
Specification and Validation of Control-Intensive 
Integrated Circuits in hopCP

V EN K A TESH  AKELLA 
G ANESH G O PA LA KRISH NA N

UUCS-92-001

D epartm en t of C om puter Science 
U niversity of U tah  

Salt Lake City, U T 84112, USA

January  22, 1992

A b strac t

Control intensive ICs pose a significant challenge to the users o f  form al m ethods in designing hardware. 
These ICs have to support a wide variety o f  requirements including synchronous and asynchronous opera
tions, polling and interrupt-driven m odes o f  operation, m ultiple concurrent threads o f  execution, com plex  
com putations, and program m ability  In this paper, we illustrate the use o f  form al m ethods in the design 
o f  a control intensive IC  called the “Intel 8251” Universal Synchronous/Asynchronous R eceiver/T ransm itter  
(U SART), using our form al hardware description language ‘h opC P ’. A  feature o f  hopC P is that it  supports  
communication via asynchronous po rts  (d istribu ted shared variables writable by exactly one process), in 
addition to  synchronous message passing. We show the usefulness o f  this com bination o f  communication  
constructs. We outline s ta tic  analysis algorithm s to  determ ine safe usages o f  asynchronous ports, and also 
to  discover other sta tic  properties o f  the specification. We discuss a com piled-code concurrent functional 
sim ulator called C F S IM , as well as the use o f  concurrent testers for driving CFSIM. The use o f  a sem an
tically well specified and sim ple language, and the associated analysis/sim ulation tools helps conquer the 
com plexity o f  specifying and validating control intensive ICs.



Forma] Aspects of VLSI Research Group 
University of Utah, Department of Computer Science

Specification and V alidation of Control Intensive ICs in hopC P

VENKATESH AKELLA (akella@cs.utah.edu)
GANESH GOPALAKRISHNAN (ganesh@bliss.utah.edu)
Dept, o f  Computer Science  
University o f  Utah
Salt Lake City, Utah 84112  .

K ey w o rd s: asynchrony, behavioral simulation, formed methods, hardware description languages, formed specification 
and validation

A b s tra c t .  Control intensive ICs pose a significant challenge to the users of formed methods in designing hardware. 
These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, 
polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, 
and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive 
IC called the “Intel 8251” Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal 
hardware description language ‘hopCP’. A feature of hopCP is tha t it supports communication via asynchronous  
ports  (distributed shared variables writable by exactly one process), in addition to synchronous  message passing. 
We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to 
determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We 
discuss a compiled-code concurrent functioned simulator called CFSIM , as well as the use of concurrent testers  for 
driving CFSIM. The use of a semantically well specified and simple language, and the associated analysis/simulation 
tools helps conquer the complexity of specifying and validating control intensive ICs.

1 Introduction

Over the last two decades, VLSI technology has advanced by leaps and bounds, and has con
tributed to a rapidly increasing performance/price ratio of hardware. W ith these improvements, 
however, have come a variety of new problems. Although the speed and the scale of VLSI systems 
continues to grow, their functional complexity may not scale at the same rate , unless some of the 
problems th a t have begun to  creep up at the level of system design are properly tackled and solved.

There are many sources for the problems encountered a t the system level of hardware design. 
Many of these are problems of scale akin to those found in the design of large sequential software 
systems. The more serious of these problems are, however, due to the concurrent nature of hardware, 
and because of the large number of complex features th a t hardware designers are trying to  support 
in VLSI systems they are currently building.

We can illustrate many of the above mentioned problems, as well as possible solutions, through 
one example: the Intel 8251 Universal Synchronous/Asynchronous Receiver/Transm itter (USART) 
[16]. Integrated circuits (ICs) such as the 8251 USART exhibit diverse behaviors. They typically

mailto:akella@cs.utah.edu
mailto:ganesh@bliss.utah.edu


2 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

possess independent threads of execution, have coexistent synchronous (clocked) and asynchronous 
(unclocked) subcomponents, support multiple modes of operation, such as the interrupt-driven and 
the polled modes. They are programmable to  set the baud rate , the number of stop bits, start 
bits, error flags, and the synchronization scheme etc.. They can perform com putations, such as 
error-checking, assembling and disassembling of data, and code-conversion. Such ICs are commonly 
classified as “control intensive” . There are very many control intensive ICs in day-to-day use today; 
we selected the 8251 because it has been widely used in the past as a  benchmark for comparing 
high-level synthesis tools and their associated hardware description languages (HDLs).

We wish to  contribute to  the current sta te  of the art of specifying, verifying, and ultimately, of 
synthesizing control intensive ICs. Currently, control intensive ICs are most commonly described 
through a  combination of natural language descriptions, timing diagrams, state-charts, etc. These 
informal descriptions are prone to  m isinterpretations, and are not machine readable. They cannot 
be used as a  basis for design validation.

Lately, such ICs are being specified in HDLs. For example, the 8251 USART has been specified 
in many HDLs such as ISPS [7], VHDL [31], and Verilog [27, 30]. However, when studied from a 
formal point of view, these HDLs have many shortcomings. None of the currently popular HDLs 
(such as referred to above) have a  well specified and simple formal semantics. The advantages 
of providing formal semantic definitions needs no emphasis: it helps describe language constructs 
precisely, put the language concepts to precise tests (e.g. exhibiting semantic properties), and 
makes it easy to  develop verification/validation procedures for the language. In this paper, we 
develop the specification of the 8251 in our HDL hopCP—a semantically well specified and simple 
language [2].

The design of control intensive hardware systems has a  lot in common with the specification and 
verification of concurrent software systems. Several verification techniques for concurrent software 
have been widely studied [6]; research prototypes embodying some of these techniques (such as 
the Concurrency Workbench [10] and COSPAN [14]) are also available. However, few of these 
tools or techniques have been applied and /o r adapted for the verification of real-world control 
intensive hardware. We do not a ttem pt to formally verify the requirements specification of the 
8251 against the proposed design specification of the 8251 in hopCP; instead, we dem onstrate 
the application of formal  methods in the design of the 8251, centered around hopCP. We do this 
by presenting the hopCP language, outlining its formal semantics (detailed in [2]), and present 
formally based tools and techniques th a t help validate hopCP descriptions. As Hall points out [13], 
even without conducting formal verification at all levels of design representation, the application of 
formal methods can enhance the degree of confidence in a design, help discover design flaws, and 
prom ote overall understanding of the design.

Currently there is a  growing trend towards applying formal methods in the design of real-world 
hardware systems [26, 12, 11]. Most of the current efforts do not address ICs th a t, in addition 
to  exhibiting control intensive behavior also support non-trivial com putations. Our contributions



SPECIFICATION AND VALIDATION OF CONTROL INTENSIVE ICS IN HOPCP 3

in this paper include the following: (i) the design of a semantically well specified and simple 
HDL tailored for the specification of ICs th a t exhibit control intensive behavior as well as support 
non-trivial com putations; (ii) the design of tools for validating the design specifications, th a t can 
ultimately lead to  the verification and “correct by construction” synthesis of these ICs. We now 
examine these features of our work.

1.1 HDL Features

1.1.1 Synchronous Communication Primitives

The task of specifying and designing complex control intensive ICs is a sh a rd  as th a t of writing 
parallel programs. It is well known th a t w ithout the support of high-level concurrency primitives, 
concurrent programming can be a nightmare. Virtually all the popular HDLs available today either 
omit concurrent process modeling primitives altogether, or provide only very low level primitives. 
For example, none of the languages ISPS, VHDL, or Verilog provide a high level synchronization 
primitive. Synchronizations between various communicating processes are, in fact, implemented 
using explicit handshakes. This can make descriptions in these HDLs hard to  follow. It also makes 
it easier to accidentally introduce deadlocks or other errors. A description of the 8251 in a language 
tha t provides a high level synchronization primitive is, on the other hand, much more readable.

hopCP supports multiway rendezvous. Multiway rendezvous is a powerful notion which facilitates 
the specification of a wide variety of concurrent algorithms very naturally [9]. It subsumes broadcast 
style of communication (point to  multipoint communication) which is very natural in hardware, but 
not supported by many popular HDLs currently being used for synthesis. It does not mean tha t 
these situations are impossible to  specify without multiway rendezvous, but it becomes awkward 
to model them  in term s of two-way rendezvous.

1.1.2 A M ulti Paradigm HDL

Many HDLs with a well specified and simple formal semantic definition are available today. 
These HDLs are designed based on a single paradigm; for example, many of these HDLs adopt 
a purely functional view of computations [17, 25], many adopt a formal process model [15, 24] 
while others are based on special theories like the Trace theory [11]. An HDL based on a single 
paradigm (e.g. functional view of computations) is well suited for a limited class of circuits (e.g. 
com putation oriented), but fares poorly when it comes to  dealing with both com putations and 
control/com munication activities. Our solution is to  adopt a multi-paradigm language th a t amal
gam ates features from process oriented languages (e.g. CSP) to model control/com munication and 
functional languages to model computations.

1.1.3 Use of Asynchronous Ports

Design seldom proceeds through top-down refinement, in practice. This is especially true in the 
area of hardware design where a designer often makes decisions based on his/her knowledge of the



4 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

underlying circuitry or the geometry of the design. In other situations, a hardware designer is 
forced to  design around existing parts. To express design intent in this richer domain, lower level 
primitives are often required. ■> ‘ :

As an example of the need for lower level primitives, consider an example. A binary counter 
supports the operations load  and increment  and its ou tput is connected to  a module M .  The act 
of incrementing the counter causes the counter to  put out a new value on its ou tput port. This 
happens in the lower level implementation of the counter whether the external world is “interested” 
in this value or not.

How do we model this detailed behavior using a CSP-like language? If the value production by 
the counter is modeled through rendezvous communication, we run into the following problem: the 
value may be of “no interest” to  M  a t this time. We would thus be forced to  write a specification 
in which module M  picks up and then discards this value.

A nother use of asynchronous ports is to model status signals th a t can be set many times be
fore being read, as well as read many times after being set. This style of process interaction is 
very difficult—if not impossible to  specify—using synchronous communication (i.e. rendezvous) 
alone. In short, hardware designers often wish to  unbundle the synchronization and the value- 
communication aspects of a rendezvous. In hopCP, we provide a construct known as asynchronous 
ports to model such situations.

Asynchronous ports are distributed single-writer multiple-reader shared variables. O ther HDL 
users also have felt the need for asynchronous ports. For example, the “first asynchronous micro
processor” [21] is generally considered to be specified in a CSP-like language; yet, asynchronous 
port assignments are extensively used in the specification. In short, w ithout using asynchronous 
ports, many hardware systems become very difficult to  describe.

1.2 Specification/design Validation Tools

1.2.1 Seriality Checking

Asynchronous ports must be used with caution. Situations where they are concurrently read/w ritten  
must be avoided 1. Though asynchronous ports are used in [21], no support for the safe usage of 
asynchronous ports is offered in their system, thus making it users’ responsibility to use asyn
chronous ports safely. In hopCP we provide support for safe usage of asynchronous ports through 
seriality checking, as will be described later.

1.2.2 Compiled Code Simulation

A high-level specification is not very useful unless it is supported by a methodology to  validate 

it. We provide a simulation environment called CFSIM to validate hopCP specifications. CFSIM 
is compiled-code concurrent functional simulator obtained by translating hopCP specifications into

'E xcept in some situations, where such behavior can be supported through the use of Q-flops, etc. [2]



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 5

CML (Concurrent ML) source code. CML facilitates building concurrent-programming abstractions 
and is implemented efficiently capitalizing on the continuation-passing style technology of the SML 
of New Jersey compiler [5]. The polymorphic type-checking underlying SM L/CM L comes for free 
in CFSIM.

1.2.3 H ig h  L eve l S im u la tio n  using  T e s te rs

The behavioral specification of complex control intensive ICs can be hard to follow, even if 
such ICs are described in a modern concurrent HDL, such as Occam [22] or hopCP. Although 
a simulator can help “anim ate” the specification for selected scenarios, output waveform traces 
produced by typical simulation runs offer very little help in understanding or debugging complex 
control intensive ICs. In the hopCP system, high level simulation is supported in many ways. In 
one approach, the designer can write tester  processes tha t can simulate the environment  of the 
process being simulated. For example, if a communications chip C  with a send and a receive 
channel is being simulated, two tester processes T\  and T2 can be w ritten, one to continuously send 
messages into the send channel, and another to continuously receive messages from the receive 
channel. T\ and T2 can then be run in parallel with C,  thereby getting the effect of concurrently 
sending messages and reading messages from C.  This effect is virtually impossible to achieve using 
traditional scalar simulation.

Under the second approach to high level simulation, C,  Ti ,  and T2 can be interconnected and 
subject to the p arC om p  algorithm. parC om p  will determine a single process whose behavior is 
equivalent to th a t of C T  =  C  || T\ || T2. Process C T  can be analyzed to reveal general properties 
of the composite system (e.g.: “are two actions serial so tha t they can share a resource?”).

Under the third approach (not implemented yet), we will symbolically simulate process C T  = 
C  || T\  || T2, thereby studying interactions among the processes for all possible states, and for all 
possible values tha t they can exchange.

The first two methods of debugging specifications have proved to be quite valuable, for example, 
in debugging the Intel 8251 US ART specification. The testers th a t we wrote actually proved to 
be very readable and succinct specifications of the system being debugged. (Once we complete the 
symbolic simulation facility, we will be able to address formal verification based on hopCP. A similar 
exercise has been reported in [12].)

O rg a n iz a tio n

The remainder of this paper is organized as follows. In section 2, we provide an overview of 
hopCP. In section 3, we provide an informal description of the 8251. In section 4, we provide 
a formal description of the 8251 in hopCP. In section 5, we present details of the hopCP design 
environment, including details of the behavioral inference algorithm parCom p,  a static analysis tool 
to  detect seriality, the compiled code functional simulator CFSIM, and the use of tester processes 
for debugging. We then provide concluding remarks and outline ongoing work in section 6. An



6 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Appendix is also provided, containing deferred details.

2 O v erv iew  o f h op C P

hopCP is a notation for describing concurrent-state transition system s based on a functional 
language augmented with features to express synchronous and asynchronous value communication. 
The basic unit of description is a M O D U L E  which consists of a set of communication ports and 
a behavioral description called the H F G  (hopCP Flow Graph).

A hopCP specification has six sections described below out of which only the MODULE and the 
BEHAVIOR sections are mandatory. '

(i) MODULE section introduces the name of the module being described.

(ii) TYPES section introduces the datatypes of the communication ports used in the module. 
Types can be defined in terms of bit and b itvec to r  which are primitive types.

(iii) SYNCPORT section declares all the synchronous  communication ports used in the specifi
cation. A synchronous  port allows rendezvous  style communication, as in CSP .2 hopCP’s 

rendezvous is multiway: the sender and ill the receivers on a synchronous port synchronize 

(waiting for each other), the sent value is copied by all the receivers, and they all proceed. 
Synchronous ports could be inputs or outputs which are distinguished by the last character 

of the portname: ? for input, and ! for output.

(iv) ASYNCPORT section declares all the asynchronous  communication ports used in the spec
ification. An asynchronous  port is a shared variable which provides communication without 

explicit synchronization. Asynchronous ports can be written by only one module— its owner. 
They can be read in any number of other modules than the owner module. Static analysis 

techniques are necessary to detect safe usages of asynchronous ports.

(v) FUNCTION section contains the user-defined  functions used in the specification. The func
tions are written in a f irs t-order  functional language.

(vi) BEHAVIOR section describes the state-transition system  which captures the behavior of the 
hardware system  being specified. The state-transition system  being described is called H F G , 

and is described next.

2.1 hopC P Flow Graph (

A H F G  consists of a set of s ta tes , a set of actions  and a set of transitions.  States in hopCP 
are (con tro l ,  da ta )  state pairs where control states are like finite-state machine (FSM ) states, and 

data states capture the contents of internal storage locations. An action in hopCP is either a

2we use “port” and “channel” interchangeably



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 7

communication action or the evaluation of an expression. There are three types of communication 

actions:

1. Data Query and Data Assertion: These involve value communication and  synchronization. For 

example, p l x  called data query denotes synchronizing on input port p  and receiving a value 

denoted by x while pie called data assertion  denote synchronization on the output port p  and 

sending  the value denoted by expression e.

2. Synchronous Control Actions: These involve only synchronization no value communication. 

For example, p i  denotes an input synchronization action on input port p  while pi denotes an 

output synchronization on output port p.

3. Assignment Actions: Assignment actions provide asynchronous communication via shared 

variables. For example, a := e is an assignment action which involves writing the value 
denoted by expression e into the shared variable denoting the asynchronous port a.

A transition t r  € T r a n s i t io n  is a triple (p r e ( t r ) , a c t ( t r ) , p o s t ( t r )) where p r e ( t r )  denotes a set of 
states called precondition  of the transition, p o s t { t r ) denotes a set of states called postcondition  of 
the transition, and a c t ( t r )  denotes the action  of the transition.

The execution sem an tics  of a H F G  are similar to that of a P e tr i  net. Let t r  G T ra n s i t io n ;  if t r  is 
enabled (i.e. execution reaches p r e ( t r ) )  then the system  performs actions a c t { t r ) and the execution 
reaches p o s t ( t r ) .  Note that no notion of clocks or time is being associated with the performance of 
the actions a c t ( tr ) .  Also note that if more than one t r  G T r a n s i t io n  is enabled, they can perform 
their respective actions concurrently.

We shall illustrate behavioral description in hopCP using the following examples.

E x a m p le  1

Figure 1 describes a module e x l  which declares T x R D Y  as an output asynchronous  channel and 

a? and 6 ! as synchronous  channels. /  is a user-defined function used in the behavioral description. 
/  is specified in a first-order functional language augmented with bit-vector manipulation routines. 
Informally, module e x l  starts in a state (Q , [x]), engages in an data query a?y, and depending on 

whether the input value y  is even or odd it proceeds to perform the data assertion b l ( f  x y )  and 

an asynchronous output action T x R D Y  := 1 and goes back to its initial control state Q  with its 

datapath state modified to the value denoted by y  + 1  or performs c l (su b v e c to r (y , 0 ,4 ))  and returns 

to the initial control state Q  with y  as its datapath state. The behavior has the following features:

1. A ss ign m en t A ction  apo  := expr  where apo £  A s y n c P o r t  is an assignment action. In module 

e x l ,  T x R D Y  := 1 an assignment action which denotes the evaluation of the expression expr  

(which is 1 in our example) and updating  the asynchronous port T x R D Y . An assignment 
action does not have to synchronize  with a receiver  before transm itting the value. In this sense,



8 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

MODULE exl

SYNCPORTS

a?,b! : byte;

c ! : byte

ASYNCPORT

TxRDY! : bit

FUNCTION

fun f a b = if (index(a,0)=l) then update(b,2,0) else b;

BEHAVIOR

Q [x] <■ a?y -> ((even y) -> (b!(f x y), TxRDY := 1) -> Q [y+1])

((odd y) -> c!(subvector(y,0,4)) -> Q [y]>

END

Figure 1 : Illustrating Alternate Behavior and Assignment Actions

it is asynchronous. Applications of this style of communication include outputting status  

information and modeling system initialization (reset). It is characterized by the absence of an 

rendezvous  or handshake unlike synchronous communication. Indiscreet use of asynchronous 

communication could lead to undesired behavior like m etastability and proclivity to deadlock. 
In hopCP framework, unsafe usage of asynchronous communication actions is checked by 

static analysis of the underlying H F G s and appropriate warnings are issued.

2. C om pound A ctions  A tuple of actions a i ,a 2 , . . . , a m constitutes a compound action and is
characterized by the following features:

(i) a i , a 2 , . . . , a m could denote data queries, data assertions, input control actions, output 
control actions or assignment actions with the restriction that all a,- and aj  should be 
non-interfering,  i.e. no two a,- and aj  should use the same channel or try to update the 
same variable. For example the compound actions (a 1 x ,a 1 y , . . . )  and ( a 1 x , b t x , . . . )  are 

not permitted.

(ii) Let (s ,  (a i, a 2, . . . ,  am ), s') € T r a n s i t io n ,  the execution of the system  in a state s  cor
responds to performing actions ( a i , a 2, . . .  , a m) concurrently and going to state s . The 
execution of the system via a compound action is analogous to that of the cobegin/coend  

statem ent of concurrent programming languages.

In e x l ,  ( b \ ( f  x y ) , T x R D Y  := 1) denotes a compound action.

3. Choice In hopCP conditional behavior is captured by guards and choice construct (repre
sented by ‘| ’ in the textual syntax of hopCP). Guards are either boolean expressions, data 
queries (or input control actions) or both. We do not allow data assertions, output control 

actions, or assignment actions in guards. The informal semantics of the choice construct is as 

follows: all the guards are evaluated in parallel; the guard which succeeds (a guards succeeds



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 9

MODULE ex2 

SYNCPORT

a?,b! : byte; 

b?,c! : byte

FUNCTION

fun f a b = if (index(a,0)=l) then update(b,2,0) else b; 

fun g a b = if (index(a,0)=0) then update(b,2,0) else a; 

BEHAVIOR

(P [xl] <= a?yl -> b! (f xl yl) -> P [yl])

I I
(Q [x2] <= b?y2 -> c!(g x2 y2) -> q [y2])

END

Figure 2: hopCP Specification Illustrating Parallel Behavior

if its boolean expression evaluates to true and if the input communication action succeeds) is 

picked and the execution moves to  the corresponding state. If none of the guards succeeds, it 
denotes a error  in the specification, and, the system halts. If more than one guard succeeds, 
any one of them can be picked. This introduces nondeterm in ism  in hopCP.

In the above example, (even  y ) and (odd y)  are the guards which control the system behavior. 
Expression guards can be specified with the help of user-defined functions in the F U N C T I O N  

section of the specification.

E x a m p le  2

The previous example was basically sequential  in nature except for the restricted form of concur
rency introduced by compound actions. Figure 2 is a hopCP specification of a concurrent system  

with synchronization and value communication. It captures two independent threads of activities 
corresponding to two stages of a pipeline coupled by a rendezvous on the synchronous communi
cation channel b. The stage described by P  is capable of performing an data query a l y l  and a 

data assertion &!(/ x l  y l )  while the stage described by Q can first engage in a data query b1y2 and 

then perform a data assertion on channel c. The actions a l y l  and c\(g x2  y2)  can be performed 
independently (hence concurrently) while the actions b1y2 and b \ ( f  x l  y l )  have to be performed 

synchronously. This is captured in the H F G  shown in figure 3.

The initial states (P , [®1]) and ( Q , \ x 2]) are marked by arrows. Initially, a l y l  can be performed 

by stage P  while Q waits on action b'!y2. Once a l y l  is completed, both stages P  and Q can 

engage in b1y2 and &!(/ x l  y l )  which results in the datapath variable y2  in stage Q getting a value 

denoted by the expression ( f  x l  y l )  (referred to as value communication). This is depicted by the 

annotation on the arc leading to control state .s5. Once this synchronous activity is complete, stage 

Q can engage in cl(g x2 y2)  and stage P  can engage in a ly 2  concurrently.



10 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Figure 3: HFG of hopCP Specification in Example 2

This illustrates synchronization and value communication between two agents via two-way ren

dezvous. Mliltiway rendezvous is said to occur when there is more than one agent willing to perform 

a data query corresponding to a data assertion. (The converse of the situation— more than one 

agent asserting a value on the same channel—is not supported in hopCP.) Multiway rendezvous is 

a powerful notion which facilitates the specification of a wide variety of concurrent algorithms very 

naturally [9]. It subsumes broadcast style of communication (point to multipoint communication) 

which is very natural in hardware. Multiway rendezvous is not supported by most HDLs cur

rently being used for high level synthesis. W ithout multiway rendezvous, many situations become 

awkward to model. Figure 4 shows a hopCP specification (just the behavior section is shown for 

convenience). It illustrates multiway rendezvous on channel b.

BEHAVIOR

(P [xl] <= a?yl -> b! (f xl yl) -> P [yl])

I I
((Q [x2] <= b?y2 -> c!(f x2 y2) -> Q [y2]) 

I I
(R [x3] <= b?y3 -> d!(f x3 y3) -> R [y3])

)
END

Figure 4: hopCP Specification Illustrating Multiway Rendezvous



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 11

Initially, only the stage P  can make any progress by engaging in a l y l .  Once this is complete, 
a multiway rendezvous on channel b is possible. This involves agents P ,  Q  and R  waiting for 
each other and once all the of them arrive , agent P  transmits the value denoted by the expression 

( /  x l  y l )  on channel b which is received by agents Q  and R  and bound to their internal variable 
y2  and y 3 respectively and then P ,  Q and R  proceed to  perform their next actions.

The multiway rendezvous advocated in hopCP is simpler than that in the protocol specification 
language L O T O S  [20], in the sense that the multiway rendezvous and its participants can be 
s tatically  determined by a simple analysis. This is because we do not have dynamic process creation 

in hopCP.

3 A n In form al D escr ip tio n  o f 8251

In this section we present the functional description of Intel 8251 USART almost verbatim from 

the manual pages [16]. The section is provided only for the sake of completeness, and may be 
skimmed during the first reading.

Intel 8251 is a USART designed for data communication with Intel’s microprocessor families. 
It is a peripheral device that is programmed by the CPU to operate under many serial data 

transmission schemes. The USART accepts data characters from the CPU in a parallel format and 

converts them into a continuous serial data stream for transmission. Sim ultaneously , it can receive 

serial data streams and convert them into parallel data characters for the CPU. The USART will 
signal the CPU whenever it can accept a new character for transmission or whenever it has received 

a character for the CPU. The CPU can read the complete status of the USART at any time. These 

include data transmission errors, and control signals such as SYNDET and TxEMPTY. Figure 5 shows 

the block diagram and the pin configuration of the Intel 8251.

The 8251 is programmable by the system  software. A set of control words (called MODE and 

COMMAND) must be sent out by the CPU to initialize the 8251 to support the desired communication 

format. These control words will program the baud rate, character length, number of stop bits, 

synchronous or asynchronous operation, even /odd/no parity, etc. In the synchronous mode , options 

are also provided to  select between internal and external character synchronization.

Once programmed, the USART is ready to perform its communication functions. The TxRDY 

output is raised high to signal the CPU that the USART is ready to receive a data character from 

the CPU. This output(TxRDY) is reset automatically when the CPU writes a character into the 
8251. On the other hand, the 8251 receives serial data from the MODEM or I/O  device. Upon 
receiving an entire character, the RxRDY output is raised high to signal the CPU that the 8251 has 
a complete character ready for the CPU to fetch. RxRDY is reset automatically upon the CPU data 

read operation. The 8251 cannot begin transmission until the TxEnable(Transmitter Enable) bit 
is set in the COMMAND word and its has received a Clear To Send (CTS) input. The TxD output 

will be held in the marking state upon reset. Next let us examine the detailed requirements of the



12 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Figure 5: Intel 8251 Block Diagram and Pin Configuration



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 13

synchronous and asynchronous modes of transmission and reception.

3.1 A synchronous M ode (Transm ission)

Whenever a data character is sent by the CPU the 8251 automatically adds a Start bit (low level) 
followed by the data bits (least significant bit first), and the programmed number of Stop bits to  

each character. Also, an even or odd Parity is inserted prior to the Stop bit(s) as defined by the 
m o d e  instruction. The character is then transmitted as a serial data stream on the TxD output. 
The serial data is shifted out on the falling edge of the TxC as defined by the m o d e  instruction. 
When no data characters have been loaded into the 8251, TxD output remains high.

3.2 A synchronous M ode (R eceive)

The ExD line is normally high. A falling edge on this line triggers the beginning of a START bit. 
The validity of this START bit is checked by again strobing this bit at its nominal center. If a low 
is detected again, it is a valid START bit, and the bit counter will start counting. The bit counter 
thus locates the center of the data bits, the parity bit (if it exists) and the stop bits. If a parity 
error occurs, the Parity Error flag is set. If a low is detected as the STOP bit, the Framing Error 
flag is set. The STOP bit signals end of a character. The character is then loaded into the parallel 
I/O  buffer of the 8251 and the RxRDY pin is raised to signal the CPU that a character is ready to 

be fetched. If a previous character has not been fetched by the CPU, the present character replaces 

it in the I/O  buffer and the Overrun Error flag is set (and the previous character is lost). The 
occurrence of any of these errors will not affect the operation of the 8251.

3.3 Synchronous M ode (Transm ission)

The TxD output is continuously high until the CPU sends its first character to the 8251 which 

usually is a SYNC character. W hen the CTS line goes low, the first character is serially transmitted  

out. All characters are shifted out on the falling edge of the TxC. D ata is shifted out at the same rate 

as the TxC. Once the transmission has started, the data stream at the TxD output must continue 

at the TxC rate. If the CPU does not provide a character before the transmitter buffer becomes 

empty, SYNC characters will be automatically inserted in the TxD output stream and TxEMPTY pin 

is set high to indicate the same.

3.4 Synchronous M ode (R eceive)

\ In this mode, character synchronization can be internally or externally achieved. If the SYNC 

mode has been programmed, ENTER HUNT command should be included in the the first c o m 

m a n d  word. D ata on the RxD pin is sampled on the rising edge of RxC. The Receiver Buffer is 

compared at every bit boundary with the first s y n c  character until a match occurs. If the 8251 is 
programmed with two SYNC characters, then the subsequent received character is also compared; 
when both SYNC characters match, the USART ends the HUNT mode and is in character synchro



14 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

nization. The SYNDET pin is set high and is reset by subsequent ST A T U S read operation. In the 
external SYNC mode, synchronization is  achieved by applying a high level on the SYNDET pin, thus 
forcing the 8251 out of the HUNT mode. Parity and Overrun errors are checked in the same way 

as above.

The COMMAND word controls the actual operation of the 8251 by issuing commands like Enable 

Transm it/Receive, Error Reset and Modem Control and Internal Reset. The COMMAND instruction 
can be issued anywhere during data transmission while the m o d e  instruction can be issued only 
after an internal or external reset. In a data communication environment it is necessary to examine 
the “status” of the active device to ascertain if errors have occurred or other conditions that require 
the processor’s attention. The 8251 has facilities that allow the programmer to “read” the status 
of the device at any time during the functional operation. Some of the bits of the STATUS word 
have identical meaning to the external output pins so that the 8251 can be used in a completely 
polled or interrupt-driven environment; the TxRDY signal is an exception.

4 Form al D escr ip tio n  in h op C P

The above informal specification makes it clear that unless a precise and succinct notation is 
employed, the overall behavior of the 8251 will not be comprehensible for a user. We now discuss 

a suitable logical organization of a hopCP specification of the 8251.

4.1 Logical Organization o f the Specification o f 8251

The specification of the Intel 8251 in hopCP raises the following issues:

•  Partitioning:

It is not very useful to specify the whole 8251 as one monolithic  hopCP module. It would not 

capture the concurrency in the behavior accurately. Therefore we model it as a collection of 

three independent processes: main which handles the CPU interface and the modem control, 

xmit which describes the transmitter section which includes both the synchronous and asyn

chronous transmission modes and the associated status information, and rcvr which describes 

the receiver section which includes both the synchronous and the asynchronous modes of 

behavior.

•  Logical Channels:

The xmit, rcvr and main execute concurrently and communicate with each other using syn

chronous and asynchronous ports. The communication channels used in the hopCP specifica
tion and the electrical pins of the 8251 (shown in figure 5) are not in direct correspondence. 

Hence, we call the communication ports used in hopCP specification as logical channels. Sev
eral logical channels can be mapped into the same set of physical wire(s). This is useful in 
two ways:(i) it helps us to model bidirectional buses as two separate unidirectional logical



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 15

channels since bidirectional buses are not allowed in hopCP and (ii) A time-shared bus like 
( D o , D i , . . . , D 7 ) which is used to communicate data, status, and control from /to  the CPU, 
is modeled as four separate logical (unidirectional) channels. This makes the specification 
clearer. Time-shared implementation can be derived in hopCP as an optimization. Deriva
tion of circuits from hopCP is not discussed further in this paper.

•  Handling Shared State:

COMMAND, MODE, STATUS and SYNC characters are variables common to  xmit.rcvr, and main 

processes, c o m m a n d , m o d e , and s y n c  characters are written by the CPU and read by all the 

three processes while STATUS is read by the CPU and written by xmit and rcvr processes. In 

hopCP, shared variables like c o m m a n d , m o d e , and s y n c  characters are handled by keeping 

local copies of each variable in all the processes which read it and maintaining the consistency 
of the data by using m ultiway rendezvous. Multiway rendezvous ensures data consistency 

because value is sent to all the processes needing the data at the same time, s t a t u s  is 

handled by keeping only one copy in the main process and having xmit and rcvr processes 

send their individual status information to the main processes which does the update.

•  Status Signals and Interrupt-driven Mode

Status signals like TxRDY (which announces that the transmitter section is ready to receive 

the next character) and RxRDY (announcing the availability of next character) are modeled 

in hopCP using asynchronous channels. Asynchronous communication actions do not need 
synchronization, they involve asserting a value on the associated channel. This enables us 

to model in terrupt-driven  modes of behavior, because TxRDY/RxRDY could be connected to 

the interrupt lines of the CPU. If so, a status output on TxRDY/RxRDY could trigger the 
corresponding interrupt-handier in the CPU.

xmit.rcvr, and main are implemented by the hopCP modules XM IT, RCVR, and MAIN modules, 
which are discussed in detail next. The logical interconnection of the three modules is shown in 

figure 6 .

4.2 M ain M odule

The specification has six sections as described earlier.

Module MAII

Type

byte vector 8 of b i t ;

Bit: vector 1 of bit

The first two sections shown above specify the name of the module and the types of the various 

communication channels.



16 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Synchronous Broadcast Channel
~7

___________ zy , Asynchronous Broadcast Channel

-----------------Synchronous Point-to-Point Channel

__________________Asynchronous Point-to-Point Channel

Figure 6: Logical Interconnection of XMIT, RCVR and MAIN modules



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S IN  H O P C P 17

SyncPort

indata?, inctrl?.rcvrmain?, rcvrstatus? : byte; 

broadcastdata!, broadcastctrl!, out!, xmitmain! : byte; 

indata!, inctrl!, rcvrmain!, readdata!, readstatus!,rcvrstatus! : byte; 

readdata?, readstatus?, intReset! : Bit

AsyncPort

reset? : Bit; 

reset! : Bit;

TxRDY!, RxRDY! : Bit;

XmitBufferEmpty!, ReceiverBufferEmpty!.extReset! : Bit

The S yn cP ort section describes the synchronous com m unication channels used in the specifica

tion. in d a t a ? , i n c t r l ?  are input channels which carry data and control inform ation from the 

CPU while o u t!  is the output channel which carries data  and status inform ation to  the CPU. 

rea d d a ta ?  and r e a d s t a tu s ?  are input control channels (only synchronization, no value com 

m unication) through which the CPU in itiates a data  or status read operation, b r o a d c a s td a ta  

and b r o a d c a s t c t r l  are internal channels which broadcast m o d e  and c o m m a n d  words to  XMIT 

and RCVR m odules using m ultiw ay rendezvous, rcvrm ain  and xm itm ain  are internal chan

nel to  receive statu s inform ation from RCVR m odule and send data  to  XMIT m odule respec

tively. T he A syn cP ort section describes the asynchronous channels (shared variables) used in 

the specification, r e s e t  and statu s outputs RxRDY and TxRDY are m odeled as bit-valued asyn

chronous ports. X m itB ufferE m pty, in t R e s e t ,  e x t R e s e t ,  R ece iv erB u fferE m p ty  are internal 

asynchronous ports which are w ritten by the MAIN m odule and read by the XMIT and RCVR 
m odules.

Function

fun IsTrue x ” if (x=l) then true else false endif; 

fun IsFalse x = if (x-0) then true else false endif;

fun SyncMode x - if (subvector(x,0,l) - 0) then true else false endif; 

fun ReadSync2 x ” if (subvector(x,7,7) * 0) then true else false endif; 

fun InternalReset y “ if (subvector (y,6,6) * 1) then true else false endif; 

fun UpdateStatus status nen.st * orb(status, nen.st)

The fu n c t io n  section describes the user-defined functions used in the specification. They capture 

the decoding of the m o d e  words and assembling the s t a t u s  words based on their format in [16]. 
Note that the functions are expressed in a first-order functional language with built-in routines 
for bit-level manipulations, s u b v e c to r ( x ,y ,z )  returns the value of the integer formed by the bits



18 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

from y  to  z  from the bitvector denoted by x while orb does a simple bitwise OR operation. For 

example, s u b v e c to r ( 6 3 ,0 ,3 )  = 15 and o rb (6 ,5 )  = 7.

The B eh a v io r  section describes the underlying state-transition  system  w hose initial control sta te  

is MAIN_INITIATE.

HAII.IIITIATE [] <« (((IsTrue reset) -> (extReset :» 1) -> HAII.IDLE [])

j (not(IsTrue reset)) -> HAII_IIITIATE [] );

In MAIN_INITIATE, the module waits for the r e s e t  input to go high] once reset, the module 

asserts a 1 on the e x tR e s e t  output (an assignment action) which is a signal internal to the USART 

to reset the XMIT and RCVR modules and proceeds to an idle control state called MAIN_IDLE.

HAII.IDLE [] <“ indata?mode -> broadcastdataimode -> READ.SYIC.CHAR [mode];

READSYICCHAR [m] <“ (((SyncMode m) -> indata?syncl -> broadcastdata!syncl

-> OPTIOIAL.SYIC.READ [m, syncl])

I((not(SyncMode m)) -> READ.CHD.WORD [m, 0, 0]));

OPTIOIAL.SYIC.READ [m, si] <- (((ReadSync2 m) -> indata?sync2 ->

broadcastdata!sync2 -> READ.CHD.WORD [m,sl,sync2])

I ((not(ReadSync2 m)) -> READ.CHD.WORD [m,sl,0]));

READCHDWORD [m, si, s2] <■» inctrl?ctrl -> broadcastctrlictrl -> HAIIEXECUTE [0,0];

In MAIN -IDLE, the module receives the MODE word and broadcasts it to XM IT and RCVR mod
ules and enters a state called READ_SYNC_CHAR where it checks if the current mode is synchronous 
or asynchronous by invoking the function SyncMode. If the USART has been programmed to 
operate in the synchronous mode it reads one or two s y n c  characters depending on the m o d e  

words(determined by the function ReadSync2) and branches to the control state READ_CMD_WORD to 
read the c o m m a n d  word and broadcast it to the XMIT and RCVR modules using m ultiway ren

dezvous  mechanism of hopCP. If the USART has been programmed to operate in the asynchronous 
mode it directly proceeds to READ_CMD_WORD. Note that, state READ_CMD_WORD is annotated with 
variables m , s l , s 2  which reflect the fact that the internal datapath of the module is updated to 

contain the MODE words and the s y n c  characters. This describes the initialization sequence.

HAII.EXECUTE [status, d] <= (indata?x -> (XmitBufferEmpty := 0, TxRDY := 0) ->

xmitmainix -> (XmitBufferEmpty : = 1,TxRDY : = 1)

-> HAII.EXECUTE [status,d])

I (inctrl?y -> (((InternalReset y) -> intReset! -> HAII_IDLE[])

I((not(InternalReset y)) -> broadcastctrl!y -> 

HAII.EXECUTE [status,d])))

I (rcvrmain?data -> (ReceiverBufferEmpty := 0, RxRDY := 1) -> 

HAII.EXECUTE [(update(status,1,1)),data])

I (readdata? -> outld -> (ReceiverBufferEmpty := 1, RxRDY := 0) -> 

HAII.EXECUTE [update(status ,1,1),d])

I (readstatus? -> out{status ~> HAII.EXECUTE [status, d ] )

I (rcvrstatus?st -> HAII.EXECUTE [(UpdateStatus status st),d])

I ((IsFalse reset) -> extReset := 0 -> HAII.IIITIATE [])



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 19

The fragment of hopCP code shown above, denotes the execution loop of the USART. It is 

expressed using the nondeterm in is tic  choice construct of hopCP. In the state MAIN_EXECUTE, the 

USART either receives the data from the CPU and transmits to  the XMIT module, or receives a 

request to read status or data from the CPU wherein it sends the available data or status on out 

channel. It is also capable of receiving status updates from the RCVR module and receiving further 

c o m m a n d  words from the CPU. If the internal reset command is issued by the CPU anytime, the 
module resets the XMIT and RCVR modules through the in tR e se t  channel and branches back to 

MAIN_IDLE.

4.3 R cvr M odule '

The behavior section of the Rcvr module is described next. It captures the synchronous and 
asynchronous receive operations

RCVR.START [] <= ((IsTrue extReset) -> RCVR.IIITIATE [])

I ((notdsTrue extReset)) -> RCVR.START [] );

RCVR.IIITIATE [] <* (broadcastdata?m ->

((SyncHode m) -> broadcastdata?sl -> RCVR_READ_SYVC2 [ m, si])

I((not(SyncHode m ) ) -> RCVR.EXECUTE [ra, 0, 0] ));

RCVR.READ.SYIC2 [m,sl] <= ((ReadSync2 m) -> broadcastdata?s2 ->

RCVR.EXECUTE [m, si, s2])

I ((not (ReadSync2 m ) ) -> RCVR_EXECUTE [m, si, 0]);

Initially (when the power is switched on), the RCVR is in a state RCVR-START where it waits for 

the e x tR e s e t  asynchronous input to go high following which it goes to state RCVR-INITIATE. In this 

state, it receives the m o d e  word from the MAIN module (via multiway rendezvous with XMIT and 
MAIN modules). If the mode is synchronous, RCVR module proceeds to receive one or two s y n c  

characters and proceeds to the control state RCVR_EXECUTE with the MODE and s y n c  characters as 

the internal datapath state. If the mode is asynchronous it proceeds directly to RCVR_EXECUTE.

RCVR.EXECUTE [m, si, s2] <=

((IsFalse extReset) -> RCVR.START [])

|< intReset? -> RCVR.IIITIATE [])

I (broadcastctrl?ctrl ->

((ReceiveEnable Ctrl) ->
((SyncHode m)->(SYIDET:=0) -> EITER.HUIT [m,sl,s2 ,ctrl,0]) 

I ((not (SyncHode m ) ) -> RCVR.ASYIC [m,(BitsPerChar m ) ,0])) 

I((not(ReceiveEnable Ctrl)) -> RCVR.EXECUTE [m, si, s2]));

In RCVR.EXECUTE, it receives the c o m m a n d  word (again via multiway rendezvous) and either 

enters a synchronous  or an asynchronous  receive mode. In the state RCVR.EXECUTE, RCVR module 

is capable of handling an internal reset (via the c o m m a n d  word) or an external (hard) reset.



20 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

EITER_HUIT [mode, synl, syn2, Ctrl, rxbuffer] <« RxD?din ->

CHECK.FOR.SYBC.CHARl [mode, synl, syn2, Ctrl,

(AccumulateSerialData rxbuffer din)] ;

EITER_HUIT2 [mode, synl, syn2, Ctrl, rxbuffer] <“ RxDTdin ->

CHECK.F0R.SYBC.CHAR2 [mode, synl, syn2, Ctrl,

(AccumulateSerialData rxbuffer din)] ;

CHECK.FOR.SYBC.CHARl [m, si, s2, Ctrl, rxb] <■

((IsFalse extReset) -> RCVR.START [])

I(intReset? -> RCVR.IBITIATE [])

|((rxb»sl) -> ,

((ReadSync2 m) -> EBTER.HUBT2 [m, si, s2, Ctrl, 0]) 

I((not (ReadSync2 m)) -> SYIDET :« 1 ->

RCVR.ASYBC [m, (BitsPerChar m ) , 0]))

I((not (rxb=sl)) -> EBTER.HUBT [m, si, s2, Ctrl, rxb]);

CHECK_F0R_SYBC_CHAR2 [m, si, s 2 , Ctrl, rxb] <«

((IsFalse extReset) -> RCVRSTART [])

I(intReset? -> RCVRIIITIATE [] )

|((rxb=s2)-> SYBDET:=l-> RCVRASYBC[m,(BitsPerChar m ) , 0])

I((not (rxb=sl)) -> EBTER.HUBT2 [m, si, s2, Ctrl, rxb])

In the synchronous receive m ode, the m odule first enters a huntmode where it scans the incom ing  

data  for the synchronization characters and then proceeds to  the control s ta te  RCVR.ASYNC to  

receive the serial  data. In the asynchronous receive m ode, it directly proceeds to  the control sta te  

RCVR-ASYNC.

RCVR.ASYBC [mo, size, data] <=

((not(size=0)) -> RxD?y ->

RCVR.ASYBC [mo, (Decrement size), (AccumulateSerialData data y)]) 

I((size =0) -> RxDTpin ->

RCVR_PROCESS_DATA [mo, data, (CheckParityError data mo pin)]);

RCVR_PROCESS_DATA [mo, data, perror] <=

((IsFalse extReset) -> RCVR.START [])

I(intReset? -> RCVR.IHITIATE [])

I(RxD?sb ->((sb=0) -> SEBD.DATA_TO.HAIB [mo, data, perror, 1])

|((sb=l) -> SEHD_DATA_TO_HAIB [mo, data, perror, 0]));

SEBD.DATA_TO.MAIB [mode, data, pe, fe] <*

((IsFalse extReset) -> RCVR.START [] )

I(intReset? -> RCVR.ISITIATE [])

|((IsTrue ReceiverBufferEmpty) ->

rcvrstatus!(HakeAsyncStatus pe fe 0 1)

-> rcvrmainidata -> RCVR.EXECUTE [mode,0,0])

I ((not(IsTnie ReceiverBufferEmpty)) ->

rcvrstatus!(HakeAsyncStatus pe fe 1 1)

-> rcvrmainidata -> RCVR.EXECUTE [mode,0,0]);



In RCVR_ASYNC, RCVR module receives the specified number of bits serially on the RxD input. 
The number of bits is programmable by the CPU and is computed by the function Bitsperchar.  
The received serial data is checked for framing and parity  errors as dictated by the COMMAND and 
MODE words. Then the data is sent to the MAIN module in parallel via a data assertion on the 
internal channel rcvrmain!. In the process it checks for overrun error. Note that we use the same 
mechanism to perform the synchronous and asynchronous receive operations. This is because in 
hopCP only the sequence-domain  relationships between a set of actions is specified, no specific 
timing discipline (except causality) is advocated. This makes hopCP specifications smaller and 

more abstract. After transmitting the data to the MAIN module, the RCVR module assembles the 

status information (the state of fe,oe,pe,RxRDY bits), and sends it to the MAIN module using 
the rcvrstatus channel. The MAIN module can communicate the status information to the CPU.

The detailed hopCP specification of the XMIT module is presented in the appendix (to conserve 

space). The behavior section resembles that of the RCVR module: Initially, XMIT module is in 

state XMIT_START where it waits for a reset signal (from the MAIN module) and then receives 

the m o d e  word and c o m m a n d  (via multiway rendezvous with RCVR and MAIN modules). If 

the current operating mode is synchronous, XMIT module receive one or two synchronization 

(depending on the output of the ReadSync2 function), receives the input character from the MAIN 

module (in parallel) on the xmitmain channel and transmits it serially  on the output port TxD. If a 

new character is not received at the end of transmission of the current character, TxEMPTY pin is set 
high and SYNC characters are transmitted on TxD. In the asynchronous mode, the input character 

is received from the MAIN module, padded with start  and stop  bits and shifted out serially  (least 

significant bit first) on the TxD output at a rate determined by the baud rate setting in the MODE

Intel 8251 has been specified in HardwareC [18] and a variant of ISPS [29]. The specifications are 
available with the distribution of high-level synthesis benchmarks. In this section we will compare 
the hopCP specification of the 8251 with its HardwareC and ISPS specifications. We will also touch 
upon the drawbacks of describing the 8251 in a language like Occam [8] which has been advocated

ISPS is a procedural language augmented with constructs to describe synchronous hardware. 
The significant differences between hopCP and ISPS specifications are that the ISPS specification
(i) lacks abstraction in the sense that it describes on particular implementation of the 8251, based 
on synchronization flip-flops (ii) does not have constructs to expressing parallel behavior explicitly.

S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S IN  H O P C P  21



22 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

(iii) the computation is described in a imperative language.

4.5.2 HardwareC

The language hardwareC [18] comes closest to hopCP in terms of the communication constructs it 

uses. This is encouraging because starting from similar motivations about the real-world scenarios 

that we wish to model, we have independently ended up selecting the same set of communication 

constructs in our respective HDLs. However, hardwareC is currently used to capture synchronous 

computations only. In addition, hopCP is much simpler and is semantically well specified. Some 

of the key differences between hardwareC and hopCP are as follows:

(i) HardwareC is a synchronous hardware description language, so it does not provide the same 

temporal abstraction as hopCP. Specifications in hopCP can be implemented as purely synchronous 

circuits, purely asynchronous circuits or a mixture of both. In addition, in a hopCP specification we 

do not make any assumptions about the representation of the electrical signals i.e. we allow both  
transition based or level-based implementations— two popular styles of implementing asynchronous 

circuits [28].

(ii) HardwareC is based on an imperative language to specify computation where parallelism has 
to be extracted from sequential descriptions (during synthesis) while hopCP is based on afunctional 
language the parallelism is implicit in the program (i.e. it is much easier to extract). In addition, the 
referential transparency of functional languages facilitates formal reasoning and proving properties 
about the system  which are generally difficult in imperative languages. However, HardwareC has 
the ability to specify resource and timing constraints which are not provided in hopCP, at present.

4.5.3 CSP based Languages

CSP based languages like Occam used in [8] and Trace Theory used in [11] have the disadvantage 
of supporting only synchronous message passing. It is awkward to model asynchronous phenomena 
like interrupts and status and reset operations in such languages which makes them restrictive for 

hardware specification. There are operators suggested in [15] to correct this defficiency but they 
are yet to appear in a realistic HDL.

5 T oo ls for A n a ly s is  o f  h op C P  S p ec ifica tio n s

High-Level specifications of complex protocols are of little use if they are not adequately sup

ported by tools to analyze them and reason about them. In the hopCP design environment we 

provide three different types of tools to support high-level specification:

•  A suite of static analysis tools to perform reachability and seriality  analysis on the H F G s .

•  A behavioral inference tool called parC om p  which infers the composite  behavior of a collection 

of hopCP modules.



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S IN  H O P C P 23

•  A compiled-code behavioral simulator to establish functional correctness of the hopCP spec

ifications.

In section 5.1, we introduce the algorithm p a r C o m p .  In section 5.2, we will briefly introduce 

the seriality-checking algorithm. These algorithms have been detailed in [3]. Section 5.3 presents 

the compiled code functional simulator that can be used to debug hopCP descriptions. Section 5.4 
presents how hopCP specifications are debugged using tester processes.

5.1 Behavioral Inference via Parallel Com position

In this section we will briefly introduce p a r C o m p  and discuss its performance on the USART 
example. We specified the USART as a collection of three independent modules MAIN, XMIT 
and RCVR. It is useful to have the composite  (also known as inferred behavior) of the complete 
USART for several reasons. Inferred behavior can be used in high-level simulation, flow analysis of 
the hopCP specifications, and in formal verification. In this section we will describe a tool called 
p a r C o m p  to derive the composite behavior of a set of modules specified in hopCP. Modules in 
liopCP interact via communication actions (data assertions and data queries). p a r C o m p  infers 

the behavior of a collection of hopCP modules by composing the individual transitions in the 

H F G s  of the constituent modules. Composing transitions involves checking for synchronization 

and performing value communication. Transitions ty =  ( { s i } ,a i ,  {s^}) and t 2 =  ( { 5 2 }, 0 -2 , {^2 }) are 
said to  synchronize  if (i) ay and a 2 are mutually complementary (i.e. one is a data assertion and 

the other is a data query) and (ii) they use the sam e  communication port. For example, if ay =  6?x 

and a 2 =  b!e, ty and t 2 will synchronize and the resultant transition is 1 3 =  ( { s i , s 2 }>0 2 > 
where the s'y =  s'y[E[e\/x\ (E[e] denotes the value of the expression e evaluated in 5 2 ). The latter 
illustrates value communication.

If ay and a 2 do not synchronize, then transitions fi and t 2 are retained in the inferred behavior. 

This is a significant difference compared to the other option of handling concurrent actions, namely, 

nondeterm in is tic  interleaving  of the actions ay and a 2 in the inferred behavior. The interleaving of 

actions ay and a 2 results in having transitions t y t2 and t 2ty in the inferred behavior which has the 

capability of performing ay and a 2 in any order. This approach is taken in CSP and CSP based 

languages. Our approach to handling concurrency results in a very efficient (both in time and 

space) implementation of p a r C o m p  when compared to the interleaved  mode. On an average, the 

number of states in the inferred behavior is a linear function of the number of states in the input 

H F G s  .

Note that, in the above example ay and a 2 are primitive actions. The notion of synchronization 

and value communication can be extended in a similar way to compound  actions. The details of 
semantics of p a r C o m p  are presented in [2]. p a r C o m p  has been implemented in Standard ML of 
New Jersey [4] in the prototype hopCP design environment on a SUN sparcstation. The statistics 

of running p a r C o m p  on the USART example are shown in figure 7. Note that the space and time 
requirements are fairly impressive considering the size of the example.



24 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Circuit #  Sta tes #  Transitions T im e (secs)

1 UsartMain || UsartXmit || UsartRcvr 136 136 79.38

2 CpuMain || ExtRcvr || ExtXmit 15 15 0.33

3 UsartMain || UsartXmit || UsartRcvr || 
CpuMain || ExtRcvr || ExtXmit 166 154 141.42

Figure 7: Performance of Algorithm p a r C o m p  on USART Specification

5.2 Seriality Checking and its Uses

Determining whether two specific actions of an HFG are serial or are potentially concurrent 
has numerous applications. This check can be used to warn if the asynchronous ports are not 
being used safely  i.e. if there are conflicting reads/writes on the shared registers implementing the 
asynchronous ports. The seriality checking procedure can also be used to establish determ inacy  of  

guards in some situations and reveal opportunities for resource sharing. These optimization hints 
can be used in the high-level synthesis of VLSI circuits from hopCP specifications.

However, in a distributed environment with several concurrent processes, determining whether 

two actions are potentially concurrent or not, automatically, is often difficult to formulate and 

computationally expensive. There are essentially two problems.

Naive approaches to the detection of seriality can either lead to combinatorial explosion or can 
miss many opportunities to detect serial usage. Combinatorial explosion can result because many 

of the techniques to detect seriality are centered around reachability  analysis paradigm. These 

problems are tackled in the hopCP framework by restricting the hopCP flow graphs to be one-safe 

and employing a heuristic-based pruning of the composite  hopCP flow graphs.

The second, and a more serious problem underlying the feasibility of the above optimizations, is 

that unless the context  (environment) of a module is known, it is not possible to  tell if two actions 

within the module definition are serial or not. For this to be done properly, we need a tool to 

analyze the combined executions of a collection of processes that constitu tes the sys tem  description, 

and that, perhaps, even includes a process to model the abstracted environm ent.  The algorithm  

p a r C o m p  outlined in the previous section is appropriate for this task.

Briefly, our seriality-checking procedure involves three phases: First, we invoke p a r C o m p  to infer 
the composite behavior of the collection of hopCP modules. Then we derive an abstract H F G  by 

invoking the pruning heuristic on the inferred behavior with respect to  the actions in question. 
The pruning heuristic rem oves  uninteresting states and transitions with respect to the actions in 

question. The third phase involves computing the set of reachable configurations  from the initial 
states and determining if the two actions in questions can be enabled simultaneously or not. All 
the phases of the seriality-checking procedure have been formalized and implemented in the hopCP 

design environment. The details are presented in [3].

This procedure was particularly useful on the USART specification because of its complexity.



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S IN  H O P C P 25

Circuit Typical Running Time (secs) for a 
pair of randomly  chosen actions

1 2-Stage Pipeline Unit 0.02

2 Mutex 0.05

3 UsartMain 0.18
4 UsartXmit 0.43
5 UsartRcvr 0.40

6 UsartMain || UsartXmit || UsartRcvr 12.09
7 CpuMain || ExtRcvr || ExtXm it 0.04 ,

Figure 8: Typical Performance of the Seriality Detection Procedure

Several errors in the unsafe usage of the asynchronous ports were revealed. In addition we also dis
covered that the in practice we do not need separate channels for in d a ta ? , i n c t r l ? ,  readdata?  
and r e a d s ta tu s?  because they are never used concurrently. So, in an actual circuit implemen
tation one could use a single multiplexed bidirectional channel to implement these four channels. 
This optimization is almost impossible to detect by manually analyzing the specifications of the 
XM IT, MAIN and RCVR modules. Typical running times of the seriality-checking procedure for 

a varietly of examples including the US ART are shown in figures 8.

We also discovered that a slight modification of the seriality-checking procedure could be used 

to detect the l iveness  of the specification. Dead-states can be flagged during the generation of 
reachable configurations.

5 .3  CFSIM : A  c o m p ile d -c o d e  co n cu rren t fu n c tio n a l s im u la to r

A high-level specification is not very useful unless it is supported by a methodology to validate  

it. There are usually two ways of validating a specification: (i) prove liveness and safety properties 

of the specification [19]; and (ii) high-level simulation. We follow the second approach. We provide 

a simulation environment called CFSIM to validate hopCP specifications. In this section we will 

briefly outline the design of CFSIM and bring out some of its advantages and in the next section 

we describe how some of the modes of behavior of the US ART specification are validated using 
CFSIM.

CFSIM is compiled-code concurrent functional simulator for hopCP specifications obtained by 

translating H F G s  into CML (Concurrent ML) source code. The details of C FSIM  are described 

in [1]. CML is an extension to Standard ML of New Jersey to support first-class synchronous 
operations [23]. CML being higher-order facilitates building concurrent-programming abstractions 

and is implemented efficiently capitalizing on the continuation-passing style technology of the SML 

of New Jersey compiler [5].

The first step in the generation of the simulator in CML is to decompose the hopCP specifications



26 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

into sequential H F G s  . A sequential H F G  is one which all transitions are of the form (S , a , S  ) 
where | S  | =  | S' \ =  1. In otherwords, a sequential H F G  is one that is specified by only |] and

operators in hopCP. Each sequential H F G  is modeled as an independent thread in CML which 
can com m unicate  with other threads by explicit message-passing through synchronous channels or 
through shared-variables. The constituent transitions of a sequential H F G  are modeled as a set of 
m utually recursive  function definitions. The control state name of the precondition  of the transition 
becomes the name of the function and the corresponding datapath state variables are modeled as 
the fo rm a l  parameters of the function. The postcondition  of a transition is modeled as a function- 

call. The actions  in the transition are translated into CML code fragments such that the execution 
of the code sim ulates  the execution of the hardware module via the action in question. Figure 9, 
shows the CML translation of the specification shown in figure 1

Synchronous communication actions in hopCP (data queries, data assertions, input and output 
control actions) are directly implemented by the send and a ccep t primitives in CML. Assignment 
action is implemented by a one-place buffer abstraction with non-blocking reads and writes. It is 

realized by the ML structure A syncB arrier and its associated operations newPort and m u lt ic a s t .

The operator is implemented by choose combinator in CML and the operator is imple
mented by directly in SML. The crux of the simulator is in implementing compound actions  and 

m ultiway rendezvous  whose implementation is discussed in [1].

Some of the salient features of CFSIM  are: ..........

• Efficiency: The size of the simulator is proportional to the number of transitions in the H F G  

which is usually small because we initially eliminate the || operator by decomposing  the H F G s  

into sequential H F G s  . The simulation is extremely fast because the CML code is directly 

executed as opposed to being interpreted which is common with most of the simulators.

• Static Checks: Since we translate the H F G s  into CML source code and execute them in 

Standard ML environment, most of the static checks like consistency of types of the variables, 

name clashes, undefined variables and function names etc. are detected during compilation. 

This is facilitated by the strong typing offered by Standard ML.

• Interactive: C FSIM  generates interactive simulators wherein the user can step-through  the 
execution of the module by controlling the input to the system . This is facilitated by di
recting all the unsynchronized  output actions in a H F G  to the standard output and the 
unsynchronized  input actions to the standard input.

5.4 Testers and High-Level Debugging of h o p C P  Specifications

In this section, we will describe how we validate the hopCP specification of the USART through 
C FSIM . Validation of specifications via C FSIM  involves two phases: (i) identification of interesting 
modes o f  behavior  of the system  being modeled and (ii) constructing high-level sim ulation  vectors, 

which enable the chosen mode of behavior. The simulation vectors are expressed in hopCP itself.



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P  27

fun m2 O  * 

let

val TxRDY “ AsyncBarrier .mChannel 0

val TxRDY__9 » AsyncBarrier.newPort TxRDY

val c = channel () 

val b = channel () 

val a « channel ()

fun Q x ■ (CIO.print( "Waiting for Input on Channel a? \n"); '

let

val y « input_int(sync(CIO.input_line std_in)) 

in _

CIO.print("Received "‘(Integer.makestring y)*" on channel a?\n"); 

s__7 x y

end)

and

s__7 x y =

let

val _ = 0

in

if ((odd y)) then (s__5 x y ; ())

else

if ((even y)) then (s__3 x y ; ())

else

(raise ChoiceError; ())

end

and

s__3 x y =

let

val s__31_chan = channel ()

fun s__31_fun x y =

( (CIO.print (" Output on Channel b!"*Integer.nakestring(((f x) y))*"\n");

send (s__31_chan,0)))

val s__32_chan = channel O

fun s __32_fun x y =

((AsyncBarrier.multicast(TxRDY,1 ) ; send (s__32_chan,0)))

in

(spawn ( fn () «> s__32_fun x y );

spawn ( fn () => s__31_fun x y );

let

val _ = accept s__31_chan

val _ = accept s__32_chan

in

Q ( y + 1 )  end )

end

and

s__S x y » ( (CIO.print (" Output on Channel c !"“Integer.makestring( (»ubv«ctor(y,0,4)) )""\n"

Q y ))
in

spawn (fn () »> Q 5 );

()
e n d ;

Figure 9: Simulator for Example in Figure 2 obtained by CFSIM



28 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

A hopCP specification which enables  a particular mode of behavior is called a te s ter  module. 

Identification of interesting modes of behavior and construction of tester modules are illustrated 

with respect to the US ART specification discussed earlier.

5.4.1 Tester Modules and Modes of Behavior

There is a close analogy between the design validation strategy suggested here and the conven

tional VLSI test generation. Modes of behavior are like faults  and tester modules are like physical 
tester vectors (sequences of binary inputs).

A mode o f  behavior of a system can be defined as a f in ite  execution trace of the system involving 

at least one input communication action and one output communication action. The input and 

output communication actions in the execution trace give us the ability to control  the system  

execution and observe  the response of the system , respectively. A execution trace consisting of 

only internal actions is not a useful mode of behavior. Some of the useful modes of behavior in the 

USART example are: receiving a character from the CPU and transm itting it on the serial output 
TxD in the synchronous mode, receiving a character on the serial input RxD and transmitting it in 
parallel to the CPU, hunting for the synchronizing characters in the synchronous mode receive etc.

A te s ter  module for a hopCP specification H  is a hopCP description of a module which interacts 
with the system  being tested (i.e. H )  and guides  the execution of H  along a chosen mode of behavior. 

A tester module can be viewed as an interface  between the user and the system  under test as shown 
in figure 10. It receives the inputs from the user (via the CFSIM  interactive environment) and 
provides the necessary stimulus to the system and it receives the responses from the system and 
channels them back to the user.

5.4.2 Illustrating Tester Modules

Let us consider validating the asynchronous mode of behavior of the USART specification. To 
recapitulate (from section 2), transmission in the asynchronous mode involves receiving a character 

from the CPU and transm itting it serially on the TxD pin at a specified baud rate after padding it 
with a start bit and some specified number of stop bits and an optional parity bit. The baud rate, 
number of stop bits and kind of parity to be checked is specified by the m o d e  word. Reception in 

the asynchronous mode involves receiving a serial stream of data from the RxD input, and checking 

for parity and framing errors and transmitting the character to the CPU.

A tester module called TEST which validates the asynchronous mode of behavior of the hopCP 
USART specification is shown in figure 11. It communicates with the user via synchronous ports 

input_m ode?, input.command?, inp u t_d ata? , r e c e iv e r - in p u t? , and tr a n sm it .o u tp u t! and 

communicates with the USART with the rest of the ports. TEST basically encapsulates three 

concurrent  processes which represent the CPU, and a serial transmitter and a serial receiver (de
noting a Modem for example). TEST-RESET process, resets  the USART via an assignment action 

on the r e s e t  port, and then loads the m o d e  and COMMAND word. It then enters a state called



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 29

reset

Figure 10: Illustrating Tester Modules in hopCP

TEST_L00P where it continuously transmits characters to the USART. The RECEIVE process receives 
serial data from the r e ce iv er _ in p u t?  and transmit it on the RxD! port while the tt TRANSM IT  
process receives serial data from the USART and outputs it on the tra n sm it_ o u tp u t!.

The TEST module is compiled into a H F G  along with XMIT, MAIN and RCVR modules and the 
resultant H F G s  are compiled into CML code using CFSIM . Figure 12 illustrates the compilation 
and simulation of the asynchronous mode of behavior in CML environment.

s im u la te .p r o c e s se s  on line 1 is the top-level function which compiles a list of hopCP modules 
into H F G s and generates two files: a file containing the user-defined functions and the simulator. 

The files are loaded in sequence as shown in lines 2 and 3. TEST_MAIN_XMIT_RCVR_N is the top-level 
function which simulates the USART and the TEST module and is invoked on line 4 by a CML 

function called d o it .  CML uses pre-em ptive  scheduling. The desired t ime-slice  can be presented as 

a parameter to d o it .  (In our example the time-slice is 10 milliseconds). On line 5 we present the 

m o d e  word, 82, which enables the asynchronous mode operation, enables odd parity, sets the baud 

rate to  lx , sets number of stop bits to 1 and number of bits per character to 5. The COMMAND word 

is presented on line 6, which enables the transmitter and receiver. On Line 7, the tester module 
prompts the user for the input data which is provided on line 8. The next few lines shows the 

functionality of the transmitter. Note that the bits are shifted out according to the asynchronous 

transmit protocol with the least significant bit first. Successful transmission is indicated on line 9



30 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

j

Module TEST 

Type

byte: vector 8 of bit;

SyncPort

input_mode?,input.command?, input_data?,indata!, inctrl! : byte; 

receiver_input?, transmit_output! : byte; 

txd?, RxD! : bit;

AsyncPort

reset! : bit;

Function

Behavior

(TEST_RESET [] <« (reset := 1) -> TEST.START [] ;

TEST_START [] <*= input_mode?m -> indata!m -> input_command?c ->

inctrl !c -> TEST.LOOP [] ;

TEST_L00P [] <= input_data?d -> indataid -> TEST.LOOP []

)
I I

(RECEIVE [] <= receiver.input?din -> RxD!din -> RECEIVE [])

I I
(TRANSMIT [] <= txd?din -> transmit_output!din -> TRANSMIT [])

End

Figure 11: Tester Module for Testing Asynchronous Mode of Operation



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P 31

-  simulate.processes ["test.h", "main.h", "xmit.h", “rcvr.h"]; (* Lino 1 *) 

val it = () : unit

- use "TEST.HAII.XHIT.RCVR.I.fun.sml"; 

[opening TEST_HAIB_XHIT_RCVR_B_fun.sml]

(* Line 2 *)

[closing TEST_HAIH_XHIT_RCVR_H_fun.sml]

- use "TEST_HAI8_XHIT.RCVR_I_sim.sml"; 

[opening TEST.HAIH.XHIT.RCVR.H.sim.sml] 

val TEST.HAIH.XMIT.RCVR.I ■= fn : unit -> unit 

[closing TEST.HAIH.XHIT.RCVR.H.sim.sml]

(* Line 3 *)

- doit(TEST.HAIH.XHIT.RCVR.I, SOHE 10); 

Waiting for Input on Channel receiver.input? 

Waiting for Input on Channel input.mode?

0
82

Waiting for Input on Channel input.command?

5

Waiting for Input on Channel input.data? 

Waiting for Input on Channel receiver.input? 

15

Output on Channel TxRDYO 

Output on Channel TxEHPTYO 

Output on Channel TxRDYl 

Output on Channel transmit.output!0 

Output on Channel transmit.output!1 

Output on Channel transmit.output!1 

Output on Channel transmit.output!1 

Output on Channel transmit.output!1 

Output on Channel transmit.output!0 

Output on Channel transmit.output!0 

Output on Channel transmit.output!1 

Output on Channel TxEHPTY ■ 1

1
Waiting for Input on Channel receiver.input? 

1
Waiting for Input on Channel receiver.input?

0
Waiting for Input on Channel receiver.input? 

1
Waiting for Input on Channel receiver.input? 

1
Waiting for Input on Channel receiver.input?

0
Waiting for Input on Channel receiver.input? 

Output on Channel RxRDY ■ 1

1

(* Line 4 *)

(* Line 5 *)

(* Line 6 *)

(* Line 7 *)

(* Line 8 *)

(* Line 9 *)

(* Line 10 *)

CHL: Interrupt 

val it = () : unit

(* Line 11 *)

Figure 12: Illustrating the Simulation of hopCP Specifications



32 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

when TxEMPTY status flag is set. In parallel, receive operation is going on, whose termination is 

detected by the status flag RxRDY on line 10. Since, the tester module was constructed to be an 

infinite process, we terminate the simulation session by an interrupt shown on line 11.

5 .4 .3  D isc u ss io n

hopCP specification of the USART was checked for different modes of behavior like internal and 

external reset operation, synchronous receive and transm it, setting of various error flags (overrun, 
parity, framing) and status flags TxRDY, RxRDY, TxEMPTY, SYNDET, external character synchro
nization, by constructing appropriate TESTER module. Actually something similar to conven
tional fault sim ulation  was employed, in the sense that a single tester module was programmed 

with appropriate m o d e  words to check for more than one mode of behavior. Several errors were 
detected by this validation process which were subsequently fixed.

The attractive features of this style of validation process are:

•  Testers are specified in the same HDL. This opens up several promising avenues for further 
research like extracting BIST (Built-in-Self-Test) hardware by syn thesizing  the tester module 
just like the rest of the hopCP specification, including DFT (Design For Testability) ideas 

in the specification i.e. writing a specification which when synthesized becomes more easily 
testable.

•  We feel that te s ter  modules provide a system atic and elegant approach to functional simula
tion, since most of the details of the simulation are buried within the tester module. The user 
does not have to deal directly with the specification as shown in figure 10.

•  By expressing the te s ter  module in hopCP and simulating it via C FSIM  we are actually 

validating  our system  in truly concurrent  environment. This is illustrated in the example of 

the tester module above (which validates the asynchronous mode of behavior). Note that the 

tester itself has three concurrent processes. So, the validation of the USART in the CFSIM  

environment has the effect of connecting an 8251 to a modem and a microprocessor and 

switching on the power quite realistically.

6 Concluding Remarks

The major contributions of this work are: (i) Introduction of a simple HDL called hopCP to  

describe concurrent state-transition systems. Specifications in hopCP are characterized by absence 

of explicit timing discipline (except the causality of actions), functional sublanguage to specify 

computational aspects and support for synchronous and asynchronous communication mechanisms. 

We illustrate the expressive power of hopCP by capturing the behavior of a fairly complex chip 

namely Intel 8251 as accurately as possible. We show the difficulties encountered in modeling a 

chip such as Intel 8251 and how we address them in hopCP. (ii) A behavioral inference tool called



•parComp and its applications (iii) high-level validation of hopCP specifications via a compiled-code 

concurrent functional simulator (C FSIM ) and a notion of tester modules.

In a nutshell the main contribution of this work is the demonstration of the applicability of formal 
methods in the specification and validation of a realistic and existing hardware design.

Currently we are engaged in systematically transforming hopCP specifications into VLSI circuits 

with as little manual intervention as possible. We are also exploring the possibilities of augmenting 
hopCP with mechanisms to handle timing constraints and using CFSIM  and its variants to perform

1. A k e l l a ,  V ., AND G o p a l a k r i s h n a n ,  G .  CFSIM: A  Compiled-Code Concurrent Functional Simu
lator for VLSI System s. Tech. rep., Department of Computer Science, University of Utah, 1991. In

2. A k e l l a ,  V ., a n d  G o p a l a k r i s h n a n ,  G .  hopCP: A Concurrent Hardware Description Language. Tech. 
Rep. UUCS-91-021, Department of Computer Science, University of Utah, Oct. 1991.

3. A k e l l a ,  V ., a n d  G o p a l a k r i s h n a n ,  G .  Static Analysis Techniques for the Synthesis of Efficient 
Asynchronous Circuits. Tech. Rep. UUCS-91-018, Department of Computer Science, University of Utah,

4. AP P EL ,  A . ,  AND M a c Q u e e n ,  D. A Standard ML compiler. In F unctional P rogram m ing Languages

5. A p p e l ,  A .  W . C om pilin g with C on tin uations. Cambridge Univ. Press, 1992. ISBN 0-521-41695-7.

6. A p t ,  K .  R ., a n d  O l d e r o g ,  E .-R . Verification o f  Sequen tia l and C on cu rrent Program s. Springer-

7. B a r b a c c i ,  M. R. Instruction Set Processor Specifications (ISPS): The N otation and Its Applications.

8. B r u n v a n d ,  E .  T ran sla tin g  C on cu rrent C om m un icatin g  Program s in to  A syn ch ron ou s C ircu its. PhD

9. C h a r l e s w o r t h ,  A .  The Multiway Rendezvous. A C M  T ran sactions on P rogram m ing Languages and

10. C l e v e l a n d ,  R ., P a r r o w ,  J ., a n d  S t e f f e n ,  B . The concurrency workbench: A sem antics based tool 
for the verification of concurrent system s. Tech. Rep. ECS-LFCS-89-83, Laboratory for Foundations of

11. E b e r g e n ,  J. C. Translating Program s in to  D elay In sen sitive  C ircu its. Centre for M athematics and

12. G o p a l a k r i s h n a n ,  G . ,  a n d  F u j i m o t o ,  R. Design and verification of the rollback chip using hop: A 
case study of formal m ethods applied to hardware design. Tech. Rep. UU-CS-TR-91-015, University of

S P E C IF IC A T IO N  A N D  V A L ID A T IO N  OF C O N T R O L  IN T E N S IV E  IC S  IN  H O P C P  33



34 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

13. H a l l ,  A . Seven m yths of formal m ethods. IE E E  Softw are, 9 (Sept. 1990).

14. H a r ’E l ,  Z., a n d  K u r s h a n ,  R. P . Software for analytical development of com m unication protocols. 
A T & T  Technical Jou rnal (Jan. 1990). To appear.

15. H o a r e ,  C . A . R .  C om m un icatin g  Sequen tia l P rocesses. Prentice-Hall, Englewood Cliffs, New Jersey, 

1985. , a c

16. 8251A Programmable Communication Interface. In In te l M icroprocessor and P eriph era l Handbook 

(1986), pp. 6.122-6.138. •

17. J o h n s o n ,  S.  D . S yn th esis o f  D ig ita l D esigns fro m  R ecursion  E quations. The MIT Press, 1984. An 
ACM Distinguished Dissertation-1983.

18. K u, D ., a n d  M i c h e l i ,  G. D . HardwareC - A Language for Hardware Design, Version 2.0. Tech. Rep. 
CSL-TR-90-419, Computer Science Laboratory, Stanford University, April 1990.

19. L a m p o r t ,  L .  A Simple Approach to Specifying Concurrent System s. C om m u n ica tion s o f  the A C M  32, 

1 (Jan. 1989), 32-45.

20. L o g r i p p o ,  L . ,  O b a i d ,  A ., J . P . B r i a n d ,  a n d  F e h r i ,  M . An Interpreter for LOTOS, a Specification 
Language for Distributed System s. S oftw are—P ractice  and E xperience 18, 4 (Apr. 1988), 365-385.

21. M a r t i n ,  A . J ., B u r n s ,  S ., T . K . L e e ,  D . B o r k o v i c ,  a n d  P . J . H a z e w i n d u s .  T h e  design of an asyn
chronous microprocessor. In Proc. D ecennial Caltech C onference on V L S I  (1989), C.L.Seitz, Ed., MIT 
Press.

22. Occam programming manual, 1983.

23. R e p p y ,  J. H. CML: A Higher-order Concurrent Language. In A C M  S IG P L A N ’91 Conference on 

P rogram m ing Language D esign  and Im p lem en ta tion  (June 1991).

24. R o b i n  M i l n e r .  C om m un ication  and C oncurrency. Prentice-Hall International, Englewood Cliffs, New 
Jersey, 1989.

25. S h e e r a n ,  M. Design of regular hardware structures using higher order functions. In Proceedings o f  the 

F unction al P rogram m ing and C o m p u ter  A rch itectu re Conference  (Sept. 1985), Springer-Verlag, LNCS 
201. Nancy, France.

26. S r iv a s ,  M ., a n d  BICKFORD, M . Formal verification of a pipelined microprocessor. IE E E  Softw are, 9 
(Sept. 1990).

27. S t e r n h e i m ,  E ., S i n g h ,  R . ,  a n d  T r i v e d i ,  Y . D ig ita l D esign  with Verilog H D L. A utom ata Publishing 

Company, Cupertino, CA, 95014, 1990. ISBN 0-9627488-0-3.

28. SUTHERLAND, I. Micropipelines. C om m u n ica tion s o f  the A C M  (June 1989). The 1988 A C M  Turing  

A w ard  Lecture.

29. T h o m a s ,  D . E ., L a g n e s e ,  E. D ., W a l k e r ,  R .  A ., N e s t o r ,  J . A ., R a j a n ,  J. V ., a n d  B l a c k b u r n ,  

R .  L .  A lg o rith m ic  and R eg ister-T ran sfer Level S yn th esis: The S ys te m  A r c h ite c t’s W orkbench. Kluwer 

Academic Publishers, Boston, 1990.

30. T h o m a s ,  D . E ., a n d  M o o r b y ,  P . The Verilog H ardw are D escrip tio n  Language. Kluwer Academic 

Publishers, 1991. ISBN 0-7923-9126-8.

31. VHDL Language Reference Manual, Aug. 1985. In te rm e tr ic s  R eport IR -M D -01,5-2; See also IE E E  

D esign  and Test, A p r il  1986.



S P E C IF IC A T IO N  A N D  V A L ID A T IO N  O F  C O N T R O L  IN T E N S IV E  ICS IN  H O P C P 35

7 A p p en d ix

(* Specification of the Transmitter module of the Intel 8251 Usart *)

Module XMIT 

Type

byte: vector 8 of bit;

Bit : vector 1 of bit

SyncPort ,

broadcastctrl?, broadcastdata?, xmitmain? : byte; 

txd!, intReset? : Bit

AsyncPort

XmitBufferEmpty?, extReset? : Bit;

TxEMPTY! : Bit

Function

fun TransmitEnable Ctrl = if (subvector(ctrl,0,0)=l) then true else false endif;

fun DataSize mode ■ (subvector (mode, 2,3) + 6 + subvector(mode,4,4)

+ subvector(mode,6,7));

fun AssembleAsyncData mode data = if (subvector(mode,4,4) = 1) then 

orb(lshift(orb (0,data),l), 

t ^shift(update(7,0,(parity data)),(subvector(mo£e,2,3) + 6))) 

else

orb(lshift(orb (0,data),l),

lshift(7,(subvector(mode,2,3) + 6))) 

endif ;

fun ExtractBaudRate mode = if (subvector(mode,0,1) = 1) then 1

else

if (subvector(mode,0,1) = 2) then 16

else 64

endif

endif;

fun Lsb data = index(data,0); 

fun Decrement x = x - 1



36 VENKATESH AKELLA, GANESH GOPALAKRISHNAN

Behavior

XHIT.START [] <= ((IsTrue extReset) -> XHIT.IIITIATE [])

I((not(IsTrue extReset)) -> XHIT.START []);

XHIT.IIITIATE [] <■ broadcastdata?m ->(((SyncHode n) -> broadcastdata?sl ->

XHIT_READ_SYIC2 [m,sl])

I ((not(SyncHode m))-> XHIT.EXECUTE [in,0,0]));

XHIT.READSYIC2 [m.sl] <= ((ReadSync2 m) -> broadcastdata?s2 -> XHIT.EXECUTE [m,sl,s2]) •

I ((not (ReadSync2 m)) -> XHIT.EXECUTE [m,sl,0]);

XHIT.EXECUTE [m, si, s2] <» broadcastctrlTctrl -> XHIT.SEID.DATA [m,sl,s2,ctrl];

XHIT.SEID.DATA [m, si, s2, Ctrl ] <= ((TransmitEnable Ctrl) -> ((SyncHode in) -> XHIT.SYIC [m,sl,s2])

I((not (SyncHode m)) -> XHIT_ASYHC[m,sl,s2]))

I((not (TransmitEnable Ctrl)) -> XHIT.EXECUTE [m,sl,s2]);

XHIT.ASYIC [m, si, s2 ] <= ((IsFalse extReset) -> XHIT.START [])

I (intReset? -> XHIT.IIITIATE [])

I(xmitmain?x -> TxEHPTY :■ 0 -> XHIT.ASYIC.SEID [m, si, s 2 ,(AssembleAsyncData m x

(DataSize m ) ,(ExtractBaudRate m) ) 

I(broadcastctrl?ctrl -> XHIT.SEID.DATA [m,sl,s2,ctrl]);

XHIT.ASYIC.SEID [m,si,s2,data,size,brate] <= ((not(size»0))-> t x d !(Lsb data) ->

XHIT.ASYIC.SEID [m.sl,s2,rshift(data,1),(Decrement size)!) 

I((size'O) -> TxEHPTY := l-> XHIT.ASYIC [m, si, s2]);

XHIT.SEID.SYIC.DATA [ m, si, s2, data, size] <■ ((not (size=0)) -> txd!(Lsb data) ->

XHIT_SEID.SYIC_DATA[m, si, s 2 , rshift(data,1), (Decrement size)]) 

l((size=0) -> XHITSYIC [m,sl ,s2]) ;

XHIT.SYIC [m,sl,s2 ] <= ((xmitmain?x -> TxEHPTY:=0 -> XHIT.SEID.SYIC.DATA [m,sl,s2,x,(DataSize m)]))

I(broadcastctrl?ctrl -> XHIT.SEID.DATA[m,si,s2,ctrl])

I((IsFalse extReset) -> XHIT.START [])

I(intReset? -> XHIT.IIITIATE [] )

I ((IsTrue XmitBufferEmpty)-> TxEHPTY:»l -> XHIT.SYIC.CHAR [m.sl,s2,sl ,8]);

XHIT.SYBC.CHAR [m, si, s 2 , data, size ] <= ((not(size=0)) -> txd!(Lsb data) ->

XHIT.SYIC.CHAR [m,si,s2,rshift(data,1),(Decrement size)]) 

|((size=0) -> ((ReadSync2 m) ->

XHIT.SECOID_SYIC.CHAR [m.sl,s2,s2,8])

I((not (ReadSync2 m))-> XHIT_SYIC[m,sl,s2]));

XHIT.SECOID.SYIC.CHAR [ m, si, s2, data, size] <=

((not (size=0)) -> txd!(Lsb data) -> XHIT.SECOID.SYIC.CHAR [m, si, s 2 ,

rshift(data.l), (Decrement size)])

|((size=0) -> XHIT.SYIC [m,sl,s2])

End


