- 20 9. Los Angeles: IEEE Press.

Susskind, Alfred K., 1973. Di a9 nostics for logic networks.
IEEE Spectrum. 10: 40-47 .

Werner, J., and Beresford, R. 19 8 4a. A system engineer's
guide to simulators. VLSI Des ign V: 27-49.

Werner, J. ed., 1984b. CAE s ys tems: A status report. VLSI
Design V: 40-49.

Werner, J. ed., 1984c. Physi ca l model for logic
simulat.ions. VLSI De s ign V: 62-67.

Williams, T.W. and Parker, K. P. 1982. Design for
testability - a surve y . IEEE Transactions on
Computers, C- 31: 2-15.

	An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design Group
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	ACKNOWLEDGEMENTS
	iii

	PREFACE
	iv
	v

	TABLE OF CONTENTS
	vi
	vii
	viii

	LIST OF TABLES
	ix

	LIST OF FIGURES
	x
	xi

	INTRODUCTION
	Testing Requirements of the AVLSI Design Group
	001

	Approach
	002
	003

	CHAPTER I. VLSI TEST
	Approach
	CMOS LSI Faults
	004
	005

	Fault Models
	006

	Test Methods
	007

	Test Techniques
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018

	Testablility Design Goals
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028

	CHAPTER II. DESIGN GUIDELINES
	Approach
	029

	Design Rules
	030
	031
	032
	033
	034
	035
	036

	Block Hardware Design Phase
	037
	038
	039
	040
	041

	Detailed Hardware Design Phase
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057

	Available Logic Simulation Systems
	058
	059
	060

	Verification of Testability Design Goals
	061
	062

	CHAPTER III. TEST VECTOR GENERATION
	Approach
	063

	Methods of Obtaining Test Vectors
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079

	Available Test Generation Utilities
	080
	081

	Suggested Applications
	082

	Test Data Augmentation and Conversion
	083

	CHAPTER IV. CONCLUSIONS
	084
	085
	086
	087

	APPENDIX A. DEFINITIONS
	088
	089
	090
	091
	092

	APPENDIX B. EXAMPLES OF OFF-LINE, BUILT-IN TEST TECHNIQUES
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123

	APPENDIX C. HILDO TEST TECHNIQUE
	124
	125
	126
	127
	128
	129
	130
	131

	LIST OF REFERENCES
	132
	133
	134
	135

