
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Specializing RISC-V Cores for
Performance and Power

Henrique Veloso de Sousa

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Nuno Paulino

Co-supervisor: João Canas Ferreira

October 21, 2022

© Henrique Veloso de Sousa, 2022

Resumo

Tendo em conta a presente estagnação da lei de Moore e da regra de escalonamento de Dennard,
novas soluções para melhorias computacionais são necessárias. Uma possível solução consiste nos
chamados sistemas heterogéneos em que um CPU convencional pode ser acoplado de forma in-
terna, dentro da pipeline, ou externa, sob a forma de um periférico, a um sistema de hardware
desenvolvido para uma aplicação particular ou para um domínio específico. Aceleradores inter-
nos consistem em aceleradores que se encontram, geralmente, dentro da própria pipeline do CPU,
cuja principal limitação ao seu desempenho são os possíveis caminhos críticos que impõem ao
sistema em que se inserem. Apesar da importância deste tipo de sistemas, o seu desenvolvimento
é limitado pela ausência de processadores open-source, por isso microarquiteturas que suportam
o conjunto de instruções de RISC-V oferecem uma forte alternativa aos, já existentes, IPs propri-
etários. Nesta dissertação, é proposta uma framework cujo principal objetivo é a automatização do
desenvolvimento de um sistema heterogéneo, baseado no Rocket-chip, que consiste na criação, à
base da HDL Chisel, de um acelerador, a integração deste acelerador no processador, a exploração
do espaço de soluções do SoC do Rocket-chip resultante da integração, a síntese e place-and-route
da arquitetura e a obtenção de métricas de potência dinâmica, tempo de execução e utilização de
recursos de hardware. O acelerador desenvolvido foi o filtro FIR em que, partindo do desenvolvi-
mento de uma benchmark baseline e de outra acelerada e considerando a frequência máxima de
cada uma das arquiteturas, speedups superiores a 200x foram observados para filtros de ordem ele-
vada e, para a mesma frequência speedups de 1000x foram, igualmente, observados. A benchmark
acelerada foi desenvolvida através do desenvolvimento de instruções personalizadas, dedicadas às
operações do filtro FIR. Para além de métricas de timing, valores correspondentes ao consumo en-
ergético, resultantes da potência dinâmica média e dos valores de timing, foram bastante inferiores
para valores elevados de input de dados, para o caso da arquitetura acelerada do que para o caso
baseline. Valores de redução de consumo energético de 237x foram alcançados.

i

ii

Abstract

Considering the current stagnation of Moore’s law and Dennard’s Scaling, new solutions for in-
creased computing performance are required. One such solution consists of the so-called heteroge-
neous systems where a conventional CPU can be coupled in either a tightly or loosely based fash-
ion to a hardware system intended for application or domain-specific acceleration. Tightly-coupled
heterogeneous systems consists of hardware accelerators coupled inside the CPUs pipeline and,
as such, their performance is mainly limited by the reduction of the processors operating fre-
quency imposed by the critical paths the accelerator may impose. Despite their importance, the
research and development of tightly-coupled systems is often hampered by the lack of available
open-source processors and, as such, CPUs that support the open source RISC-V ISA present a
powerful alternative to the, existing, proprietary IPs. In this dissertation, we propose a frame-
work whose primary goal is to enable an automated workflow of a, RISC-V, Rocket-chip-based,
tightly-coupled architecture which consists of Chisel accelerator development, its Rocket-chip in-
tegration, the now modified Rocket-chips design space exploration and the architectures synthesis
and place-and-route for obtaining timing and power measurements. The concrete use-case of the
developed accelerator was the FIR filter in which, through the development of a baseline and an
accelerated benchmark and considering the maximum frequency achievable, post-route, by each
design without creating slack delay violations, speedups greater than 200x were registered for
higher order FIR filters and, for the same frequency, speedups of up to 1000x were observed. The
accelerated benchmark was developed by replacing accelerable code segments with, developed,
custom instructions. In addition, energy consumption, resulting from timing and average dynamic
power measurements, was shown to be significantly lower for accelerated architectures than for
for the baseline architecture, especially for higher order and number of data inputs where values
of up to 237x less energy were observed.

iii

iv

Agradecimentos

Gostaria de agradecer a ambos os meus orientadores, Nuno Paulino e João Canas Ferreira, pelo
apoio oferecido que me ajudou a resolver os vários problemas associados ao desenvolvimento
desta dissertação.
Sinto também a obrigação de agradecer à minha família o apoio contínuo que me foi dado e que
me permitiu dedicar, quase exclusivamente, à elaboração desta dissertação sem outras grandes
preocupações.

Henrique Veloso de Sousa

v

vi

“People who are really serious about software
should make their own hardware.”

Alan Kay

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Structure of the document . 3

2 Related Work 5
2.1 Background . 5

2.1.1 Chisel . 5
2.1.2 DSPTools . 7
2.1.3 Verilator . 8
2.1.4 Vivado . 8
2.1.5 FPGAs . 9
2.1.6 RISC-V . 9
2.1.7 Instruction set extensions . 11
2.1.8 Unlimited Vector Extension . 12
2.1.9 Rocket-Chip . 13
2.1.10 RoCC Interface . 14
2.1.11 Freedom . 15
2.1.12 FireSim . 15
2.1.13 Hammer . 16
2.1.14 FIR filter . 17

2.2 State-of-the-art . 17
2.2.1 FlexBex . 17
2.2.2 RV-MLPU . 18
2.2.3 TIGRA . 19
2.2.4 Arnold . 19
2.2.5 GAP-8 . 20

3 Proposed Approach 23
3.1 General Integration and Validation Methodologies 23

3.1.1 RISC-V GNU Assembler . 23
3.1.2 Hardware Accelerator Development . 24
3.1.3 Benchmarks . 25
3.1.4 Rocket-chip Integration . 25
3.1.5 Hardware Implementation . 27

3.2 Implemented approach . 27
3.2.1 RISC-V Compiler . 29

ix

x CONTENTS

3.2.2 Hardware Modules . 29
3.2.3 Functional testing . 30
3.2.4 Benchmarks . 31
3.2.5 Rocket-chip Simulation . 32
3.2.6 Design Space Exploration . 32
3.2.7 Hardware Implementation . 33

3.3 Automated framework . 35
3.3.1 Project structure . 35

3.4 Discussion . 39

4 Results 41
4.1 DSPTools Tests . 41
4.2 Verilator Tests . 42

4.2.1 Standalone SCIE module . 42
4.2.2 Tightly-Coupled Architecture . 43

4.3 Timing measurements . 43
4.3.1 Synthesis and Place-and-route . 47

4.4 Power measurements . 48
4.5 Energy measurements . 49
4.6 Workflow results . 50

4.6.1 Timing . 50
4.6.2 Power and energy . 51

4.7 Discussion . 52

5 Conclusions 55
5.1 Future work . 55

A Detailed Code and Additional Results 57
A.1 FIR Filter Chisel3 Code . 57
A.2 Baseline and Modified Benchmark C Code . 58
A.3 Workflow Automation Scripts . 60
A.4 File tree structure . 62
A.5 Benchmark Binary Dumps . 63
A.6 Cycle Count and Speedups . 64

A.6.1 Optimization -O0 (Unsigned Data) . 65
A.6.2 Optimization -O0 (Signed Data) . 69
A.6.3 Optimization -O0 (Fixed-point Data) 73
A.6.4 Optimization -O3 (Unsigned Data) . 77
A.6.5 Optimization -O3 (Signed Data) . 81
A.6.6 Optimization -O3 (Fixed-point Data) 85

A.7 Frequency Plots . 89
A.8 Power and Energy Consumption . 90

A.8.1 Unsigned . 90
A.8.2 Signed . 92
A.8.3 Fixed-point . 95

References 99

List of Figures

2.1 Chisel compilation process ([1]). 6
2.2 An example of an annotation. 6
2.3 NoC development workflow as shown in [2]. 7
2.4 Verilator workflow. 8
2.5 Example Vivado project as depicted in [3] . 9
2.6 Xilinx Virtex-7 FPGA VC707 Evaluation Kit [4] 10
2.7 RISC-V base ISA formats [5]. 10
2.8 FlexBex custom instruction as depicted in [6]. 11
2.9 Micro architectural changes to the CPU pipeline as depicted in [7]. 12
2.10 Typical Rocket-chip system as depicted in [8]. 13
2.11 RoCC instruction encoding as depicted in [9]. 14
2.12 Simplified RoCC interface as depicted in [10]. 15
2.13 Example of an 8 FPGA FireSim workflow ([11]). 16
2.14 Third order FIR filter. 17
2.15 FlexBex architecture as depicted in [6]. 18
2.16 RV-MLPU results as depicted in [12]. 18
2.17 The TIGRA architecture as shown in [13]. 19
2.18 Detailed view of the Arnold architecture as depicted in [14]. 20
2.19 The GAP-8 SoC as illustrated in [15]. 21

3.1 Proposed workflow. 24
3.2 Default method of communication between Rocket-Chip and host ([16]). 26
3.3 Architecture of the altered, Rocket-core, pipeline. 28
3.4 Rocket-chip system Vivado implementation obtained from [17]. 33
3.5 Simplified diagram of methodology for obtaining dynamic power measurements. 34
3.6 Top-level automated workflow of workflow.sh. 35
3.7 workflow.sh Python scripts. 36
3.8 Example of .csv file with respect to FIR filter’s order. 36
3.9 Tcl script workflow. 37

4.1 Dummy application, DSPTools tester, results. 42
4.2 Small test, showing FIR filter behaviour in Verilator environment. 43
4.3 Performance of baseline vs. accelerated benchmark. 43
4.4 Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point). 44
4.5 Cycle speedup of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point). 44
4.6 Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Floating-

point). 45
4.7 Cycle speedup of 200 vs. 2000 data inputs ((Fixed-point vs. Floating-point)). . . 45

xi

xii LIST OF FIGURES

4.8 Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point). 45
4.9 Cycle speedup of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point). 46
4.10 Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Floating-

point). 46
4.11 Cycle speedup of 200 vs. 2000 data inputs ((Fixed-point vs. Floating-point)). . . 46
4.12 Maximum frequency with respect to filter order. 47
4.13 Time performance of 200 vs. 2000 data inputs. 48
4.14 Time speedup of 200 vs. 2000 data inputs. 48
4.15 Average dynamic power consumption of 200 vs. 2000 data inputs (Fixed-point vs.

Fixed-point). 49
4.16 Energy consumption of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point). . 49

A.1 Speedup for cycle count (above) and execution time (below) for data=20. 65
A.2 Speedup for cycle count (above) and execution time (below) data=50. 65
A.3 Speedup for cycle count (above) and execution time (below) data=100. 66
A.4 Speedup for cycle count (above) and execution time (below) for data=200. 66
A.5 Speedup for cycle count (above) and execution time (below) for data=500. 67
A.6 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 67
A.7 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 68
A.8 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 68
A.9 Speedup for cycle count (above) and execution time (below) for data=20. 69
A.10 Speedup for cycle count (above) and execution time (below) for data=50. 69
A.11 Speedup for cycle count (above) and execution time (below) for data=100. 70
A.12 Speedup for cycle count (above) and execution time for data=200. 70
A.13 Speedup for cycle count (above) and execution time (below) for data=500. 71
A.14 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 71
A.15 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 72
A.16 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 72
A.17 Speedup for cycle count (above) and execution time (below) for data=20. 73
A.18 Speedup for cycle count (above) and execution time (below) for data=50. 73
A.19 Speedup for cycle count (above) and execution time (below) for data=100. 74
A.20 Speedup for cycle count (above) and execution time (below) for data=200. 74
A.21 Speedup for cycle count (above) and execution time (below) for data=500. 75
A.22 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 75
A.23 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 76
A.24 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 76
A.25 Speedup for cycle count (above) and execution time (below) for data=20. 77
A.26 Speedup for cycle count (above) and execution time (below) for data=50. 77
A.27 Speedup for cycle count (above) and execution time (below) for data=100. 78
A.28 Speedup for cycle count (above) and execution time (below) for data=200. 78
A.29 Speedup for cycle count (above) and execution time (below) for data=500. 79
A.30 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 79
A.31 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 80
A.32 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 80
A.33 Speedup for cycle count (above) and execution time (below) for data=20. 81
A.34 Speedup for cycle count (above) and execution time (below) for data=50. 81
A.35 Speedup for cycle count (above) and execution time (below) for data=100. 82
A.36 Speedup for cycle count (above) and execution time (below) for data=200. 82
A.37 Speedup for cycle count (above) and execution time (below) for data=500. 83

LIST OF FIGURES xiii

A.38 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 83
A.39 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 84
A.40 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 84
A.41 Speedup for cycle count (above) and execution time (below) for data=20. 85
A.42 Speedup for cycle count (above) and execution time (below) for data=50. 85
A.43 Speedup for cycle count (above) and execution time (below) for data=100. 86
A.44 Speedup for cycle count (above) and execution time (below) for data=200. 86
A.45 Speedup for cycle count (above) and execution time (below) for data=500. 87
A.46 Speedup for cycle count (above) and execution time (below) for data=1000. . . . 87
A.47 Speedup for cycle count (above) and execution time (below) for data=1500. . . . 88
A.48 Speedup for cycle count (above) and execution time (below) for data=2000. . . . 88
A.49 Maximum frequency with respect to Unsigned filter order. 89
A.50 Maximum frequency with respect to Signed filter order. 89
A.51 Maximum frequency with respect to Fixed-point filter order. 89
A.52 Power and energy for data=20. 90
A.53 Power and energy for data=50. 90
A.54 Power and energy for data=100. 90
A.55 Power and energy for data=200. 91
A.56 Power and energy for data=500. 91
A.57 Power and energy for data=1000. 91
A.58 Power and energy for data=1500. 92
A.59 Power and energy for data=2000. 92
A.60 Power and energy for data=20. 92
A.61 Power and energy for data=50. 93
A.62 Power and energy for data=100. 93
A.63 Power and energy for data=200. 93
A.64 Power and energy for data=500. 94
A.65 Power and energy for data=1000. 94
A.66 Power and energy for data=1500. 94
A.67 Power and energy for data=2000. 95
A.68 Power and energy for data=20. 95
A.69 Power and energy for data=50. 95
A.70 Power and energy for data=100. 96
A.71 Power and energy for data=200. 96
A.72 Power and energy for data=500. 96
A.73 Power and energy for data=1000. 97
A.74 Power and energy for data=1500. 97
A.75 Power and energy for data=2000. 97

xiv LIST OF FIGURES

List of Tables

4.1 Baseline unsigned FIR filter cycle measurements. 50
4.2 Accelerated unsigned FIR filter cycle measurements. 50
4.3 Unsigned FIR filter measurements. 50
4.4 Baseline unsigned FIR filter time measurements (µs). 51
4.5 Accelerated unsigned FIR filter time measurements (µs). 51
4.6 Baseline unsigned FIR filter average dynamic power measurements (mW). 51
4.7 Accelerated unsigned FIR filter average dynamic power measurements (mW). . . 51
4.8 Baseline unsigned FIR filter energy measurements (µJ). 52
4.9 Accelerated unsigned FIR filter energy measurements (µJ). 52

xv

xvi LIST OF TABLES

Abbreviations and Symbols

AI Artificial Intelligence
ALU Arithmetic Logic Unit
BRAM Block Random Access Memory
CDFG Control and Dataflow Graphs
CGRA Course-grained Reconfigurable Architecture
CPU Central Processing Unit
DNN Deep Neural Network
DPR Dynamic Partial Reconfiguration
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
FFT Fast-Fourier Transform
FIR Finite Impulse Response
FIRRTL Flexible Internal Representation for RTL
FPGA Field-Programmable Gate Array
FPU Floating-Point Unit
GPU Graphics Processing Unit
HEVC High Efficiency Video Coding
HDL Hardware Descriptive Language
HLS High-Level Synthesis
IDE Integrated Development Environment
IIR Infinite Impulse Response
IoT Internet of Things
IP Intellectual Property
ISA Instruction Set Architecture
JVM Java Virtual Machine
JSON JavaScript Object Notation
LUT Lookup Table
MDU Multiplication and Division Unit
ML Machine Learning
ReLU Rectified Linear Unit
RISC-V Reduced instruction
RoCC Rocket Custom Coprocessor
RTL Register Transfer Level
SBT Scala Build Tool
SCIE Simple Custom Instruction Extension
SIMD Single Instruction Multiple Data
SoC System on a Chip

xvii

Chapter 1

Introduction

1.1 Context

Developments in fields such as Artificial Intelligence (AI) have been driving the need for the

transfer and processing of big data volumes. This processing has been, traditionally, performed

remotely due to limitations of the edge nodes’ hardware to achieve good task performance while

maintaining low power consumption.

With the stagnation of Moore’s law and Dennard’s scaling [18, 19, 20], other computing meth-

ods have gained prominence, mainly methods in which workload parallelism is explored such as

in the case of multiprocessor approaches. This method is mostly useful for, general purpose,

multi threaded applications in which the computing load can be distributed to the different cores.

According to [19], however, even optimistic projections for the speedup that this approach can pro-

vide, may prove to be insufficient for future needs. Therefore, different computing architectural

solutions are required. One such solution, for specialized workloads, is heterogeneous computing

[21]. It generally consists of a Central Processing Unit (CPU) coupled with a hardware accelera-

tor, in either a tightly or loosely based fashion, specialized to accelerate a specific application or

application domain. This type of computing has been gaining traction and is used in industries

such as self-driving cars and wireless biomedical devices [22, 23].

In heterogeneous systems, different types of accelerators can be coupled to the CPU such as

a Graphics Processing Unit (GPU) which consists of multiple, independent, processing units that

share the same fetch and decode frontend, as explained in [24] and, are able to run a single type of

instruction in parallel in an independent, Single Instruction Multiple Data (SIMD) manner. These

characteristics make them ideal for matrix and vector operations. Digital signal processors (DSP)

are another type of, widely used, accelerator in which several operations such as the Fast Fourier

Transform (FFT) are performed, generally, on an incoming data stream such as audio or video. Yet

another, less widely used, accelerator, for machine learning applications, are the neuromorphic

accelerators. These accelerators, as explained in [24], are based on the brain and mimic neural

networks where devices like memristors can be used to model its synapses. Finally, the Coarse-

Grained Reconfigurable Architectures (CGRA) [25], seek to address some of the shortcomings

1

2 Introduction

of Field-Programmable Gate Arrays (FPGA) namely their low frequency, long compilation times

and inefficient board mapping of some important arithmetic operations such as multiplication.

Their architecture, which presents a lower degree of granularity than the FPGAs, are composed of

multiple processing units that not only allow for more efficient mapping of arithmetic operations

as well as allowing, generally, for higher operating frequencies then the FPGAs. These were some

of the examples, of architectures, that were studied in order to provide greater context for this

dissertation.

There are several methods for developing efficient accelerators such as using High Level Syn-

thesis (HLS) that translate C/C++ source code directly to hardware [26]. For greater, more man-

ual, module customization, Hardware Description Languages (HDL) such as VHDL or Verilog

are used. Since our goal was for a highly customizable accelerator with tighter integration with a

RISC-V architecture, a Register Transfer Level (RTL) approach was chosen. However, traditional

HDLs like Verilog and VHDL lack some of the features present in languages in other domains

(e.g. object-oriented programming, inheritance, polymorphism). Recent experimental HDLs such

as SpinalHDL [27] and Chisel [28] have addressed these issues and, given that the UC Berkeley’s

RISC-V ecosystem is Chisel-based, this was the chosen HDL. Chisel consists of an HDL em-

bedded in the Scala programming language and, as such, provides an object-oriented, functional

programming paradigm that greatly facilitates RTL development. In addition, it presents some in-

teresting features such as its implicit clock and reset signal present in hardware module instances,

its value assignment overwrite, preventing short-circuits and its Scala-based hardware testers. Fur-

thermore, modules described by Chisel may be later converted to Verilog for synthesis. During

conversion, an intermediate code called Flexible Internal Representation for RTL (FIRRTL) is also

generated [29].

For developing accelerators, binary trace analysis is also used. This approach consists in ana-

lyzing the program, to be accelerated, at the assembly instruction level and identifying accelerable

basic blocks [30]. When compared with other methods, binary trace analysis gives a, run time,

dynamic view of the program rather than a static one used by other methods [30].

The work presented in this dissertation is inserted in the larger context of both heterogeneous

computing and the RISC-V instruction set architecture (ISA) and seeks to contribute to its ever

growing importance.

1.2 Motivation

For the development of a heterogeneous architecture a CPU is required and alternatives to costly,

proprietary Intellectual Property (IP) may be convenient. The RISC-V presents an open-source,

royalty-free alternative. In addition, it also offers, when compared to other architectures, a simple

instruction set architecture with a fixed base module and several instruction extensions implement-

ing different functionalities [31].

For our particular use-case, considering that FIR filter operations are common in DSP appli-

cations, a FIR filter was selected as our hardware accelerator to be tightly-coupled to the CPU.

1.3 Objectives 3

Therefore the motivation for the dissertation lies, primarily, in the design exploration of a,

DSP-domain specific, accelerator circuit. Secondly, in the study of the efficiency of the RISC-V

ISA and its limitations. In assessing the effectiveness of the Chisel HDL to speedup the, usually

slow, hardware development process and, finally, in determining the viability of the developed

heterogeneous computing architecture to speedup execution time and lower energy DSP-centric

applications.

1.3 Objectives

In order to, accurately, assess the issues raised in Section 1.2, this dissertations main objective is

to answer the following question:

What performance and power advantages are achievable by domain specific Instruction Set
Extensions to the RISC-V cores?

To provide an answer to this question, a CPU would need to be selected and its performance

of the targeted application would need to be evaluated against an altered version of the same CPU

in which a tightly-coupled accelerator would be added to its pipeline. For this methodology the

following challenges would need to be addressed:

• Selection and integration of CPU and the developed accelerator;

• Developed accelerator functional testing;

• Modification of RISC-V GNU tool-chain to add custom instructions;

• Possible changes to the CPU datapath;

• Automation of the design space exploration effort;

• Development of baseline and accelerator benchmarks;

• Power, area and performance measurements of the baseline and accelerated application.

1.4 Structure of the document

So far we presented the broader context, motivation and objectives we set out to achieve for this

dissertation. In Chapter 2, we present a review detailing some of the important concepts, used

tools and methodologies used in this work. In addition, a brief overview of several, relevant,

heterogeneous, RISC-V-based, architectures is also presented in the State-of-the-art subsection.

In the Chapter 3, we present a general as well as our own, implemented, approach for solving

the problem proposed in this dissertation. The developed framework utilized is also presented. In

Chapter 4, we present and discuss the results achieved by our methodology and, finally, in Chapter

5, the main contributions of this work as well as its possible, future, developments are presented.

4 Introduction

Chapter 2

Related Work

In this section, we provide some important concepts as well as background information on the

tools and methodologies used throughout this work. Some tools, that are not used for this work,

which are a part of UC Berkeley’s, general, ecosystem, are also showcased. Furthermore, we

review some of the most relevant heterogeneous architectures in the State-of-the-art subsection.

2.1 Background

As mentioned, we first summarize existing designs, languages, and tools which are critical to the

understanding of this work. The primary components are the, already introduced, RISC-V ISA

and its ecosystem, which is based on the Chisel HDL, Verilator tool, which performs RTL level

functional verification and the Rocket-chip system, which is used as a host to our, developed, FIR

filter accelerator. Equally important is the Vivado Integrated Development Environment (IDE),

which is used for synthesis and place-and-routing the design for maximum frequency, resource

utilization and dynamic power measurements.

2.1.1 Chisel

Chisel [28] is an HDL embedded in Scala which is, in turn, an object-oriented, functional program-

ming language. It presents an appealing alternative to HDLs such as Verilog due to its support of

constructs mainly used in software development such as higher-order functions and the use of

generic types. In addition, it also supports its own testers such as the PeekPokeTester [32] which

pokes the modules’ inputs and peeks its value to ensure the modules’ expected functionality. To

go beyond the functional verification, the Chisel compiler is able to convert valid Chisel code to

an intermediate circuit code named Flexible Internal Representation for RTL (FIRRTL) and, then,

convert FIRRTL to synthesizable Verilog or SystemVerilog RTL code. This Verilog code can,

then, go through the more traditional RTL workflow.

As depicted in the Figure 2.1, Chisel, like the Java programming language, uses the Java virtual

machine (JVM) to compile the Chisel’s Scala code into an intermediate circuit representation.

This intermediate circuit is represented as an Abstract Syntax Tree (AST) data structure. This

5

6 Related Work

Figure 2.1: Chisel compilation process ([1]).

Figure 2.2: An example of an annotation.

data structure presents the root node which represents the overall circuit as well as numerous child

nodes representing the different Chisel modules, ports and wire and register statements among

others [33]. Upon these nodes, compiler transforms can be applied meant to perform the desired

changes to the output representation. These FIRRTL transforms can take annotations as inputs

which are represented as a dictionary structure with a class field, which specifies the type of

annotation, and a target field specifying the target node to apply the transformation to [34].

The above presented annotation, in Figure 2.2, represents that the, specified, target node must

not be optimized away by the Chisel and FIRRTL compiler passes. These annotations can either

be added to the source code itself or by creating a serialized annotation JavaScript Object Notation

(JSON) file and adding it to the Chisel source code as further explained in [35].

In the work developed for this dissertation, annotations meant to disable memory and register

random initialization were applied given that the used macros for random value initialization were

unsupported at later stages of the workflow. Another, useful, characteristic of the Chisel HDL

was its use of generic types. For this work, its use was exploited to build a parameterized Finite

Impulse Response (FIR) filter which could work with multiple data types.

2.1 Background 7

Figure 2.3: NoC development workflow as shown in [2].

In our work, Chisel was also chosen due to the fact that it has been growing in popularity

and is being used as the language of choice in many projects namely in [2] where EAGEN is

developed. EAGEN is composed of two modules: the Network-on-Chip producer, which is built

using Chisel3, and a configuration recommender module. These modules, given a NoC design

input, simulate computing loads and recommend the ideal NoC constraints for the design. These

recommendations are then used to produce RTL code corresponding to the NoC design with the

ideal configurations.

One other project which uses Chisel, shown in [36], consists of a, single-path delay feed-

back, generator of FFT processors. It aims to, not unlike the work proposed in this dissertation,

develop an agile design space exploration workflow intended for FFT development with respect to

parameters such as input data, twiddle factor widths, FFT sizes and number of stages, among other

parameters [36]. In addition to these two examples given, many more examples of Chisel-based

HDL development can be seen in works such as [37, 38, 39, 40, 41].

In the work, presented in this dissertation, a similar approach to the HDL development of [36],

in which an agile design space exploration approach was developed, is followed. The development

of the accelerator and the, developed, framework, will be further discussed in Chapter 3.

2.1.2 DSPTools

As explained in [42], the DSPTools is a Chisel library intended for building DSP-based, parame-

terizable, hardware modules. It presents numerous useful features such as its use of typeclasses,

which enable algebraic operations fit for both complex and real numbers, its use of the so called

DspContexts, which allow for some control over a given operation namely in its overflow be-

haviour, the number of bits and its binary point placement. These are only some examples of

8 Related Work

Figure 2.4: Verilator workflow.

the many features presented in [42]. The used typeclasses are built on top of a Scala, numeric,

library named Spire [43]. Furthermore, the DSPTools also support a more verbose tester than the

PeekPokeTester.

2.1.3 Verilator

Verilator [44] is a, free, open-source compiler that converts HDL code to multithreaded C++ or

SystemC code which, alongside a user built C/C++ wrapper, can be used to perform an event-

driven simulation of the functional behaviour of the targeted hardware module in a cycle-accurate

fashion. Multiple, compiler, flags can be added to the Verilator command as to offer various func-

tionalities such as waveform generation which can later be examined through the use of GTKWave

[45]. Both Rocket-chip and the PeekPokeTester have the ability to use a Verilator backend for their

simulations.

The figure depicted above, presents the workflow intended for Verilator simulations in which:

first, the hardware modules are written in an HDL, secondly, they are converted to C++ modules

through a process named verilating. Afterwards, a C++ testbench, meant to instantiate the design

and test it, must be built and, finally, through this testbench, the simulation can be performed. This

simulation, however, has its limitations namely in the fact that it is cycle-based and, therefore, not

ideal for timing measurements. This has its upside because this makes the simulator extremely

fast by ignoring intra-cycle information such as glitching activity. Another advantage of this tool

is that, given that the hardware module’s signals are entirely controlled by the, user-built, C/C++

testbench, the state of the circuit can easily be checked, by printing to screen or by using other

software-based checking methods while running the simulation, enabling easy design debugging.

2.1.4 Vivado

Vivado is a Xilinx IDE that seeks to improve upon the, older, Xilinx ISE [46]. It is built for

synthesizing, place-and-routing and analyzing HDL designs. All of these processes are written in

native Tcl and, as such, it is possible to access the design database through Tcl commands to make

changes to constraints, design configuration and tool settings. This IDE has several functionalities

but one of its most important one, for this work, was the generation of checkpoints for timing,

resource utilization and dynamic power measurements.

The extensive use of Tcl by Vivado was also extremely useful for this dissertation because it

allowed writing Tcl scripts which automatized the developed workflow.

2.1 Background 9

Figure 2.5: Example Vivado project as depicted in [3]

2.1.5 FPGAs

FPGAs [47], are silicon-based devices which can be electronically programmed so as to build

a custom circuit for the intended application. They are composed of an array of logic blocks

whose connections are dictated by a bitstream resulting from a synthesized and place-and-routed

design. Synthesis consists in the transformation of the RTL code into a logic gate, optimized,

representation, whereas place-and-route consists of the process in which the synthesis output is

mapped onto the target board and then interconnected. In our work, we opted to target an FPGA

rather than an ASIC due to the fact that the existing Chipyard workflow in [48], dedicated to ASIC

deployment, required proprietary software such as Cadence Innovus, Genus and Voltus, Synopsys

VCS, and Mentor Calibre which we didn’t have access at the time. Considering that we had a

large hardware design and, as such, required a high number of hardware resources, the VC707

board [4] was selected. The developed workflow, however, easily allows for targeting other FPGA

boards.

2.1.6 RISC-V

RISC-V [49] is an open-source ISA that started development in 2010 at the UC Berkeley’s Paral-

lel Computing Laboratory which was a five-year project whose main goal was to advance parallel

computing [50]. Since then, according to [51], 10 billion RISC-V cores have been shipped to

10 Related Work

Figure 2.6: Xilinx Virtex-7 FPGA VC707 Evaluation Kit [4]

market and are projected to grow to up to 80 billion in 2025. Its popularity stems, in part, from

the fact that RISC-V presents itself as an alternative to the current paradigm in which ISAs tend to

get overloaded with instructions to provide new functionality whilst guaranteeing legacy compat-

ibility [5]. To achieve this, a base instruction set (I instructions) used for, fundamental, arithmetic

and logic operations is implemented which is not subject to future modifications [5]. The base

ISA, not unlike other ISAs, has several formats (R/I/S/B/U/J) in which the R-type instructions

consist of, the usual, two input and one output register, typical of arithmetic and logical operations

between two variable values. The I format which performs, roughly, the same operations as the

R-format but between an input variable and a constant value. It also supports the load operations.

The S-type which supports store operations. The B-type, a variant of the S-type, which supports

conditional branches. The U-type which supports long immediates and, finally, the J-type that sup-

ports unconditional jumps. The J-type is a variant of the U-type instruction. The aforementioned

formats have the following structure:

Figure 2.7: RISC-V base ISA formats [5].

2.1 Background 11

In addition to the base instruction set, multiple RISC-V cores support a variety of standard

ISA extensions. To give a better idea of the numerous ISA extensions available, we present the

extensions available in the general set extension (G) that, the Rocket Core, used in this work,

supports:

• I - Base ISA;

• M - For Integer Multiplication and Division;

• F - For, Single-Precision, Floating-Point;

• D - For, Double-Precision, Floating-Point;

• A - For Atomic Instructions.

Other instruction set extensions, not present here, exist, and can be examined in greater detail

in [5]. For the upcoming dissertation, as we intend on developing our own custom instructions, op-

codes, reserved for custom instructions such as the ones shown in [5], will be used, and instruction

set extension use cases studied.

2.1.7 Instruction set extensions

In tightly-coupled architectures, in order to use the developed coprocessor, custom instructions

need to be implemented such that the datapath can be routed to the intended accelerator. To

achieve this, hardware modifications along with new compiler instructions are required. Often-

times, to select the instruction to customize, application bottlenecks need to be identified and, as

such, profiling is used. In [52], such an approach was used in order to accelerate the execution of a

HEVC deblocking filter ([53]) in which instructions were added based on three different profiling

levels: Instruction, function and algorithmic. Based on these results, scalar and complex instruc-

tions were selected. Due to data concatenation, the complex instructions required adding 2 128-bit

register files to the, targeted 5-stage pipeline, 32 32-bit registers, RISC-V core. One 128-bit regis-

ter intended for the source and another for the destination data. Speedups of 7% and 11.6% were

observed from the scalar and complex instructions added, respectively. In [54], a BK3, RISC-V,

processor is modified so as to host DSP-centric instructions such as complex multiplication, for

different PHY layer IoT protocols, in order to develop an ultra-low power consumption, software

defined, transceiver. In the work depicted in [6], to route the inputs onto the three accelerator slots,

custom instructions had to be implemented such that the slot, the input and output registers, and

the number of cycles the processor must stall, is specified. In Subsection 2.3 this work will be

further explored.

Figure 2.8: FlexBex custom instruction as depicted in [6].

12 Related Work

Figure 2.9: Micro architectural changes to the CPU pipeline as depicted in [7].

Yet another example of instruction set extension is demonstrated in [55], where, for targeting

image processing applications, a custom instruction, that applies the Winograd algorithm [56], is

developed. To apply this algorithm, an instruction named Conv23 is created, which consists of

an encoded R-type instruction with the size of the input matrix stored in the rs1 register and the

first address in memory, of said matrix, stored in rs2. Since no write back is implemented, the

destination register content is irrelevant. This instruction enables the contents of the input matrix

to be placed into 16 32-bit registers where, the operation between itself and the filter matrix, stored

in a local convolution unit, will take place. This instruction set extension enabled a 7.37x speedup

of 4-by-4 input matrix convolutions as well as convolution reduced power consumption, from

0.048W to 0.019W.

Considering its potential, [21, 57, 54], for acceleration, DSP-oriented custom instructions were

selected. To achieve this goal, compiler changes needed to be implemented as well as, possible,

changes to the underlying, target, RISC-V architecture.

2.1.8 Unlimited Vector Extension

The Unlimited Vector Extension (UVE) [7], aims to reduce the overheads imposed by controls,

memory access indexing and memory access latency present in loops, by developing a custom

set of SIMD instructions dedicated to data prefetching, on predictable data accesses, through the

use of streaming performed at the loop’s preamble. This is achieved through the use of, variable-

size, vector registers. This loop data prefetching naturally allows for the reduction of load/store

as well as memory index instructions. To enable data prefetching, 450 custom instructions were

2.1 Background 13

Figure 2.10: Typical Rocket-chip system as depicted in [8].

implemented, responsible for different tasks such as stream configuration, stream control, loop

control, vector manipulation, scalar processing, advanced control and concurrent streams.

In order to implement these custom instructions, the main change applied to the underly-

ing CPU pipeline was the insertion of a Streaming Engine which is a module responsible for all

streaming operations. These changes are depicted in Figure 2.9. One limitation of this work, how-

ever, is that adding the custom instructions has to be done so manually, as inline assembly, to the

C programs. The work present in [58] seeks to automatize this process and target it to a RISC-V

domain. The relevancy of this work, for our dissertation, is the presented set of custom instruc-

tions’ possible use in DSP applications by, for instance, minimizing the memory access latency

associated with data and coefficient fetching for FIR filter operations.

2.1.9 Rocket-Chip

The Rocket-chip [59] is a, RISC-V-based, SoC generator written in Chisel and developed by

Berkeley University. It provides its user the ability to easily develop their own SoC through the use

of constructs named configs. These constructs dictate the Rocket-chip’s architecture. Depending

on the selected config, the architecture can consist of individual tiles each with their own Rocket

Core or BOOM processor [60], an L1 cache system and an, optional, loosely-coupled accelerator

such as Hwacha [61]. These tiles can be connected to a bus which, again, depending on the con-

fig, may be connected to an L2 instruction and data cache, which are themselves connected to a

14 Related Work

Figure 2.11: RoCC instruction encoding as depicted in [9].

DRAM, to a periphery bus, which provides IO to the chip, and to a control bus, which provides

interrupt control.

Inside the Rocket Core itself lies an important module used extensively in this work, the Simple

Custom Instruction Extension (SCIE) module. This module allows the developer to host custom

instructions supporting 2 input registers and 1 output register. It has its own separate decoder which

decodes the custom instructions and routes them to either a pipelined, unpipelined or multicycle

accelerator. These SCIE modules are implemented as Chisel BlackBoxes which are constructs

used to define external modules written in Verilog. For the development of our FIR filter only

the pipelined accelerator, alongside the decoder, was used. The existence of the SCIE module

was one of the main reasons why the Rocket-chip was selected rather than other, Chisel-based,

RISC-V processors such as RISC-V Mini [62].

With the end goal of targeting an IoT domain we, initially, intended on working with the

TinyConfigs default config which consists of a 32-bit processor with no floating-point unit and

with a simple scratchpad memory. However, we had to change this default config to make it

compatible with the tools we had to use for our Vivado workflow. This will be discussed in further

detail in Chapter 3.

2.1.10 RoCC Interface

The Rocket Custom Coprocessor (RoCC) is an interface that allows the user to communicate with

their own accelerators. Communications between the Rocket-chip and the accelerator happen

through command and response instructions, queued through the RoCC interface. The command

instruction passes two register inputs into the developed accelerator and the response instruction

returns the result, which is to be stored into the destination register in the Rocket-chip. Memory

request and memory response instructions also exist for memory access [10].

As shown in Figure 2.11, the RoCC instruction encoding is composed of an opcode field in

which an opcode reserved for custom instructions must be used. In addition to the rs1, rs2 and rd

registers, there is also a field dedicated to the x1, x2 and xd flags which are used to signal whether

the, specified, registers are output or input registers.

The RoCC interface, especially when compared with the SCIE module, has many use-cases in

the current literature, such as in [9] where the RoCC interface is used so as to host an accelerator

dedicated to decimal-oriented custom instructions in order to assess the merits of the RoCC’s

interface for software/hardware co-design. One other project that makes use of the RoCC interface

is [63], where the FIXER is developed. FIXER consists of a Rocket-chip-based low energy, low

overhead security solution which implements several security primitives in a RoCC co-processor.

2.1 Background 15

Figure 2.12: Simplified RoCC interface as depicted in [10].

Among these security primitives are the shadow stack [63], important so as to ensure the integrity

of the return address in a given application’s stack.

For the development of our own custom instructions, the RoCC interface, however, was not

selected because according to [13], it imposes a significant data transfer latency.

2.1.11 Freedom

The repository in [64], provides useful tools for implementing the Rocket-Chip generated SoC on

an FPGA board. This project supports implementation on both the Artix-7 35T Arty and Virtex-

7 VC707 Evaluation Kits ([65, 4]). The way it works is: through the use of makefiles which

run Vivado on batch mode that use certain Tcl scripts, it uses the resulting Verilog files from the

compiled Chisel source code of the Rocket-chips config as well as its own memory implementation

based on the user-specified FPGA board. Afterwards, also through the use of makefiles, it is able

to generate a configuration memory file (.mcs) that can be programmed onto the FPGA board. In

our workflow this repository, however, was not used due to its use of an outdated version of the

Rocket-chip whose implementation of the SCIE module was incomplete.

2.1.12 FireSim

One other, widely used workflow ([66, 67]), useful for cases when the FPGA board is unavail-

able or when dealing with very large designs, is the FireSim project. This project was originally

developed with the intent of performing data center simulations. It provides full, cycle-accurate,

16 Related Work

Figure 2.13: Example of an 8 FPGA FireSim workflow ([11]).

simulation on remote FPGAs located in the AWS cloud. In addition, a Linux distribution can be

ran on FPGA instances, allowing for workload simulation and data collection.

2.1.13 Hammer

Hammer [48] is part of the traditional Chipyard workflow and consists of a physical design

methodology, that targets ASIC design, which consist of an intermediate representation (IR),

meant to standardize digital design constraints, that serve as input to a Hammer tools plugin. This

IR is represented by YAML or JSON files. The Hammer tools plugin consists of a wrapper for

vendor specific tools that provide a single API that performs ASIC design operations. The Ham-

mer tools plugin can be implemented as Python classes which generate Tcl fragments according to

the input Hammer IR [68]. The Hammer tools plugin are connected to a tech library which enables

targeting specific technologies such as the ASAP7 7nm library [69]. For our proposed approach,

this workflow was not followed due to the lack of vendor tools available to us at the time.

vlsi.core.technology: "asap7"

vlsi.inputs.supplies:

VDD: "0.7 V"

GND: "0 V"

Listing 2.1: Example of user input configuration as present in [70]

2.2 State-of-the-art 17

2.1.14 FIR filter

The FIR filter, unlike the infinite impulse response (IIR), produces a response to a given data input

that converges to zero in a finite time. Given its data inputs (x) and its data coefficients (b), it

applies the following calculation:

Y (n) =
N

∑
k=0

bk ∗ x(n− k)

To perform the, above depicted, calculation, the FIR filters architecture is defined as a serial-in,

parallel-out shift-register whose values, stored in the registers, are multiplied with their respective

coefficient. The output of all of these, parallel, multiplications will all be summed by an adder

circuit. As can easily be seen, the FIR filter presents potential for acceleration given its parallel

multiplications and, considering its importance in DSP operations, it was chosen as the accelerator

to be used in our tightly-coupled architecture.

Figure 2.14: Third order FIR filter.

2.2 State-of-the-art

Due to its ever growing prominence [71, 72], a multitude of RISC-V architectures have been

developed. In this section a brief overview and analysis of several RISC-V based architectures is

presented.

2.2.1 FlexBex

The work presented in [6], consists of a Field Programmable Gate Array (FPGA) coupled directly

inside a RISC-V Ibex processor pipeline in which the FPGA fabric itself is customized. This

customization is made possible with the use of FABulous fabric generator [73]. This FPGA fabric

is tiled into three accelerator slots able to host separate, parallel instructions or to be combined

to execute more complex instructions. In order to achieve a successful coupling of the FPGA

and the RISC-V core, custom instructions were implemented on operations deemed accelerable

that route operands from their usual data paths to the accelerator. The instruction also makes the

processor stall for a specified number of clock cycles. After the operation is completed and control

18 Related Work

Figure 2.15: FlexBex architecture as depicted in [6].

Figure 2.16: RV-MLPU results as depicted in [12].

is given back to the processor, the accelerator results are written back to registers. Dynamic Partial

Reconfiguration (DPR) is also used to swap accelerator slots during runtime.

The architectures main performance limitation is in only possessing three accelerator slots.

On the other hand, however, increasing the number of slots would result in larger area and power

consumption.

2.2.2 RV-MLPU

This accelerator, showcased in [12], was built for running deep neural network (DNN) inference

tasks, mostly oriented for mobile devices. The architecture itself is based on the Rocket Core,

modified to host the V (Vector extension) instruction set, tightly-coupled with a SIMD accelera-

tor based on the NEON, shown in [74], processing unit. Custom instructions were created and

the supporting tool-chain altered with inline assembly support. Afterwards, a run-time environ-

ment was built to map TensorFlow Lite, [75], ML oriented operations to the, developed C inline

assembly functions. To assess its performance, learning models, used in mobile devices, such

as DenseNet, MnasNet, Inception V3, ResNet 50, MobileNet, Yolo tiny and Speech encoder/de-

coder were used. Comparisons were made between the modified architecture and with the baseline

RISC-V architecture, a baseline ARM architecture and RISC-V and ARM architectures with 128-

bit register widths (RV-opt-v1 and ARM-opt) and a RISC-V 256-bit register widths (RV-opt-v2).

The following results were obtained:

The process of instruction set extension, functional verification and benchmark testing were

all performed using the Spike instruction set simulator [76].

2.2 State-of-the-art 19

Figure 2.17: The TIGRA architecture as shown in [13].

2.2.3 TIGRA

The paper in [13], presents the TIGRA interface which enables the developer to couple an accel-

erator without needing to alter the processing cores pipeline architecture. Only R-type instruc-

tions’ are supported by this interface. In order to use the accelerator, the instructions’ opcode as

well as the contents of its input registers are routed to the interface. For multi-cycle instructions,

synchronization signals are exchanged in order to stall the processor during the execution of the

accelerator. After the operation is concluded, the output is returned to the CPU.

To assess its efficiency, an architecture based on the PicoRV32, in [77], was developed in

which the performance of high performance computing (HPC) based testbenches was evaluated.

When compared with the Pico Co-Processor Interface (PCPI), reduced latency was observed. The

author claims that the developed interface has zero latency which would make it a good alterna-

tive to the Rocket Core RoCC interface, which introduces a 4 to 5 clock cycle latency on read

operations [78, 79].

2.2.4 Arnold

The work proposed in [14], presents an eFPGA tightly-coupled with a microcontroller unit (MCU)

with a 4-stage pipeline, supporting the RV32IMFC extensions, RISC-V processor. These two

components are able to communicate via a high-bandwidth, 128-bit, interconnect. The presented

architecture is composed of a 512kB of SRAM, accessible by the CPU, the I/O DMA, the JTAG

interface and the eFPGA. When two masters request access to the same memory, a round-robin

arbiter selects the first master that initiated the communications to solve the contention. In ad-

dition, an I/O subsystem is also present, composed of a multitude of peripherals such as JTAG,

20 Related Work

Figure 2.18: Detailed view of the Arnold architecture as depicted in [14].

HyperRam, Uart, Camera Interface, quad-SPI and I2C. These peripherals are able to communi-

cate with memory through a smart DMA engine which enables the peripherals to control transfers

to/from memory without any intervention from the CPU. The eFPGA is organized in four quad-

rants with DPR capabilities, composed of reconfigurable superlogic cells (SLCs). The eFPGA also

possesses its own I/O and control interface. The latter enables the CPU to configure the eFPGA

via the Advanced Peripheral Bus (APB) interface. For reduced power consumption, the Arnold

chip may select different power states for a given time instance, reverse body-biasing (RBB) is

also used to reduce leakage power. According to the paper, when compared with, state-of-the-art,

heterogeneous architectures [80, 81, 82, 83, 84, 85], the Arnold architecture achieved 3.4x better

performance and 2.9x better efficiency.

2.2.5 GAP-8

The work presented in [15] consists of a loosely-coupled architecture, implemented in TSMC

55nm LP CMOS technology, with two diferent, DC and frequency domains: The Cluster and the

Fabric Controller. The Cluster contains a shared L1 cache memory, as well as 8, in-order, 4-stage

pipeline processors, supporting the I, M and C RISC-V ISA subsets, architected to boost DSP-

centric applications. For lowering power consumption, the Cluster possesses a HW sync block

able to clock-gate any of the 8 cores, only turning them on when the Fabric Controller offloads

compute intensive kernels. For CNN workloads, the Hardware Convolution Engine (HWCE),

which is a specialized accelerator for neural networks, is also present. The Controller mainly

contains a wide variety of different peripherals, DMA for increasing transfer speed, L2 memory

and ROM intended for storing the primary boot-code. Given that data is never cached, as to

2.2 State-of-the-art 21

Figure 2.19: The GAP-8 SoC as illustrated in [15].

avoid the power penalty it incurs, it should be kept as close as possible to the processor using it

(preferably in the L1 cache in the Cluster domain). This makes code organization a difficult task

and as such, an automatic tiling tool is created that enables mapping the kernels onto the different

memories. This tool is delivered as a C library that exposes its API to create these tiling models.

To assess the performance of this topology for a multitude of different kernels, the number of

cycles the architecture with an ever-increasing number of active cores is registered. The results

show, as expected, that with parallelizable workloads, the number of cycles an application takes,

is inversely proportional to the number of active cores

22 Related Work

Chapter 3

Proposed Approach

In this Chapter, a Section 3.1 detailing the overall methodology for the development and measure-

ment of different metrics such as benchmark execution time, of a tightly-coupled, Rocket-chip-

based, architecture is presented. In addition, in the following Section 3.2 our own Rocket-chip SoC

implementation with a custom unit is presented. Given that the custom instructions are application

dependent, we focused on the particular FIR filter use case (which covers a significant range of

DSP applications) to obtain metrics that support the viability of hardware/software co-design. The

metrics that were obtained were average dynamic power, energy consumption, timing, cycle count

and hardware resource utilization. Furthermore, in Section 3.3, a framework whose purpose was

to automate the design space exploration of the altered Rocket-chip, is showcased. The presented

framework can serve as basis for the exploration of other custom instruction extensions dedicated

to applications such as matrix multiplications and the dot product. This exploration could be done

as future work.

3.1 General Integration and Validation Methodologies

In this section, a general integration and validation workflow is presented whose objective is to de-

velop a custom hardware accelerator for an intended application, functionally verify its behaviour,

integrate it onto the Rocket-chip SoC, convert the resulting architecture to Verilog HDL, synthe-

size and place-and-route the design as well as obtain important metrics such as average dynamic

power, benchmark execution time and resource utilization.

3.1.1 RISC-V GNU Assembler

To follow the workflow, presented in Figure 3.1, first the RISC-V GNU assembler (GAS) has to

be modified in order to add the intended custom instructions that will be routed to the developed

accelerator. To achieve this, the first step consists in changing the RISC-V binutils to implement

the desired custom instructions. This implementation consists in applying changes to the, RISC-V

GNU tool-chains, assembler, in which a match and mask opcode must be specified. To achieve

this, opcodes intended for the use of custom instructions must be used [86].

23

24 Proposed Approach

Figure 3.1: Proposed workflow.

asm volatile("relu_data_st %0, %1" : "=r"(output) : "r"(input));

Listing 3.1: Example of a custom instruction applying a ReLU function [87]

As an example, in the Figure 3.1, is an R-format instruction which only uses the rd and rs1

registers. So, by checking [86], we can select the match opcode to use the reserved last bits of

0x7b and the corresponding mask to be 0xfff0707f. The mask must be selected such that its bits

must be 1 except in the fields corresponding to the necessary registers which must be 0. For more

details about the implementation of RISC-V instructions, the tutorial presented in [88] presents a

valuable source of information.

3.1.2 Hardware Accelerator Development

After adding the custom instructions to the RISC-V GAS, the hardware accelerator must be devel-

oped such that its operations are dictated by the, added, custom instructions, like in our developed

accelerator in Listing A.1. If the custom accelerator is developed in Chisel, Chisel tests such as the

PeekPokeTester can be used. These tests are called from a Scala environment and the accelerator

results can be checked against a Scala implementation of the algorithm implemented in hardware.

An example can be seen in Figure 3.6. Alternatively, if the developed accelerator is meant to be

a, DSP-based, parameterizable module, DSPTools [42] can be used alongside their, more verbose,

testers.

class SCIESpec[T<:Data:Ring](testParams:TestParams,c:SCIEPipelined[T],fir_type:

String) extends DspTester(c)

3.1 General Integration and Validation Methodologies 25

Listing 3.2: FIR filter tester class extending the DspTester

3.1.3 Benchmarks

In order to test the performance of the, developed accelerators with a real application, two bench-

marks have to be developed: a baseline benchmark corresponding to a C implementation of the

intended, accelerable, algorithm and another benchmark, consisting of an accelerated version of

the baseline benchmark whose only difference is the use of the implemented custom instructions

as inline assembly. Given that a bare-metal approach is followed and, as such, the benchmarks will

run in machine mode [89], we can use the following instructions to read the mcycle and mcycleh

which are Control and Status Registers (CSR) that register the current clock cycle [89]:

asm volatile("csrr %0, mcycleh" : "=r"(start_time_h));

asm volatile("csrr %0, mcycle" : "=r"(start_time_l));

(...)

asm volatile("csrr %0, mcycleh" : "=r"(finish_time_h));

asm volatile("csrr %0, mcycle" : "=r"(finish_time_l));

total_time_h = finish_time_h - start_time_h;

total_time_l = finish_time_l - start_time_l;

Listing 3.3: Method to obtain cycle count

These instructions can be useful in embedding our developed benchmarks (as is shown in Ap-

pendixes A.4 and A.3) such that we are able to read the clock cycle before and after the accelerable

portion of the application and, by subtracting these values, obtain the number of clock cycles it

took to finish that execution. These benchmarks will be used in the, following, Rocket-chip inte-

gration in which these benchmarks will be ran in a Verilator environment, as is explained in further

detail in Subsection 3.1.4.

3.1.4 Rocket-chip Integration

After functional verification, the hardware module has to be integrated into the Rocket-chip SoC.

To do so, a Rocket-chip config has to be selected. These configs specify the Rocket-chip’s config-

urations, namely if it is a scratchpad-based system or if its cache-based, its cache associativity, the

architecture of its core and the peripheral devices connected to it, among many other aspects.

class TinyConfig extends Config(

new WithNoMemPort ++

new WithNMemoryChannels(0) ++

new WithNBanks(0) ++

new With1TinyCore ++

new WithIncoherentBusTopology ++

new BaseConfig)

Listing 3.4: Example of a Rocket-chip config with a 32-bit Rocket Core

26 Proposed Approach

Figure 3.2: Default method of communication between Rocket-Chip and host ([16]).

After specifying the config, there are two main methods for integration of a tightly-coupled

accelerator to the Rocket-chip SoC: either through the use of the SCIE module or by using the

RoCC interface. For using the RoCC, present in [90], the RoCC module needs to be instantiated

in the Rocket-chip by passing, as a parameter, the custom opcodes which the accelerator uses.

The RoCC interface also gives the accelerator access to memory. On the other hand, however, the

RoCC interface, according to [13], imposes significant data transfer latency. Alternatively, there

is the SCIE module, which consists of a SCIE decoder module whose sole purpose is to route

the custom instructions to either the SCIEPipelined or the SCIEUnpipelined module. Regardless

of the chosen integration method, the simulation environment is based in Verilator and is able to

communicate with the host through the protocol depicted in Figure 3.2. This protocol will allow

the benchmarks to print their cycle count, as calculated in Figure 3.3, and results to stdout. The

cycle count can also be redirected to a .txt or .csv file in order to store these values.

The Rocket-chip’s simulation is driven by a Verilog module named TestDriver which pro-

vides both the clock and reset signal to the simulation’s top-level, the TestHarness module. The

TestHarness instantiates the default Rocket-chip config, which is overwritten by any user-specified

config, along with a Scala implementation of a DRAM memory, named SimAXIMem, and an AXI

interface to connect them both. To run the user-defined application, there are several modes of

communication between the host and the Rocket-chip. The default mode, however, uses a TSI

(Tethered Serial Interface), as depicted above in Figure 3.2, in which the application is sent across

serial lines to the simulated DRAM while the Rocket Core is maintained in a wait for interrupt

state (WFI). When the application is finished transferring, the core starts executing the program.

As explained in [16], during simulation, TSI commands are sent by the host to a C++ class

called SimSerial. This module, in turn, sends the commands to the SerialAdapter module which

is responsible for TSI to TileLink request conversion. After this conversion, the TLSerdesser se-

rializes the request to the Device Under Test (DUT). The module in charge of the TSI commands

on the host side is the Front-End Server (FESVR) which provides a simple API to reset, send

commands and load programs to the DUT. For the Rocket-chip simulation, in our particular im-

plementation, the cycle measurements obtained by the simulation’s outputs were printed to a .csv

result file located in a sub directory specified by its parameters.

3.2 Implemented approach 27

3.1.5 Hardware Implementation

The cycle count, previously obtained, is insufficient for comparing performances between the

baseline and the accelerated benchmark because the accelerator placed in the Rocket-chip pipeline

will, most likely, introduce a critical path in the SoC’s processor pipeline and, as such, for correctly

evaluating the performance of both architectures, their maximum frequency must be found. To

achieve this, only by synthesizing and, optionally, place-and-routing the design can we obtain

these metrics. For implementing the Rocket-chip to hardware, there are multiple choices. Firstly,

either an FPGA or ASIC target must be selected. If the ASIC target is selected, the workflow in

[48], can be followed. To use this workflow, the Hammer input configurations have to specify the

intended target technology so as to perform the Hammer actions of synthesis and place-and-route.

If the intended target is an FPGA many repositories can be used for translating the architecture to

Verilog and synthesizing and place-and-routing the design. Examples of some of these repositories

are: the Freedom E300 repository, presented in Subsection 2.1.11, the repository [91] which is

meant for the FPGA Zynq boards, the repository present in [17], which, at the time, used the most

recent version of the Rocket-chip and the FireSim workflow which simulates the design in an AWS

cloud service. In any of these cases, care has to be taken to ensure that the generated architecture

from these repositories is equivalent to the design simulated in the Verilator environment.

After selecting the desired workflow, the maximum frequency can be obtained from the post-

synthesis report or, for greater accuracy, from the post-place-and-route reports. To calculate the

maximum frequency, either a trial and error approach is chosen or, the approach used in our

methodology in which a high frequency was selected, one which would cause a timing violation

to occur and, from the worst case slack, use the following formula:

maximum_ f requency =
1

1
selected_ f requency +worst_delay_slack

From the maximum frequency values and the number of clock cycles, the time equivalent to

the best performance of the baseline and accelerated architectures can be calculated by multiplying

the maximum frequencies’ corresponding period to the, respective, clock cycle count.

After obtaining the timing measurements, by developing a testbench corresponding to the, pre-

viously developed, benchmarks, by recording the switching activity resulting from a either a post-

synthesis or post-place-and-route simulation, a Switching Activity Interchange Format (SAIF) file

can be generated which can serve as input to the power report in order to obtain the average dy-

namic power from the application running on the architecture. Finally, from this calculated value

along with the, previously obtained, timing values, energy values can be calculated and compared.

3.2 Implemented approach

In this section we present our particular implementation whose objective is to incorporate a FIR

filter accelerator onto the Rocket-chip SoC and obtain execution time, cycle count, resource uti-

28 Proposed Approach

Figure 3.3: Architecture of the altered, Rocket-core, pipeline.

lization, average dynamic power and energy measurements. In addition, a framework for easy

integration of Chisel-based modules and automatic design space exploration is also showcased

and explained. The proposed approach strives to achieve the following goals:

• Adding custom instructions for the FIR filter;

• Creation of a, parameterizable, Chisel-based FIR filter accelerator;

• Development of Chisel and Verilator tests for, accelerator, functional behaviour verification;

• Development of a Scala wrapper for input parameter (filter order, number of data inputs,

type of data) passing, for accelerator testing using the DSPTools tester, and Verilog conver-

sion;

• Development of a baseline and accelerated benchmarks;

• Development of custom Rocket-chip config;

• Creation and automation of hardware design space exploration;

• Creation of Vivado environment for maximum frequency, hardware resources and dynamic

power measurement;

• Development of Bash, Python and Tcl scripts to automatize the entire workflow.

In the above figure, a simplified diagram of the Rocket-core pipeline is presented along with

our incorporated FIR filter accelerator located in the execution stage.

3.2 Implemented approach 29

3.2.1 RISC-V Compiler

To perform the operations necessary for the use of the FIR filter, the following custom instructions

were added to the RISC-V GAS:

• fir_coeff_st rd, rs1, rs2: Sends the FIR coefficient using rs1 and its respective index in reg-

ister rs2. Register rd gives back the value of the coefficient if the operation was successful.

This instruction was given the custom opcode of 0x0b;

• fir_data_st rd, rs1: Sends the data using the rs1 register and receives through rd the sent

value to confirm the operation’s success. This custom instruction was assigned the 0x2b

opcode;

• fir_exec rd: The only important register in this operation is the rd which gives the output of

the Multiply And Accumulate (MAC) operation that the FIR filter performs. We assigned

the 0x3b opcode for this instruction.

Later, when the baseline benchmark is developed, the accelerable operations implemented

in software will be, manually, replaced by the, above listed, instructions in the form of inline

assembly to create our acceleration benchmark. This manual insertion presents a shortcoming

that, for instance the work in [58], could be used to overcome.

3.2.2 Hardware Modules

At this stage the SCIE modules must be developed according to the custom instructions added to

the tool-chain. For creating a FIR filter supporting the added custom instructions while being pa-

rameterizable, the module depicted in Appendix A.1 was developed with the aid of the DSPTools

library’s Ring typeclass. This typeclass enables various algebraic operations between the different

types of variables which the parameterizable FIR filter supports. In addition to the SCIEPipelined

module, a generator Scala wrapper program, present in Figure 3.5, for allowing module instanti-

ation, testing and Verilog conversion was also developed. To automate our workflow, parameter

passing to the generator wrapper was essential and, as such, we had our generators extend the, de-

veloped, GenericStage class, shown in Appendix A in Figure A.2, that initialized a shell instance

which allowed for parameter parsing. The parameter passing was done through the Scala Build

Tool (SBT).

class SCIEPipelineGenStage extends GenericStage((params, _) => {

val fir_type = params.getString("type")

val width = params.getInt("width")

val binarypoint = params.getInt("binarypoint")

fir_type match{

case "UInt" | "0" => (new chisel3.stage.ChiselStage).execute(

Array("--emission-options=disableMemRandomization,

disableRegisterRandomization","-X", "verilog"),

30 Proposed Approach

Seq(ChiselGeneratorAnnotation(() => new SCIEPipelined(params, UInt(chisel3.

internal.firrtl.Width

(width))))))

}

})

Listing 3.5: SCIEPipelined unsigned generator class

The code in the Figure 3.5, presents a class which receives the relevant parameters from the

SBT (filter order, binary point placement, data type and width) and instantiates a Chisel wrapper

which, in turn, instantiates the SCIEPipelined module with the, specified, data type, data width

and filter order.

3.2.3 Functional testing

For evaluating the correct functional behaviour of our, previously developed, FIR filter accelera-

tor, a DSPTools Chisel test was developed. This Chisel tester requires a Scala wrapper so as to

instantiate and test the module. In addition to the DSPTools test, for a waveform output, a Verilator

testbench was also developed. Both of the testers followed a simple logic in which instructions

corresponding to the custom instructions added to the GAS, were sent to the FIR filter, and its

results were compared with a separate code execution. The waveform output can be visualized

with software such as GTKWave [45].

val order = testParams.getInt("order")

val data_size = testParams.getInt("data")

var acc = 0.0

var input_coeffs = Array.fill(order)(Random.between(1, 101))

var input_data = Array.fill(data_size)(Random.between(1, 101))

for(i <- 0 until order){

poke(c.io.valid, true.B)

poke(c.io.insn, "h0b".U)

poke(c.io.rs1, input_coeffs(i))

poke(c.io.rs2, i.U)

step(1)

poke(c.io.valid, false.B)

}

for(i <- 0 until data_size){

acc = 0

poke(c.io.valid, true.B)

poke(c.io.insn, "h2b".U)

poke(c.io.rs1, input_data(i))

step(1)

poke(c.io.valid, false.B)

step(1)

poke(c.io.valid, true.B)

poke(c.io.insn, "h3b".U)

3.2 Implemented approach 31

step(1)

for(j <- 0 until order)

if(i - j >= 0) acc += input_coeffs(j) * input_data(i-j)

expect(c.io.rd, acc)

println("Test Results:\n")

println("Expected -> " + acc)

println("Obtained -> " + peek(c.io.rd) + "\n")

poke(c.io.valid, false.B)

}

Listing 3.6: Example of Scala tester for testing FIR filter

The code depicted in Figure 3.6, shows the DSPTools tester used for the FIR filter functional

verification. The code presents the filter order and the number of data values as input parame-

ters. These input parameters will specify the size of the input_coeffs and input_data arrays whose

values are randomly generated. Next, the input valid is set to high so that operations to the ac-

celerator can begin. The first stage of execution involves sending all of the, randomly generated,

filter coefficients to the accelerator. This is done through the fir_coeff_st command which corre-

sponds to the 0x0b opcode. Next, the data values are sent to the accelerator through the use of

the fir_data_st instruction which corresponds to poking the module with the 0x2b opcode. For

each iteration where a data value is sent, the fir_exec instruction is performed, corresponding to

the 0x3b opcode and the MAC operation is performed thereby performing the filter operation. A

Scala implementation of the FIR filter algorithm is performed in order to check the correctness of

the developed module.

3.2.4 Benchmarks

In order to create the application that will be later ran in the Rocket-chip so as to obtain timing

measurements, the baseline benchmark has to be developed such that it performs the execution of

a FIR filter and the, accelerated, version must replace the relevant parts of the algorithm with the

custom instructions previously added to the RISC-V GAS.

for(int i = 0; i < DATA; i++){

res = 0;

for(int j = 0; j < ORDER; j++){

if(i - j >= 0)

res += coeffs[j] * data[i - j];

}

}

Listing 3.7: Baseline FIR filter execution algorithm

for(int i = 0; i < ORDER; i++){

asm volatile("fir_coeff_st %0, %1, %2" : "=r"(res) : "r"(coeffs[i]), "r"(i));

}

for(int i = 0; i < DATA; i++){

asm volatile("fir_data_st %0, %1" : "=r"(res) : "r"(data[i]));

32 Proposed Approach

asm volatile("fir_exec %0" : "=r"(res));

}

Listing 3.8: Accelerated FIR filter execution algorithm

Both the above depicted code segments (Figures 3.7 and 3.8), use data and FIR filter coefficient

arrays from an header file with 2000 and 1000 values respectively. Our benchmarks will only

read the specified amount from these arrays depending on which iteration of our design space

exploration it is at. The complete benchmarks can be found in Listings A.4 and A.3 and a portion of

the resulting binaries can be found in Listings A.8 and A.9 (for data=20, order=5, type=Unsigned).

One relevant aspect to note is the difference in the number of instructions between both the baseline

binary dump - 54, and the accelerated binary dump - 44. The decreased number of clock cycles

plays a minor role in the cycle count speedup. The biggest improvement comes from the fact, that

the custom instructions themselves last, in total, less clock cycles than the baseline approach by

interacting with the, developed, Chisel-based accelerator.

3.2.5 Rocket-chip Simulation

For evaluating the cycle differences between both benchmarks, the accelerator must be, first, con-

verted to Verilog, then integrated into the Rocket chip and, finally, the architecture must be sim-

ulated. The integration can be achieved by placing the, developed, SCIE modules in the vsrc

directory, located in the Rocket-chip’s source code. Before converting our architecture to Verilog,

the Rocket-chip config had to be specified. For this dissertation, the following config was selected:

class Rocket32t1 extends Config(

new WithNBreakpoints(8) ++

new With1TinyCore ++

new WithCoherentBusTopology ++

new WithRV32 ++

new BaseConfig)

Listing 3.9: Used Rocket-chip config

The configuration, depicted in Figure 3.9, consists of a SoC implementation of a 32-bit Rocket

Core, altered so as to support a Floating-point Unit (FPU), with data and instruction caches. Our

config also contains hardware breakpoints so as to better integrate with the, selected, Vivado work-

flow presented in [17].

3.2.6 Design Space Exploration

An important part of any accelerator design is its design space exploration and, as such the follow-

ing parameters were chosen to serve as variables: optimized (-O3) or non-optimized benchmarks

(-O0), either unsigned, signed or fixed-point (with arbitrary binary point placement) with respect

to FIR order and data input number. The selected values for number of data inputs were 20, 50,

100, 200, 500, 1000, 1500 and 2000. The selected order values were 5, 10, 20, 50, 100, 200 and

3.2 Implemented approach 33

Figure 3.4: Rocket-chip system Vivado implementation obtained from [17].

500. These values were arbitrarily chosen. Larger values were not selected due to the long dura-

tion of both the Verilator and the Vivado simulations. The main script responsible for the design

space exploration is a file named workflow.sh, which interacts with the subdirectories’ Makefiles

in order to automate the entire workflow and generate timing, resource utilization, maximum fre-

quency, dynamic power measurements and energy consumption to be stored in .csv files.

3.2.7 Hardware Implementation

After obtaining cycle measurements, the maximum frequency in which the circuit has no critical

paths must be found for both the baseline and altered architectures. To achieve this we must first

convert the Rocket-chip’s Chisel source code to Verilog. To achieve this goal, from the workflows

presented in Subsection 3.1.5, the [17] project was chosen due to its support of a recent Rocket-

chip implementation. Through this repository, it is possible to synthesize and place-and-route a,

user-specified, Rocket-chip config and run an application in either a bare-metal or an OS environ-

ment by programming the FPGA with the relevant .mcs file. The architecture, resulting from this

repository, is as follows:

To use this repository, however, precautions were taken to make sure that the generated archi-

tecture, depicted in Figure 3.4, was equivalent to the one generated by the Verilator environment

simulation, previously ran so as to obtain the cycle measurements. Given that the TestHarness,

top-level, generated both the Rocket-chip and a DRAM implementation, called SimAXIMem, and

connected them both by using an AXI interface, it could be concluded that the functional architec-

ture was very similar to the one depicted above and, as such, it could be assumed that the post-route

measurements that would be obtained from [17] would reflect the functional architecture. This is

important because, in our work, one of the main reasons for synthesizing and place-and-routing

the design, is to determine the maximum operating frequency so as to, alongside the previously

34 Proposed Approach

Figure 3.5: Simplified diagram of methodology for obtaining dynamic power measurements.

obtained cycle measurements, calculate the execution time of both the baseline and accelerated

systems. This is only possible if both workflows are based on the same architecture. In addition

to timing measurements, we also obtain resource utilization metrics (LUTs, registers, DSPs and

BRAMs) and dynamic power performance metrics. To obtain dynamic power measurements, due

to the complexity of adding a testbench that simulated both of the developed benchmarks in a

Rocket-chip environment and given that architectural differences between both the baseline and

the altered architectures were mostly present in the computing units, we removed the ALU, the

MDU and the accelerator in order to assess these units separately from the rest of the Rocket-chip

SoC. To simulate the switching activity that would be used for determining the dynamic power,

two testbenches, based off the, previously developed, baseline and accelerated benchmarks (Ap-

pendixes A.4 and A.3) were developed. Both these testbenches, send instructions to perform the

relevant calculations for the execution of the FIR filter. The baseline testbench sends instructions

to the ALU and MDU whereas the accelerated testbench sends to the, developed, FIR filter. For

greater accuracy, the same arrays as used in the benchmarks, were utilized.

The Figure 3.5, represents the utilized methodology for dynamic power obtention whose main

stages are the testbench development, module simulation and power report generation. These steps

are performed by instantiating the ALU, MDU and FIR filter, separating them from the Rocket-

chip SoC, converting them to Verilog and embedding them in a Verilog top module wrapper.

Afterwards, based on the binary dumps resulting from the compiled benchmarks (Listings A.4

and A.3), testbenches are developed which send the corresponding instructions either to the ALU

and MDU (baseline testbench) or to the FIR filter (accelerated testbench), corresponding to the

Filter’s operations. These instructions are sent in a post-place-and-route simulation environment,

for greater value accuracy. From the, resulting, switching activity from these simulations, SAIF

files are generated which serve as inputs to the power report generator and output, among other

metrics, the average dynamic power.

3.3 Automated framework 35

Figure 3.6: Top-level automated workflow of workflow.sh.

3.3 Automated framework

In this section we detail some aspects related to the, developed, framework used to automate the

previously presented development, integration, testing and measurement steps. This framework is

composed of a top-level bash script (workflow.sh) which interacts with the sub directories’ indi-

vidual makefiles. A simplified diagram which exemplifies the bash script workflow is presented

in Figure 3.6.

3.3.1 Project structure

The main purpose of the top-level directory is to facilitate interactions with each of the sub direc-

tory’s makefiles. It does this with the use of one single top-level makefile. For easier automation,

this makefile is, in turn, called by a bash script, called workflow.sh, that runs the entire work-

flow. This bash script is composed of three main, different, parts: the cycle obtention in the

Rocket-chips Verilator simulation environment, the maximum frequency measurement finding in

the Vivado environment from [17] and the dynamic power results from the, isolated, computing

units, previously mentioned (Listings A.5, A.6, A.7). A simplified version of the file tree directory

is present in Appendix A.4.

Through workflow.sh, we are able to pass parameters to interact with the local sub directory’

makefiles and, depending on the subdirectory, either build the FIR accelerator, compile the bench-

marks, simulate the Rocket-Chip config, generate Verilog code or synthesize and place-and-route

the design.

Bash script. For our project, the top-level workflow.sh is responsible for running the entire work-

flow, from cloning the required repositories and replacing the relevant source files to synthesizing

and place-and-routing the entire design. It executes the following processes:

In addition to the above depicted steps, represented in Figure 3.6, the workflow.sh script also

calls Python scripts that perform many tasks ranging from outputting the design space exploration

results to .csv files to calculating the timing and energy results from these files. In the top-level,

workflow.sh the following Python scripts are present:

As can be seen above, in Figure 3.7, after generating the .csv files, resulting from the cycle

count design space exploration (Appendix A.5) with respect to FIR filter’s order, a Python script

called generate_files.py will output the same results with respect to the number of data inputs.

This script can be used for any other .csv file whose values are in respect to filter’s order. This is

done so as to prevent workflow re-running.

36 Proposed Approach

Figure 3.7: workflow.sh Python scripts.

Figure 3.8: Example of .csv file with respect to FIR filter’s order.

After this first stage, the frequency design space exploration (Appendix A.6) will begin where

the bash script will call the Makefile of the Vivado project in [17] so as to, after converting the

Rocket-chip to Verilog, synthesize and place-and-route the design. This is done so as to find the

maximum frequency of the baseline as well as the accelerated architectures with respect to FIR

filter’s order. The synthesis and place-and-route are performed through Vivado batch mode by

calling the appropriate Tcl script.

After the frequency design space exploration a multitude of checkpoint reports are generated

whose important information (worst case slack delay and hardware resource utilization) is ex-

tracted and processed by a Python script named process_checkpoints.py. This script calculates

the maximum frequency and writes both these maximum frequencies as well as the hardware re-

source utilization (LUTs, registers, BRAM, DSPs) to .csv files. Afterwards, the results from both

the cycle count as well as the, newly obtained, maximum frequency files will be processed by

a script named process_timing.py which will generate the benchmark’s execution time for each

combination of design space exploration parameters.

3.3 Automated framework 37

Figure 3.9: Tcl script workflow.

The final stage of the workflow.sh consists in the design space exploration for dynamic power

measurements. This stage, like the previous one, also consists of a Vivado batch project mode

which calls a Tcl script that is responsible for creating the project, adding the source files (Verilog

module files, testbench files and constraint files), running the post-route simulation, generating the

SAIF file and creating the power report. Each design space exploration iteration is represented by

the following diagram:

Figure 3.9, refers to the stages that make up each iteration of the dynamic power design space

exploration for every combination of parameters (FIR filter’s order, number of data values, data

type) for both the baseline as well as the accelerated architectures. The first stage of the iteration,

as depicted in Figure 3.9, consists in applying a sed command which replaces the number of input

data values, FIR filter’s order and frequency variables with the values corresponding to the current

design space exploration iteration, present in Appendix A.7. The gen_hdl_arrays.py script is re-

sponsible for reading a number of data and order values, from the same arrays as the benchmarks,

corresponding to the current design space exploration iteration and writing them to an output file.

These data and order values will be used by the, previously mentioned, testbenches. The Python

script also writes a file corresponding to the ideal results of the FIR filter’s operations so as to

ensure the correctness of the output of the post-place-and-route simulations, used for obtaining

the application’s switching activity through the use of SAIF files. The constraint, XDC, file spec-

ifies a clock signal which will feed the design, corresponding to the maximum frequency for the

architecture, obtained by the previous, frequency, design space exploration. The process depicted

in Figure 3.9 is repeated for both baseline and accelerated architectures for each iteration of the

design space exploration. In this final stage we opted to not obtain the values of the floating-point

baseline, due to difficulties in isolating the FPU from the rest of the Rocket-chip. Specifically,

a Rocket tile would need to be instantiated and would require a multitude of parameters which

would present a greater challenge. In addition, only FIR filters with orders up to 200 were consid-

38 Proposed Approach

ered due to Vivado simulation crashes that would regularly occur for a 500 order FIR filter. These

crashes’ output, from the log messages, stated that they occurred due to lack of system memory.

Finally, as can be seen in Figure 3.7, after the dynamic power design space exploration con-

cludes, the dynamic power alongside the obtained timing measurements are used so as to, through

the use of a Python script named process_energy.py, obtain the energy consumption metrics.

Benchmarks. This sub directory contains the developed baseline and accelerated benchmarks

as well as the System calls’ C library and linker script. In addition, it also presents the data and

coefficients array. During the design space exploration the benchmarks will read an amount of

these arrays corresponding to the order and data parameters received from the workflow.sh. After

compilation, the files will be copied to the emulator directory located in the Rocket-chip for further

simulation.

Checkpoints. In this sub directory, the checkpoints, resulting from the place-and-route of the

tightly-coupled architecture, will be stored for further processing by the Python scripts in the

scripts directory. The relevant data present in these, Vivado, checkpoints will be extracted and

processed by a Python script named process_checkpoints.py. For this dissertation we mostly fo-

cused on the post-route checkpoints output for more accurate measurements.

HW_accelerators. This is the sub directory where the Chisel modules are created. It contains

the, developed, FIR filter as well as the, previously mentioned, SCIE wrapper classes for module

testing and conversion. In addition, the Chisel tests are also present as well as a C++ testbench for

a Verilator simulation.

Repl_files. When extracting the vivado-risc-v [17] or the Rocket-chip, certain changes have to

be made to these repositories such as to some of its Tcl scripts and to its config files and, as such,

the files present in this directory are meant to replace some of those files. This process is automated

by the workflow.sh. Some of these changes consist, for instance, in replacing the Configs.scala file

with another supporting the custom built Rocket-chip config. Another change consists in replacing

the Tcl script started from Vivado batch mode with an identical copy which includes our developed

SCIE modules. These are only some of the examples of file replacements.

Results. In this sub directory, other sub directories will be present, namely the maximum fre-

quency, timing, power, energy and plot sub directories. In these sub directories the .csv files,

resulting from the workflow.sh and Python scripts, are stored. In the case of the plots sub direc-

tory, the plots resulting from the, previously mentioned, .csv files are stored.

Power_eval. This directory contains the Vivado project responsible for finding the average dy-

namic power. This project is created from a Vivado batch mode environment whose source file,

3.4 Discussion 39

named power_eval.tcl, is also contained in this directory. In addition, the source files contain-

ing the SCIEDecoder, SCIEPipelined for all FIR order, the ALU, the MDU, the Verilog wrapper

module as well as both testbenches are present in the source sub directory which is present in this

directory. The golden results as well as the data and order inputs are also present.

Scripts. This is an important sub directory, responsible for much of the file processing. Its role

in the workflow is to, given the output of the design space exploration with respect to FIR order,

develop the cycle count files with respect to data input, process the generated checkpoints after

the Vivado workflow and write the relevant data to .csv files, calculate the maximum frequencies

of each of the architectures, calculate the timing given these frequencies, write power values,

calculate energy values and, finally, generate plots of each of these files. This last step is not a part

of the workflow.sh and is, therefore, optional.

Vivado-risc-v. This sub directory which is a repository obtained from [17], is responsible for

converting the Rocket-chips Chisel source code to Verilog, generating a memory for the specified

FPGA board, synthesizing and place-and-routing the design and programming the FPGA. Due

to time limitations we were unable to properly explore the workflow beyond synthesizing and

place-and-routing the design. This repository uses the Vivado batch mode alongside Tcl scripts

to automate the synthesis and place-and-route of the design. The Rocket-chip embedded in this

subdirectory besides providing the source code on which our architecture will be based, provides

the emulator sub directory meant for a Verilator simulation of the entire design and also presents

the vsim subdirectory which allows for the conversion of the design from Chisel to Verilog. These

are only some examples of the important sub directories that exist inside the Rocket-chip.

3.4 Discussion

After the development of this work we are left with an automation tool meant to integrate, user-

defined, Chisel modules into the generated Rocket-chip SoC, perform design space exploration on

the specified parameters and output average dynamic power, energy, cycle count, execution timing

and resource utilization measurements. Some aspects of this tool could be, however, improved

upon, namely the ease of integration of other modules other than the FIR filter. As it stands, the

user, besides adding the custom instructions and developing the hardware module, would have

to develop both benchmarks and testbenches as well as perform some changes to the Makefiles

and bash script, in order to automatize the workflow to their custom modules. The development

with the aim of easier integration could also be left as future work. Another aspect that could

be improved would be to find a way to develop a testbench that could interact directly with the

Rocket-chip rather than using the workaround method used in which only the computing units

were utilized.

40 Proposed Approach

Chapter 4

Results

To evaluate our architecture, after adding the custom instructions onto the GAS, multiple tests

were performed: First, after developing the Chisel module, to be incorporated into the Rocket-

chip, it is essential to assess its correct behaviour and, as such, a DSPTool and a Verilator test is

performed. This stage of the process is not automatized and is done so manually.

After assessing the correct behaviour of the Chisel module, the design space exploration work-

flow is ran by parameterizing the Chisel module, converting it to Verilog, incorporating it into the

Rocket-chip and simulating it with the, compiled, benchmarks. This simulation also uses a Verila-

tor backend. The design exploration generates multiple combinations and, as such, not all results

are presented in this Chapter. They are, however, available in Appendix A.6. The output of this

stage is the application’s cycle count. After this stage, we proceed to the Vivado workflow where

we synthesize and place-and-route the design and obtain the maximum frequency and resource

utilization metrics with respect to the FIR filter’s order. The frequency metrics can then be used

to, alongside the cycle count, obtain the timing performance. Finally a Vivado environment is

created, composed of the three computing units alongside a baseline and an accelerated testbench.

This environment is necessary in order to get the switching activity corresponding to the process-

ing of the same arrays used in the benchmarks, through a post-place-and-route simulation, for

generating a SAIF file which will be used for finding the average dynamic power. After obtain-

ing the resulting average dynamic power, the last step consists in combining both the timing and

power metrics to find the average energy consumed by each accelerator with respect to the number

of data inputs and filter order. For the evaluation, a vc707 FPGA board was used due to its large

resources as well as its ease of integration with the existing repository in [17].

4.1 DSPTools Tests

To evaluate if the FIR filter was behaving as expected, the DSPTools tester, present in Figure 3.6,

was developed in which random coefficients and data inputs were generated, fed into the FIR filter

and compared to a Scala implementation of the FIR filter’s operation. Here we present a small

41

42 Results

demonstration of the operation of the module, parameterized as a second order FIR filter with two

data inputs, for unsigned operations. The results were as follows:

Figure 4.1: Dummy application, DSPTools tester, results.

As can be seen in Figure 4.1, the, developed, Chisel, accelerator’s code passes all the DSPTools

tests by always outputting the correct, expected, values. The Chisel tester is the one depicted in

the, previously seen, Figure 3.6.

4.2 Verilator Tests

For these tests, a C++ testbench was developed to perform a standalone FIR filter simulation,

observe the generated waveform results and then, after checking its correct operation, simulate

the fully integrated Rocket-chip architecture with the developed benchmarks. This simulation is

performed so as to better analyze the design through the, generated, waveform. The simulation of

the entire Rocket-chip with the, implemented, FIR filter is fully automated and each combination

of the design space exploration is written to a .csv file.

4.2.1 Standalone SCIE module

By adopting a similar logic to that of the DSPTools tester, a C++ testbench is developed for

Verilator simulations and, using as an example a, third order FIR filter with 3 data inputs, the

following waveform was generated:

4.3 Timing measurements 43

Figure 4.2: Small test, showing FIR filter behaviour in Verilator environment.

The resulting waveform, seen in Figure 4.2, was the result of a testbench which implemented

a FIR filter operation by sending its coefficients through the use of the fir_exec_st instruction,

sending its data values, through the fir_data_st instruction, and then performing a MAC operation

through the fir_exec instruction. It can be quickly examined that the value resulting from that

operation is correct.

4.2.2 Tightly-Coupled Architecture

After checking that the, developed, accelerator is running as expected and after integrating it into

the Rocket-chip through the SCIE module and compiling the benchmarks, we can run both of these

benchmarks in a Verilator environment to check if they are functionally equivalent and verify how

many cycles each of them take. For this concrete example we use a FIR filter of order 10 with 20,

unsigned, data inputs with no, RISC-V binary, benchmark optimizations (-O0):

Figure 4.3: Performance of baseline vs. accelerated benchmark.

Figure 4.3 shows that the numerical results produced by software only (General set extension)

and accelerated versions are identical for this small dataset used for validation. It also shows the

achievable speedup, when considering only cycle counts, which, in this case, is 7.927. In the

following sections, in order to get the execution time, the frequency for speedup calculations will

have to be taken into account by performing post-place-and-route simulations.

4.3 Timing measurements

After assessing that the modules behaviour remains correct after integration, we can proceed to,

by running the workflow.sh script, start the design space exploration with respect to the previously

mentioned design variables (input data values, filter order, -O0 optimization vs -O3 optimization

and filter data type). The outputs of this shell script will be written to an appropriate .csv file.

After design space exploration, for better visualization, we can plot the results from these newly

generated .csv files. Due to the large number of data available, we showcase two single examples

44 Results

of the difference in performance between the modified architecture with a FIR module, parame-

terized for fixed-point values, running against a baseline architecture, also running a fixed-point

implementation and then, running against a baseline architecture running a floating-point imple-

mentation by using an FPU. We use two versions of the benchmarks, one using 200 data input

samples and another 2000. For assessing both of these scenarios, both optimization flags, -O0 and

-O3 were used. For the -O0 optimization, the obtained results were as follows:

Figure 4.4: Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point).

Figure 4.5: Cycle speedup of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point).

With -O0 optimization, in using the FPU, the baseline performance, radically improves, for

high values, when compared to its fixed-point, software implementation, and, as such, the speedup

lowers significantly:

4.3 Timing measurements 45

Figure 4.6: Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Floating-point).

Figure 4.7: Cycle speedup of 200 vs. 2000 data inputs ((Fixed-point vs. Floating-point)).

Repeating the same procedure as before but with the -O3 optimization flag, the following

results were observed:

Figure 4.8: Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point).

46 Results

Figure 4.9: Cycle speedup of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point).

Contrary to what was observed with the -O0 optimization, With -O3 optimization, in using

the FPU, the baseline performance, only slightly improves and, as such, the speedup still remains

about the same as before as can be seen in the following plots:

Figure 4.10: Performance cycle count of 200 vs. 2000 data inputs (Fixed-point vs. Floating-point).

Figure 4.11: Cycle speedup of 200 vs. 2000 data inputs ((Fixed-point vs. Floating-point)).

4.3 Timing measurements 47

The results clearly show that the impact of the FPU in the baseline performance is far more

dramatic in the case of the use of optimization flag of -O0 then in the case of the use of -O3.

Furthermore, the results show that for a given, smaller number, of data inputs the speedup tends

to stabilize and remain approximately constant irrespective of its order. This is due to the fact

that, assuming that the FIR filter’s order is at least as big as the number of data values, increasing

the FIR filter order, will not increase the speedup because what limits the speedup increase, in this

case, is the number of data inputs. For higher values, however, the correlation between the speedup

and filter doesn’t appear to saturate. It would be expected, however, that if the FIR filter’s order

were to increased past the data values (2000 data values) the speedup would saturate like in the 200

data values case. Other than that, all these results give is the performance of both architectures for

the same frequency. In reality, the baseline architecture will be able to achieve higher frequencies

than the modified one. We will return to this example after calculating the maximum frequencies

for both designs.

4.3.1 Synthesis and Place-and-route

After design space exploration of the cycle count we relied, mostly, on the reports given by the

post-route reports as to get more precise measurements. In order to obtain the maximum fre-

quency, from the post-route reports, the synthesis and place-and-route was performed by setting

the target frequency to 200MHz and then, through regular expression finding, using the Python

scripts, finding the worst delay slack violation in the timing report and, from there, calculate the

maximum frequency given the formula:

maximum_ f requency =
1

1
selected_ f requency +worst_delay_slack

Like in the previous case, Python scripts can be used to create additional plots. Here we present

the maximum frequency of a fixed-point FIR filter, with respect to its order:

Figure 4.12: Maximum frequency with respect to filter order.

48 Results

As expected, the path introduced by the filter is the critical path that limits the maximum

frequency of the entire system. By using the maximum frequencies estimated for the design, we

find that the example given in Figure 4.10 for the optimization flag of -O3, despite not producing

as much as an impact, still presents significant speedups:

Figure 4.13: Time performance of 200 vs. 2000 data inputs.

Figure 4.14: Time speedup of 200 vs. 2000 data inputs.

In all evaluated cases, even considering the different maximum frequencies achievable by both

designs, speedups remain significant in all instances, particularly as order and/or number of data

inputs tend to increase to larger numbers.

4.4 Power measurements

In addition to timing measurements, for this dissertation, we also aimed to evaluate the dynamic

power consumption associated with an application running on our accelerator as opposed to run-

ning on conventional hardware (e.g. ALU, MDU). To achieve these results, two testbenches, based

off the benchmarks, were developed, which interact with the ALU, MDU and FIR filter in order

to obtain the application’s switching activity which would be used for determining the average

dynamic power. Using the same scenario as in Figure 4.4, the results were as follows:

4.5 Energy measurements 49

Figure 4.15: Average dynamic power consumption of 200 vs. 2000 data inputs (Fixed-point vs.
Fixed-point).

As can be seen in Figure 4.15, the accelerator presents a greater increase in average dynamic

power for a higher number of data inputs whilst the baseline doesn’t appear to vary with respect

to the number of data inputs. These results are further discussed in Section 4.7.

4.5 Energy measurements

Finally, by using the average power consumption along with the obtained timing measurements,

we are able to approximate the energy consumption that the accelerable portion of the application

uses. Since our developed benchmark was based off the non-optimized benchmarks, the non-

optimized timings were used. Continuing the example of the fixed-point implementation, the

results were as follows:

Figure 4.16: Energy consumption of 200 vs. 2000 data inputs (Fixed-point vs. Fixed-point).

The obtained results, represented in Figure 4.16, indicate that, despite having a greater increase

in average dynamic power with respect to data inputs, the timing gains more than offset this

disadvantage resulting in a much lower energy consumption that can reach values of up to 237x

less energy consumption than in the case of the baseline architecture.

50 Results

4.6 Workflow results

In this section, given that performance differences between different data types were not found to

be significant, the results shown here are all for an unsigned FIR filter running a, non-optimized

(-O0), benchmark.

4.6.1 Timing

Table 4.1: Baseline unsigned FIR filter cycle measurements.

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 5001 12597 26482 52987 133542 278056 410928 550869
10 8814 24402 49487 99762 252522 524717 778034 1043435
20 14769 45039 93774 192575 487399 1014194 1512081 2028641
50 30426 95968 217982 459235 1184030 2463263 3709737 4978777

100 55557 159430 394291 902074 2341146 4863134 7380767 9860762
200 107165 286559 648519 1572304 4552586 9467201 14690127 19563344
500 259490 667808 1411110 3098685 9685761 22269162 35383640 47971466

Table 4.2: Accelerated unsigned FIR filter cycle measurements.

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 995 2021 3715 7079 17291 36525 53959 72524
10 1140 2166 3860 7224 17436 36673 54109 72652
20 1478 2504 4198 7562 17774 36984 54418 73005
50 2355 3321 4915 8079 17691 35983 52400 69944

100 3805 4771 6365 9529 20373 37433 53840 53840
200 6729 7695 9289 12453 23301 41500 56768 74312
500 15429 16395 17989 22413 32025 50255 66688 84223

Table 4.3: Unsigned FIR filter measurements.

FIR order Max. Freq. (MHz) LUTs FFs DSPs BRAMs

0 131.389 43697 30293 6 4
5 118.934 44069 30591 6 19

10 117.110 44371 30911 6 34
20 98.794 44780 31549 6 64
50 91.954 45999 33477 6 154

100 81.037 48351 36675 6 304
200 72.427 52752 43077 6 604
500 61.043 65820 62254 6 1504

Using the values from the information above as input to the python script process_timing.py, we

are able to generate the following timing performance measurements:

4.6 Workflow results 51

Table 4.4: Baseline unsigned FIR filter time measurements (µs).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 38 95 201 403 1016 2116 3127 4192
10 67 185 376 759 1921 3993 5921 7941
20 112 342 713 1465 3709 7719 11508 15439
50 231 730 1659 3495 9011 18747 28234 37893

100 422 1213 3000 6865 17818 37013 56175 75050
200 815 2181 4935 11966 34649 72054 111806 148896
500 1974 5082 10739 23584 73718 169490 269304 365110

Table 4.5: Accelerated unsigned FIR filter time measurements (µs).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 8 16 31 59 145 307 453 609
10 9 18 32 61 148 313 462 620
20 14 25 42 76 179 374 550 738
50 25 36 53 87 192 391 569 760

100 46 58 78 117 251 461 664 880
200 92 106 128 171 321 572 783 1026
500 252 268 294 367 524 823 1092 1379

4.6.2 Power and energy

Table 4.6: Baseline unsigned FIR filter average dynamic power measurements (mW).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 20 20 20 20 20 20 20 20
10 21 20 20 20 20 20 20 20
20 23 23 23 23 23 23 23 23
50 29 29 29 29 29 29 29 29

100 41 41 41 41 41 41 41 41
200 63 63 63 63 63 63 63 63

Table 4.7: Accelerated unsigned FIR filter average dynamic power measurements (mW).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 35 35 35 36 36 36 36 35
10 34 35 35 36 37 36 36 36
20 30 31 32 32 34 33 32 33
50 32 34 36 37 38 38 38 38

100 37 39 42 45 48 48 49 49
200 47 48 51 56 63 66 67 68

52 Results

By multiplying the average dynamic power with the timing measurements obtained in 4.5, we are

able to obtain the energy consumption:

Table 4.8: Baseline unsigned FIR filter energy measurements (µJ).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 0.8 2.0 4.3 8.6 21.8 45.3 66.7 89.8
10 1.5 4.0 8.1 16.2 41.1 85.5 126.8 170.0
20 2.8 8.4 17.6 36.1 91.3 190.1 283.4 380.2
50 7.4 23.5 51.5 108.5 279.8 582.1 876.7 1176.6

100 19.0 54.6 131.7 301.4 782.2 1624.8 2465.9 3294.6
200 55.0 147.1 332.9 807.2 2337.2 4860.3 7541.7 10043.5

Table 4.9: Accelerated unsigned FIR filter energy measurements (µJ).

FIR order
Number of Data inputs

20 50 100 200 500 1000 1500 2000

5 0.3 0.6 1.1 2.0 5.1 10.7 15.9 20.7
10 0.3 0.7 1.2 2.3 5.7 11.7 17.3 23.3
20 0.4 0.7 1.3 2.4 6.0 12.0 17.2 23.8
50 0.8 1.2 2.0 3.3 7.4 15.1 22.0 29.3

100 1.7 2.3 3.3 5.2 12.0 22.0 32.3 42.9
200 4.3 5.0 6.5 9.5 20.0 37.4 52.0 69.1

4.7 Discussion

From all the results represented in this chapter, several conclusions could be taken namely that, by

increasing the FIR filter’s order the speedup also increases. This is because more operations can

be made in parallel. However, this increase is only relevant up to the number of input data values,

because if the filter’s order is above the number of data inputs then there are excess registers and

multipliers which are not being used for the operation and, as such, do not contribute to the overall

speedup. This limit is demonstrated in Figure 4.5 where, for 200 data values, when the FIR filter’s

value surpasses 200, the speedup remains stagnant. Along with the speedup increase, the filter

will impose a critical delay path on the Rocket-chip SoC’s processor and, as such the maximum

frequency will decrease as the order increases. This is demonstrated in Figure 4.12.

When it comes to dynamic power measurements, the number of data inputs appeared to pro-

vide no changes in the power consumption in the case of the baseline (<0.001W). In the case of

the accelerated architecture, however, the dynamic power consumption increased, slowly, as the

number of data inputs increased. This is possibly due to the fact that, for a single data input, it

has to be propagated through the entire FIR filter, which results in a much higher switching ac-

tivity which, in turn, results in a much higher dynamic power consumption. Both the baseline

and the accelerated architectures’ average dynamic power consumption significantly changes with

4.7 Discussion 53

the number of FIR filter coefficients. So, for a high number of coefficients and number of data

inputs, the accelerated version tended to have a higher average dynamic power consumption. Even

so, when dealing with the energy consumption, the timing of the accelerated version more than

makes up for the differences in average dynamic power consumption in all cases (Appendix A.8).

Furthermore, when considering the used hardware resources, as is expected, by increasing the FIR

filter’s order the number of LUTs and Flip-flops increased. This is possibly due to the increase in

the number of adders as well as multipliers. A more significant increase in resources, however, was

the increase in BRAM. This usage is attributable to the required memory necessary to store the

increasing number of filter coefficients. Finally, less apparent, was the stagnation of the number

of DSPs with respect to the FIR filter’s order in which no obvious conclusion was reached.

54 Results

Chapter 5

Conclusions

This work’s contributions are manifold: firstly, it presents an automated workflow for the de-

velopment of tightly-coupled architectures, from Chisel development right up to FPGA imple-

mentation with data collection from the different workflow stages (cycle count, timing, maxi-

mum frequency, dynamic power and energy consumption). Secondly, it evaluates the merits of

tightly-coupled accelerator architectures when compared with unchanged ones in particular in a

Rocket-chip environment. Furthermore, it presents a Scala wrapper class which can easily inte-

grate with other, parameterized, Chisel modules that receive their inputs from the SBT. Lastly,

it concludes, through this dissertation, that the Rocket-chip, through the used of system configs,

provides an invaluable source for easy exploration of a wide variety of different architectures from

simple, scratchpad memory-based, 32-bit designs to multi-core, cache-based, 64-bit architectures,

all without intrusive modifications to the source code of [59].

Despite the contributions made, the work developed presents some aspects that could be im-

proved upon, namely in that, some of the developed scripts are too hard coded to the FIR filter

implementation and would require some changes so as to more easily integrate with other cus-

tom hardware modules. Furthermore, a method for easy integration of custom-built testbenches

directly onto the Rocket-chip Vivado environment would also be desirable in the future.

As a major result, we can state that domain specific ISA customization leads to significant

benefits but some issues prevent widespread adoption of the technique. We outline some future

work in this direction.

5.1 Future work

The work developed could be largely improved upon with the following functionality:

• Adding additional Chisel modules to be integrated through SCIE (e.g. Matrix multiplica-

tions, dot product, ReLU function);

• Developing testbench for obtaining dynamic power consumption for the entire Rocket-chip;

• Comparing SCIE performance with the RoCC interface;

55

56 Conclusions

• Comparing altered design with multi-core architectures;

• Implementing RISC-V instructions with other formats other than R-format;

• Possibly studying the performance of the FIR filter with respect to other parameters such as

Rocket-chip cache associativity;

• Testing a more sophisticated, DSP-based benchmark, by altering the SoC so as to use dy-

namic partial reconfiguration;

• Possibly automatizing the process of custom instruction insertion with a method similar to

the one used in [58].

Appendix A

Detailed Code and Additional Results

This Appendix contains, in Section A.1, some relevant code excerpts related to the developed FIR

filter namely its Chisel description and its benchmarks. In Section A.3, the code segments corre-

sponding to the different stages workflow.sh are presented. In Section A.4, the file tree structure of

the developed project is presented. In Section A.5, the binary dumps resulting from the compiled

benchmarks, presented in Listing A.4 and Listing A.3, is displayed. Finally, the plots resulting

from the design space exploration presented in Section A.3, are displayed in Section A.6.

A.1 FIR Filter Chisel3 Code

In this section, as previously mentioned, multiple code excerpts, relevant to our work, are pre-

sented.

class SCIEPipelinedInterface[T<:Data:Ring](gen : T) extends Bundle{

val valid = Input(Bool())

val insn = Input(UInt(32.W))

val rs1 = Input(gen.cloneType)

val rs2 = Input(UInt(32.W))

val rd = Output(gen.cloneType)

}

class SCIEPipelined[T<:Data:Ring](Params : ImplementedParams, gen : T) extends Module{

val order = Params.getInt("order")

val io = IO(new SCIEPipelinedInterface(gen))

val coeffs = RegInit(VecInit(Seq.fill(order)(0.U(gen.getWidth.W).asTypeOf(gen.cloneType))))

val data = RegInit(VecInit(Seq.fill(order)(0.U(gen.getWidth.W).asTypeOf(gen.cloneType))))

val result = RegInit(0.U(gen.getWidth.W).asTypeOf(gen.cloneType))

when(io.valid){

when(io.insn(6, 0) === "h0b".U) {

coeffs(io.rs2) := io.rs1

result := coeffs(io.rs2)

}.elsewhen(io.insn(6, 0) === "h2b".U){

data.zip(data.tail).foreach { case (a, b) => b := a }

data(0) := io.rs1

57

58 Detailed Code and Additional Results

result := data(0)

}.elsewhen(io.insn(6, 0) === "h3b".U){

result := data.zip(coeffs).map { case (a, b) => Ring[T].times(a, b) }.reduce(Ring[T].

plus(_, _))

}

}

io.rd := result

}

Listing A.1: SCIEPipelined module implementing a FIR filter

class GenericStage(thunk: (ImplementedParams, AnnotationSeq) => Unit) extends Stage {

val shell: Shell = new Shell("chiseltest") with ImplementedCli with ChiselCli with

FirrtlCli

def run(annotations: AnnotationSeq): AnnotationSeq = {

val params = annotations.collectFirst { case ParameterAnnotation(p) => p }.getOrElse(

ImplementedParams())

thunk(params, annotations)

annotations

}

}

Listing A.2: GenericStage parent class used for extending the SCIE generators

A.2 Baseline and Modified Benchmark C Code

#include <stdint.h>

#include <stdio.h>

#if TYPE == 0

#include "include/unsigned_values.h"

#elif TYPE == 1

#include "include/signed_values.h"

#elif TYPE == 2

#include "include/fixed_point_values.h"

#else

#include "include/float_values.h"

#endif

int main(int argc, char *argv[]){

#if TYPE == 0 || TYPE == 1 || TYPE == 2 || TYPE == 3

static uint32_t start_time_h, start_time_l, finish_time_h, finish_time_l, \

total_time_h, total_time_l;

#if TYPE == 3

static float res;

#else

static uint32_t res;

#endif

#if TYPE == 2

static int64_t intermediate_res = 0;

#endif

A.2 Baseline and Modified Benchmark C Code 59

asm volatile("csrr %0, mcycleh" : "=r"(start_time_h));

asm volatile("csrr %0, mcycle" : "=r"(start_time_l));

for(int i = 0; i < DATA; i++){

res = 0;

for(int j = 0; j < ORDER; j++){

if(i - j >= 0){

#if TYPE == 2 //softfloat

intermediate_res = ((int64_t)((int64_t)coeffs[j] * (int64_t)data[i - j]) >>

BINARYPOINT);

res += (int32_t)intermediate_res;

#else

res += coeffs[j] * data[i - j];

#endif

}

}

}

asm volatile("csrr %0, mcycleh" : "=r"(finish_time_h));

asm volatile("csrr %0, mcycle" : "=r"(finish_time_l));

total_time_h = finish_time_h - start_time_h;

total_time_l = finish_time_l - start_time_l;

printf("%d\n", total_time_l);

#endif

return 0;

}

Listing A.3: FIR baseline benchmark

#include <stdint.h>

#include <stdio.h>

#if TYPE == 0

#include "include/unsigned_values.h"

#elif TYPE == 1

#include "include/signed_values.h"

#elif TYPE == 2 || TYPE == 3

#include "include/fixed_point_values.h"

#endif

int main(int argc, char *argv[]){

#if TYPE == 0 || TYPE == 1 || TYPE == 2 || TYPE == 3

static uint32_t start_time_h, start_time_l, finish_time_h, finish_time_l, \

total_time_h, total_time_l;

static uint32_t res;

asm volatile("csrr %0, mcycleh" : "=r"(start_time_h));

asm volatile("csrr %0, mcycle" : "=r"(start_time_l));

for(int i = 0; i < ORDER; i++){

asm volatile("fir_coeff_st %0, %1, %2" : "=r"(res) : "r"(coeffs[i]), "r"(i));

}

for(int i = 0; i < DATA; i++){

asm volatile("fir_data_st %0, %1" : "=r"(res) : "r"(data[i]));

asm volatile("fir_exec %0" : "=r"(res));

}

60 Detailed Code and Additional Results

asm volatile("csrr %0, mcycleh" : "=r"(finish_time_h));

asm volatile("csrr %0, mcycle" : "=r"(finish_time_l));

total_time_h = finish_time_h - start_time_h;

total_time_l = finish_time_l - start_time_l;

printf("%d\n", total_time_l);

#endif

return 0;

}

Listing A.4: FIR accelerated benchmark

A.3 Workflow Automation Scripts

In this section, the stages of the design space exploration performed by workflow.sh are presented.

#!/bin/bash

#Type 0 -> UInt, 1 -> SInt, 2 -> FixedPoint, 3 -> FP , 4 -> FloatingPoint

config=Rocket32t1

binarypoint=0

optimization_array=(-O0 -O3)

order_array=(5 10 20 50 100 200 500)

data_array=(20 50 100 200 500 1000 1500 2000)

type_array=(0 1 2 3)

type_verbose_array=(unsigned signed fixed-point floating-point)

tmp_file=./results/tmp_file.txt #Temporary workaround

find ./results ! -name ’.*’ ! -type d -exec rm -- {} +

Cycle calculation (with respect to filter order)

for optimization_flag in "${optimization_flag[@]}"; do

rm $tmp_file

printf "### ${type_verbose_array[type]} VALUES (OPTIMIZATION ${optimization_flag}) ###\n"

>> ./results/optimization_${optimization_flag}/type_${type_verbose_array[type]}/

cycle_count_order.csv

for type in "${type_array}"; do

for data in "${data_array}"; do

printf "ORDER(@data=$data)\tBASELINE\tACCELERATOR\n" >> ./results/optimization_${

optimization_flag}/type_${type_verbose_array[type]}/cycle_count_order.csv

for order in "${order[@]}"; do

make clean

make build order=$order data=$data width=32 config=$config type=$type binarypoint=

$binarypoint optimization_flag=$optimization_flag

make simulate config=$config binary=baseline.riscv file=$tmp_file

make simulate config=$config binary=fir_benchmark.riscv file=$tmp_file

baseline_val=$(sed -n ’1p’ $tmp_file)

accel_val=$(sed -n ’2p’ $tmp_file)

printf "$baseline_val\t$accel_val\n" >> ./results/optimization_${optimization_flag

}/type_${type_verbose_array[type]}/cycle_count_order.csv

rm $tmp_file

done

done

done

done

A.3 Workflow Automation Scripts 61

./scripts/generate_files.py

Listing A.5: Functional workflow

order_array=(0 5 10 20 50 100 200 500) #For Vivado workflow order 0 is the baseline

selected_frequency= 200.0 #Chosen frequency for synthesis

frequency, area and power measurements

rm ./results/*.csv

for type in "${type_array[@]}"; do

printf "### MAXIMUM SYSTEM FREQUENCIES ###\n" >> ./results/max_freqs_${type_verbose_array[

type]}.csv

printf "ORDER\tMAXIMUM FREQUENCY\n" >> ./results/max_freqs_${type_verbose_array[type]}.csv

for order in "${order_array[@]}"; do

make -C ./vivado-risc-v clean

rm -rf ./vivado-risc-v/workspace

make core-setup type=$type order=$order

if [$order -ne 0]; then

make verilog order=$order width=32 type=$type binarypoint=$binarypoint

fi

make implementation board=vc707 config=$config max_freqs_file=./results/max_freqs_${

type_verbose_array[type]}.csv type=${type_verbose_array[type]} selected_frequency=

$selected_frequency order=$order

done

done

./scripts/process_checkpoints.py $selected_frequency

./scripts/process_timing.py

Listing A.6: Vivado workflow

type_array=(0 1 2)

type_verbose_array=("unsigned" "signed" "fixed_point")

order_array=(5 10 20 50 100 200)

for type in "${type_array[@]:1}"; do

printf "### ${type_verbose_array[$type]} VALUES ###\n" >> ./results/power/type_${

type_verbose_array[$type]}/power_count_order.csv

for data in "${data_array[@]}"; do

printf "ORDER(@data=$data)\tBASELINE\tACCELERATOR\n" >> ./results/power/type_${

type_verbose_array[$type]}/power_count_order.csv

for order_index in "${!order_array[@]}"; do

./scripts/gen_hdl_arrays.py $data ${order_array[$order_index]} $binarypoint

scie_period=periods_${type_verbose_array[$type]}[$order_index]

vivado -nojournal -nolog -mode batch -source ./power_eval/power_eval.tcl -tclargs $data

${order_array[$order_index]} $type ${periods_base[$type]} ${!scie_period}

./scripts/process_power.py $data ${order_array[$order_index]} ${type_verbose_array[

$type]}

done

done

done

./scripts/process_energy.py

Listing A.7: Vivado workflow for dynamic power finding

62 Detailed Code and Additional Results

A.4 File tree structure

In this section, a simplified file tree of the developed project is presented, as follows:

Rocket_Generator

benchmarks

baseline.c

fir_benchmark.c

values.h

Makefile

Power_eval

Constraints

Golden values

Project

src

hdl_arrays

checkpoints

post_impl_timing_fixed_point_50.rpt

post_impl_utilization_fixed_point_50.rpt

scie_power_report_type=fixed_point_data=2000_order=50.rpt

baseline_power_report_type=fixed_point_data=2000_order=50.rpt

HW_accelerators

fir

Makefile

src

repl_files

scala_files.scala

results

power

timing

energy

freqs

plots

scripts

python_scripts.py

vivado-risc-v

Rocket-chip

emulator

Makefile

Rocket-tools

vsim

Makefile

workflow.sh

Makefile

A.5 Benchmark Binary Dumps 63

A.5 Benchmark Binary Dumps

In this section, we present the benchmark’s binary dumps corresponding to the, accelerable, ap-

plication block delimited by the csrr operations (for data=20, order=5, type=Unsigned):

8000106a: 00005797 auipc a5,0x5

8000106e: d3278793 addi a5,a5,-718 # 80005d9c <start_time_l.5>

80001072: c398 sw a4,0(a5)

80001074: fe042623 sw zero,-20(s0)

80001078: a061 j 80001100 <main+0xb8>

8000107a: 00005797 auipc a5,0x5

8000107e: d2678793 addi a5,a5,-730 # 80005da0 <res.4>

80001082: 0007a023 sw zero,0(a5)

80001086: fe042423 sw zero,-24(s0)

8000108a: a08d j 800010ec <main+0xa4>

8000108c: fec42703 lw a4,-20(s0)

80001090: fe842783 lw a5,-24(s0)

80001094: 40f707b3 sub a5,a4,a5

80001098: 0407c563 bltz a5,800010e2 <main+0x9a>

8000109c: 00004717 auipc a4,0x4

800010a0: d5c70713 addi a4,a4,-676 # 80004df8 <coeffs>

800010a4: fe842783 lw a5,-24(s0)

800010a8: 078a slli a5,a5,0x2

800010aa: 97ba add a5,a5,a4

800010ac: 4398 lw a4,0(a5)

800010ae: fec42683 lw a3,-20(s0)

800010b2: fe842783 lw a5,-24(s0)

800010b6: 40f687b3 sub a5,a3,a5

800010ba: 00002697 auipc a3,0x2

800010be: dfe68693 addi a3,a3,-514 # 80002eb8 <data>

800010c2: 078a slli a5,a5,0x2

800010c4: 97b6 add a5,a5,a3

800010c6: 439c lw a5,0(a5)

800010c8: 02f70733 mul a4,a4,a5

800010cc: 00005797 auipc a5,0x5

800010d0: cd478793 addi a5,a5,-812 # 80005da0 <res.4>

800010d4: 439c lw a5,0(a5)

800010d6: 973e add a4,a4,a5

800010d8: 00005797 auipc a5,0x5

800010dc: cc878793 addi a5,a5,-824 # 80005da0 <res.4>

800010e0: c398 sw a4,0(a5)

800010e2: fe842783 lw a5,-24(s0)

800010e6: 0785 addi a5,a5,1

800010e8: fef42423 sw a5,-24(s0)

800010ec: fe842703 lw a4,-24(s0)

800010f0: 47a5 li a5,9

800010f2: f8e7dde3 bge a5,a4,8000108c <main+0x44>

800010f6: fec42783 lw a5,-20(s0)

800010fa: 0785 addi a5,a5,1

800010fc: fef42623 sw a5,-20(s0)

80001100: fec42703 lw a4,-20(s0)

80001104: 47cd li a5,19

80001106: f6e7dae3 bge a5,a4,8000107a <main+0x32>

Listing A.8: Binary segment of baseline’s main function (54 instructions)

64 Detailed Code and Additional Results

8000106a: 00005797 auipc a5,0x5

8000106e: d2278793 addi a5,a5,-734 # 80005d8c <start_time_l.5>

80001072: c398 sw a4,0(a5)

80001074: fe042623 sw zero,-20(s0)

80001078: a805 j 800010a8 <main+0x60>

8000107a: 00004717 auipc a4,0x4

8000107e: d6e70713 addi a4,a4,-658 # 80004de8 <coeffs>

80001082: fec42783 lw a5,-20(s0)

80001086: 078a slli a5,a5,0x2

80001088: 97ba add a5,a5,a4

8000108a: 439c lw a5,0(a5)

8000108c: fec42703 lw a4,-20(s0)

80001090: 00e7870b fir_coeff_st a4,a5,a4

80001094: 00005797 auipc a5,0x5

80001098: cfc78793 addi a5,a5,-772 # 80005d90 <res.4>

8000109c: c398 sw a4,0(a5)

8000109e: fec42783 lw a5,-20(s0)

800010a2: 0785 addi a5,a5,1

800010a4: fef42623 sw a5,-20(s0)

800010a8: fec42703 lw a4,-20(s0)

800010ac: 47a5 li a5,9

800010ae: fce7d6e3 bge a5,a4,8000107a <main+0x32>

800010b2: fe042423 sw zero,-24(s0)

800010b6: a82d j 800010f0 <main+0xa8>

800010b8: 00002717 auipc a4,0x2

800010bc: df070713 addi a4,a4,-528 # 80002ea8 <data>

800010c0: fe842783 lw a5,-24(s0)

800010c4: 078a slli a5,a5,0x2

800010c6: 97ba add a5,a5,a4

800010c8: 439c lw a5,0(a5)

800010ca: 0007872b fir_data_st a4,a5

800010ce: 00005797 auipc a5,0x5

800010d2: cc278793 addi a5,a5,-830 # 80005d90 <res.4>

800010d6: c398 sw a4,0(a5)

800010d8: 0000073b fir_exec a4

800010dc: 00005797 auipc a5,0x5

800010e0: cb478793 addi a5,a5,-844 # 80005d90 <res.4>

800010e4: c398 sw a4,0(a5)

800010e6: fe842783 lw a5,-24(s0)

800010ea: 0785 addi a5,a5,1

800010ec: fef42423 sw a5,-24(s0)

800010f0: fe842703 lw a4,-24(s0)

800010f4: 47cd li a5,19

800010f6: fce7d1e3 bge a5,a4,800010b8 <main+0x70>

Listing A.9: Binary segment of Accelerated main function (44 instructions)

A.6 Cycle Count and Speedups

In this section, the plots related to cycle count and timing measurements, for all the parameters of

the design space explorations, are displayed:

A.6 Cycle Count and Speedups 65

A.6.1 Optimization -O0 (Unsigned Data)

Figure A.1: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.2: Speedup for cycle count (above) and execution time (below) data=50.

66 Detailed Code and Additional Results

Figure A.3: Speedup for cycle count (above) and execution time (below) data=100.

Figure A.4: Speedup for cycle count (above) and execution time (below) for data=200.

A.6 Cycle Count and Speedups 67

Figure A.5: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.6: Speedup for cycle count (above) and execution time (below) for data=1000.

68 Detailed Code and Additional Results

Figure A.7: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.8: Speedup for cycle count (above) and execution time (below) for data=2000.

A.6 Cycle Count and Speedups 69

A.6.2 Optimization -O0 (Signed Data)

Figure A.9: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.10: Speedup for cycle count (above) and execution time (below) for data=50.

70 Detailed Code and Additional Results

Figure A.11: Speedup for cycle count (above) and execution time (below) for data=100.

Figure A.12: Speedup for cycle count (above) and execution time for data=200.

A.6 Cycle Count and Speedups 71

Figure A.13: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.14: Speedup for cycle count (above) and execution time (below) for data=1000.

72 Detailed Code and Additional Results

Figure A.15: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.16: Speedup for cycle count (above) and execution time (below) for data=2000.

A.6 Cycle Count and Speedups 73

A.6.3 Optimization -O0 (Fixed-point Data)

Figure A.17: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.18: Speedup for cycle count (above) and execution time (below) for data=50.

74 Detailed Code and Additional Results

Figure A.19: Speedup for cycle count (above) and execution time (below) for data=100.

Figure A.20: Speedup for cycle count (above) and execution time (below) for data=200.

A.6 Cycle Count and Speedups 75

Figure A.21: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.22: Speedup for cycle count (above) and execution time (below) for data=1000.

76 Detailed Code and Additional Results

Figure A.23: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.24: Speedup for cycle count (above) and execution time (below) for data=2000.

A.6 Cycle Count and Speedups 77

A.6.4 Optimization -O3 (Unsigned Data)

Figure A.25: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.26: Speedup for cycle count (above) and execution time (below) for data=50.

78 Detailed Code and Additional Results

Figure A.27: Speedup for cycle count (above) and execution time (below) for data=100.

Figure A.28: Speedup for cycle count (above) and execution time (below) for data=200.

A.6 Cycle Count and Speedups 79

Figure A.29: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.30: Speedup for cycle count (above) and execution time (below) for data=1000.

80 Detailed Code and Additional Results

Figure A.31: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.32: Speedup for cycle count (above) and execution time (below) for data=2000.

A.6 Cycle Count and Speedups 81

A.6.5 Optimization -O3 (Signed Data)

Figure A.33: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.34: Speedup for cycle count (above) and execution time (below) for data=50.

82 Detailed Code and Additional Results

Figure A.35: Speedup for cycle count (above) and execution time (below) for data=100.

Figure A.36: Speedup for cycle count (above) and execution time (below) for data=200.

A.6 Cycle Count and Speedups 83

Figure A.37: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.38: Speedup for cycle count (above) and execution time (below) for data=1000.

84 Detailed Code and Additional Results

Figure A.39: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.40: Speedup for cycle count (above) and execution time (below) for data=2000.

A.6 Cycle Count and Speedups 85

A.6.6 Optimization -O3 (Fixed-point Data)

Figure A.41: Speedup for cycle count (above) and execution time (below) for data=20.

Figure A.42: Speedup for cycle count (above) and execution time (below) for data=50.

86 Detailed Code and Additional Results

Figure A.43: Speedup for cycle count (above) and execution time (below) for data=100.

Figure A.44: Speedup for cycle count (above) and execution time (below) for data=200.

A.6 Cycle Count and Speedups 87

Figure A.45: Speedup for cycle count (above) and execution time (below) for data=500.

Figure A.46: Speedup for cycle count (above) and execution time (below) for data=1000.

88 Detailed Code and Additional Results

Figure A.47: Speedup for cycle count (above) and execution time (below) for data=1500.

Figure A.48: Speedup for cycle count (above) and execution time (below) for data=2000.

A.7 Frequency Plots 89

A.7 Frequency Plots

Here, the frequency plots resulting from the design space exploration are presented:

Figure A.49: Maximum frequency with respect to Unsigned filter order.

Figure A.50: Maximum frequency with respect to Signed filter order.

Figure A.51: Maximum frequency with respect to Fixed-point filter order.

90 Detailed Code and Additional Results

A.8 Power and Energy Consumption

In this section, average dynamic power and energy measurement plots are displayed:

A.8.1 Unsigned

Figure A.52: Power and energy for data=20.

Figure A.53: Power and energy for data=50.

Figure A.54: Power and energy for data=100.

A.8 Power and Energy Consumption 91

Figure A.55: Power and energy for data=200.

Figure A.56: Power and energy for data=500.

Figure A.57: Power and energy for data=1000.

92 Detailed Code and Additional Results

Figure A.58: Power and energy for data=1500.

Figure A.59: Power and energy for data=2000.

A.8.2 Signed

Figure A.60: Power and energy for data=20.

A.8 Power and Energy Consumption 93

Figure A.61: Power and energy for data=50.

Figure A.62: Power and energy for data=100.

Figure A.63: Power and energy for data=200.

94 Detailed Code and Additional Results

Figure A.64: Power and energy for data=500.

Figure A.65: Power and energy for data=1000.

Figure A.66: Power and energy for data=1500.

A.8 Power and Energy Consumption 95

Figure A.67: Power and energy for data=2000.

A.8.3 Fixed-point

Figure A.68: Power and energy for data=20.

Figure A.69: Power and energy for data=50.

96 Detailed Code and Additional Results

Figure A.70: Power and energy for data=100.

Figure A.71: Power and energy for data=200.

Figure A.72: Power and energy for data=500.

A.8 Power and Energy Consumption 97

Figure A.73: Power and energy for data=1000.

Figure A.74: Power and energy for data=1500.

Figure A.75: Power and energy for data=2000.

98 Detailed Code and Additional Results

References

[1] Jack Koenig. CCC21 - Chisel Breakdown 2, 2019. Sifive, Accessed:
13-10-2022. URL: https://docs.google.com/presentation/d/
114YihixFBPCfUnv1inqAL8UjsiWfcNWdPHX7SeqlRQc/edit#slide=id.
g46f3087eda_0_17.

[2] Hao Zhang, Itta Ohmura, and Makoto Taiji. Implementing a Comprehensive Networks-on-
Chip Generator with Optimal Configurations. In IEEE International Conference on Cluster
Computing (CLUSTER), pages 420–421, 2020. doi:10.1109/CLUSTER49012.2020.
00059.

[3] Xilinx. Vivado Design Suite User Guide: Design Flows Overview (UG892), 2021.
Accessed: 13-10-2022. URL: https://docs.xilinx.com/r/2021.2-English/
ug892-vivado-design-flows-overview/.

[4] Xilinx. Xilinx virtex-7 FPGA VC707 Evaluation Kit, 2012. Accessed: 13-10-
2022. URL: https://www.xilinx.com/products/boards-and-kits/ek-v7-
vc707-g.html.

[5] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovic. The risc-v in-
struction set manual, volume i: User-level isa 2.2, 2017. EECS Department, Univer-
sity of California, Berkeley, Accessed: 13-10-2022. URL: https://riscv.org/wp-
content/uploads/2017/05/riscv-spec-v2.2.pdf.

[6] Nguyen Dao, Andrew Attwood, Bea Healy, and Dirk Koch. FlexBex: A RISC-V with a
Reconfigurable Instruction Extension. In International Conference on Field-Programmable
Technology (ICFPT), pages 190–195, 2020. doi:10.1109/ICFPT51103.2020.00034.

[7] Joao Mario Domingos, Nuno Neves, Nuno Roma, and Pedro Tomás. Unlimited Vector Ex-
tension with Data Streaming Support. In ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pages 209–222, 2021. doi:10.1109/ISCA52012.
2021.00025.

[8] UCB-Bar. Chipyard Main Documentation - 3.1. Rocket Chip, 2019. Accessed: 13-10-2022.
URL: https://chipyard.readthedocs.io/en/latest/Generators/Rocket-
Chip.html.

[9] Riaz-ul-haque Mian, Michihiro Shintani, and Michiko Inoue. Cycle-Accurate Evaluation
of Software-Hardware Co-Design of Decimal Computation in RISC-V Ecosystem. In 2019
32nd IEEE International System-on-Chip Conference (SOCC), pages 412–417, 2019. doi:
10.1109/SOCC46988.2019.1570559752.

99

https://docs.google.com/presentation/d/114YihixFBPCfUnv1inqAL8UjsiWfcNWdPHX7SeqlRQc/edit#slide=id.g46f3087eda_0_17
https://docs.google.com/presentation/d/114YihixFBPCfUnv1inqAL8UjsiWfcNWdPHX7SeqlRQc/edit#slide=id.g46f3087eda_0_17
https://docs.google.com/presentation/d/114YihixFBPCfUnv1inqAL8UjsiWfcNWdPHX7SeqlRQc/edit#slide=id.g46f3087eda_0_17
http://dx.doi.org/10.1109/CLUSTER49012.2020.00059
http://dx.doi.org/10.1109/CLUSTER49012.2020.00059
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/
https://docs.xilinx.com/r/2021.2-English/ug892-vivado-design-flows-overview/
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
http://dx.doi.org/10.1109/ICFPT51103.2020.00034
http://dx.doi.org/10.1109/ISCA52012.2021.00025
http://dx.doi.org/10.1109/ISCA52012.2021.00025
https://chipyard.readthedocs.io/en/latest/Generators/Rocket-Chip.html
https://chipyard.readthedocs.io/en/latest/Generators/Rocket-Chip.html
http://dx.doi.org/10.1109/SOCC46988.2019.1570559752
http://dx.doi.org/10.1109/SOCC46988.2019.1570559752

100 REFERENCES

[10] James Martin. RISC-V, Rocket, and RoCC, 2017. Accessed: 13-10-2022. URL: https:
//inst.eecs.berkeley.edu/~cs250/sp17/disc/lab2-disc.pdf.

[11] Sylvia Engdahl. Bringing Datacenter-Scale Hardware-Software Co-design to the Cloud with
FireSim and Amazon EC2 F1 Instances, 2017. AWS Compute Blog, Accessed: 13-10-2022.
URL: https://aws.amazon.com/blogs/compute/bringing-datacenter-
scale-hardware-software-co-design-to-the-cloud-with-firesim-
and-amazon-ec2-f1-instances/.

[12] Zahra Azad, Marcia Sahaya Louis, Leila Delshadtehrani, Anthony Ducimo, Suyog Gupta,
Pete Warden, Vijay Janapa Reddi, and Ajay Joshi. An end-to-end RISC-V solution for ML
on the edge using in-pipeline support. In Boston area Architecture (BARC) Workshop, 2020.

[13] Brad Green, Dillon Todd, Jon C. Calhoun, and Melissa C. Smith. TIGRA: A Tightly Inte-
grated Generic RISC-V Accelerator Interface. In 2021 IEEE International Conference on
Cluster Computing (CLUSTER), pages 779–782, 2021. doi:10.1109/Cluster48925.
2021.00115.

[14] Pasquale Davide Schiavone, Davide Rossi, Alfio Di Mauro, Frank K Gürkaynak, Timothy
Saxe, Mao Wang, Ket Chong Yap, and Luca Benini. Arnold: An eFPGA-Augmented RISC-
V SoC for Flexible and Low-Power IoT End Nodes. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 29(4):677–690, 2021.

[15] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent Rotenberg,
and Luca Benini. GAP-8: A RISC-V SoC for AI at the Edge of the IoT. In IEEE 29th Inter-
national Conference on Application-specific Systems, Architectures and Processors (ASAP),
pages 1–4, 2018. doi:10.1109/ASAP.2018.8445101.

[16] UCB-Bar. Chipyard Main Documentation - 8.2. Communicating with the DUT, 2019.
Accessed: 13-10-2022. URL: https://chipyard.readthedocs.io/en/latest/
Advanced-Concepts/Chip-Communication.html.

[17] Eugene-Tarassov. Vivado-RISC-V: Xilinx vivado block designs for FPGA RISC-V SOC
running Debian Linux Distro. GitHub repository, Accessed: 13-10-2022. URL: https:
//github.com/eugene-tarassov/vivado-risc-v.

[18] Nuno Paulino, João Canas Ferreira, and João M. P. Cardoso. Improving Performance and
Energy Consumption in Embedded Systems via Binary Acceleration: A Survey. ACM
Comput. Surv., 53(1), feb 2020. URL: https://doi.org/10.1145/3369764, doi:
10.1145/3369764.

[19] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. In 38th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 365–376, 2011.

[20] Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science Engineering, 19(2):41–50, 2017. doi:10.
1109/MCSE.2017.29.

[21] George Plastiras, Maria Terzi, Christos Kyrkou, and Theocharis Theocharidcs. Edge In-
telligence: Challenges and Opportunities of Near-Sensor Machine Learning Applications.
In IEEE 29th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pages 1–7, 2018. doi:10.1109/ASAP.2018.8445118.

https://inst.eecs.berkeley.edu/~cs250/sp17/disc/lab2-disc.pdf
https://inst.eecs.berkeley.edu/~cs250/sp17/disc/lab2-disc.pdf
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/
https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/
http://dx.doi.org/10.1109/Cluster48925.2021.00115
http://dx.doi.org/10.1109/Cluster48925.2021.00115
http://dx.doi.org/10.1109/ASAP.2018.8445101
https://chipyard.readthedocs.io/en/latest/Advanced-Concepts/Chip-Communication.html
https://chipyard.readthedocs.io/en/latest/Advanced-Concepts/Chip-Communication.html
https://github.com/eugene-tarassov/vivado-risc-v
https://github.com/eugene-tarassov/vivado-risc-v
https://doi.org/10.1145/3369764
http://dx.doi.org/10.1145/3369764
http://dx.doi.org/10.1145/3369764
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/ASAP.2018.8445118

REFERENCES 101

[22] Hiroyuki Chishiro, Kazutoshi Suito, Tsutomu Ito, Seiya Maeda, Takuya Azumi, Kenji Fu-
naoka, and Shinpei Kato. Towards Heterogeneous Computing Platforms for Autonomous
Driving. In IEEE International Conference on Embedded Software and Systems (ICESS),
pages 1–8, 2019. doi:10.1109/ICESS.2019.8782446.

[23] Changmoo Kim, Mookyoung Chung, Yeongon Cho, Mario Konijnenburg, Soojung Ryu,
and Jeongwook Kim. ULP-SRP: Ultra low power Samsung Reconfigurable Processor for
biomedical applications. In International Conference on Field-Programmable Technology,
pages 329–334, 2012. doi:10.1109/FPT.2012.6412157.

[24] Mohamed Zahran. Heterogeneous Computing: Hardware and Software Perspectives, vol-
ume 23. Association for Computing Machinery, New York, NY, USA, 2019. doi:
10.1145/3281649.

[25] Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. A Survey on Coarse-Grained Recon-
figurable Architectures From a Performance Perspective. IEEE Access, 8:146719–146743,
2020. doi:10.1109/ACCESS.2020.3012084.

[26] Giovanni De Micheli. High-level synthesis of digital circuits. volume 37
of Advances in Computers, pages 207–283. Elsevier, 1993. URL: https://
www.sciencedirect.com/science/article/pii/S0065245808604064, doi:
https://doi.org/10.1016/S0065-2458(08)60406-4.

[27] SpinalHDL. SpinalHDL: Scala based HDL. GitHub repository, Accessed: 13-10-2022.
URL: https://github.com/SpinalHDL/SpinalHDL.

[28] The Chisel/FIRRTL Developers. Chisel/FIRRTL Hardware Compiler Framework, 2021.
Accessed: 13-10-2022. URL: https://www.chisel-lang.org/.

[29] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Dong-
gyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach. Reusability
is FIRRTL ground: Hardware construction languages, compiler frameworks, and transforma-
tions. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages
209–216, 2017. doi:10.1109/ICCAD.2017.8203780.

[30] Nuno M. C. Paulino, João Canas Ferreira, and João M. P. Cardoso. Generation of cus-
tomized accelerators for loop pipelining of binary instruction traces. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 25(1):21–34, 2017. doi:10.1109/TVLSI.
2016.2573640.

[31] Andrew Shell Waterman. Design of the RISC-V Instruction Set Architecture. Technical
report, University of California, Berkeley, 2016. Accessed: 13-10-2022. URL: https:
//people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf.

[32] Freechipsproject. chisel-testers: Provides various testers for chisel users. Accessed: 13-10-
2022. URL: https://github.com/freechipsproject/chisel-testers.

[33] Freechipsproject. Chisel-bootcamp/4.1_firrtl_ast.ipynb, 2018. GitHub repository, Ac-
cessed: 13-10-2022. URL: https://github.com/freechipsproject/chisel-
bootcamp.

[34] The Chisel/FIRRTL Developers. Chisel/FIRRTL Hierarchy Cookbook, 2021. Accessed:
13-10-2022. URL: https://www.chisel-lang.org/chisel3/docs/cookbooks/
hierarchy.html.

http://dx.doi.org/10.1109/ICESS.2019.8782446
http://dx.doi.org/10.1109/FPT.2012.6412157
http://dx.doi.org/10.1145/3281649
http://dx.doi.org/10.1145/3281649
http://dx.doi.org/10.1109/ACCESS.2020.3012084
https://www.sciencedirect.com/science/article/pii/S0065245808604064
https://www.sciencedirect.com/science/article/pii/S0065245808604064
http://dx.doi.org/https://doi.org/10.1016/S0065-2458(08)60406-4
http://dx.doi.org/https://doi.org/10.1016/S0065-2458(08)60406-4
https://github.com/SpinalHDL/SpinalHDL
https://www.chisel-lang.org/
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://dx.doi.org/10.1109/TVLSI.2016.2573640
http://dx.doi.org/10.1109/TVLSI.2016.2573640
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://people.eecs.berkeley.edu/~krste/papers/EECS-2016-1.pdf
https://github.com/freechipsproject/chisel-testers
https://github.com/freechipsproject/chisel-bootcamp
https://github.com/freechipsproject/chisel-bootcamp
https://www.chisel-lang.org/chisel3/docs/cookbooks/hierarchy.html
https://www.chisel-lang.org/chisel3/docs/cookbooks/hierarchy.html

102 REFERENCES

[35] UCB-Bar. Chipyard Main Documentation - 6.13. Adding a FIRRTL Transform, 2019.
Accessed: 13-10-2022. URL: https://chipyard.readthedocs.io/en/latest/
Advanced-Concepts/Top-Testharness.html.

[36] V. M. Milovanović and M. L. Petrović. A Highly Parametrizable Chisel HCL Generator
of Single-Path Delay Feedback FFT Processors. In IEEE 31st International Conference on
Microelectronics (MIEL), pages 247–250, 2019. doi:10.1109/MIEL.2019.8889581.

[37] Zhinan Li, Yijie Chen, and Di Zhao. A Method of Verification in Chisel Based Deep
Learning Accelerator Design. In IEEE International Conference on Information Technol-
ogy,Big Data and Artificial Intelligence (ICIBA), volume 1, pages 789–792, 2020. doi:
10.1109/ICIBA50161.2020.9277284.

[38] Andy Gallay and Tarek Ould-Bachir. Implementing Multistage Interconnection Networks on
FPGA Using Chisel Language. In IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 1–6, 2021. doi:10.1109/CCECE53047.2021.9569176.

[39] Vukan D. Damnjanović, Marija L. Petrović, and Vladimir M. Milovanović. A Parameteriz-
able Chisel Generator of Numerically Controlled Oscillators for Direct Digital Synthesis. In
24th International Symposium on Design and Diagnostics of Electronic Circuits & Systems
(DDECS), pages 141–144, 2021. doi:10.1109/DDECS52668.2021.9417063.

[40] Vikas Chauhan, Neel Gala, and V. Kamakoti. ChADD: An ADD Based Chisel Compiler
with Reduced Syntactic Variance. In 2016 29th International Conference on VLSI Design
and 2016 15th International Conference on Embedded Systems (VLSID), pages 499–504,
2016. doi:10.1109/VLSID.2016.44.

[41] Xiao Liu and John Kubiatowicz. Chisel-Q: Designing quantum circuits with a scala embed-
ded language. In 2013 IEEE 31st International Conference on Computer Design (ICCD),
pages 427–434, 2013. doi:10.1109/ICCD.2013.6657075.

[42] UCB-Bar. dsptools: A library of Chisel3 tools for digital signal processing. GitHub reposi-
tory, Accessed: 13-10-2022. URL: https://github.com/ucb-bar/dsptools.

[43] Erik Osheim and Tom Switzer. Spire - A Numeric Library for Scala, 2022. Accessed: 13-
10-2022. URL: https://typelevel.org/spire/.

[44] Veripool. Verilator, the Fast Free Verilog/SystemVerilog Simulator, 2021. Accessed: 13-10-
2022. URL: https://www.veripool.org/verilator/.

[45] Anthony Bybell. Gtkwave 3.3 wave analyzer user’s guide, 2021. Accessed: 13-10-2022.
URL: http://gtkwave.sourceforge.net/gtkwave.pdf.

[46] Xilinx. Vivado Design Suite User Guide - Getting Started (UG910), 2020. Accessed:
13-10-2022. URL: https://docs.xilinx.com/v/u/2018.2-English/ug910-
vivado-getting-started.

[47] Shubham Gandhare and B. Karthikeyan. Survey on FPGA Architecture and Recent Appli-
cations. In 2019 International Conference on Vision Towards Emerging Trends in Commu-
nication and Networking (ViTECoN), pages 1–4, 2019. doi:10.1109/ViTECoN.2019.
8899550.

https://chipyard.readthedocs.io/en/latest/Advanced-Concepts/Top-Testharness.html
https://chipyard.readthedocs.io/en/latest/Advanced-Concepts/Top-Testharness.html
http://dx.doi.org/10.1109/MIEL.2019.8889581
http://dx.doi.org/10.1109/ICIBA50161.2020.9277284
http://dx.doi.org/10.1109/ICIBA50161.2020.9277284
http://dx.doi.org/10.1109/CCECE53047.2021.9569176
http://dx.doi.org/10.1109/DDECS52668.2021.9417063
http://dx.doi.org/10.1109/VLSID.2016.44
http://dx.doi.org/10.1109/ICCD.2013.6657075
https://github.com/ucb-bar/dsptools
https://typelevel.org/spire/
https://www.veripool.org/verilator/
http://gtkwave.sourceforge.net/gtkwave.pdf
https://docs.xilinx.com/v/u/2018.2-English/ug910-vivado-getting-started
https://docs.xilinx.com/v/u/2018.2-English/ug910-vivado-getting-started
http://dx.doi.org/10.1109/ViTECoN.2019.8899550
http://dx.doi.org/10.1109/ViTECoN.2019.8899550

REFERENCES 103

[48] UCB-Bar. Hammer (higly agile masks made efforlessly from rtl) - 5.2. core hammer, 2019.
Accessed: 13-10-2022. URL: https://chipyard.readthedocs.io/en/latest/
VLSI/Hammer.html.

[49] RISC-V International. RISC-V Home Page, 2022. Accessed: 13-10-2022. URL: https:
//riscv.org/.

[50] Jeffrey Osier-Mixon. RISC-V International - History of RISC-V, 2022. Accessed: 13-10-
2022. URL: https://riscv.org/about/history/.

[51] Marisa Pinto. Arquitetura RISC-V Já alcançou os 10 mil milhões de núcleos enviados,
2022. pplware, Accessed: 13-10-2022. URL: https://pplware.sapo.pt/gadgets/
hardware/arquitetura-risc-v-ja-alcancou-os-10-mil-milhoes-de-
nucleos-enviados/.

[52] M. Alizadeh and M. Sharifkhani. Extending RISC-V ISA for Accelerating the H.265/HEVC
Deblocking Filter. In 8th International Conference on Computer and Knowledge Engineer-
ing (ICCKE), pages 126–129, 2018. doi:10.1109/ICCKE.2018.8566467.

[53] Andrey Norkin, Gisle Bjontegaard, Arild Fuldseth, Matthias Narroschke, Masaru Ikeda,
Kenneth Andersson, Minhua Zhou, and Geert Van der Auwera. HEVC Deblocking Fil-
ter. IEEE Transactions on Circuits and Systems for Video Technology, 22(12):1746–1754,
2012. doi:10.1109/TCSVT.2012.2223053.

[54] Hela Belhadj Amor, Carolynn Bernier, and Zdenek Prikryl. RISC-V ISA Extension for
Ultra-Low Power IoT Wireless Signal Processing. IEEE Transactions on Computers, pages
1–1, 2021. doi:10.1109/TC.2021.3063027.

[55] Shihang Wang, Jianghan Zhu, Qi Wang, Can He, and Terry Tao Ye. Customized Instruction
on RISC-V for Winograd-Based Convolution Acceleration. In IEEE 32nd International Con-
ference on Application-specific Systems, Architectures and Processors (ASAP), pages 65–68,
2021. doi:10.1109/ASAP52443.2021.00018.

[56] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, page 1–6. As-
sociation for Computing Machinery, 1987. URL: https://doi.org/10.1145/28395.
28396, doi:10.1145/28395.28396.

[57] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Antonio Pullini,
Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini. Near-Threshold RISC-
V Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 25(10):2700–2713, 2017. doi:10.1109/TVLSI.
2017.2654506.

[58] Luís Oliveira, João Bispo, and Nuno Roma. Automatic Streaming for RISC-V via Source-
to-Source Compilation, 2022. Faculty of Engineering of the University of Porto, MsC The-
sis in Informatics Engineering, Accessed: 13-10-2022. URL: https://repositorio-
aberto.up.pt/handle/10216/142750.

[59] Chipsalliance. Rocket-Chip: Rocket chip generator. GitHub repository, Accessed: 13-10-
2022. URL: https://github.com/chipsalliance/rocket-chip.

https://chipyard.readthedocs.io/en/latest/VLSI/Hammer.html
https://chipyard.readthedocs.io/en/latest/VLSI/Hammer.html
https://riscv.org/
https://riscv.org/
https://riscv.org/about/history/
https://pplware.sapo.pt/gadgets/hardware/arquitetura-risc-v-ja-alcancou-os-10-mil-milhoes-de-nucleos-enviados/
https://pplware.sapo.pt/gadgets/hardware/arquitetura-risc-v-ja-alcancou-os-10-mil-milhoes-de-nucleos-enviados/
https://pplware.sapo.pt/gadgets/hardware/arquitetura-risc-v-ja-alcancou-os-10-mil-milhoes-de-nucleos-enviados/
http://dx.doi.org/10.1109/ICCKE.2018.8566467
http://dx.doi.org/10.1109/TCSVT.2012.2223053
http://dx.doi.org/10.1109/TC.2021.3063027
http://dx.doi.org/10.1109/ASAP52443.2021.00018
https://doi.org/10.1145/28395.28396
https://doi.org/10.1145/28395.28396
http://dx.doi.org/10.1145/28395.28396
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/TVLSI.2017.2654506
https://repositorio-aberto.up.pt/handle/10216/142750
https://repositorio-aberto.up.pt/handle/10216/142750
https://github.com/chipsalliance/rocket-chip

104 REFERENCES

[60] RISC-V. RISCV-Boom: Sonicboom: The Berkeley out-of-order machine, 2022. GitHub
repository, Accessed: 13-10-2022. URL: https://github.com/riscv-boom/
riscv-boom.

[61] UCB-Bar. Chipyard Main Documentation - 3.4. Hwacha, 2019. Accessed: 13-10-2022.
URL: https://chipyard.readthedocs.io/en/latest/Generators/Hwacha.
html.

[62] UCB-Bar. RISCV-Mini: Simple RISC-V 3-stage pipeline in Chisel, 2022. GitHub reposi-
tory, Accessed: 13-10-2022. URL: https://github.com/ucb-bar/riscv-mini.

[63] Asmit De, Aditya Basu, Swaroop Ghosh, and Trent Jaeger. FIXER: Flow Integrity Exten-
sions for Embedded RISC-V. In 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 348–353, 2019. doi:10.23919/DATE.2019.8714980.

[64] Sifive. Freedom: Source Files for Sifive’s freedom platforms. GitHub repository, Accessed:
13-10-2022. URL: https://github.com/sifive/freedom.

[65] Xilinx. Artix-7 35t ARTY FPGA Evaluation Kit, 2015. Accessed: 13-10-2022. URL:
https://www.xilinx.com/products/boards-and-kits/arty.html.

[66] Martin Maas, Krste Asanović, and John Kubiatowicz. A Hardware Accelerator for Trac-
ing Garbage Collection. In ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 138–151, 2018. doi:10.1109/ISCA.2018.00022.

[67] Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, and Arvind Arvind. Composable Build-
ing Blocks to Open up Processor Design. In 51st Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 68–81, 2018. doi:10.1109/MICRO.2018.
00015.

[68] Edward Wang, Adam Izraelevitz, Colin Schmidt, Borivoje Nikolic, Elad Alon, and Jonathan
Bachrach. Hammer: Enabling reusable physical design. In Workshop on Open-Source EDA
Technology (WOSET), 2018.

[69] Arizona State University - Ira A. Fulton Schools of Engineering. ASAP: Arizona State
Predictive PDK, 2017. Accessed: 13-10-2022. URL: https://asap.asu.edu/.

[70] UCB-Bar. Hammer (Higly Agile Masks Made Efforlessly from RTL) - 1.1. Overview,
2019. Accessed: 13-10-2022. URL: http://docs.hammer-eda.org/en/latest/
Hammer-Basics/Hammer-Overview.html.

[71] Kim McMahon. RISC-V Celebrates Incredible Year of Growth and Progress, Rat-
ifying Multiple Technical Specifications, Launching New Education Programs,
and Accelerating Broad Industry Adoption, 2021. Accessed: 13-10-2022. URL:
https://riscv.org/announcements/2021/12/risc-v-celebrates-
incredible-year-of-growth-and-progress-ratifying-multiple-
technical-specifications-launching-new-education-programs-and-
accelerating-broad-industry-adoption/.

[72] RISC-V Community News. Semico Research’s New Report Predicts There Will
Be 25 Billion RISC-V-Based AI SoCs By 2027, 2022. Accessed: 13-10-2022.
URL: https://riscv.org/blog/2022/02/semico-researchs-new-report-
predicts-there-will-be-25-billion-risc-v-based-ai-socs-by-2027/.

https://github.com/riscv-boom/riscv-boom
https://github.com/riscv-boom/riscv-boom
https://chipyard.readthedocs.io/en/latest/Generators/Hwacha.html
https://chipyard.readthedocs.io/en/latest/Generators/Hwacha.html
https://github.com/ucb-bar/riscv-mini
http://dx.doi.org/10.23919/DATE.2019.8714980
https://github.com/sifive/freedom
https://www.xilinx.com/products/boards-and-kits/arty.html
http://dx.doi.org/10.1109/ISCA.2018.00022
http://dx.doi.org/10.1109/MICRO.2018.00015
http://dx.doi.org/10.1109/MICRO.2018.00015
https://asap.asu.edu/
http://docs.hammer-eda.org/en/latest/Hammer-Basics/Hammer-Overview.html
http://docs.hammer-eda.org/en/latest/Hammer-Basics/Hammer-Overview.html
https://riscv.org/announcements/2021/12/risc-v-celebrates-incredible-year-of-growth-and-progress-ratifying-multiple-technical-specifications-launching-new-education-programs-and-accelerating-broad-industry-adoption/
https://riscv.org/announcements/2021/12/risc-v-celebrates-incredible-year-of-growth-and-progress-ratifying-multiple-technical-specifications-launching-new-education-programs-and-accelerating-broad-industry-adoption/
https://riscv.org/announcements/2021/12/risc-v-celebrates-incredible-year-of-growth-and-progress-ratifying-multiple-technical-specifications-launching-new-education-programs-and-accelerating-broad-industry-adoption/
https://riscv.org/announcements/2021/12/risc-v-celebrates-incredible-year-of-growth-and-progress-ratifying-multiple-technical-specifications-launching-new-education-programs-and-accelerating-broad-industry-adoption/
https://riscv.org/blog/2022/02/semico-researchs-new-report-predicts-there-will-be-25-billion-risc-v-based-ai-socs-by-2027/
https://riscv.org/blog/2022/02/semico-researchs-new-report-predicts-there-will-be-25-billion-risc-v-based-ai-socs-by-2027/

REFERENCES 105

[73] Dirk Koch, Nguyen Dao, Bea Healy, Jing Yu, and Andrew Attwood. FABulous: An embed-
ded FPGA framework. In ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 45–56, 2021.

[74] Venu Gopal Reddy. Neon Technology Introduction. ARM Corporation, 4(1):1–33, 2008.

[75] Tensorflow Lite: ML for Mobile and Edge Devices, 2021. Accessed: 13-10-2022. URL:
https://www.tensorflow.org/lite.

[76] RISC-V Software. Spike RISC-V ISA Simulator, 2022. GitHub repository, Accessed: 13-
10-2022. URL: https://github.com/riscv-software-src/riscv-isa-sim.

[77] YosysHQ. PICORV32: PicoRV32 - a size-optimized RISC-V CPU, 2019. GitHub repository,
Accessed: 13-10-2022. URL: https://github.com/YosysHQ/picorv32.

[78] Theresa T Le. A Tightly Integrated Generic Instruction RISC-V Accelerator (TIGRA) for the
Rocket Core, 2021. Clemson University, MsC Thesis in Computer Engineering, Accessed:
13-10-2022. URL: https://tigerprints.clemson.edu/all_theses/3595/.

[79] Massimo Poncino and Davide Pala. Design and programming of a coprocessor for a RISC-V
architecture, 2017. Politecnico di Torino, MsC Thesis in Informatics Engineering, Accessed:
13-10-2022. URL: https://webthesis.biblio.polito.it/6589/.

[80] M. Borgatti, F. Lertora, B. Foret, and L. Cali. A reconfigurable system featuring dynamically
extensible embedded microprocessor, FPGA, and customizable I/O. IEEE Journal of Solid-
State Circuits, 38(3):521–529, 2003. doi:10.1109/JSSC.2002.808288.

[81] Francesco Renzini, Claudio Mucci, Davide Rossi, Eleonora Franchi Scarselli, and Roberto
Canegallo. A Fully Programmable eFPGA-Augmented SoC for Smart Power Applications.
IEEE Transactions on Circuits and Systems I: Regular Papers, 67(2):489–501, 2020. doi:
10.1109/TCSI.2019.2930412.

[82] A. Lodi, A. Cappelli, M. Bocchi, C. Mucci, M. Innocenti, C. De Bartolomeis, L. Ciccarelli,
R. Giansante, A. Deledda, F. Campi, M. Toma, and R. Guerrieri. XiSystem: a XiRisc-based
SoC with reconfigurable IO module. IEEE Journal of Solid-State Circuits, 41(1):85–96,
2006. doi:10.1109/JSSC.2005.859319.

[83] Apostolos P. Fournaris, Christos Alexakos, Christos Anagnostopoulos, Christos Koulamas,
and Athanasios Kalogeras. Introducing Hardware-Based Intelligence and Reconfigurability
on Industrial IoT Edge Nodes. IEEE Design & Test, 36(4):15–23, 2019. doi:10.1109/
MDAT.2019.2908547.

[84] Paul N. Whatmough, Sae Kyu Lee, Marco Donato, Hsea-Ching Hsueh, Sam Xi, Udit Gupta,
Lillian Pentecost, Glenn G. Ko, David Brooks, and Gu-Yeon Wei. A 16nm 25mm2 SoC
with a 54.5x Flexibility-Efficiency Range from Dual-Core Arm Cortex-A53 to eFPGA and
Cache-Coherent Accelerators. In 2019 Symposium on VLSI Circuits, pages C34–C35, 2019.
doi:10.23919/VLSIC.2019.8778002.

[85] David Bol, Maxime Schramme, Ludovic Moreau, Thomas Haine, Pengcheng Xu, Char-
lotte Frenkel, Rémi Dekimpe, François Stas, and Denis Flandre. 19.6 A 40-to-80MHz
Sub-4uW/MHz ULV Cortex-M0 MCU SoC in 28nm FDSOI With Dual-Loop Adaptive
Back-Bias Generator for 20us Wake-Up From Deep Fully Retentive Sleep Mode. In IEEE
International Solid- State Circuits Conference - (ISSCC), pages 322–324, 2019. doi:
10.1109/ISSCC.2019.8662293.

https://www.tensorflow.org/lite
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/YosysHQ/picorv32
https://tigerprints.clemson.edu/all_theses/3595/
https://webthesis.biblio.polito.it/6589/
http://dx.doi.org/10.1109/JSSC.2002.808288
http://dx.doi.org/10.1109/TCSI.2019.2930412
http://dx.doi.org/10.1109/TCSI.2019.2930412
http://dx.doi.org/10.1109/JSSC.2005.859319
http://dx.doi.org/10.1109/MDAT.2019.2908547
http://dx.doi.org/10.1109/MDAT.2019.2908547
http://dx.doi.org/10.23919/VLSIC.2019.8778002
http://dx.doi.org/10.1109/ISSCC.2019.8662293
http://dx.doi.org/10.1109/ISSCC.2019.8662293

106 REFERENCES

[86] RISC-V. RISCV-opcodes: RISC-V Opcodes, 2022. GitHub repository, Accessed: 13-10-
2022. URL: https://github.com/riscv/riscv-opcodes.

[87] Jason Brownlee. A gentle introduction to the rectified linear unit (ReLU),
2019. Machine Learning Mastery, Accessed: 13-10-2022. URL: https:
//machinelearningmastery.com/rectified-linear-activation-
function-for-deep-learning-neural-networks/.

[88] Vivek. Adding Custom instructions compilation support, to RISCV toolchain, 2022.
Accessed: 13-10-2022. URL: https://medium.com/@viveksgt/adding-
custom-instructions-compilation-support-to-riscv-toolchain-
78ce1b6efcf4.

[89] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patterson, and Krste Asanovic.
The RISC-V Instruction Set Manual Volume II: Privileged Architecture 1.9, 2016. EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-129, Accessed:
13-10-2022. URL: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-161.pdf.

[90] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harri-
son Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin
Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje
Nikolić. Chipyard: Integrated Design, Simulation, and Implementation Framework for Cus-
tom SoCs. IEEE Micro, 40(4):10–21, 2020. doi:10.1109/MM.2020.2996616.

[91] UCB-Bar. FPGA-zynq: Support for rocket chip on Zynq FPGAs. GitHub repository, Ac-
cessed: 13-10-2022. URL: https://github.com/ucb-bar/fpga-zynq.

https://github.com/riscv/riscv-opcodes
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://medium.com/@viveksgt/adding-custom-instructions-compilation-support-to-riscv-toolchain-78ce1b6efcf4
https://medium.com/@viveksgt/adding-custom-instructions-compilation-support-to-riscv-toolchain-78ce1b6efcf4
https://medium.com/@viveksgt/adding-custom-instructions-compilation-support-to-riscv-toolchain-78ce1b6efcf4
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
http://dx.doi.org/10.1109/MM.2020.2996616
https://github.com/ucb-bar/fpga-zynq

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Structure of the document

	2 Related Work
	2.1 Background
	2.1.1 Chisel
	2.1.2 DSPTools
	2.1.3 Verilator
	2.1.4 Vivado
	2.1.5 FPGAs
	2.1.6 RISC-V
	2.1.7 Instruction set extensions
	2.1.8 Unlimited Vector Extension
	2.1.9 Rocket-Chip
	2.1.10 RoCC Interface
	2.1.11 Freedom
	2.1.12 FireSim
	2.1.13 Hammer
	2.1.14 FIR filter

	2.2 State-of-the-art
	2.2.1 FlexBex
	2.2.2 RV-MLPU
	2.2.3 TIGRA
	2.2.4 Arnold
	2.2.5 GAP-8

	3 Proposed Approach
	3.1 General Integration and Validation Methodologies
	3.1.1 RISC-V GNU Assembler
	3.1.2 Hardware Accelerator Development
	3.1.3 Benchmarks
	3.1.4 Rocket-chip Integration
	3.1.5 Hardware Implementation

	3.2 Implemented approach
	3.2.1 RISC-V Compiler
	3.2.2 Hardware Modules
	3.2.3 Functional testing
	3.2.4 Benchmarks
	3.2.5 Rocket-chip Simulation
	3.2.6 Design Space Exploration
	3.2.7 Hardware Implementation

	3.3 Automated framework
	3.3.1 Project structure

	3.4 Discussion

	4 Results
	4.1 DSPTools Tests
	4.2 Verilator Tests
	4.2.1 Standalone SCIE module
	4.2.2 Tightly-Coupled Architecture

	4.3 Timing measurements
	4.3.1 Synthesis and Place-and-route

	4.4 Power measurements
	4.5 Energy measurements
	4.6 Workflow results
	4.6.1 Timing
	4.6.2 Power and energy

	4.7 Discussion

	5 Conclusions
	5.1 Future work

	A Detailed Code and Additional Results
	A.1 FIR Filter Chisel3 Code
	A.2 Baseline and Modified Benchmark C Code
	A.3 Workflow Automation Scripts
	A.4 File tree structure
	A.5 Benchmark Binary Dumps
	A.6 Cycle Count and Speedups
	A.6.1 Optimization -O0 (Unsigned Data)
	A.6.2 Optimization -O0 (Signed Data)
	A.6.3 Optimization -O0 (Fixed-point Data)
	A.6.4 Optimization -O3 (Unsigned Data)
	A.6.5 Optimization -O3 (Signed Data)
	A.6.6 Optimization -O3 (Fixed-point Data)

	A.7 Frequency Plots
	A.8 Power and Energy Consumption
	A.8.1 Unsigned
	A.8.2 Signed
	A.8.3 Fixed-point

	References

