371 research outputs found

    Semantics-based Automated Web Testing

    Full text link
    We present TAO, a software testing tool performing automated test and oracle generation based on a semantic approach. TAO entangles grammar-based test generation with automated semantics evaluation using a denotational semantics framework. We show how TAO can be incorporated with the Selenium automation tool for automated web testing, and how TAO can be further extended to support automated delta debugging, where a failing web test script can be systematically reduced based on grammar-directed strategies. A real-life parking website is adopted throughout the paper to demonstrate the effectivity of our semantics-based web testing approach.Comment: In Proceedings WWV 2015, arXiv:1508.0338

    Specification-driven test generation for model transformations

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-30476-7_3Proceedings of 5th International Conference, ICMT 2012, Prague, Czech Republic, May 28-29, 2012Testing model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches to the generation of input models ensure a certain level of source meta-model coverage, whereas the oracle functions are frequently defined using query or graph languages. Both tasks are usually performed independently regardless their common purpose, and sometimes there is a gap between the properties exhibited by the generated input models and those demanded to the transformations (as given by the oracles). Recently, we proposed a formal specification language for the declarative formulation of transformation properties (invariants, pre- and postconditions) from which we generated partial oracle functions that facilitate testing of the transformations. Here we extend the usage of our specification language for the automated generation of input test models by constraint solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the interesting properties of the transformation. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions.Work funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139) and by the R&D programme of Madrid Region (S2009/TIC-1650

    Automated test of evolving software

    Get PDF
    A thesis submitted to the University of Luton, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyComputers and the software they run are pervasive, yet released software is often unreliable, which has many consequences. Loss of time and earnings can be caused by application software (such as word processors) behaving incorrectly or crashing. Serious disruption can occur as in the l4th August 2003 blackouts in North East USA and Canadal, or serious injury or death can be caused as in the Therac-25 overdose incidents. One way to improve the quality of software is to test it thoroughly. However, software testing is time consuming, the resources, capabilities and skills needed to carry it out are often not available and the time required is often curtailed because of pressures to meet delivery deadlines3. Automation should allow more thorough testing in the time available and improve the quality of delivered software, but there are some problems with automation that this research addresses. Firstly, it is difficult to determine ifthe system under test (SUT) has passed or failed a test. This is known as the oracle problem4 and is often ignored in software testing research. Secondly, many software development organisations use an iterative and incremental process, known as evolutionary development, to write software. Following release, software continues evolving as customers demand new features and improvements to existing ones5. This evolution means that automated test suites must be maintained throughout the life ofthe software. A contribution of this research is a methodology that addresses automatic generation of the test cases, execution of the test cases and evaluation of the outcomes from running each test. "Predecessor" software is used to solve the oracle problem. This is software that already exists, such as a previous version of evolving software, or software from a different vendor that solves the same, or similar, problems. However, the resulting oracle is assumed not be perfect, so rules are defined in an interface, which are used by the evaluator in the test evaluation stage to handle the expected differences. The interface also specifies functional inputs and outputs to the SUT. An algorithm has been developed that creates a Markov Chain Transition Matrix (MCTM) model of the SUT from the interface. Tests are then generated automatically by making a random walk of the MCTM. This means that instead of maintaining a large suite of tests, or a large model of the SUT, only the interface needs to be maintained. 1) NERC Steering Group (2004). Technical Analysis ofthe August 14,2003, Blackout: What Happened, Why, and What Did We Learn? July 13th 2004. Available from: ftp:/ /www.nerc.com/pub/sys/all_ updl/docslblackoutINERC ]inatBlackout_Report _ 07_13_ 04.pdf 2) Leveson N. G., Turner C. S. (1993) An investigation of the Therac-25 accidents. IEEE Computer, Vo126, No 7, Pages 18-41. 3) LogicaCMG (2005) Testing Times for Board Rooms. Available from http://www.logicacmg.com/pdf/trackeditestingTimesBoardRooms.pdf 4) Bertolino, A. (2003) Software Testing Research and Practice, ASM 2003, Lecture Notes in Computer Science, Vol 2589, Pages 1-21. 5) Sommerville, 1. (2004) Software Engineering, 7th Edition. Addison Wesley. ISBN 0-321-21026-3

    A Review on Web Application Testing and its Current Research Directions

    Get PDF
    Testing is an important part of every software development process on which companies devote considerable time and effort. The burgeoning web applications and their proliferating economic significance in the society made the area of web application testing an area of acute importance. The web applications generally tend to take faster and quicker release cycles making their testing very challenging. The main issues in testing are cost efficiency and bug detection efficiency. Coverage-based   testing is the process of ensuring exercise of specific program elements. Coverage measurement helps determine the “thoroughness” of testing achieved. An avalanche of tools, techniques, frameworks came into existence to ascertain the quality of web applications.  A comparative study of some of the prominent tools, techniques and models for web application testing is presented. This work highlights the current research directions of some of the web application testing techniques

    Specification-driven model transformation testing

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-013-0369-xTesting model transformations poses several challenges, among them the automatic generation of appropriate input test models and the specification of oracle functions. Most approaches for the generation of input models ensure a certain coverage of the source meta-model or the transformation implementation code, whereas oracle functions are frequently defined using query or graph languages. However, these two tasks are usually performed independently regardless of their common purpose, and sometimes, there is a gap between the properties exhibited by the generated input models and those considered by the transformations. Recently, we proposed a formal specification language for the declarative formulation of transformation properties (by means of invariants, pre-, and postconditions) from which we generated partial oracle functions used for transformation testing. Here, we extend the usage of our specification language for the automated generation of input test models by SAT solving. The testing process becomes more intentional because the generated models ensure a certain coverage of the transformation requirements. Moreover, we use the same specification to consistently derive both the input test models and the oracle functions. A set of experiments is presented, aimed at measuring the efficacy of our technique.We thank the referees for their useful comments. This work has been sponsored by the Spanish Ministry of Science and Innovation with project “Go-Lite” (TIN2011-24139), by the R&D program of the Community of Madrid with project “e- Madrid” (S2009/TIC-1650), and by the German Research Foundation (DFG) within the Reinhart Koselleck project (DR 287/23-1)

    Automated blackbox GUI specifications enhancement and test data generation

    Get PDF
    Applications with a Graphical User Interface (GUI) front-end are ubiquitous nowadays. While automated model-based approaches have been shown to be effective in testing of such applications, most existing techniques produce many infeasible event sequences used as GUI test cases. This happens primarily because the behavioral specifications of the GUI under test are ignored. In this dissertation we present an automated framework that reveals an important set of state-based constraints among GUI events based on infeasible (i.e., unexecutable or partially executable) test cases of a GUI test suite. GUIDiVa, an iterative algorithm at the core of our framework, enumerates all possible constraint violations as potential reasons for test case failure, on the failed event of an infeasible test case. It then selects and adds the most promising constraints of each iteration to a final set based on the Validity Weight of constraints. The results of empirical studies on both seeded and nine non-trivial open-source study subjects show that our framework is capable of capturing important aspects of GUI behavior in the form of state-based event constraints, while considerably reducing the number of insfeasible test cases. The second part of this dissertation deals with the problem of automatic generation of relevant test data for parameterized GUI events (i.e., events associated with widgets that accept user inputs such as textboxes and textareas). Current techniques either manipulate the source code of the application under test (AUT) to generate the test data, or blindly use a set of random string values. We propose a novel way to generate the test data by exploiting the information provided in the GUI structure to extract a set of key identifiers for each parameterized GUI widget. These identifiers are used to compose appropriate online search phrases and collect relevant test data from the Internet. The results of an empirical study on five GUI-based applications show that the proposed approach is applicable and results in execution of some hard-to-cover branches in the subject programs. The proposed technique works from a black-box perspective and is entirely independent from GUI modeling and event sequence generation, thus it does not require source code access and offers the possibility of being integrated with existing GUI testing frameworks

    Constraint programming for random testing of a trading system

    Full text link
    Financial markets use complex computer trading systems whose failures can cause serious economic damage, making reliability a major concern. Automated random testing has been shown to be useful in nding defects in these systems, but its inherent test oracle problem (automatic generation of the expected system output) is a drawback that has typically prevented its application on a larger scale. Two main tasks have been carried out in this thesis as a solution to the test oracle problem. First, an independent model of a real trading system based on constraint programming, a method for solving combinatorial problems, has been created. Then, the model has been integrated as a true test oracle in automated random tests. The test oracle maintains the expected state of an order book throughout a sequence of random trade order actions, and provides the expected output of every auction triggered in the order book by generating a corresponding constraint program that is solved with the aid of a constraint programming system. Constraint programming has allowed the development of an inexpensive, yet reliable test oracle. In 500 random test cases, the test oracle has detected two system failures. These failures correspond to defects that had been present for several years without being discovered neither by less complete oracles nor by the application of more systematic testing approaches. The main contributions of this thesis are: (1) empirical evidence of both the suitability of applying constraint programming to solve the test oracle problem and the e ectiveness of true test oracles in random testing, and (2) a rst attempt, as far as the author is aware, to model a non-theoretical continuous double auction using constraint programming.Castañeda Lozano, R. (2010). Constraint programming for random testing of a trading system. http://hdl.handle.net/10251/8928.Archivo delegad

    Large Scale Distributed Testing for Fault Classification and Isolation

    Get PDF
    Developing confidence in the quality of software is an increasingly difficult problem. As the complexity and integration of software systems increases, the tools and techniques used to perform quality assurance (QA) tasks must evolve with them. To date, several quality assurance tools have been developed to help ensure of quality in modern software, but there are still several limitations to be overcome. Among the challenges faced by current QA tools are (1) increased use of distributed software solutions, (2) limited test resources and constrained time schedules and (3) difficult to replicate and possibly rarely occurring failures. While existing distributed continuous quality assurance (DCQA) tools and techniques, including our own Skoll project, begin to address these issues, new and novel approaches are needed to address these challenges. This dissertation explores three strategies to do this. First, I present an improved version of our Skoll distributed quality assurance system. Skoll provides a platform for executing sophisticated, long-running QA processes across a large number of distributed, heterogeneous computing nodes. This dissertation details changes to Skoll resulting in a more robust, configurable, and user-friendly implementation for both the client and server components. Additionally, this dissertation details infrastructure development done to support the evaluation of DCQA processes using Skoll -- specifically the design and deployment of a dedicated 120-node computing cluster for evaluating DCQA practices. The techniques and case studies presented in the latter parts of this work leveraged the improvements to Skoll as their testbed. Second, I present techniques for automatically classifying test execution outcomes based on an adaptive-sampling classification technique along with a case study on the Java Architecture for Bytecode Analysis (JABA) system. One common need for these techniques is the ability to distinguish test execution outcomes (e.g., to collect only data corresponding to some behavior or to determine how often and under which conditions a specific behavior occurs). Most current approaches, however, do not perform any kind of classification of remote executions and either focus on easily observable behaviors (e.g., crashes) or assume that outcomes' classifications are externally provided (e.g., by the users). In this work, I present an empirical study on JABA where we automatically classified execution data into passing and failing behaviors using adaptive association trees. Finally, I present a long-term case study of the highly-configurable MySQL open-source project. Exhaustive testing of real-world software systems can involve configuration spaces that are too large to test exhaustively, but that nonetheless contain subtle interactions that lead to failure-inducing system faults. In the literature covering arrays, in combination with classification techniques, have been used to effectively sample these large configuration spaces and to detect problematic configuration dependencies. Applying this approach in practice, however, is tricky because testing time and resource availability are unpredictable. Therefore we developed and evaluated an alternative approach that incrementally builds covering array schedules. This approach begins at a low strength, and then iteratively increases strength as resources allow reusing previous test results to avoid duplicated effort. The results are test schedules that allow for successful classification with fewer test executions and that require less test-subject specific information to develop
    • …
    corecore