

Title Automated Test of Evolving Software

Name Hazel Anne Shaw

This is a digitised version of a dissertation submitted to the University of
Bedfordshire.

It is available to view only.

This item is subject to copyright.

AUTOMATED TESTING OF EVOLVING

SOFTWARE

Hazel Anne Shaw

A thesis submitted to the University of Luton, in partial fulfilment of

the requirements for the degree of Doctor of Philosophy

October 2005

ABSTRACT: AUTOMATED TESTING OF EVOLVING SOFTWARE

Hazel Anne Shaw

Computers and the software they run are pervasive, yet released software is often
unreliable, which has many consequences. Loss of time and earnings can be caused
by application software (such as word processors) behaving incorrectly or crashing.
Serious disruption can occur as in the l4th August 2003 blackouts in North East
USA and Canadal , or serious injury or death can be caused as in the Therac-25
overdose incidents2.

One way to improve the quality of software is to test it thoroughly. However,
software testing is time consuming, the resources, capabilities and skills needed to
carry it out are often not available and the time required is often curtailed because of
pressures to meet delivery deadlines3. Automation should allow more thorough
testing in the time available and improve the quality of delivered software, but there
are some problems with automation that this research addresses.

Firstly, it is difficult to determine if the system under test (SUT) has passed or failed
a test. This is known as the oracle problem4 and is often ignored in software testing
research. Secondly, many software development organisations use an iterative and
incremental process, known as evolutionary development, to write software.
Following release, software continues evolving as customers demand new features
and improvements to existing ones5. This evolution means that automated test
suites must be maintained throughout the life of the software.

A contribution of this research is a methodology that addresses automatic
generation of the test cases, execution of the test cases and evaluation of the
outcomes from running each test.

"Predecessor" software is used to solve the oracle problem. This is software that
already exists, such as a previous version of evolving software, or software from a
different vendor that solves the same, or similar, problems. However, the resulting
oracle is assumed not be perfect, so rules are defined in an interface, which are used
by the evaluator in the test evaluation stage to handle the expected differences.

The interface also specifies functional inputs and outputs to the SUT. An algorithm
has been developed that creates a Markov Chain Transition Matrix (MCTM) model
of the SUT from the interface. Tests are then generated automatically by making a
random walk of the MCTM. This means that instead of maintaining a large suite of
tests, or a large model of the SUT, only the interface needs to be maintained.

1) NERC Steering Group (2004). Technical Analysis of the August 14,2003, Blackout: What
Happened, Why, and What Did We Learn? July 13th 2004. Available from:
ftp:/ /www.nerc.com/pub/sys/all_ updl/docslblackoutINERC]inatBlackout_Report _ 07_13_ 04.pdf

2) Leveson N. G., Turner C. S. (1993) An investigation of the Therac-25 accidents. IEEE Computer,
Vo126, No 7, Pages 18-41.

3) LogicaCMG (2005) Testing Times for Board Rooms. Available from
http://www.logicacmg.com/pdf/trackeditestingTimesBoardRooms.pdf

4) Bertolino, A. (2003) Software Testing Research and Practice, ASM 2003, Lecture Notes in
Computer Science, Vol 2589, Pages 1-21.

5) Sommerville, 1. (2004) Software Engineering, 7th Edition. Addison Wesley. ISBN 0-321-21026-3.

http://www.logicacmg.com/pdf/trackeditestingTimesBoardRooms.pdf
www.nerc.com/pub/sys/all

TABLE OF CONTENTS

Abstract: Automated Testing of Evolving Software ...ii

Table of Contents .. iii

List of Tables ... vii

List of Figures ... viii

Preface...x

Author's Declaration ... xii

List of Abbreviations .. xiii

Chapter 1 Introduction .. 1

1.1 Commercial Software Testing and Quality.. 1

1.1.1 Software Failures 2

1.1.2 Software Development Practice 6

1.1.3 Testing Resources 9

1.1.4 Completeness ofTesting 10

1.1.5 Commercial Software Development Case Study 11

1.2 Overview of Research .. 13

1.3 Current Knowledge ... 14

1.3.1 Alternative Quality Assurance Techniques 16

1.3.2 Test Case Selection 19

1.3.3 Evaluating Test Results 30

1.3.4 Test Frameworks 45

1.4 Implications of Literature Review on Research... 48

1.4.1 The Oracle Problem 48

1.4.2 Test Case Generation using Models 50

1.4.3 An Holistic Automated Testing Methodology 50

1.4.4 Maintenance 51

1.4.5 Automated Software Testing for Industry 51

1.4.6 Black Box or White Box? 52

111

1.5 Research Aims .. 53

1.5.1 Criteria for a Successful Test Methodology 53

1.5.2 Objectives for the Methodology Developed 54

1.5.3 The Research Questions 55

1.6 Novel Features of the Research .. 57

1.7 Thesis S1:J.ucture .. 58

Chapter 2 Automated Testing Methodology ... 59

2.1 The Interface ... 62

2.1.1 Unit of Functionality (UOF) 63

2.1.2 TCD files 63

2.1.3 Rules 63

2.1.4 Test configuration 63

2.1.5 Creating the Interface 64

2.2 The Oracle... 66

2.2.1 Reverse Engineered Specification 67

2.2.2 Software Predecessors 72

2.3 The Generation Phase ... 73

2.3.1 Stochastic Test Case Generation 73

742.3.2 Markov Chain Transition Matrix

2.3.3 Calculating the States 79

2.4 The Execution Phase .. 85

2.5 The Evaluation Phase ... 85

2.6 Implementation ... 88

2.6.1 Choosing a Language for Test Cases 88

2.6.2 Producing the Test Cases 95

2.7 Management of the Test Process .. 97

2.7.1 Static and Dynamic Test Management 97

99
2.7.2 Management of the Test Data Repository

1052.7.3 The Bug Tracking Database

2.8 How to use Alltest .. 107

Chapter 3 Evaluation and Discussion .. 11 0

3.1 Experimental Design .. 110

3.1.1 Manager 11 0

3.1.2 NTFS III

3.2 Checking Alltest ... 112

iv

3.3 Description of the Experiment ... 117

3.4 Experiment and Results .. 119

3.5 Effort ... 130

3.6 Effectiveness ... 131

3.7 Choosing an Oracle .. 133

3.8 Applying the Methodology in Practice .. 136

3.9 Improvements to the Implementation of Alltest .. 136

3.10 Research Aims Reviewed ... 138

3.10.1 Oracle Problem 140

3.10.2 Maintainability 140

3.10.3 Automation 141

3.10.4 Procedures 141

3.10.5 Implementation 142

3.l0.6 Management 142

3.11 Summary ... 144

Chapter 4 Conclusions .. 145

4.1 Outcomes of this Research ... 145

4.2 Further Work .. 149

4.2.1 Automatic Production ofTCD Files 150

4.2.2 Automatic Initialisation of Variables 150

4.2.3 Dynamic Testing 150

4.2.4 Adaptive Testing 151

4.2.5 From Text Based to Graphics Based Testing 151

4.2.6 Templates 151

4.2.7 Using Multiple Oracles 152

4.2.8 Helpful Warnings 152

4.2.9 Evaluation of the Methodology on Different Types of Software 152

4.2.10 Usage Models and Editing The Markov Chain Transition Matrix 152

4.2.11 Reverse Engineered Specifications 153

4.2.12 Agents, Distributed Software and the Grid 153

4.3 Review of Contributions to Knowledge... 154

Appendix A Transition Matrix ... 156

Appendix B Bug Descriptions.. 165

Bug 1. "error codes from the sur do not match those from the oracle" 165

v

$

Bug 2. "rd Is Iq fails to remove files with very long names" .. 166

Bug 3. "mkdir fails to make intermediate directories" ... 168

Bug 4. "mcf_ open hangs when drive is mapped across a network" 169

Bug 5. "creating a new file failed" .. 171

Bug 6. "rename file over itself has different result on sur ... 174

Bug 7. "net use /d hangs" .. 175

Bug 8. "move directory fails with access is denied" .. 176

Bug 9. "renaming files produces empty file" .. 178

Bug 10. "rename file21 *1.* has in different message on SUT" .. 180

Appendix C Test and Compare (TAC) Data File Using Patterns 181

Appendix D Generating the Transition Matrix .. 186

Method Attempt 1 ... 186

Method Attempt 2 ... 187

Method Attempt 3 ... 187

Method Attempt 4 ... 188

Appendix E Checking the Matrix ... 191

Appendix F Testing the Generator ... 192

Data for Changing Probability of Staying in Same State .. 192

Data for Changing Probability ofEnding Test .. 197

Appendix G Average Length of Test ...202

Appendix H Using Alltest ..204

Debugging the Interface ... 204

Debugging the System Under Test. .. 205

Analysing Failed Tests ... 206

Using Alltest to test Manager ... 206

Preparing and Installing Alltest to test Manager 206

Generating and Running the Tests 207

Setting up the Host Machine 209

Glossary ... 21 0

References '" ..211

vi

p

LIST OF TABLES

Timeline of early events on the Ohio electricity grid .. 1-4

Results from survey of 104 projects (Cusumano et a12003) 2-8

Research questions .. 3-56

Example Units of Functionality ... 4-65

Parameter attributes in a TCD file .. 5-77

Comparison of Tel, Perl and Python .. 6-94

Comparing the different test management options .. 7-104

Interface files written to evaluate Alltest ... 8-118

Number ofbugs found listed by severity ... 9-121

TCD files created during the development of Alltest.. 10-121

TCD files and rules added .. 11-122

Breakdown of the characteristics of the TeD interface files 12-126

Breakdown of the characteristics of rules .. 13-129

Summary of benefit of Alltest against bugs found .. 14-133

Criteria for a successful test methodology ... 15-139

Objectives for the methodology developed ... 16-139

Directory structure ofAlltest.. .. 17-204

vii

LIST OF FIGURES

Examples of software development life cycles .. 1-7

Model programs run independently of SUT (Manolache and Kourie 2001) 2-36

Model programs acting as Type V oracles (Manolache and Kourie 2001) 3-36

Structure for dynamic automated testing ... 4-40

Test process workflow diagram ... 5-60

Automated testing with an oracle system .. 6-62

Example TCD file for copying a file .. 7-64

Developing the Alltest interface ... 8-65

Test suite generation from code ... 9-70

Workflow diagram for automated testing using a RES 10-71

Markov transition matrix .. 11-74

Markov transition matrix showing same state functions 12-75

Markov transition matrix showing transition functions 13-76

Markov transition matrix showing "unset" transition functions 14-76

Markov transition matrix showing probabilities, states and functions 15-76

Inputs and outputs of the generator .. 16-77

A typical parameter definition in a TCD file ... 17-77

Breakdown of the generator ... 18-79

viii

Using rules for the evaluation phase .. 19-87

RunFunc procedure from the generated library ... 20-96

Procedures in the library file linking the TCD files to the test scripts 21-97

Managing tests with batch processing .. 22-98

Managing tests using dynamic generation and execution 23-99

Test management for dynamic testing ... 24-100

Test management using generated expected outcomes 25-10 1

Test management using stored expected outcomes ... 26-102

Test management using two sets of expected outcomes 27-103

Using Alltest to generate and execute tests, and check results 28-109

Effect of varying the probability of ending the test ... 29-115

Effect ofvarying the probability of staying in the same state 30-116

Code showing example "if I else" statement in TeL... 31-124

Transition matrix split over 8 pages ... 32-156

Config file showing parameters used by Alltest .. 33-208

Config file showing parameters used by clean-up code and interface files 34-208

ix

PREFACE

This research was started during a Teaching Company Scheme between Plasmon

and the University of Luton. I was employed on this scheme to investigate methods

to improve software testing at Plasmon. During this time the research project

developed into my PhD.

The research has concentrated on commercially viable techniques, dealing with

problems that are often overlooked by other research within software testing.

I would like to thank a number of people and institutions for their help both

formally and informally during this research project. Firstly I would like to thank

my supervisors Diana Burkhardt and Alfred Vella for their continued and long

suffering advice and support; Angus Duncan for his help in providing a reliable

contact within Luton University; David Golds and Mark Broadbent (both formerly

of Plasmon) for providing the opportunity to start this research project; Plasmon for

providing the software and equipment necessary to evaluate the feasibility of the

research; The Institute for Manufacturing, Cambridge University for use of various

facilities while writing up the thesis; and my husband, Andy Shaw for continued

moral support and belief in my abilities. I would also like to thank the people with

whom I have had informal chats over coffee or a drink who have provided

encouragement to continue and complete this work.

During the research five publications have been made. These are in my maiden

name of Curtis:

• 	 "Development and Implementation of a System to Automatically Test

Evolving Software". H. Curtis, D. Burkhardt, A. Vella. Keynote paper,

OR43 conference, Bath, Sept 2001. ISBN 0 903440 261, pages 115-127

• 	 "Automated Testing of Evolving Software Using an Oracle". H. Curtis,

A. Vella, D. Burkhardt. OR42 conference, Swansea, Sept 2000.

x

" 	 "Reverse Engineering Software Testing"; H. Curtis, A. Vella, D.

Burkhardt. OR40 conference, Lancaster, Sept 1998.

" 	 "Automated Test Suites from Reverse Engineering and Planguage"; H.

Curtis, A. Vella, D. Burkhardt, M. Broadbent. Software Quality Week,

San Francisco, May 1998.

• 	 "Software Testing as an Aid to Quality Software Production", A. Vella,

H. Curtis, D. Burkhardt, M. Broadbent. Total Quality Management,

Yugoslav Association for Standards and Quality, No.2, Volume 26,1998,

pages 480-485.

Finally, I would like to make clear that the research presented in this thesis is all my

own work. Research and work that is not my own is clearly attributed (by use of

references) .

Two pieces of software are mentioned in this thesis: Alltest and Manager. Alltest is

prototype software that I developed during the research project to demonstrate the

feasibility of the proposed methodology to automate software testing. Manager is

software developed by Plasmon and used as a case study for this research project.

xi

AUTHOR'S DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the

degree of Doctor of Philosophy at the University of Luton. It has not been

submitted before for any degree or examination in any other University.

Signature: ;t. sl~
-l1A (Hazel Anne Shaw)

Date: _--=3=-=O=---_....:...-M~Q.~tG!!!..!.k_=___=Q.(JO=_==__~ro~____

xii

LIST OF ABBREVIATIONS

API Application Program Interface

CVS Concurrent Versions System

Gm Graphical User Interface.

Lex Lexical Analyser

MCTM Markov Chain Transition Matrix

SUT System Under Test

TAC Test and Compare

TCD Test Command Description.

Tel Tool Command Language

UOF Unit of Functionality

VT Variable Table

Yaee Yet Another Compiler-Compiler

For definitions ofthese (and other) terms please see the Glossary on page 210.

xiii

CHAPTER 1 INTRODUCTION

The quality of software produced is a major concern to both software practitioners

and users of software. One way to improve the quality of delivered software is to

improve the effectiveness and efficiency of the testing process. However, though

software testing is a key part of good software development practice, it is often not

carried out well. In a survey of companies in the UK, Holland and Sweden 32% of

respondents blamed poor testing on the drive to meet release deadlines with 72%

saying that testing is often compromised in favour of development time. 85% of

respondents said that there was poor availability of testing resources and capability

while 78% said that skills are not available to test new developments (LogicaCMG

2005).

Despite the importance of software testing, much of the research in this area is

concentrated on a very small subset of the problem, primarily test case selection

(Bertolino 2003), and avoids looking at the bigger picture. The research presented

in this thesis has taken an holistic approach to developing a software testing

methodology.

This chapter starts by looking at commercial software testing, and the consequences

of software failures. Section 1.2 gives an overview of this research. Section 1.3

examines the current knowledge that is relevant to this research. Section 1.4 gives

the conclusions drawn from the literature review. Section 1.5 outlines the research

aims. Section 1.6 explains the novel features of this research and finally, section

1.7 outlines the structure of the rest of the thesis.

1.1 COMMERCIAL SOFTWARE TESTING AND QUALITY

Testing of software is carried out for two reasons. The first is to find bugs in the

software, or to confirm that a known bug has been fixed. The second reason is to

establish the risk associated with the software. Software testing reduces the

uncertainty about the perceived quality of a product (Marick 2005b). This enables a

Page 1

Hazel Anne Shaw October 2005

commercial decision to be made about releasing the software, given the risk of

software failure following release.

These two purposes are in conflict. On the one hand bugs need to be found. This is

achieved by applying tests that are most likely to make the software fail. On the

other hand a measure is needed of the software's reliability. This is achieved by

applying tests that are a representative subset of the uses of the software. Two

different sets of tests need to be applied, yet, in practice there is rarely the time or

resources to apply two different testing strategies.

Mature knowledge is applied in engineering disciplines to obtain products with

predictable quality. One difficulty with software development in practice is the

maturity level of the knowledge of software testing techniques. Juristo et al (2004)

have reviewed a series of empirical testing technique experiments. This review

established that the maturity level of software testing knowledge is low. Which

means that software engineers have to select testing techniques based upon

intuition, current trends or the sales patter of testing tool vendors.

This section starts by looking at the consequences of bugs ill software.

Section 1.1.2 examines how software testing is incorporated into the software

development life cycle in commercial organisations and section 1.1.3 discusses the

people available to do testing. Section 1.1.4 examines test completeness. Finally,

section 1.1.5 explores the project to implement CAPSA, accounting software

bought by Cambridge University.

1.1.1 Software Failures

Computers and the software they run are pervasive. They affect every aspect of our

lives. Yet released software is often unreliable and software that is failing can have

further consequences. Almost everyone will have been affected by problems

occurring in software, whether directly or indirectly. For example, many people

who have used Microsoft's Windows operating systems and Office tools have faced

Chapter 1 Introduction Page 2

Hazel Anne Shaw October 2005

bugs in the software. The bugs can be minor (for example, problems with styles

being applied in a word processed document) to major (for example, a crash that

loses the last half hour's work). Such failures are a cost to business and take time

and effort to resolve. The consequential lost earnings resulting from many small

failures probably runs into millions or even billions of pounds on a national scale.

However, some software failures have a much greater individual cost, resulting in

damage to property, serious injuries or loss oflife and major disruption. The rest of

this section examines three such software failures

The most recent of these failures occurred on 14th August 2003 and resulted in an

estimated 50 million people having no electricity in eight states in America and in

two provinces in Canada (NERC 2004). This caused gridlock in cities as traffic

lights failed. Some people lost water supplies because there was no electricity to

pump the water. (Fox News 2003). A software failure was a significant factor in

this blackout. Had a software system not failed it is likely that the blackout would

not have occurred, or been much more localised in effect.

FirstEnergy uses software, an Energy Management System (EMS) to monitor its

distribution of electricity. Part of the EMS is an alarm and logging system. This

monitors the network, and raises the alarm if switch positions have changed or

values that are monitored have exceeded or dropped below set limits. At 2: 14pm

this alarm system "stalled". This meant that problems on the electricity grid were

not reported, making it appear that the electricity grid was operating normally

(U.S.-Canada Power System Outage Task Force, 2004).

August the 14th was a warm day in North East USA. There were moderately heavy

loads on the network as a result of air-conditioners running. Further loads were put

on the network by a reactive generator, Eastlake 5, failing and electricity being

imported into the Ohio area. This made voltage management in Ohio "more

challenging" (U.S.-Canada Power System Outage Task Force 2004, page 27). This

load and the warmth of the day caused the high voltage power lines to sag. Some of

the lines touched overgrown trees causing short circuits and tripping the lines out.

Chapter 1 Introduction Page 3

Hazel Anne Shaw October 2005

This caused any electricity the lines were to carry to be diverted onto other lines in

the grid. The increased load on these lines caused them to sag further, increasing

the risk of more short circuits caused by tall trees.

Table 1 gives a timeline of some key early events. By 16:08 N orthem Ohio had lost

power. By 16:13 eight states in the USA and two provinces in Canada had no

power.

Time Event
13:31 Eastlake 5 trips out
14:02 A line trips out after making contact with an overg!"own tree
14:14 FirstEnergy's EMS alarm and logging system stalls
14:27 Another line trips out after making contact with an overgrown tree
14:41 The server running the EMS alarm and logging system fails. The

backup server takes over, but the alarm system remains in a hung state
on the backup server.

14:54 The backup server fails
15:05 Another line trips out after making contact with a tree

Table 1 Timeline of early events on the Ohio electricity grid

GE Energy is the producer of the XAl21 EMS used by FirstEnergy in Ohio.

Approximately 1 million lines of C/C++ code make up the alarm and event

processing system. After eight weeks of investigation, GE Energy identified the

bug as a race condition caused by two processes being in contention for the same

data structure. The processes managed to write to the data location at the same

time, causing corruption and allowing the alarm event application to get into an

infinite loop. (Poulsen 2004).

Whether more testing or better testing would have found the error prior to the

August 14th blackouts is unclear. However, straightforward techniques exist to

avoid such problems with shared data in software. Silberschatz and Galvin (1999)

devote an entire chapter of their book to process synchronization. It is also possible

to increase the likelihood of detecting such an error by using multiprocessor

machines when testing the software. Quad-processor systems are more than twice

as likely to find such errors than dual-processor systems (Viscarola and Mason

Chapter 1 Introduction Page 4

Hazel Anne Shaw October 2005

1999). None of the published discussions on this sofuvare failure make it clear that

such techniques were used.

Another software failure is the explosion of the Ariane 5 launcher on 4th June 1996.

This was caused by an unexpectedly large value in a variable in the inertial

reference system. On failing, the inertial reference system transmitted diagnostic

information to the launcher's main computer. The main computer interpreted this

as flight data and used it for flight control calculations. This resulted in a large

correction being made for an attitude deviation that had not occurred. The result

was the destruction of the Ariane 5 launcher about 40 seconds after takeoff. It is

likely that the error would have been detected if thorough system testing had been

completed using the inertial reference system (Lions 1996). The rocket and its

cargo were uninsured. Estimates for the value of the cargo were around £500

million, although no official figures appear to be available.

The last software failure discussed here involves a computerised radiation therapy

machine, the Therac-25. Between June 1985 and January 1987 in the USA and

Canada there were six separate incidents where massive overdoses were given to

six patients. These resulted in debilitating injury and three deaths (Leveson and

Turner 1993). The accidents were caused by the software allowing the equipment

to administer enormous doses. The Therac-25 suffered from many problems, which

made identifying that a problem had occurred exceptionally difficult. For example,

the user interface relied upon error message codes that did not indicate what

problem the machine was experiencing. The machine frequently exhibited

problems that the operators had become accustomed to. When a serious problem

occurred and the machine behaved as "normal" (displaying an error code and

pausing treatment) the operator did not see any difference from usual behaviour and

continued treatment (resulting in multiple overdoses for some patients). There were

many causes for the failure of the software. These include: poor documentation,

poor design (for example, allowing non-synchronised access to shared memory) and

inadequate software testing. There were at least two different errors that resulted in

overdoses being given. Good sofuvare development processes, including extensive

Chapter 1 Introduction Page 5

Hazel Anne Shaw October 2005

module and system testing, should have found the errors or prevented them being

made, prior to serious accidents occurring.

1.1.2 Software Development Practice

There are many models for the software development project life cycle, see

Figure 1.

The traditional waterfall methodology allows no feedback into the development

process. Incremental development has feedback from testing back into the code.

However, there is no feedback back into the requirements and design stages.

Evolutionary delivery (Gilb 1997a, 1997b) works on the principle that you cannot

know everything, therefore you cannot possibly know all the requirements, design,

costs, timing and risks. Delivery of a total project is broken up into 2% increments.

The basic requirements are mapped out and then the product is designed. The

project is planned with releases of the most important features fIrst. Results from

each incremental release can then be fed back into the requirements and design,

allowing these to be refmed as the project progresses.

The traditional waterfall lifecycle's strengths are the well defIned and detailed

specifications and designs that are produced early in the project. These allow

developers to write code quickly and with few revisions. As a result defects are not

introduced into the code because of many changes.

Conversely, techniques such as evolutionary delivery that emphasise lots of

milestones, early beta testing and feedback from the customer, are very flexible.

They allow a business to respond quickly to changes in customer requirements and

market demands. Microsoft uses an approach that Cusumano and Selby (1996) call

"synch-and-stabilise". Features are developed before they are fully understood.

Changes to software are synchronised using a daily build process, then stabilised

using testing. Customers are able to give feedback on features during the

development process. This allows Microsoft to deliver what the customer wants.

Chapter 1 Introduction Page 6

Hazel Anne Shaw October 2005

Incremental Evolntionary
Waterfall Development Delivery

2%
increments

Figure 1 Examples of software development life cycles

Extreme programming (Jeffries et at 2001) takes the ideas of flexible, iterative

development to the extreme. It is characterised by the customer being available to

the development team at any time (preferably the customer should be with the

development team on-site and full-time). The customer works with the developers

to define the features. The customer selects the features they want to see in the

project first (or next), having discussed with the development team how difficult

each feature is to implement. Releases are made up of a number of small

increments. Each increment is only two or three weeks long. In this way small

releases are planned, one increment at a time. Another feature of Extreme

programming is the use of Pair programming. This is reported to have many

benefits. For example two programmers working together will produce more, and

better, code than the same two programmers working separately. Finally, testing is

emphasised in extreme programming. The customer must produce acceptance tests

that are automated and the programmers must carry out unit testing (Jeffries et at

2001).

Chapter 1 Introduction Page 7

p

Hazel Anne Shaw October 2005

India Japan US

Daily builds (%)
At the start
In the middle
At the end

16.7 22.2 35.5 9.1 22.1
12.5 25.9 29 27.3 24
29.2 37 35.5 40.9 35.6

1. No. ofnew lines ofcode / (avg. no. of staff x no. of programmer-months).

2. No. of defects reported by customers in 12 months after implementation I total source KLOC. We adjusted
this ratio for projects with less than 12 months of data.

Table 2 Results from survey of 104 projects (Cusumano et a12003)

Cusumano et al (2003) have carried out a survey of 104 projects over companies in

the US, Europe, Japan and India. This survey compared the different development

practices prevalent in these areas and the quality of the software produced (quality

was measured as number of defects found in a 12 month period following release

per 1000 lines of code). In their paper, Cusumano et al note that the projects

sampled are likely to represent better than average projects because good project

management would have been necessary to allow respondents to complete their

questionnaire. Table 2 summaries these findings.

As companies move towards using evolutionary development methods such as

those advocated in extreme programming and evolutionary delivery, the

requirement is for flexible methods to automate testing. Test automation should not

rely on a specification that is set in stone. It should be possible to quickly and

Chapter 1 Introduction Page 8

•

Hazel Anne Shaw October 2005

efficiently develop new tests and alter existing tests. For automation to be useful

and successful it needs to be flexible. It needs to cope with changing software,

requirements, specifications and project deadlines.

1.1.3 Testing Resources

This section discusses the human resources (the people) available to carry out

testing, their abilities and the time available to do the testing.

Testing is fragmented into different stages, for example: unit, module, integration

and system testing. Usually unit testing is carried out by the developer. This is

often informal, though it can be formalised by the building of small test harnesses to

aid the testing of single functions. Scripts of tests can then be written and these are

run to ensure that the functions work satisfactorily. Coverage tools can be used at

this stage to show how thorough the testing has been. Component testing is also the

responsibility of the developer. Integration testing is placed somewhere between

the developer(s) and an independent test team.

System testing is invariably carried out by an independent test team. By the time

system testing is underway a great deal of pressure is on the testing team to evaluate

the product as quickly as possible. The number of dedicated testers can vary. For

major software companies the ratio can be one tester to two developers (Kit 1995).

However, most companies operate with poorer ratios of 1 :3, 1:4 or above, and Kit

observes that testers working in companies operating at 1:5 or above felt that testing

was under resourced. Dustin et al (1999) suggest ratios of testers to developers of

up to one tester to six developers (1 :6), depending upon the development type.

Often this testing phase gets squeezed so that only a minimal amount of testing can

be performed before the product is released. Only the discovery of a really serious

problem or a large number of small problems is likely to force a halt on delivery of

the software. Decisions are often made at this stage to ship with known bugs.

Chapter 1 Introduction Page 9

Hazel Anne Shaw October 2005

These bugs will usually be documented in a "release note" that accompanies the

released software.

Generally the testers are skilled in finding problems in the software. However, with

conflicting aims it is easy for testers to concentrate on showing the software works,

rather than finding where it does not. This is an unconscious response. Often a new

tester working on a product for the first time will find many more bugs than

established testers and these bugs may be quite serious.

T esters are not software developers. This does not mean that testers cannot write

any code, but their code development skills are usually much less well developed

than those of a programmer. As such, tools that are designed for testing must take

into consideration that any programming required should be as simple as possible.

In such an environment tools to automate the system testing in an acceptable way

are desperately needed.

1.1.4 Completeness of Testing

One problem when deciding the timing of a software release, is establishing when

the software testing is "complete". Criteria to indicate when testing is complete

may include: measured coverage meeting a specified target (e.g. 80% branch

coverage); analysing the trend of bugs being found over effort in testing to reveal a

decrease in the rate of bugs being found (implying less bugs to be found); or a

statistical analysis of failures to give a measure of software reliability that must be

met or exceeded. What all the criteria imply is that once testing is finished, the

software is certain to still have bugs and will still periodically faiL

Weyuker (2004) says that measures such as code coverage are necessary, but not

sufficient, for determining the completeness of the testing process. This is because

important operations that the user will carry out regularly have not necessarily been

selected as test cases. Instead, Weyuker proposes using the operational distribution

Chapter 1 Introduction Page 10

»

Hazel Anne Shaw October 2005

of the software as the basis for determining the testing progress and thus when

testing is "complete".

1.1.5 Commercial Software Development Case Study

CAPSA is accounting software implemented for Cambridge University. The

project to implement this software suffered from many problems that illustrate the

effect ofpoor development processes on the quality of delivered software.

CAPSA had an original budget of £4.3 million. By July 2001 the project had cost

over £9.1 million (Finkelstein 2001). Brealey (2000) described CAPSA as

Cambridge University's "Millennium Dome". For six weeks following CAPSA's

launch, the system did not work at all. After six weeks the system was working but

"ten times slower than usual" and without all the required features (Brealey 2000).

The following is a summary of the report on CAPSA's implementation (Finkelstein

2001).

The CAPSA project started life as a lightweight solution building upon Cambridge

University's existing in-house accounting software. However, some way into this

project a review was carried out and a decision made to buy an "off the shelf'

accounting package. Following a requirements review, SAP and Oracle

demonstrated their systems. Oracle was chosen as the preferred supplier, and the

project began in earnest. Oracle was chosen despite a visit to the California

Institute of Technology, where the demonstration system was not fully functional

and warnings were given about the research grant module.

The CAPSA project suffered from many project management problems. For

example, the University did not manage the project closely, with project

management being provided by a contractor. The staff working on the project came

from Oracle, various consultancies and seconded university staff. Morale was very

low and personal relationships between the groups were exceptionally poor. There

were difficulties with who was responsible for the management of the project.

Chapter 1 Introduction Page 11

Hazel Anne Shaw October 2005

Communication between the various parties was also exceptionally poor. During

the project some key University staff took early retirement. Many of these staff had

expert knowledge of the university systems and accounting practices.

A major change needed to be made to the Chart of Accounts, a key component of

any accounting package. This requirement only became apparent some way into

the project. Part of the implementation of CAPSA was to configure Oracle's

system to use in the University. During this configuration, a great number of bugs

were found, both minor and major. The time taken to deal with these bugs resulted

in the proj ect schedule slipping. As a result the testing phase became very

compressed, with little effective integration testing, no regression testing and no

"volume" testing (that is testing the system with large quantities of data and users).

User acceptance testing was started very late in the project, and also suffered

problems. As a result the acceptance testing was not completed, and the users did

not sign off on the testing.

Training for users of the system was inappropriate. Computer literate staff were

mixed with staff who had little computer experience. The system used for the

training was unstable, with lockups and crashes. As a result the training did not

meet anyone's needs.

A go-live date of August 2000 was proposed early in the project's life. This date

was never changed. Due to schedule pressures, the go-live was not a gradual

rollout, but a big-bang, with the whole University moving over to the system at that

date. In addition, the existing accounting system was not used in parallel with

CAPSA. CAPSA was unusable for the first six weeks after go-live. A review of

the state of play at this point concluded that it would take eleven people six months

to deal with the critical problems and stabilise CAP SA.

One of Finkelstein's conclusions is that Oracle supplied a poor product where parts

were only marginally fit for purpose, and that such poor quality is a feature of the

software industry as a whole.

Chapter 1 Introduction Page 12

Hazel Anne Shaw October 2005

1.2 OVERVIEW OF RESEARCH

There are three distinct phases that are carried out when testing a software product.

These are generation of tests, execution of tests and evaluation of results. This

research has developed a methodology that addresses all three phases and is

applicable in commercial software development environments. To do this a number

of problems needed to be solved.

Firstly, there appears to be a problem where methods to automate

component/module and system testing on large systems are not available.

Secondly, many software development organisations use an iterative and

incremental process, known as evolutionary development, to write software.

Following release, software continues evolving as customers demand new features

and improvements to existing ones (Sommerville 2004). This software evolution

means that automated test suites must cope with continuous changes to the

specification and requirements of the system under test (SUT). The test suite

developed must also remain usable throughout the life of the SUT. However,

maintenance of a test suite is very difficult, because even little changes in the SUT

may result in big changes being made to the test suite.

Finally, it is necessary to establish when a test has been passed or failed by the

SUT. This is known as the oracle problem (Bertolino 2003).

The methodology developed uses predecessor software as an oracle. This is

software that already exists. It may be a direct ancestor, such as a previous version

of evolving software. Alternatively, it may be an indirect ancestor, which is

software written independently from the SUT, for example from a different vendor,

that performs the same, or similar, function. An interface is written that defines

"units of functionality" (UOFs) for the SUI. The UOFs correspond to the

behaviour of the SUT broken up into small functional units. A Markov Chain

Transition Matrix, which models the SUT, is automatically built from the UOFs in

the interface. Tests, which are sequences of calls to the UOFs, are generated by

Chapter 1 Introduction Page 13

Hazel Anne Shaw October 2005

randomly walking this matrix. The comparison phase uses rules that allow the

comparator to deal with the differences between the outputs from the oracle and the

SUT.

A test system (called "Alltest") has been designed and implemented by the author to

demonstrate the methodology developed during this research. It generates tests,

runs the tests and evaluates the result of running the tests. Alltest and the

methodology it implements are described in Chapter 2. A second system is also

needed, this being the System Under Test (SUT). The SUT chosen is commercial

software called Manager, and is described in Chapter 3.

This research shows that the use of predecessor software as an oracle is a viable

solution to the oracle problem.

However, the oracle may not be perfect, so this research demonstrates that rules can

be used to handle the differences between the SUT and oracle system.

The research also demonstrates how a Markov Chain Transition Matrix that models

the SUT can be automatically built from an interface that defines functional inputs

and outputs to the SUT. The tests are then created by taking random walks through

this matrix.

1.3 CURRENT KNOWLEDGE

Software testing, like any scientific or engineering discipline, has its own set of

specialist terminology. Colloquially "problems", "faults", "errors" and "failures" in

software are often known as "bugs". To be absolutely correct there is a distinction

between the terms "fault", "error" and "failure" (Bertolino 2003). If, when testing a

program, it produces an unexpected output, this may be a failure. If it is a failure

then the originating cause of this failure is a fault (for example in the program

code). A fault can remain undetected in the software until some condition or input

causes the fault to be activated. When the fault becomes activated, it will produce

Chapter 1 Introduction Page 14

p

Hazel Anne Shaw 	 October 2005

an error. If this error is propagated through the software it can become an

observable failure.

The literature is inconsistent about the definition of "fault", "error" and "failure".

For example, Marick (1995) defines an "error" as a mistake made by a developer

(for example, a misunderstanding of a specification). An "error" leads to a "fault"

written into the program code. A "failure" may occur when faulty code is executed.

For the purposes of this thesis the terms "error" and "bug" shall be used to broadly

encompass the concept of a mistake made in the software, and the resulting failure

of the software.

Various testing techniques are used to reduce the effort needed to test software

while increasing the number of errors that are found in the software. The

techniques that are applied to testing software can be either totally manual or aided

to various degrees by computers. These techniques can be split into two types,

black-box and white-box. Black-box techniques treat the software (or component)

as a black-box with inputs and outputs, but no understanding of what is happening

within the black-box. White-box techniques analyse the structure and logic of the

software. This is used to monitor the thoroughness of testing. It is also used to

guide the selection of appropriate test data to cause previously unexecuted areas of

code to be run (Myres 1979; BCS 2002).

Bertolino (2003, page 2) defines software testing as:

"... the dynamic verification of the behaviour of a program on a finite

set of test cases, suitably selected from the usually infinite executions

domain, against the specified expected behaviour."

The bold terms can be explained further (Bertolino 2003).

,. 	 dynamic: this makes it clear that testing requires the program to be run, as

opposed to static checking of software as discussed in section O.

Chapter 1 Introduction 	 Page 15

Hazel Anne Shaw 	 October 2005

#I 	 finite: exhaustive testing is not possible. The total number of possible

inputs is practically infinite, and the time and resources needed to test the

software would make it impossible to use all possible inputs. Bertolino

says that exhaustive testing is not possible even for the smallest program.

#I 	 selected: test criteria should be used to select the test cases. A great deal

of research has been carried out on different techniques to select test

cases. Most of these look to limit the number of test cases while

maximizing the likelihood ofdetecting an error, thus increasing the testing

efficiency. Test selection techniques are discussed in section 1.3.2

#I 	 expected: a test case should include not only the input data, but also the

expected outcome. The behaviour of the system under test can be

checked against user expectations (validation) or against a specification

(verification or conformance testing). Determining whether a test has

passed or failed is known as the oracle problem. This is discussed in

section 1.3.3.

The rest of this section reviews the current knowledge and examines the state of the

art for testing software and producing quality software products. It starts by

discussing non-testing methods for detecting errors in software. This section then

examines: test case selection (including test case generation), how to evaluate the

outcome of the tests and how to manage and execute the tests. This section finishes

by examining software testing in commercial environments.

1.3.1 Alternative Quality Assurance Techniques

Dynamic testing of software is not the only way to prevent or detect errors in

software. This section examines some other approaches that can be used.

So, Sha, Shimeall and Kwon (2002) examined six methods used to detect faults in

software. The methods examined were voting (as in N-Version programming),

testing (requirements and design based testing with the aim of 100% requirements

Chapter 1 Introduction 	 Page 16

•

Hazel Anne Shaw October 2005

coverage), self checks, code reading, data-flow analysis and Fagan inspections. The

methods were checked against five programs written by senior computer science

undergraduates. The programs were battle simulations written in Pascal with

between 1500 and 7500 lines of code (including comments). So et at (2002) found

that of the six methods, three of them, Fagan inspections, voting and testing,

discovered the majority (77%) of the total number of bugs found in the programs.

Of these bugs 70.7% were found by only one of these methods, showing that these

three methods are complementary when used together.

"Static" Techniques for Evaluating Software

Static techniques involve examining the source code for errors. Desk checking

(examining ones own code) and peer reviews (examining a colleagues code) are

informal methods. However, code inspections and walkthroughs are formal

processes where a meeting is held and a group (usually consisting of three to five

people, including the programmer) work through the code looking for errors. A

checklist is often used to help with the detection of errors. Roles such as moderator

and secretary are usually assigned to the participants (Myres 1979).

Static analysers (such as LINT for C) can be used to search through the code

looking for common errors such as referencing uninitialised variables. These

should detect potential errors that a compiler may miss. However, many modem

compilers do a good job and produce warnings for code that may not function as the

programmer intended (for example, in 'c' it is possible to use an assignment within

a condition statement).

Inspections are not just limited to code; they can be carried out on all proj ect

documentation. If an error is detected early in the software development process

(for example, within the specification), then correcting that error will cost

significantly less than if it is found late in the process (Gilb and Graham 1993).

Chapter 1 Introduction Page 17

Hazel Anne Shaw October 2005

Formal Methods and Proofs

Formal methods and proofs rely on the application of mathematical techniques.

Finney (1996) showed that even with training in discrete mathematics and the Z

notation, many computer science students had difficulty in understanding even

simple specifications. Though Finney says these results should be treated with

caution, it does raise concern about the ability of software engineers to use formal

methods when developing software. Therefore the emphasis of this research is on

techniques that may be applied within most industrial software development

environments, and avoids techniques using formal methods.

Code Metrics

Writing code with a certain style may reduce errors. Code metrics can be applied to

code and used to guide the development of software. For example, a guideline

often exists that a function should be printable on a single page of A4 paper. This

means that in practice a function should not exceed about eighty lines of code

(LOC). This is because it is believed that functions exceeding this size are more

likely to have bugs and are difficult to maintain. However, measures such as LOC

are very poor. They are affected by the style a programmer uses to write code and

do not correlate across programming languages.

An alternative code metric is Halstead's length measurement (Halstead 1977), in

which a count is made of the operators and operands in the program. This measure

correlates between programs written in the same language, but does not correlate to

different languages that have different sets of operators. A code measurement that

correlates between different styles and different languages is the McCabe

Cyc10matic Complexity Measure (CCM) (McCabe and Watson 1994). This is

calculated by counting the decision constructs in a piece of code. It is usually

calculated for each function. McCabe and Watson suggest that the CCM for a

function should not be above ten because the number of errors in the function jumps

Chapter 1 Introduction Page 18

s

Hazel Anne Shaw October 2005

when the CCM is above this level. However, this restriction is disputed in practice

(Vinter 1997) and should be considered a guideline and not a hard and fast rule.

1.3.2 Test Case Selection

Software testing is exploratory. When testing software we are trying to discover

errors in the software that we do not know are there (Armour 2004). For this

reason, techniques are required that allow testers to select test cases, where the test

cases have a high probability of finding an error. This section covers test case

selection methods, both manual and automated. It starts by looking at black-box

and white-box techniques in general. It finishes by examining two black-box

approaches that use models to generate the tests. These are using a Markov chain

usage model (page 26) and using a UML model (page 29).

Black-box Techniques

Black box testing techniques do not use the source code of the software to guide

testing. These techniques use the specified inputs and outputs of the software

system, component or function being tested to guide the selection or creation of

suitable test cases.

Error Guessing is the process of creating test cases in an ad-hoc way based upon

instincts about where errors may occur (Myres 1979). It is a useful supplement to

the other more structured testing methods. A good tester uses their experience and

unconscious knowledge to select tests that are more likely to find errors (Armour

2004).

Equivalence Partitioning involves dividing the input space for the program into

classes of data which according to specification are treated identically. The

equivalence classes are identified by taking each input condition and partitioning it

into two or more groups so that there are valid equivalence classes for valid inputs

and invalid equivalence classes for all other possible (erroneous) inputs.

Chapter 1 Introduction Page 19

r.'.•!'j

Hazel Anne Shaw 	 October 2005

Equivalence classes must not overlap so any such cases must be reduced to separate

and distinct classes (Myres 1979).

Once the equivalence classes have been identified they can be used to define a set

of test cases as follows:

1. 	 Assign a unique number to each equivalence class.

2. 	 Write a new test case. Each test case should deal with as many valid

equivalence classes as possible. Continue creating test cases until there are test

cases that deal with all valid equivalence classes.

3. 	 Write a new test case that deals with a single invalid equivalence class for each

invalid equivalence class.

Partition Testing is a more general term describing such techniques. Essentially,

the program's input domain is partitioned into subdomains. The test hypothesis is

that for every point in the same subdomain, the program will either succeed or fail.

Therefore, only one point in the subdomain needs to be checked (Bertolino 2003).

Boundary Value Analysis is carried out once the equivalence classes have been

defined. The boundaries are located and test cases are specified directly on, above

and beneath these boundaries. Boundary value analysis focuses on an area with a

potential for a high yield of errors.

Cause-Effect Graphing is a technique to aid the selection of a set of high yield test

cases. A cause-effect graph is a formal language. It is the same as a digital logic

circuit, but uses a simpler notation than standard electronics notation. A natural

language specification will be translated into a cause-effect graph (Myres 1979).

Statistical Testing starts with an analysis of the expected and known uses of the

software. A model of the software is built. This model can then be used to select a

random sample of test cases. This sampling approach allows statistical analysis of

the software, enabling potentially useful predictions about the reliability of the

Chapter 1 Introduction 	 Page 20

iii

r,,'i'I,I

Hazel Anne Shaw October 2005

software to be made. Different types of model can be used both to guide the

selection of a random sample of tests and for the subsequent analysis of the

reliability of the software (poore and Trammell 1998). An example is the Markov

chain usage model (see page 26). Ii,'

, Ii':1'

Another use of statistical models is to predict the fault density (bugs per thousand

lines of code) and location of bugs in software. Ostrand, Weyuker and Bell (2005)

have developed a negative binomial regression model that analyses the fault and

change history of the software under test. This model can then predict the files that

contain the largest number of faults in a release, and allow regression testing to be

targeted at the areas which will have the highest payback. The authors are currently

undertaking further work to analyse the effect of applying the model over a series of

software releases and to automate the process so that a high level of statistical

expertise is not required by software engineers to apply this technique.

Experiment design covers a number of different but related techniques. These

techniques derive from engineering design of experiments where the effect of

parameters in a system needs to be evaluated. The idea of experimental design is to

minimise the number of tests, while producing a set of experiments that allows the

effect of changing each parameter, and parameter interactions to be observed. One

technique makes use of a mathematical construct called an Orthogonal Array.

Taguchi developed a family of matrices (which are mathematically identical to

orthogonal arrays) to be used in a variety of situations (Ross 1988). Using such a

method, it is possible to construct an experiment analysing, for example, 13

variables each with 3 different settings (or levels) in only 27 trials. In contrast, an

attempt to test all possible combinations, a full factorial design, would need

approximately 1.6 million experiments (313 = 1,594,323). The experiment results

are analysed with a statistical technique called "Analysis of Variance" (ANOVA)

(Ross 1988; Bicheno 1998).

Various researchers have applied such techniques to software testing. For example

orthogonal arrays have been applied to the testing of an ADA compiler (Mandl

Chapter 1 Introduction Page 21

t
ill

Hazel Anne Shaw October 2005

1985). Mandl concluded that a set of tests equivalent in size to a randomly selected

set of tests could yield useful information equivalent to exhaustive testing (where

exhaustive testing means taking each variable in turn and testing at all possible

levels). Taguchi methods have also been applied to unit testing (He et al 1997).

The Robust Testing Method (Phadke 1997) also uses Orthogonal Arrays. A case

study is reported where the Robust Testing Method was applied at AT&T for

system testing. In this case a drastic reduction in the number of tests required was

seen, along with an increase in the number of bugs found. The study reported that

following the correction of the reported bugs and the subsequent release of the

software, no additional bugs were found in the area tested with this method after

two years in the field.

A similar method is combinatorial design (Cohen et al 1996; Cohen et al 1997).

This is applied to the automatic generation of test cases. This method relaxes the

requirement for the testing to be balanced (or orthogonal). Instead it concentrates

on producing a test plan that covers all pair-wise, triple or n-wise combinations of

test parameters. However, in removing the requirement for orthogonal tests, the

post-test analysis that is a valuable part of the Taguchi method cannot be applied.

This means that the testing is primarily used for finding errors. Further experiments

are needed once a bug is found to establish more information about which

parameter(s) are interacting to cause the problem. The combinatorial method is

claimed to be usable on systems with large numbers ofparameters, as the number of

tests produced is much fewer than with Taguchi methods. Cohen et al (1997) claim

that a combinatorial test over 100 binary parameters will need just 10 tests,

compared with 101 tests for Taguchi methods.

It is unclear how effective the combinatorial method is at finding bugs. For

example, Cohen et al (1997) report an average of two code and four requirements

bugs over nine modules of the system being tested. Each of these modules has from

1000 to 2000 lines of C code. If an average of 1500 lines of code is assumed, then

this means that one error was detected for every 250 lines of code. Beizer (1990)

suggests that a typical frequency would be one to three errors for every 100 lines of

Chapter 1 Introduction Page 22

,

:-11·.11.·..

Hazel Anne Shaw October 2005

code, dropping to one error in every 1000 lines of code following testing and

debugging. Cohen et al (1997) say that the modules they tested using the

combinatorial method had already been tested. However, it is not clear how

thorough that previous testing had been and how many errors remained to be

detected in the code. If the previous testing had been very cursory, then the number

of defects found with the combinatorial testing method appears to be quite low.

White-box Techniques

White-box testing techniques use the structure of the software code to inform the

selection of test cases and to enable measures to be made on the amount of testing

completed. However, there is a fundamental problem with using a program's

source code to guide the selection of test cases. The program's code is being used

as the reference model, therefore it will be impossible to detect faults such as

missing functionality, because the reference model and the program under test are

the same (Bertolino 2003).

Path-Based Testing selects test cases to execute specific paths through the

software code. A path is a sequence of instructions or statements executed through

the program (Beizer 1990). Paths are selected through the program with the aim of

meeting some criteria. Examples of criteria are "execute all statements at least

once" and "execute all branches at least once". In practice it is very difficult to

select inputs that will force the program to execute a specific path. Strategies to do

this include symbolic execution and genetic algorithms.

One example that uses symbolic execution is CSET (C Symbolic Execution Tool)

(Dillon and Meudec 2004). CSET uses symbolic execution, logic programming

and constraint logic programming to generate test cases that fulfil coverage criteria.

Dillon and Meudec have tested CSET on functions from industrial embedded code

and obtained path coverage measures from 16% to 59%. They conclude that this is

an improvement on previous systems, but more work is needed.

Chapter 1 Introduction Page 23

I

,

Hazel Anne Shaw October 2005

An example that uses a genetic algorithm is GADGET (the Genetic Algorithm Data

GEneration Tool), which employs dynamic test generation (Michael et al 2001).

The source code of the program is instrumented so that information can be collected

as the program is run. This information is then analysed and the test inputs are

adjusted so that the test execution is gradually moved towards satisfying a test

adequacy criterion.

Coverage Analysis is an alternative to path-based testing. Instead of selecting tests

that force a specific path to be executed, coverage analysis is used to monitor how

well the testing is exercising the code. Examples of coverage metrics are: function,

statement, branch, condition, conditioru'decision, multiple conditioru'decision and

path.

The process for using coverage analysis is as follows: A coverage analysis tool

parses the source code and outputs instrumented code. This is the original code

with added code (called probes). These probes allow the coverage analysis tool to

establish when a statement, line or branch has been executed. Next, the

instrumented code needs to be compiled. Once the software is compiled the tests

can be run against it. Data are gathered indicating which parts of the code have

been executed. An analysis can then be run on the data gathered, turning the

collated data into coverage information. A tester can use this information to

identify areas of testing that are weak and add new test cases as appropriate.

Examples of coverage tools are GCT (Marick 2005a), BullseyeCoverage

(Bullseye 2005) and JaBUTi (Vincenzi et al 2005). JaBUTi is unusual in that it

instruments the Java bytecode instead of the Java source code. This enables

coverage analysis to be carried out on third-party components, and on the final build

of the software; something that cannot be done with coverage tools that instrument

the source code.

One problem with coverage analysis is that the instrumented code will run slower

than the original source code. Some coverage tools allow coverage information to

Chapter 1 Introduction Page 24

Hazel Anne Shaw October 2005

be targeted on specified areas of the software. This alleviates the speed problem

and allows analysis to be targeted on recently added or changed areas of software.

Many companies specify coverage criteria that should be met through testing (e.g.

85% branch coverage). However, a linear increase in code coverage will result in

an exponential increase in errors found (Williams et al 2001). If the probability of

the software under test containing no errors is 0.001, then at 85% code coverage the

resulting code quality is 35% (implying only 35% of the bugs have been found),

whereas at 95% the code quality is 71 %.

Mutation testing is another testing strategy that is used to evaluate the

effectiveness of a set of tests, and select further suitable test cases. Mutation testing

requires small changes to be made to the program to create a set of "mutant" copies.

The original program and a mutant are then executed with generated input data.

When a difference is found between the mutant and the original program, the input

data that detected that difference is recorded, and the mutant is deleted. The process

then continues with the next mutant. If the tests cannot distinguish between the

mutant and the original program, then new test cases need to be written. There are

two types of mutation testing, weak and strong. For strong mutation testing the

difference between the mutant and the original program is detected in the output of

the programs, whereas for weak mutation testing the difference is detected in the

internal states of the programs (Voas et aI1993).

Error seeding is a fault-based, statistical testing method. It involves the deliberate

insertion of errors into a program. The program is then tested and the number of

original and seeded errors recorded. From these numbers an estimate can be made

of the total number of errors that are in the program (Myres 1979).

Extended Propagation Analysis is another fault-injection technique similar to

error seeding. Artificial hardware and software faults are simulated to establish

how the software will behave under anomalous conditions. The aim is to establish

unacceptable outcomes and estimate how "failure-tolerant" the software will be in

Chapter 1 Introduction Page 25

.... 'i

Hazel Anne Shaw October 2005

real use (Voas et al 1997). One example of a tool that supports fault-injection is

"Verifier". This is freely available to Windows device driver developers on

Windows 2000 and XP (OSR 2000). Verifier conformance checks device drivers

and can also simulate low resources. Low resource simulation means that system

calls that result in resources or memory being allocated are made to fail randomly

for the driver being tested. This can enable the device driver writer to establish how

robust the driver will be under low resource situations. This is a non-intrusive

technique for the injection of external faults that can be carried out on the final

version of the driver.

Testing with a Markov Chain Usage Model

There is some research within statistical software testing that uses Markov Chains

to model software and its expected use by customers. Markov chains were

originally proposed as a suitable vehicle for modelling the usage of software and for

use in software testing by Whittaker and Poore (1993) and Walton, Poore and

Trammell (1995).

There are some useful measures that can be obtained by using the Markov chains.

For example the number of states necessary until a specific state can be reached, or

the expected number of states before the termination of the software. The statistical

analysis of the testing results can be expanded by the use of two Markov chains

(Whittaker and Thomason 1994). The first Markov Chain is the usage chain that

encodes the model of the system under test and drives the selection of test cases.

The second Markov Chain is the testing chain that is built while the software is run.

Instead of probabilities (as in the usage chain) the testing chain records frequencies

of the transitions as they occur. These frequencies are converted into probabilities

whenever any computation needs to be carried out on the testing chain. If a failure

occurs, then a new state is added to the testing chain and the transitional frequency

is set to 1. Further transitions into this failure state result in the transition frequency

being incremented. This technique has been further developed, by using a testing

chain for every different build of the software that is tested. These cumulative

Chapter 1 Introduction Page 26

1

Hazel Anne Shaw 	 October 2005

testing chains allow a predicted testing chain for the next build of software to be

produced. This predicted testing chain can be used to forecast the reliability of the

next build of software (Whittaker et al2000).

A Markov chain usage model can also be used to estimate the probability of failure

in a given number of steps from a known state or the overall probability of failure

from any starting state. This is achieved using a Bayesian model applied to the

individual arcs in the Markov chain (Prowell and Poore 2004).

Unfortunately creating the Markov chains requires a large amount of manual work,

which makes the technique unrealistic in industrial software development

environments. The following steps are carried out manually to create a valid usage

model:

1. 	 Define the structure of the model (that is the states and the arcs between the

states, without any probabilities assigned to the arcs).

2. 	 Establish the several hundred transition probabilities (or relative frequencies).

3. 	 Compute usage statistics for the chain including the usage profile.

4. 	 Review the analytical values relative to requirements, specifications and testing

plans.

5. 	 Revise transitional probabilities (or relative frequencies) of the model in order

to improve the realism of the analytical values calculated from the model.

An improvement can be made by generating the transitional probabilities (step 2)

from a set of constraints (Poore et al 2000; Walton and Poore 2000a). There are

three activities that make up the approach:

1. 	 Determine test constraints: these can be structural or usage. Structural are those

that follow immediately from the directed graph form of the usage model. For

example, some states will only have one transition out of them (Pij = 1) or will

Chapter 1 Introduction 	 Page 27

Hazel Anne Shaw 	 October 2005

have no transition (Pij = 0). Usage constraints define values for particular

transitions or relationships between sets of transitions.

2. 	 Define appropriate objective functions. These are the test objectives. They

allow, for example, the test manager to specify that certain areas of the software

may need more testing than other areas.

3. 	 Generate transition probabilities. Use standard mathematical programming

techniques to determine a solution for the system of equations defined in (1) and

(2).

Over time these equations can be altered as more information is learnt about the

usage profile of the system or the test objectives change. The transition

probabilities can be regenerated as needed using appropriate automated tools.

According to Walton and Poore (2000a) this process fits within an incremental

software development environment. The model can develop as the software is

developed. The constraints and objectives can change as required by the current

phase of the software development. However, there is still a lot of work required to

build the structure of the usage model, which is also likely to change over time. In

addition there is no discussion about what tools are used to support this process, nor

any about how the test execution is to be evaluated. F or this technique to work,

maximum automation is required to allow a large enough number of test cases to be

run. This is because the test generation is stochastic and Beizer (1990) shows that

random testing requires a larger number of test cases to be executed to find a similar

number of bugs in the system under test when compared to branch testing and

all-uses testing.

Markov chains have been used in other ways in software development and testing.

For example, they can be used to provide a measure of complexity of a software

specification and to provide a measure of the coverage achieved by testing (Walton

and Poore 2000b).

Chapter 1 Introduction 	 Page 28

I

Hazel Anne Shaw October 2005

Markov chains have also been used to stress-test telecommunications systems

(Avritzer and Weyuker 1995). In this case a Markov chain was used to generate a ~,:
I,·

set of stress-tests. The Markov chain used was a "birth-death process" chain. This

is a chain where each state has just two neighbouring states. At each state it is only

possible to transition forwards into a new state, or backwards into a previous state.

The Markov chain modelled the number of calls of particular types, each transition

occurring when a call was received (transition forwards into a new state) or dropped

(transition backwards to a previously visited state).

None of the above work has discussed how the Markov Chain Usage Model should

be represented. The Model Language (TML) addresses this problem (prowell

2000). TML is a language that has been developed to:

• be simple (so that software engineers can quickly start to use it).

• separate structure from usage statistics.

• be extendable.

In the above work the primary aim of using a Markov chain usage model is to

enable statistical inferences to be drawn from the testing results, allowing an

estimate to be made for the reliability of the software being tested. In contrast, a

Markov chain has been used in the research presented in this thesis to enable control

of the stochastic test generation phase.

Using UML to Generate Tests

The Unified Modeling Language (UML) is a specification language for object

oriented development that is widely used in industry (UML 2005). It is supported

by readily available software such as Rational Rose (IBM 2005a). This widespread

use in industry makes it an ideal candidate to use when testing software. A subset

of the UML has been used as the basis for automatic test generation

(Cavarra et aI2004). The diagrams used are class, state and object diagrams.

Chapter 1 Introduction Page 29

M -

Hazel Anne Shaw October 2005

These diagrams allow the SUT to be described at an appropriate level of

abstraction.

Using UML is a viable approach in software testing. However, Cavarra et al (2004)

indicate some problems with the process. UML models developed as part of the

design process may be too detailed to produce a useful suite of tests. This is

because the underlying state space would be too large. If code is presented without

UML designs then reverse engineering the code to produce the UML models also

produces models that are too detailed or too closely related to the final

implementation.

1.3.3 Evaluating Test Results

A great deal of research has been carried out into how test cases should be selected

or generated (see section 1.3.2). However, research into how the outcome of a test

is to be evaluated is much less comprehensive. There are two main approaches

being researched: formalism and embedded test code (Whittaker 2000). Formalism

uses formal specifications to provide the expected results. However, industry

generally does not use formal methods (Glass 2004). The second approach is to use

embedded code. One way of doing this is to write multiple versions of key

routines. Each implementation is executed and the results evaluated. If the results

are the same then there is unlikely to be a bug.

This section looks at these methods, and some related techniques. It begins by

defining the "oracle problem".

Oracles and Their Classification

Determining whether a test has passed or failed is known as the "oracle problem"

(Bertolino 2003). An oracle is something that decides whether the program has

behaved correctly (or otherwise) for a particular test. According to the dictionary

(Collins 1998) an oracle is: "a prophecy often obscure or allegorical revealed

through the medium of a priest or priestess at the shrine of a god." Another

Chapter 1 Introduction Page 30

i
Hazel Anne Shaw October 2005

definition from the same dictionary is: "a statement believed to be infallible and

authoritative". The second definition starts to get to the source of the oracle

problem. It is assumed that for every test run, the oracle can say authoritatively

whether the test has succeeded or failed. In reality, the oracle that is available is not

always able to do this. Oracle coverage (Bertolino and Strigini 1996) is defined as

"the probability that it [the oracle] rejects a test (on an input chosen at random from

a given probability distribution of inputs) given that it should reject it". A perfect

oracle would have oracle coverage equal to one. However, most oracles are not

perfect.

The form of the oracle is another aspect of the oracle problem. The most basic

oracle is the human oracle. Having read the requirements and the specifications, the

human oracle examines every test nm and determines if the test output is a pass or

fail. However, human oracles are fallible. It is an exceptionally dull job and

mistakes are easy to make. It is also possible for bias to creep in and tests to be

passed because the human oracle wants (subconsciously) the program being tested

to pass. The human oracle is also a severe bottleneck. It is possible to manually

check the outcome from a handful of tests; it is not possible when hundreds or even

thousands of tests have been run as part of an automated test strategy.

Usually an automated oracle of some form is required. However, an oracle may not

exist. For example, how can a program be tested that produces the nth digit of 7'C?

One solution is for the tester to find a "pseudo-oracle" (Weyuker 1982). The

program can be tested for low values of n, which are known and can be easily

verified. If these are generated correctly, the tester then assumes that the higher ~II
values of n will also be generated correctly. An alternative is to use an

approximation to establish how plausible the result is. If the program produces a

result that is nowhere near the approximation, then the tester can assume that the

result is wrong (or at least implausible) even though the correct solution is not

known. A "pseudo oracle" is also known as a "heuristic oracle" (Hoffman 1999).

The following are different classifications of oracle types (Hoffman 1999):

Chapter 1 Introduction Page 31

Hazel Anne Shaw 	 October 2005

• 	 true oracle: independent generation of all expected results

• 	 heuristic oracle: verifies some values as well as consistency of remaining

values.

• 	 sampling oracle: makes a selection of inputs and results to check. Values

not in this sample are not checked.

• 	 consistent oracle: verifies current run results with a preVIOUS run

(regression testing)

• 	 no oracle: results produced from testing are not checked.

If an oracle is not available, then the only testing possible is robustness testing.

JCrasher (Csallner and Smaragdakis 2004) is an automated testing tool for Java

code. JCrasher tests the public interfaces of Java objects, randomly combining the

methods to create data and states that are type-correct, but may reveal bugs.

JCrasher is explicitly looking to exercise the software until a Java exception is

thrown. However, without an oracle it is not possible to find bugs where the

program inputs do not lead to the correct outputs.

An alternative classification of oracle types is provided by Hoffman and Strooper

(1991). They define five types of oracle:

• 	 Type I: Manual examination of each output from each test run.

• 	 Type II: Manual generation of each output once, to be compared

automatically to the output from each test fUll.

• 	 Type III: Programs which generate (x,y) pairs, where y is the correct

output from input x.

• 	 Type IV: Programs which generate the correct output y for any input x.

Chapter 1 Introduction 	 Page 32

Hazel Anne Shaw 	 October 2005

• 	 Type V: Programs which determine the correctness of any input! output

pair (x, y).

Hoffman's (1999) classification of oracles is different from Hoffman and Strooper's

(1991) classification. However, Hoffman and Strooper's (1991) types can be used

to classify Hoffman's (1999) oracles. That is: a "true" oracle is a type IV oracle; a

"sampling" oracle is a type III oracle; a "heuristic" oracle is somewhere between a

type III and type IV oracle, where the type IV part is only approximate and the

"consistent" oracle is a type IV oracle.

The following discussion looks at different ways that researchers have tackled the

oracle problem. The different oracles discussed can all be assigned a type from

Hoffman and Strooper's (1991) classification.

N-version Testing

N-version programming is an approach that is usually applied to fault-tolerant

software. Three or more versions of the software (or a critical module) are

produced independently. "Independently" may mean that different software

engineering practices, designs and programming languages are used for each

software version to eliminate common errors. All versions are then run. If the

output produced does not agree, an error is likely to have occurred in one (or more)

of the versions. These independent programs may be run as a majority voting

system, such that if a majority agree on the result, then that is the result given.

Improvements can be made to the system in the field by logging disagreements and

investigating and correcting later. Although common errors should have been

eliminated, such errors can still occur, but theoretically with a much lower

incidence than a single instance program. However, research suggests that

programmers working independently are likely to make similar (though not

identical) mistakes that can lead to failures in the same area of the program

(Brilliant et al 1990). There are coincident errors that can still lead to a failure of

the system. N-version programming where N=2 is called dual programming. In

Chapter 1 Introduction 	 Page 33

Hazel Anne Shaw October 2005

this case it is impossible to have majority voting, because it is unclear which version

may be correct when a disagreement occurs.

The approach of N-version (or dual) programming can be applied to the oracle

problem for testing software. This approach is sometimes called "back-to-back"

testing (Vouk 1990) or M-mp testing (Manolache and Kourie 2001). Using

Hoffman and Strooper's (1991) classification, such testing is using a type IV oracle.

A dual programming approach to software testing that aims to automate the analysis

phase of testing is described by Ghiassi and Woldman (1994). It requires two

programs to be written in different languages, where the program that will be

delivered is written in a lower level language than the program that becomes the

oracle.

The feasibility of this approach is based upon the concept that a higher level

language program (HLLP) will take less time to write and be easier to test than a

Lower Level Language Program (LLLP). This is because the HLLP will have

fewer lines of code (LOC) than the LLLP. The authors suggest that, if the HLLP

and LLLP have the same level of complexity and have been written by

programmers with the same level of experience, then there is a direct correlation

between the level of testing required and LOC. However, this statement does not

stand up to investigation. LOC is the weakest complexity measure in common use.

It does not correlate over different programming languages unlike the Cyc10matic

Complexity Measure (CCM, see section 1.3.1). Watson and McCabe (1996) cite a

number of case studies that show that errors in a program are more closely related

to its CCM than to LOC.

Hoffman and Strooper (1991) describe the use of a Type IV oracle which has been

written in Prolog. The Type IV oracle is a parallel implementation of the program

using a higher level language (Prolog) than the release implementation (C).

Hoffman and Strooper claim that the Prolog oracle cost little to implement.

Chapter 1 Introduction Page 34

p

Hazel Anne Shaw October 2005

However, the testing was at a low level (unit/module testing), so it is unclear how

cost effective writing oracles to test larger systems would be.

Another experiment describes testing using M model programs (M-mp testing)

(Manolache and Kourie 2001). This strategy requires M(M'2.l) model programs to

be written. Some of the criticisms earlier in this chapter, of the dual programming

approach to testing are dealt with here. For example in M-mp, the model produced

does not need to be as complicated as the program being tested. Instead the

model(s) produced can be an abstraction of the program, perhaps a subset of the

program's full features. When producing the model program, shortcuts can be

applied. For example, in their experiment, Manolache and Kourie found that a code

generator could be used to significantly shorten the time taken to produce the bulk

of the code. They also suggest that the suitability of the M-mp approach depends

upon whether it is more viable to produce and maintain model programs in terms of

cost and time, compared to calculating the outcomes of tests manually. However,

there is the outstanding problem, that bugs in the model programs are still likely to

exist. This will require additional debugging of the model programs, and a

mechanism to handle bugs found in them.

There are two ways that the model programs can be used. The first is to run the

model program(s) independently from the program being tested (see Figure 2). The

outputs from each program are then checked. This is using the model programs as

Type IV oracles. The second is for the model programs to act as post-condition

checkers with the output from the program under test being fed as inputs with the

original input into the model program(s) (see Figure 3). In this case the model

programs are being used as Type V oracles, where they check each x,y pair for

correctness.

Chapter 1 Introduction Page 35

Hazel Anne Shaw October 2005

Check
input 1----..;iiIIiI (Disagreement

analysis)

Figure 2 Model programs run independently ofSUT (Manolache and Kourie 2001)

Program

under test

Check
(Disagreement

input analysis)

Figure 3 Model programs acting as Type V oracles (Manolache and Kourie 2001)

Edwards (2001) proposes a strategy for automated black-box testing of software

components that uses oracles as pre-condition checkers (checking input conditions)

and post-condition checkers (checking output conditions). The components being

tested are object oriented classes. These classes contain "hooks" that allow built in

test (BIT) capabilities to be added to the component. These capabilities include pre-

Chapter 1 Introduction Page 36

Hazel Anne Shaw October 2005

condition checking and post-condition checking. In effect the BIT capabilities wrap

the component, leading to the tenn "BIT wrapper". The BIT wrapper is used for

unit, component and integration testing. It is removed before system testing and

release, as there is an impact upon the speed of the tested components. In effect the

BIT wrapper is an extension of the common practice of software engineers to use

assertions in code. Assertions are often used to confirm the values of input

parameters into functions and they are usually only active in debug builds of code.

A further extension of BIT wrappers IS contract-checking wrappers

(Edwards et al 2004). A contract-wrapper can be applied to a class, either by the

developer of the class or a client of the class. The contract-wrapper detects

pre-condition and post-condition violations of the class. They are an improvement

over assertions as they can be switched on or off at runtime (without recompilation

being required), and can be used by component clients, not just component

developers.

Relative Debugging

This section looks at a tool called GUARD (Griffith University Relative Debugger),

which aids the debugging of evolving software (Abramson and Sosic 1996). It has

been included in the literature review because Abramson and Sosic explored the

concept of using previous versions of software to help the debugging process.

Though this is not testing, this is the closest research found during the literature

review to the concept of using software that already exists as an oracle in software

testing.

According to Abramson and Sosic (1996) Software changes for a number of

reasons. These changes can be classified into two types. They are migration and

functional changes. Migration occurs where code is rewritten in a new language or

moved to another hardware architecture or operating system. Functional changes

occur where new features may be added, or algorithms changed to be more

efficient. The use of traditional debuggers to locate areas in a program where a

Chapter 1 Introduction Page 37

i
, I f~;I··~·.f·:·'

Hazel Anne Shaw October 2005

more recent version of software has diverged from an old version is an error prone

and tedious technique.

GUARD executes the program being debugged and a reference (oracle) program. It

compares the contents of data structures in the two programs and highlights areas

where there is a difference.

This differs from the other approaches discussed, in that GUARD looks at the

internal differences between programs rather than the external differences. This can

be related to mutation testing, where strong mutation testing requires a difference in

the output and weak mutation testing requires a different internal state after a test

has been executed.

GUARD works over a distributed network, allowing the programs to run on

different machines and possibly different operating systems. This makes it

necessary for GUARD to be able to deal with differences caused by different

systems (e.g. floating point representation). GUARD uses a tolerance value, either

globally or locally defmed, relative or absolute. Numbers are defmed to be

equivalent if they are within this tolerance value.

GUARD makes no assumptions about the flow of control in the two programs.

Instead, the user must determine key points in the program where various data

structures should be equivalent. They then give GUARD a list of assertions that

reference the program's variables and lines within the code. GUARD then uses

these assertions to stop the executing programs and compare the specified variables.

GUARD can then either highlight problems, or continue executing automatically if

there is no difference.

These assertions can also be added to the program's comments. A pre-processor is

then used to extract the "partial assertions" from the two programs and

automatically generate the list of assertions, prior to debugging.

Chapter 1 Introduction Page 38

p

Hazel Anne Shaw 	 October 2005

With the release of the Microsoft .NET framework a new version of GUARD has

been implemented that is integrated into the MS Visual Studio .NET development

environment. This has been used to show that GUARD can be used when porting

applications from WIN32 to .NET and for cross-platform debugging between a

UNIX platform and a Windows platform (Abramson et at 2002, Abramson and

Watson 2003).

Abramson and Sosic (1996) have outlined the use of an oracle based approach to

aid debugging. It is not a fully automated method, as it relies on user interaction to

specify areas where the systems should be comparable, to execute the code and to

restart the program when differences have been detected.

Prototypes

Prototypes are often developed prior to the final software being produced. These

prototypes could be used to act as an oracle for module or unit testing. However,

the prototype may produce output in a different form to the final system. Staknis

(1990) proposes the use of an interface to overcome this problem. The automated

testing process is as follows (see Figure 4):

1. 	 The harness supplies test input to the interface.

2. 	 The interface transforms the input into a form suitable for the module being

tested.

3. 	 The interface invokes the module with the transformed input.

4. 	 The results are returned to the interface, which transforms these into a suitable

form for the harness.

5. 	 The harness compares the actual results against the expected results (generated

by the prototype) and logs the results and test data for future investigation.

Chapter 1 Introduction 	 Page 39

,

Hazel Anne Shaw October 2005

There are two options for generating the results. The first option is to use the

prototype prior to testing of the module under test. The prototype is run to generate

the results, which are saved in a file of input-result pairs. The harness then reads

these input-result pairs. The second option is to run the prototype concurrently with

the module being tested. In this case, Staknis suggests linking the prototype into the

testing harness.

Testing log

Harness

input generator
prototype

transfomled
input

results

Intermediate

interface

transfonned

results

input

Module(s) to
be tested

Figure 4 Structure for dynamic automated testing

There are problems with using prototypes as an oracle. A major problem is the

availability of functional prototypes. Prototypes are often written as part of the

rapid application development (RAD) process. These may have some functionality,

but are likely to be quite limited. This makes such prototypes unsuitable to use as

an oracle for testing. In practice, it will be very rare that a fully functional prototype

will be written. If a functional prototype is written, it is likely to be used to

establish the algorithm of part of the software being developed. When the final

version is written the code from the prototype may be transferred over to the final

Chapter 1 Introduction Page 40

Hazel Anne Shaw October 2005

version with minor changes (if the programming language and platform are the

same) or be re-written in a different language. Even if the algorithm is re-written

any bugs in the prototype algorithm are likely to be transferred to the new version.

It is likely, therefore, that there is a high probability of coincident errors between the

module being tested and the prototype; certainly a much higher number of

coincident failures could be expected than for programs developed independently as

in M-mp testing. Therefore, it is unclear just how many bugs are likely to be found

when using a prototype as the oracle.

Oracles from Formal Specifications

One solution to the oracle problem is to produce an executable oracle from the

formal specification. This is the approach taken for the QUEST project (Brown et

al 1992). The formal specification is in IORL (Input Output Requirements

Language), a graphical formal language. From the specification two programs are

produced. The first is manually coded, while the second is automatically generated

from the specification. The automatic code generation is carried out with a "sim

compiler" ("sim" is short for simulation). The two independently produced

programs can then be tested together and the results compared.

The sim-compiler produces code from the formal specification, that is neither as

efficient nor as reliable as that produced manually. For this reason, the sim

compiler cannot be used to generate software for release. Brown et a1 (1992) also

mention shortcomings in the sim-compiler that would be likely to cause

inconsistencies between the target code and the oracle. During testing these would

result in false negatives (test failures). False positives are less likely as the

probability of the same error occurring in both the target and oracle is very small.

These problems will disappear as the sim-compiler matures.

When discussing the choice for the formal language the authors note that there

should be a meaningful difference between the design specification language and

the language used for the target system. If not, this approach would result in

Chapter 1 Introduction Page 41

Hazel Anne Shaw October 2005

redundant coding, which would at least double the cost of the software development

phase (a criticism of the n-version programming approach).

The use of a graphical formal language alleviates one criticism of using formal

languages in commercial software development environments. A graphical

representation of a problem is likely to be easier to learn and understand than a

formal mathematical representation. However, the work by Brown et al (1992) did

have one major flaw. The IORL specification produced was "reverse engineered"

from the finished FORTRAN program. It is difficult to see how results claimed for

a process which starts with the development of a formal specification, can be

considered valid when the specification was actually generated from the finished

program!

VDM (Vienna Development Method) specifications can also be used as automated

oracles (Aichemig 1999). This method concentrates on using the post-conditions

specified in VDM. The post-condition is the relation between the input, the old

state, the output and the new state. The test input is passed to the function being

tested. It is also passed to a pre-condition check, which validates the input, before

being sent to the post-condition oracle. The output from the function being tested is

passed to the post-condition oracle. The oracle checks to see whether the post

condition evaluates to true. Aichemig's approach concentrates on testing a single

function. This makes it unclear whether it will be possible to scale up the approach

to test the many functions and modules that are part of a normal software

development proj ect.

Abstract Data Type (ADT) formal specifications can also be used to form the basis

of a test oracle (Antoy and Hamlet 2000). One difficulty in using a formal

specification is relating the abstract representation (the formal specification) to the

concrete code (the implemented program). There needs to be a transformation

between the abstract and the concrete. Antoy and Hamlet propose writing a

representation function relating the structures of the implementation to the abstract

terms. Once the formal specification, implementation (a class in an object oriented

Chapter 1 Introduction Page 42

Hazel Anne Shaw October 2005

language such as e++) and the representation function are written, then testing can

proceed using a standard unit test strategy.

There are two major drawbacks to using oracles based on fOIDlal specifications.

The first is the lack of uptake of formal specifications in commercial software

engineering environments. With the exception of the graphical specification

(IORL), such specification languages require the use of very specialised skills. The

second major drawback is that the use of formal specifications as oracles is limited

to unit testing. It is very difficult to see how such methods can be expanded to

module, integration or system testing.

Extracting Oracles from Documentation and Code

Brown et al (1992) reverse engineered their fonnal specification from the program

FORTRAN code. This is one approach that can be taken when the specification

does not exist for a program.

However, a high level specification should provide a view of the application

domain (real world) and a description of what will eventually become a program

which solves some problem in the application domain (Brown 1993). The

specification provides a link between the program and the application domain.

Reverse engineering produces a high level description of the code rather than

modelling the application domain. In a poorly structured system it may be difficult

to predict the effect of an operation, particularly where pointers or other such

constructs are used. This means that it may be impossible to obtain the information

required from the source code alone. In addition, though it is possible for small

programs to develop specifications that completely define a program's actions,

large systems require abstraction, otherwise the specification will become too large

and cumbersome. Finally, there is evidence that the style of specification produced

will affect the way that code is examined (Brown 1993). For example, an object

oriented approach will cause an engineer to look for possible objects and hierarchies

Chapter 1 Introduction Page 43

Hazel Anne Shaw October 2005

of objects, while a state-based specification style will result in the engineer looking

for system states.

There is also a question of whether it is appropriate to use such specifications, or

other data obtained only from the program code, directly for testing purposes.

Details obtained from the code show what the code actually does, rather than what

the code should do. Therefore, any oracle based on such a specification is a self

fulfilling prophecy.

There are ways to overcome this problem. The use of structured natural language

within the code could be employed to help generate a useful specification (Curtis et

al 1998). The details for this approach are covered in Chapter 2 section 2.2.1.

Another approach is to use a system such as SIFT.

SIFT (specification information from text) parses program documentation, such as

natural language specifications and end-user documentation (Lutsky 2000). The

output from SIFT is information relevant to testing the application. SIFT consists

of four modules: two are domain independent, and two are domain dependent. The

independent modules are the "parser" and "testing knowledge". The domain

dependent modules are the "sub-language grammar" and the "domain model".

SIFT is used to augment the test cases that are manually developed; it does not

provide a means of producing an oracle. SIFT relies upon a restricted language

being used. If language styles vary greatly throughout documents then SIFT will

struggle to extract information. In addition SIFT needs the documents to be

structured clearly. For example each entity being tested needs to have a separate

sub-section.

Currently there appears to be no work that uses program code and natural language

documentation (or code comments) to produce an automated oracle.

Chapter 1 Introduction Page 44

Hazel Anne Shaw October 2005

1.3.4 Test Frameworks

There is very little research into the practicalities of managing and executing tests.

However, details of one testing framework known as STAF (Software Testing

Automation Framework) have been published (Rankin 2002). This section reviews

STAF and other test frameworks that are available both commercially and as Open

Source software.

First to be considered are regression testing frameworks such as WinRunner

(Mercury 2005a). This is essentially a capture/replay tool. It allows tests to be

recorded on the system, and played back for future regression testing. Scripts are

generated that can be edited. "Checkpoints" can be added to the scripts that allow

the comparison of expected and actual outcomes. The literature claims that

WinRunner can compare data of different types, and check values against the

SUT's database. The main problem with such tools is that they allow a suite of

tests to be developed that are difficult to maintain. For example, if a small change

is made to the GUI of the SUT, (e.g. the checkbox to set or clear an option is moved

to a different dialog box) then all tests that use this option will need to be changed.

It should be possible to modularise tests and create a library of functions, but this is

then a serious development effort. In addition, it is easy to see that though testing

may initially have been very thorough, the existence of the suite can allow

complacency, and the set of tests can become stale and ineffective. Other similar

products are QuickTest Professional (Mercury 2005b) and TestWorks CAPBAK

(Software Research 2005).

SilkTest (Segue 2005) is another commercial testing tool. This is basically a

sophisticated capture/replay tool. It uses a scripting language that models Graphical

User Interfaces as objects, allowing for greater control when writing tests or

maintaining the tests. Data driven testing is possible using a database to control the

testing. Agents allow testing to be distributed, so that many machines can run tests

while being controlled from a central test server. The criticisms of WinRunner also

apply to SilkTest.

Chapter 1 Introduction Page 45

Hazel Anne Shaw October 2005

Another product is Rational Test Realtime (IBM 2005b). It ineludes tools to

support test coverage analysis and tools to create stubs and test harnesses for unit

testing. This is a potentially useful test product. However, developers can write

stubs very quickly themselves as they develop software, and there is usually little

need for these stubs to be kept or maintained. Therefore Realtime's benefit is that it

may reduce the time developers take to do these tasks. Coverage analysis tools are

valuable, as they provide quantitative data on how thorough the unit testing has

been.

JUnit (JUnit 2004) is open source software. It supports the writing of test cases in

Java, and mechanisms for running a set of tests together. The test cases require the

inclusion of success criteria, though there are mechanisms for making writing

similar tests easier. As with any automation effort, the tests resulting from this suite

will need a great deal of maintenance.

Expect, DejaGnu and Tel are all open source software that can be used to help with

writing automated tests. Tel (Tcl Developer Xchange 2005) is a general purpose

scripting language. Expect (Libes 2005) is a specialised tool that enables scripts to

be written that interact with a program, rather than running programs in batch mode.

For example, Expect can be used to respond to a login, entering the username and

password when prompted. This is not possible using standard shell scripts. Expect

is written using Tcl. DejaGnu (8avoye 2005) is a testing framework based on

Expect (and implicitly Tel). It allows sets of tests to be written, and these can be

executed on the system under test.

8TAF is designed to solve the problems of reuse and automation. Rankin (2002)

describes the design and development of 8TAF at IBM. A software testing

framework was required that allowed reuse of libraries within tests. This reuse

would allow test teams to use existing solutions rather than reinventing the wheel

each time they needed to automate testing. Automation support was also needed

that would allow the tests to be easily distributed to many client machines, executed

on those machines and remotely monitored.

Chapter 1 Introduction Page 46

'

pst

I, :1.
" .

: I
1

Hazel Anne Shaw October 2005

STAF is designed round a number of reusable components, called services. Each

service provides a specialised set of functionality. Users can pick and choose which

services they require, allowing them to only install the parts of STAF that they

need.

At STAF's core are services that enable interprocess communication and queuing.

Other services include: synchronisation using semaphores (both mutual exclusion

and event semaphores are available), process execution and control, basic file

system support, logging and remote monitoring. Support is also available that

allows additional services to be added.

STAF has now been made available as an open-source product on SourceForge

(STAF 2005). It is a framework that supports the manual development of sets of

tests. It does not solve the problem of how to create and maintain tests or evaluate
~,:.':. ,.,1

the outcome of tests. ,
i'

t!

To summarise, tools available commercially or as open source that support the !
jautomated execution of tests, revolve around three camps: CapturelPlayback tools;

frameworks to allow the execution of manually created tests; and tools to support

the creation of stubs. None of these approaches allows the automated creation of

tests. In addition, there is a problem maintaining these suites of tests. It is very

easy to write (or record) a set of tests. However, when changes are made to the

SUT, the suite of tests will need to be updated. This is particularly true of testing

directed at the GUI, as minor changes to the layout or contents of a form, or the

number of dialog boxes, will require the same changes to be made to the suite of

tests. If the test suite is designed to be modular, then the changes needed may not

be too drastic. However, this requires treating the automation of tests as a

significant development exercise in its own right.

Chapter 1 Introduction Page 47

Hazel Anne Shaw October 2005

1.4 IMPLICATIONS OF LITERATURE REVIEW ON RESEARCH

The outcome of the literature review has many implications upon the research

undertaken and presented in this thesis. The literature review has revealed that

some areas in the published research on software testing are lacking and that further

work is appropriate. These areas are: the oracle problem; the use of models to

generate tests; the uneven and disconnected coverage given to different areas within

software testing research; the issue of maintaining large suites of tests; and the lack

of techniques which are shown to work on large systems (such as those developed

commercially). There is also a lack of research into software testing techniques

appropriate to support evolutionary development.

1.4.1 The Oracle Problem

An oracle provides the expected answer to the test. Automated testing without an

oracle is limited to robustness testing (i.e. trying to make the software crash). A

great deal of the research into software testing either assumes the presence of an

oracle or does not address the problem at all. Yet, in order to automate testing an

automated oracle is required.

The most promising approaches to the oracle problem are executable oracles. For

example, oracles developed as part ofN-Version programming or M-mp and back

to-back testing. The key advantage is that once the oracle has been written, a large

number of tests can be run and evaluated quickly and efficiently. However, there

are some disadvantages. For example, these oracles are written specifically to

provide comparisons to the SUT and they have a high initial cost. Maintenance is

also an issue. An oracle may be difficult to maintain and continue to use as a

program develops over time.

The published research concentrates on using executable oracles for unit testing or

module testing. Where testing did use a complete program (for example, Ghiassi

and Woldman (1994)) the programs were small and trivial. It is not clear from this

2

Chapter 1 Introduction Page 48

Hazel Anne Shaw 	 October 2005

research that an executable oracle could be applied to large software systems

developed commercially.

Finally, there is the risk of coexistent errors, that is errors that are common to both

the program being tested and the oracle. Ensuring that the oracle has been produced

in a completely independent manner (using different design techniques,

implementation language, etc.) reduces the risk of such errors, though it does not

eliminate them.

Most of the work on using executable oracles assumed that the outputs from both

the program being tested and the oracle were identical. Where they were not

identical this was due to floating point inaccuracies over different programming

languages or architectures. However, there are many potential sources of

executable oracle, these include:

1. 	 One derived from a formal specification.

2. 	 A model of the software.

3. 	 Specifically written software that models key behaviour but does not implement

full functionality (heuristic oracle).

4. 	 A previous version of the SUT (as in regression testing). This may be an

internal release of the software, for example a version prior to a bug fix.

5. 	 A previous release of the software being tested. This would be a release of the

software that customers will see, i.e. an external release.

6. 	 Software that performs (in part) a similar function.

7. 	 A prototype.

Chapter 1 Introduction 	 Page 49

Hazel Anne Shaw 	 October 2005

8. 	 A version of the software produced when multiple versions of the same

application are written in an n-version programming or dual programming

environment.

9. 	 Similar software, possibly from a competitor.

10. A Reverse Engineered Specification (see Chapter 2, section 2.2.1).

The oracles of most interest to this research are "Type IV" oracles (Hoffman and

Strooper 1991). Given any input, Type IV oracles can automatically generate the

correct output (see page 32). However, as discussed on page 31, the oracle may not

be perfect. All of the oracles listed above can be Type IV oracles (with the

exception of the Reverse Engineered Specification which can be used as a Type III

oracle).

1.4.2 Test Case Generation using Models

The automatic generation of test cases requires models (such as a Markov Chain

Usage Model) to be built, or formal specifications (such as VDM or UML) to be

written. The Markov Chain Transition Matrix is a powerful way of ensuring that

the tests generated are meaningful. However, none of the work currently published

on statistical testing with a Markov Chain Usage Model addresses how the Markov

Chain Transition Matrix may be built automatically by a test system given a small

amount of data.

Markov chains allow stochastic testing for statistical purposes. However, no work

has been done on suitable oracles for use when testing with a Markov chain. The

Markov chains also require a lot of work to build the usage model.

1.4.3 An Holistic Automated Testing Methodology

The published research takes a piecemeal approach to software testing. Even

though to test software it is necessary to create tests, execute those tests and

-

Chapter 1 Introduction 	 Page 50

..

Hazel Anne Shaw October 2005

establish whether the SUT has passed or failed the test, no research investigates

how different techniques for these phases can be used together. Very little work has

been carried out on the frameworks needed to manage tests. However, commercial

and open source solutions are available.

The research presented in this thesis takes an holistic approach to automating

software testing and tackles the whole process. For example, the oracle is

predecessor software that may not be a perfect oracle. This imperfection is handled

by the comparison phase. The comparison method directly influenced the form of

the interface and the methods used to generate and execute the tests. The

methodology developed also includes details on a framework to manage the

automated testing.

1.4.4 Maintenance

The issue of maintenance is ignored. Automation of tests often results in suites of

tests that are run against the SUT. When the SUT is modified (as it will be often

during its development and subsequent life) the suite of tests must be maintained.

The research presented in this thesis explicitly addresses the issue ofmaintenance.

1.4.5 Automated Software Testing for Industry

Research is dominated by techniques that are appropriate for small programs or for

unit testing which will not scale to large systems. The reasons for this scalability

problem are: the unacceptable effort needed to build models of large systems or to

write suitable oracles; or that these techniques employ formal methods which are

not extensively used in industry.

Companies in Europe and the US are moving away from using a "set in stone"

specification and moving towards flexible project management techniques, as

exemplified in evolutionary delivery and extreme programming. These techniques

make many small incremental releases and obtain feedback from the customer

Chapter 1 Introduction Page 51

F

Hazel Anne Shaw October 2005

regularly throughout the process. As a consequence software testing should also be

flexible to cope with the changing specifications.

Much of industry is using evolutionary delivery or iterative approaches to the

development of their software. Yet the published research concentrates on

approaches to software testing that are inflexible. They also ignore the large

number of potential oracles that evolutionary delivery will produce.

Software testing is an important part of the development process that delivers good

quality software. However, for maximum benefit it should be used in combination

with other techniques (for example inspections) that require a large manual effort.

However, project overruns and the need to meet deadlines often squeeze software

testing. Therefore software testing should be as fully automated as possible. This

means not just generating tests automatically and selecting the tests that may have

greatest yield, but also looking at the whole process of running the tests, examining

the outcomes of those tests and maintaining the tests.

This research addresses these problems by examining automated software testing of

larger software systems, and using predecessor software as an oracle to the SUT.

1.4.6 Black Box or White Box?

There are many approaches that can be taken to automatically create tests. The first

is to use a white-box approach and examine the source code of the SUT, using this

to guide the testing. However, if this approach is taken then the tests created are

potentially self-fulfilling. That is, the tests demonstrate that the code does what it

says. The use of an oracle mitigates this somewhat, but the tests will still not detect

code that is missing.

An alternative approach is to use the code of the oracle to guide the testing. This

avoids the problems with self-fulfilling tests. However, the methodology developed

uses software predecessors for the oracle. There is no guarantee that the oracle's

Chapter 1 Introduction Page 52

Hazel Anne Shaw 	 October 2005

source code would be available and reverse engineering software owned by another

company is unethical and potentially illegal.

Therefore, the approach taken is to treat the SUT and the oracle as black-boxes.

This means that the tests generated are based on the functionality of the software,

rather than on the software's internal code.

1.5 	RESEARCH AIMS

The aims for this research are split into three parts. Firstly, there is a set of criteria

by which the success of a testing methodology can be evaluated. Secondly, there

are objectives that the methodology developed should meet. Finally, there are

specific questions that need to be answered.

.. .,
1.5.1 Criteria for a Successful Test Methodology 	 .

The following criteria for a successful test methodology have been developed as a

result of reviewing the current literature and are based on professional experience of

commercial software engineering.

A successful test methodology will try to:

1. 	 minimise the manual effort needed.

2. maximise the likelihood of detecting an error.

3. minimise the likelihood of reporting false negatives.

4. minimise the likelihood of reporting false positives.

These criteria need explaining:

1. 	 Minimising manual effort does not mean removing all manual effort. It is

envisaged that some manual effort will be needed when testing software.

However, the effort applied should be utilised properly. If manual effort is

Chapter 1 Introduction 	 Page 53

Hazel Anne Shaw 	 October 2005

applied, it should be clear where high skills levels are most beneficial, and

where a low skill level is all that is required. This makes it possible in an

industrial software development environment to allocate effort properly within a

team of testers. All repetitious and long operations should be automated.

2. 	 Error detection rates can be increased in two ways: firstly, by using techniques

to target the locations of software where errors are most likely to occur (for

example, testing at boundaries); and secondly, by using methods that allow a

large number oftests to be run quickly and/or with minimum manual effort.

3. 	 A false negative occurs when a test is reported as failed, when in fact it has

succeeded. It takes time to check the test that has found a failure and establish

that a failure has not actually occurred.

4. 	 A false positive occurs when a test is reported as passed, when in fact it has

failed. A false positive is a failure that should have been detected by the test

system, but has been missed. A false positive will not be examined, allowing a

bug to pass through when it should have been detected. A false positive is

different from an error that has not been detected. An error remains undetected

because a test has not been run that triggers the error and causes a failure in the

software. A false positive occurs when the software behaves incorrectly, but

this is not reported as a failure.

1.5.2 Obj ectives for the Methodology Developed

The methodology developed should be applicable for use in commercial software

development environments. There are a number of common-sense objectives that

need to be met. They are stated here for clarity, and are given in order ofpriority:

1. 	 The methodology should result in test suites that are maintainable. Often

regression test suites develop into a large number of unmanageable and

unmaintainable scripts. Any changes in the software will result in scripts that

are broken (they fail to run for some reason). It becomes difficult to see which

Chapter 1 Introduction 	 Page 54

Hazel Anne Shaw 	 October 2005

scripts are actually testing the software usefully, and which scripts do not

exercise the software in a way that is likely to find any errors. Automation can

result in an unmanageable set of scripts that when run are unlikely to find any

bugs.

2. 	 The methodology must be usable by software testers and developers.

3. 	 A minimum of training should be necessary to be able to use the methodology

in a productive way.

Testing can be carried out at throughout the software development life cycle.

However, most techniques in the literature are aimed at the early phases (mostly

unit testing). In this research a broader approach is taken and the techniques

investigated are applicable to module, integration and system testing.

1.5.3 The Research Questions

The literature review highlighted important areas in software testing research that

are poorly explored, or where more work is required (see section 1.4). Table 3 lists

the key questions that need to be investigated in this research. These questions are

the result of the conclusions drawn from the literature review.

The first question regards the oracle problem. For any automation effort to be

successful an oracle is needed. The form of the oracle must reflect the target of this

research, commercial software development environments. For example:

" 	 Many organisations that are developing software commercially are not

using specifications that are set in stone for the project. Gilb (l997b)

states that you cannot know everything about the requirements, design,

costs, timing and risks of a project. Therefore, flexible project

management practices, such as evolutionary development and extreme

programming are increasingly being used.

Chapter 1 Introduction 	 Page 55

" f(,

~:

, " ,
,,~, fI'

Hazel Anne Shaw 	 October 2005

tI 	 Most software engineering projects do not use formal methods

(Glass 2004). Therefore an approach that uses formal specifications is not

applicable in many software engineering environments.

Research Question
Area/Topic number
Oracle problem 1
Maintainability 2

3

Automation
4
5

6

Procedures 7

Implementation 8

9

10

Management 	 11
12

13

Table 3 Research questions

Question

What form should the oracle take?
How are tests written using the new methodology to
be maintained?
How are changes in the software reflected in the work
required to maintain the test suite?
How should "broken" tests be managed?
How much manual effort is needed to implement, run
and analyse the results from the tests?
What is the minimum manual effort that can be
expected?
What procedures should be followed when creating a
test and managing the test throughout its lifetime?
Is it better to write a test as a small executable
program, compiled from code, or should a test case be
written in an interpreted language?
What are the advantages and disadvantages of using
an interpreted language or a compiled language for
implementing the tests?
Are there benefits to combining interpreted and
compiled languages when writing tests?
How should tests be managed?
What data are needed, and how are these to be
managed?
What about management of the same set of tests over
multiple platforms?

Questions two to four relate to maintainability of the test created. Everyone can see

what a test is intended to do while it is working. However, if a test "breaks"

because the program has changed and can no longer be run, then it can be much

more difficult to see what the test should be doing.

Questions five and six examine how much manual effort may still be needed for the

automated methodology. Question seven addresses the procedures that should be

Chapter 1 Introduction 	 Page 56

Hazel Anne Shaw October 2005

followed when creating and maintaining a test. The next questions relate to the

choice of language technology that should be used to implement tests. Finally,

questions eleven to thirteen examine how tests and test data should be managed.

1.6 NOVEL FEATURES OF THE RESEARCH

The novel features of this research are:

1. A solution to the oracle problem is investigated. Predecessor software is used to

provide an oracle. Predecessor software is software that exists prior to the testing of

the system under test. This may include direct ancestors that are previous versions

of the SUT or indirect ancestors that are software written independently from the

SUT but perform (in part) similar functions.

2. The selected oracle will probably not be perfect. These imperfections need to

be handled. A combination of an interface which describes the SUT as small units

of functionality (UOFs), and the use of rules which are applied on the test output

enable this imperfection to be handled.

3. A Markov Chain Transition Matrix (MCTM) is automatically created from the

UOFs in the interface. The inputs and outputs for the UOFs are used as the basis

for creating states in the MCTM. Algorithms to calculate the states and build the

MCTM are presented. Another algorithm to check that the MCTM is consistent is

also presented. These algorithms have not been published previously.

4. An holistic methodology has been developed. It addresses all phases of the

process of automated software testing from test generation through to evaluation of

the test results.

5. The issue of maintenance when developing automated test suites is explicitly

addressed.

Chapter 1 Introduction Page 57

,

77r

Hazel Anne Shaw October 2005

6. Commercial software development has been considered. This means that the

methodology developed concentrates on testing of larger pieces of software (such as

component, sub-system, integration and system testing). Prototype software (called

Alltest) has been developed with the goal of being practical and applicable to real

world software development. Alltest has been used to test real commercial software

that is sold and in active use.

1.7 THESIS STRUCTURE

This chapter has reviewed the current literature relating to software testing and the

quality of software produced in commercial environments. It has drawn some

conclusions from the literature review and identified key questions that need to be

addressed by this research.
~d..,,I

The next chapter describes the methodology developed during this research and the

design and implementation of Alltest, which was written to implement the

methodology. It also explains the novel Markov Chain Transition Matrix

generation algorithm. Chapter 3 describes how this research has been evaluated, the

outcome ofthe experiments and finishes with a discussion ofwhat the results mean.

Finally, Chapter 4 reviews the contribution to knowledge made by this research. It

finishes with a discussion of future work resulting from this research.

h)

",I,

Chapter 1 Introduction Page 58

EM

CHAPTER 2 AUTOMATED TESTING METHODOLOGY

When testing a software product there are three distinct phases, generation of tests,

execution of tests and evaluation of results. Of the three phases, evaluation of the

results is the hardest to automate. To carry out evaluation of the test results by hand

is slow and tedious. Therefore, if generation and execution of the tests are

automated, it is essential to automate the evaluation phase, as much as possible, to

avoid a bottleneck in the testing process.

Whatever techniques are used for testing, there are a set of processes and outputs

that can be clearly defined. Figure 5 shows a process flow chart that defines these

different stages. It shows all the processes that must be carried out and all the

outputs (documents) produced. It also shows two databases. The first database (B)

contains the test data and expected results. It also contains the actual results

obtained from running the tests. The second database (F) contains the list of bugs

(or suspected bugs) found during testing.

* , ,

The three phases of testing can be seen in Figure 5. The tests are generated (5).

They are executed (3) and their results are evaluated (4). Also shown in this

diagram is how testing fits into a general development process, starting with the

specification (A) which is turned into code (B) by a development team. In a parallel

process, the test cases are produced from the specification (A -+ 5 -+B). Once the

test cases exist (E) and an executable program exists (C), the program can be tested

(C -+3 -+D -+4 -+E).

Page 59

Specfication

This may be infcrmal cr

€Wen urwr~n
 ~
(A)

~+-

•

Q-ea1e Test Cases

(5)

A"ogral'TTling ExecutabeSource COOe CorrpileTurn specfication (B) j---. (C)~ (2)into core
(1)

\....

I It

'" 1
-.j I Test tre A"ogram

Make changes to Make crnnges to (3)
spocifcatbn core

(7) (8)

..."
Test Exocutbn Output --....

(D)

t--- ------List r:i devalions from L I-
expected results \....
(Bug Dalabase)

(F)

I
Test Data and Results Evaluatbn

II I
(4)

Evaluate results d ~ ~~~f~aWobm~1
~

Testing
(6)

L-.l.-__---!L......I W~ I Results L+-,-----!
Test d<1a and I ______..--... expected results ~

Key

B
E]

~

Figure 5 Test process workflow diagram

..'" "
--.T~. * :!!'Fn ""~"'.,.,~ 0/ ff ~

=

Hazel Anne Shaw October 2005

Following testing, the results are analysed and a list of defects is generated

(E ~ 6 ~F). This defect list will correspond to issues with the code or issues with

the original specification. If there are issues with the code, then corrections are

made to the code (F ~8 ~B). Alternatively, any issues with the specification

result in changes being made to the specification (F ~ 7 ~A). This evaluation

forms a feedback loop. Further tests may be generated from the updated

specification, and the process repeated until some criteria are met that indicates that

testing is "complete".

Figure 5 does not differentiate between automated strategies or manual strategies.

Any of the processes (1, 2, ... 8) could be carried out manually or automatically.

For the purposes of testing, it is usual to find that (3), executing the tests is carried

out automatically. However, generation of the tests (5) and evaluation of their

results (4) could also be carried out automatically. The methodology developed

automates evaluation (4) by using an 'oracle'. This oracle provides the answer to

the question "what is the expected result of this test?" This could be answered by

examining a program specification or asking a computer operator. However, for the

evaluation phase to be automated, an oracle that is automated (or can be

automatically processed) is required.

Alltest is prototype software that implements the methodology. It consists of a test

generator, a test executor and a test comparator, see Figure 6. An interface is also

shown in the figure. This interface is developed for each application tested (and is

not actually part of Alltest itself). Also on the diagram are the System Under Test

(SUT) and the oracle system. Tests are executed on both these systems via the

interface.

..

Chapter 2 Automated Testing Methodology Page 61

Hazel Anne Shaw October 2005

System
Under Test

Result

Results

Oracle
Results

Test
Generator

Interface

Figure 6 Automated testing with an oracle system

The rest of this chapter describes Alltest. It explains: how Alltest is implemented

and how it is used; the novel automatic creation of a Markov Chain Transition

Matrix to generate tests; and the novel use of predecessor software to act as an

oracle for the testing process. Section 2.1 describes the interface. Section 2.2

explains what can be used as an oracle. Section 2.3 looks at the generation of tests

and the creation of a Markov Chain Transition Matrix. Section 2.4 discusses how

the tests are executed and section 2.5 examines the evaluation phase. Section 2.6

describes how AlItest is implemented and section 2.7 assesses the options available

to manage the test process and the data used and generated when testing. Finally,

Section 2.8 discusses how Alltest is used.

2.1 THE INTERFACE

The interface is not part of Alltest. It is written for each software system or

component that needs to be tested. It describes the SUT in a way that allows tests to

Chapter 2 Automated Testing Methodology Page 62

Hazel Anne Shaw October 2005

be automatically generated. The interface enables the tests to be run on the SUT

and the oracle system. The interface specifies how the results from testing are to be

automatically evaluated. This section describes the interface and the files that

implement it.

2.1.1 Unit of Functionality (UOF)

Functionality of the SUT is described as small units. Each of these units is called a

Unit of Functionality (UOF). A UOF does not specify any behaviour of the SUT,

but is a named black-box with inputs and outputs. The oracle specifies the

behaviour of each UOF. As an example, if a text editor is being tested, then

opening a file is one UOF, and saving a new file is another UOF.

2.1.2 TeD files

Each UOF is coded in a Test Command Description (TCD) file. Figure 7 shows an

example TCD file. The TCD file consists of three sections. These sections are

delimited with '%%'. The first section specifies parameters to the UOF. These are

used by the generator when creating the tests. The second section specifies how the

comparison will be carried out. The fmal section specifies how the test is executed.

2.1.3 Rules

Rules control how the comparison phase will be carried out. Rules can be defined

within the TCD file or as separate script files. Rules are fully explained in

Section 2.5.

2.1.4 Test configuration

The Test Configuration file contains information that tells the generator how to

create the tests. For example it specifies how many tests should be created. The

configuration file also includes parameters that are used directly by the generation

Chapter 2 Automated Testing Methodology Page 63

- -

Hazel Anne Shaw October 2005

algorithm. For example, one parameter is the probability that the test will end

(which controls the length of the generated tests).

copy a file
FileNamel -1255 -di string
FileName2 -1255 -di string

%%

Second section: rules for the comparison
specifies global, and shared local rules
Also defines new rules that are only used for this command

USERULE LINE SUB PATHS
USERULE LINE NOCASE
USERULE FILE COPY_MULTILINE_FAILURE
USERULE LINE FS FAILURE MESSAGE

The interpreter that will be used:
%INTERP TCL

copy the file (full paths will be supplied)

puts "Copying from [file nativename $FileNamel] to [file nativename $FileName2]"

exec cmd.exe Ie copy [file nativename $FileNamel] [file nativenarne $FileName2]

Figure 7 Example TeD file for copying a file

2.1.5 Creating the Interface

Figure 8 is a flowchart of the steps needed to develop an interface. The first step is

to look for a suitable oracle. The oracle is used when evaluating the output from

running the tests. The oracle should be executable software that perfonns (in part) a

similar function. This may be a previous version of the system under test, a

prototype or similar software possibly from a competitor. It is important to

remember that the oracle will not be perfect. This imperfection is handled by

developing the interface.

Once the oracle has been selected, the SUT is examined and its behaviour is broken

down into UOFs. For example, if a text editor is being tested, then opening a file is

one UOF, and saving a new file is another UOF.

"

Chapter 2 Automated Testing Methodology Page 64

p

Hazel Anne Shaw October 2005

Identify inputs that
Identify a suitable

Examine the SUT need to be
oracle to model part

and breakdown its initialised. Add
or all of the SUT

behaviour into UOFs functions to do this
behaviour

to the list of UOFs

For each UOF
Interface: identified, write a

consisting of ~-------------------- TeD file. These files
multiple TeO files form the Interface

For ~ach TeO file in the interface, check execution by

running: ~.

alltest e interface/<tcd filename> <pararn> <value> '" .•..

'.
 Is the
For each TeO file in the interface, check the comparison Interface
parses correctly by running: k·:..::~::.:)
alltest k interface/<tcd filename>

...l
Summarise the interface, print out a list of the completed /

UOF, their inputs and outputs, by running:
all test s <base directory> I

Figure 8 Developing the Alltest interface

The next step is to identify the inputs to each identified UOF. Continuing the

example, a file location and a filename are needed in order to open a file. It will

also be necessary to choose if the file is to be opened for editing or in read-only

mode. In total these three inputs result in three additional UOFs for opening a file.

For saving a new file there are again three inputs: file location, filename and if an

existing file can be overwritten. However, two of these inputs are the same as for

opening a file. Inputs only need to be specified once. So saving a new file only

gives rise to one additional UOF for its inputs (see summary ofUOFs in Table 4)

Function Inputs Additional Units of Functionality

Open a file file path
filename

4 new UOFs:
1 action

open read only 3 UOFs that set parameters

Save a new file file path 2 new UOFs:
filename 1 action
overwrite existing 1 U 0 F to set parameter

Table 4 Example Units of Functionality

Page 65
Chapter 2 Automated Testing Methodology

'

p pm

Hazel Anne Shaw October 2005

For each UOF identified a TeD file is written. When writing a TeD file for an

input it is important to consider both valid and invalid inputs. For example, when

writing the TeD file to provide the file path, invalid characters should be

considered. It is also important to "randomise" the file path returned. However

"random" must be repeatable, so if a test is re-run, the same output is always

produced. This ensures that the automated testing is repeatable.

Writing the TeD files builds up the interface to the SUT and oracle. The finished

TeD files will specify their inputs and outputs, the rules used when comparing test

output and the code to execute when running the tests.

Each TeD file written must be unit tested. Alltest has options to allow the : J ,
~: l
'Iexecution and comparison of a single TeD file. This enables a TeD file to be run
;" Ion the oracle system then on the SUT. The outputs from these can be examined to , : ,i

,I

ensure they are as expected. These outputs can then be used for the comparison
, '.

I
r,~

phase to ensure that the comparison is working. This unit testing minimises the

number of false negatives found by AlItest when running generated tests.
Ji

However, there will still be occasions when the TeD files are incorrect (particularly

the rules applied during the comparison phase). Therefore the next step is to carry

out a few short test runs (perhaps with about 10 tests being generated) and analyse

the results. Once any necessary corrections have been made to the TeD files full

testing can commence.

2.2 THE ORACLE

The oracle provides the expected outcome from running a test. Alltest uses an

oracle that can be executed. If the oracle is perfect then the output from the SUT

can be compared directly against that from the oracle. If there are any differences,

an error has been detected in the SUT. If there are no differences the SUT passed

the test. However, the oracle used for Alltest is not expected to be perfect. See

section 2.5 for details on how the imperfection is handled.

Chapter 2 Automated Testing Methodology Page 66

•

Hazel Anne Shaw October 2005

Some oracles can be treated as "predecessors" and these are discussed in section

2.2.2. However, we start by looking at the Reverse Engineered Specification in

section 2.2.1.

2.2.1 Reverse Engineered Specification

Where there is only an inadequate specification available for a software product,

one solution may be to use the code and its comments to provide the description of

the software. Reverse engineering is used to produce this specification, which is

called a Reverse Engineered Specification (RES). The author originally presented

this idea at Software Quality Week, San Francisco, 1998 (Curtis et aI1998).

Figure 9 shows the steps taken to produce a RES. Starting with the source code, a

computer program transforms the code into a RES, which uses a formalised natural

language, based upon the ideas of Planguage (Gilb 1996, 1997a, 1997b) and

graphical descriptions of the program. This RES is readable by humans and can be

processed by computers.

The next stage is inspection, comparing the RES with existing specifications and/or

expert knowledge. People possessing expert knowledge will include software

engineers who have worked on the project, customers who defined the

requirements, and people who have worked with software that performs a similar

task. From this inspection a new "corrected" RES is produced.

At this stage problems located in the generated RES can be corrected by making

changes to the original source code.

The RES will still be in the formalised natural language, and as such can be

processed by another computer program to produce a set of test cases. The test

cases will include input data and expected outputs. Manually produced test cases

can be added to the automatically generated ones thus creating a suite of tests.

"•

Chapter 2 Automated Testing Methodology Page 67

;

Hazel Anne Shaw October 2005

There are some problems associated with using Reverse Engineering techniques as

part of the testing process. However, the process used to produce the RES helps to

overcome these problems.

The first problem is that reverse engineering produces a high level description of

the code that does not model the application domain (Brown 1993). Without

modelling the application domain it is very difficult to comprehend what problem

the software is trying to solve. The link from the application domain to the RES

can be re-established by examining the comments included in the source code along

with the program's structure. This ensures that all available information is being

utilised.

The second problem when testing is that it is inappropriate to use data derived

directly from the program code. This is because the details obtained show what the

code actually does, rather than what the code should do (Beizer 1997). This

problem is solved by including an inspection phase which feeds back into the

creation of the RES and finally into the creation of the tests.

Finally, reverse engineering produces specifications that are very formalised. They

are difficult to comprehend and restrict themselves to the analysis of program

structure and algorithms. The result is an abstraction that lacks clarity. However,

the formalisation is necessary to ensure that the resulting specification is not

ambiguous, contradictory or incomplete.

Natural languages (such as English) can be used in a way that is ambiguous.

Formal languages are precise, but are difficult to use without specialised training.

One solution is to use a formalised natural language. This will resolve problems

associated with both formal specification languages and natural languages. This

forms a compromise that allows humans to easily read and modify the language, but

also makes the language interpretable by a computer program. Planguage (Gilb

1996, 1997a, 1997b) has been chosen as the basis for such a language. Planguage is

designed to formalise the specifications written by humans, it provides a way to

Chapter 2 Automated Testing Methodology Page 68

I

Hazel Anne Shaw October 2005

produce a specification that is easy to read by humans, yet avoids the problems of

ambiguity often associated with natural language.

The use of Planguage also solves the problem of introducing information into the

RES that is the result of examining comments in code. In addition, control flow

diagrams and call graphs should be included as people often handle graphical

information better than textual information.

Finally, infonnation should be included in the RES that can highlight potential

problems in the code, for example, the index for an array being used in a manner

that allows a buffer overflow or underflow to be possible.

Figure 10 shows a RES being used as part of the testing process. This process is

very similar to that shown in Figure 5 (see page 60).

Chapter 2 Automated Testing Methodology Page 69

,
, ,
,
"

;

Hazel Anne Shaw October 2005

Code

~ -r
,

...
\ ,

\ ,,
\
\

\

Transform \
\

Aulomatro p-ocess to \
\

trarsfam the cooe into \
\

a spa::ificatiOO \
\

\
\
\
\
\~ \

Formalised natural langJage I
\

spocifbatbn \
\,(in human and computer

readable fam) I
\
\
I

-~ I
\

'

\
\

Inspect
\
I

Human process I
\

compcring documenls \
I

wth: \

1) exErting specrications
I
\

2) expert kroNledge I
I

I
I

~
Fixes to Software

Hurran process, app~
Corroc1ed Speciication _10.

-r -
.... changes to the sciWcre

wlh respoctthe the
generatro spa::ificaticn '-

Transform

Automatro p-ocess to

generate test cases

from thespecrication

~.

Add test Cases
Human process to add

Test Cases ... additional test cases to

-(Test Sui1e) the automaticalfy
generatro ones if
necessary

Figure 9 Test suite generation from code

Page 70Chapter 2 Automated Testing Methodology

--

Specfication this rrny be
Prograrminginfcrmal cr even Source CcxIe Executabe

Turn specfication .. Cof11)ile ..ullNritten (8) (C)r
(A)

r--. into code (2)
(1)

'-- '--
~~ -C ~

Reverse ... Test the Program
Engineering

- •
(3)

(5)

Reverse enginEl:lred

... Specfication (RES) All
...... (G) "'" ~

- - Test Exocutbn Output
Results (0)

(H)
r

-
,. , -- --r ~

-

Mmual Test case Aulomated Test Test Data and Results Manuallnspectbn Evaluatbn
Gena-atbn Case Galeratbn ~ (6) ~ ~thecpoc~~a1d obta~ (4)

(8) (7)

Test Data and ' Expocted .., IResultsResults I---- Test Data and i.--" ... Expocted..
Results

Figure 10 Workflow diagram for automated testing using a RES

., -(' '1 ~

Mi!#I

Hazel Anne Shaw 	 October 2005

2.2.2 Software Predecessors

Many of the oracles mentioned in Chapter 1 (section 1.4.1) can be considered to be

predecessors to the SUT:

• 	 Previous version - pre bug fix (as in regression testing).

• 	 A previous release of the software being tested.

• 	 Software that performs (in part) a similar function. For example, a file

system performs a subset of operations carried out by Manager.

• 	 A prototype.

• 	 A version of software produced when multiple versions of the same

application are written in an n-version programming or dual programming

environment.

• 	 Similar software, possibly from a competitor.

Predecessors are not limited to direct ancestors of the SUT with a common code

base. For example, take a word processor in current use, such as

Microsoft Word 2000. Its predecessors include Word 97, Word 95, Word 2,

WordPerfect 5, Microsoft Works (which includes word processing abilities),

W ordPad and text editors. Alternatively consider a current operating system that

would nm the word processor, such as Microsoft Windows XP. Its predecessors

include Windows 2000, NT 4.0, NT 3.51, 98, 95, Windows 3.1, 3.0, MS-Dos 6.0,

5.0, OS/2, Mac OS, Unix and VMS. Both of these examples show just some of the

potential predecessors available to use when testing either application.

If a word processor is being tested, then WordPad could be used as a predecessor to

test the formatting of text, for example, selecting text, making it bold, deleting text,

applying italics and changing font. All of these things can be done with most word

processors. However, these tasks may be carried out in different ways depending

Chapter 2 Automated Testing Methodology 	 Page 72

:,,;: i,y.

, "

I ,

I;' ~
...,

Hazel Anne Shaw October 2005

upon the word processor, and the results may be displayed in a different manner

(for example, not all word processors are WYSIWYG!). When using a predecessor

as the oracle, these differences need to be managed. Section 2.4 describes how

Alltest manages differences between the oracle and the SUT.

2.3 THE GENERATION PHASE

During the initial phases ofthis research, the test cases were created manually. This

was because the aim was to concentrate on how the tests are evaluated. However,

creating tests manually has many drawbacks. Tests written may be very similar,

with only minor changes between each test. This makes writing the tests tedious

and results in mistakes being made. The second problem is that even though the

tests may be similar, it takes too long to write them manually. The third problem is

one of maintenance. Once a suite of static tests is written, they need to be

maintained, and that can take a great deal of effort. For these reasons the tests cases

need to be automatically generated.

2.3.1 Stochastic Test Case Generation

As mentioned in Chapter 1 (section 1.4.6) a black-box testing approach has been

adopted. Selecting a black-box approach to testing has ruled out the use of

techniques, such as branch coverage, which use the source code to guide case

creation. Instead, a stochastic test generation method has been developed. One

reason for choosing stochastic test generation is that the users of the sur can carry

out operations is any (random) order, so the test generation should reflect this.

Another reason is that the cost of writing a complex generation algorithm is high

when compared against the cost of executing the tests and comparing their results.

As both of those phases are automated, the cost of running and checking a large

number of random tests is minimised. If the comparison phase had been manual,

then using a random test generation method may have been inappropriate.

1 What You See is What You Get

Chapter 2 Automated Testing Methodology Page 73

.,. :.r

"

Hazel Arme Shaw October 2005

However, the output from the generator cannot be completely random. The

generator needs to handle the order in which each UOF is called. It is necessary to

ensure that input parameters to the UOF are initialised before the UOF is executed.

For example, a browser cannot load a Web page until a URL has been provided.

An approach is needed that allows the generator to know what functions are valid to

be called. An algorithm that produces a Markov Chain Transition Matrix has been

developed to deal with this.

2.3.2 Markov Chain Transition Matrix

As discussed in Chapter 1 (section 1.3.2) various practitioners have successfully

used Markov chains to generate test data. U sing a Markov chain allows the

generator to keep track of which TCD files are valid to be called. This is done by

linking variables (or combinations of variables) from the TCD files with the states

in the Markov Chain Transition Matrix. The test is in a particular state when all the

variables that describe that state are set. Additional states are the "initial" and the

absorbing1 "end test". The elements in the matrix contain a probability of making a

transition from the current state to another state. An example Markov transition

matrix is shown in Figure 11, with the initial state indicated as "0", and the end test

state as "END".

State Description 0 A B AB END

0 No variable set (initial state) 0.3 0.3 0.3 0 0.1

A variable A set 0.3 0.3 0 0.3 0.1

B variable B set 0.3 0 0.3 0.3 0.1

AB both A and B set 0 0.3 0.3 0.3 0.1

END Absorbing end state 0 0 0 0 1

Figure 11 Markov transition matrix

By controlling the probability that a transition from one state to another will occur,

Markov chains become a very powerful way of controlling the flavour of the tests

generated. For example, tests can be made to be short or long. Repetitive tests can

1 Parzen (parzen 1960) defines the absorbing state as follows: "A state j in a Markov chain is said to be
absorbing if P(j,i) = 0 for all states i *j, so that it is impossible to leave an absorbing state. Equivalently, a
state j is absorbing ifP(jj) = 1."

Page 74 Chapter 2 Automated Testing Methodology

...

Hazel Anne Shaw 	 October 2005

be produced by carrying out operations on a single object multiple times, without

changing the state. Alternatively, more varied and fluctuating tests can be produced

where states are more transient. AlItest controls this with a parameter in the test

configuration file: probability of staying in the same state.

At each state in the matrix there are also "functions" that can be called. Many of

these functions will cause variables to be set (or cleared) and a transition into

another state will take place. Some of these functions are from the executable part

of the TeD files and fall into two types:

1. Functions that do not cause a transition between states. See Figure 12.

2. Functions that can be called to transition between the states. See Figure 13.

, ,

A third type of function is a notional function that is used by the generator to

indicate that a variable in ''unset''. This "unset" function is the result of pairing

functions that set the value of a parameter. The "unset" function clears the variable

and allows the test to move into a previous state. 	 Figure 14 shows a transition

matrix with "unset" functions.

These three types of functions result in a complete matrix as shown in Figure 15.

State 0 A 	 B AB END
0 0 0.45 0.45 0 0.1

A 0.3 0.3 0 0.3 0.1

ftulction3

B 0.3 0 	 0.3 0.3 0.1

functionl

functi0n2

AB 	 0 0.3 0.3 0.3 0.1

function4

END 0 0 0 0 1

Figure 12 Markov transition matrix showing same state functions

Chapter 2 Automated Testing Methodology 	 Page 75

Hazel Anne Shaw 	 October 2005

State 0 	 A B AB END

0 	 0 0.45 0.45 0 0.1

set A set B
-
setInvalid A

A 0.3 0.3 0 0.3 0.1

set B

B 0.3 0 0.3 	 0.3 0.1

set A

setInvalid A

AB 0 0.3 0.3 0.3 0.1

END 0 0 0 0 1

Figure 13 Markov transition matrix showing transition functions

State 0 	 A B AB END
0 0 0.45 0.45 0 0.1

A 0.3 0.3 0 0.3 0.1

unset A

B 0.3 0 0.3 0.3 0.1

unset B

AB 0 0.3 0.3 0.3 0.1

unset B unset A

END 0 0 0 0 1

Figure 14 Markov transition matrix showing "unset" transition functions

State 0 	 A B AB END

0 	 0 0.45 0.45 0 0.1

set A set B

setInvalid A

A 	 0.3 0.3 0 0.3 0.1

unset A function3 set B

B 0.3 0 0.3 0.3 0.1

unset B functionl set A

function2 setrnvalid A

AB 0 0.3 0.3 0.3 0.1

unset B unset A function4

END 0 0 0 0 1

Figure 15 Markov transition matrix showing probabilities, states and functions

Figure 16 shows the inputs and outputs of the generator. The generator takes two

types of file as inputs: multiple TeD files and a single Test Configuration file.

Figure 7 on page 64 shows a TCD file consisting of three parts. The generator only

uses the first part of the TCD file, which describes the inputs and the outputs to the

UOF. Each line defines a "parameter". It specifies the parameter's type, whether it

is an input, an output, or both, and any limitations on the values used. With these

parameters defining the inputs and outputs, the UOF can be treated as a function in

a procedural programming language.

Page 76Chapter 2 Automated Testing Methodology

" r
r,\ ~

" ~:': ~

.
j

Hazel Anne Shaw
October 2005

Figure 17 shows a typical parameter definition. The first item is the parameter's

name (in this case FooBar). This is followed by options that specify attributes of

the parameter (see Table 5). FooBar is a string of not more than 255 characters,

which is an input parameter to the TeD file.

Test
Configu-attn

Rle

Gena-aIm

•,
Gena-ated 	 :

Libray
,"

Figure 16 Inputs and outputs ofthe generator

FooBar 1255 di string

Figure 17 A typical parameter definition in a TeD fIle

Attribute Description
-In Length
-rln (lower)

Range-run (upper)
-di (input)
-do Direction (output)
-dio (input and output)
string, bool, special, The final item defines the type of the parameter system, integer, float

Table 5 Parameter attributes in a TeD fIle

Figure 18 shows the process carried out by the gener ato.r The following steps

describe how the test suite generates tests from the TeD files:

Page 77
Chapter 2 Automated Testing Methodology

Hazel Anne Shaw 	 October 2005

1. 	 The TeD files are parsed, and a "function table" is generated. This table

contains the information needed (such as function parameters) to enable each

function to be used.

2. 	 The Markov transition matrix is built. This consists of building a state table,

which is then used to create the transition matrix. Building the state table is

described in section 2.3.3.

3. 	 A library :file is created from the function table. This contains procedures that

allow the executable part of individual TeD files to be run. The result is a one

to one mapping between the library functions (in the chosen scripting language)

and those functions described by the TeD :files. In addition, the library file

contains supporting procedures.

4. 	 The tests are generated by taking a random walk though the transition matrix.

The walk starts in the "initial" state. This assumes that no variables are set. A

walk ends when it reaches the "end test" state. A walk between the "initial" and

the "end test" states is a single test. The functions called are written to the test

file generated. The test files are linear scripts that make calls into the TeD files.

5. 	 Generation is complete. A set of tests has been created ready to be run on the

SUT and the oracle system.

Chapter 2 Automated Testing Methodology 	 Page 78

d

Hazel Anne Shaw October 2005

Build Function
Output Tests Table

RandomAdd
Find, open Build walk ofcommand to Build state Write library
and parse transition matrix tofunction table file
TeO file matrix generatetable

tests

Figure 18 Breakdown of the generator

2.3.3 Calculating the States

At first calculating the states for the transition matrix appears trivial. However, it is

a crucial part of building the transition matrix. If this stage is completed poorly

then the tests generated may not include all functions that can be called.

Alternatively the resulting matrix could be inefficient with unnecessary states that

increase the length of tests without adding functionality to the tests. Worst of all, so

many states may be created, that the resulting transition matrix is huge. For

example, if the tests include a total of just 20 parameters, and the algorithm blindly

generates all combinations, the total number of states is:

2n -1 = 220 -1 =1 048 575 ,,

If these states are used to create the matrix, it will have the following number of

elements:

101210485752 = 1,099,509,530,625 ~

Chapter 2 Automated Testing Methodology Page 79

.. I,Y '" lilt)
~ ,
'11;. '

0, : :.. \;

"c. . ,

J
I

;;

Hazel Anne Shaw 	 October 2005

If each element in the matrix requires just 4 bytes (a considerable underestimate)

the resulting memory usage for such an algorithm would be in the order of

4 terra bytes. This can be mitigated by choosing a data structure that allows the

matrix to be represented in a sparse fashion, with only the elements that contain

functions actually having memory allocated. However, such an approach is still

wasteful, with excessively long tests being produced, or the generator taking too

long to walk the matrix to create the tests.

It is possible to reduce the number of states needed to a sensible minimum. This

can be done by combining variables and treating these combinations as single

entities. The variables are combined by examining how functions set or use them.

The matrix produced must contain states that allow all functions to be called (no

missing functions) and all states must be attainable (i.e. it must be possible to walk

to all the states in the Matrix via the other states of the Matrix). By developing an

algorithm to do this the Markov Chain Transition Matrix can be built automatically.

Different algorithms were tried, some of these are described in Appendix D. An

algorithm that checks the matrix generated has also been developed. This ensures

that every state within the Transition Matrix can actually be reached. It is described

in Appendix E.

Two of the algorithms are described below. Algorithm A has been used to generate

tests producing the results described in this thesis. However, upon implementing

the checking algorithm into Alltest, it became clear that all states in the matrix could

not be reached, though all the functions were being called. A second algorithm (B)

has been implemented into Alltest and used to generate tests. It produces a matrix

with no states that are unreachable. The result of these algorithms is a state table

that is used when creating the Markov Chain Transition Matrix.

Algorithm A

1. 	 Go through the functions and build a Variable Table (VT). The VT contains a

list of all output parameters and it is indexed on the output parameters. For each

Chapter 2 Automated Testing Methodology 	 Page 80

Hazel Anne Shaw 	 October 2005

function create a list of input and output parameters (in/out is treated as an

input). Each output has an entry in the variable table that is expanded with the

whole group of parameters from the function. For example if we have 4

functions with the following parameters A(out), A(inlout)B(out\ B(in)C(out>, C(in).

Then the VTwill be: A = {A}; B = {AB}; C= {BC}.

2. 	 For each ofthe functions, create a list of all parameters.

3. 	 Create combinations of these parameters for each function. For example

Func(A, B, C) will have the following state combinations: A, B, AB, C, AC,

BC, ABC.

4. 	 Use VT to expand the combinations. For example A=A, B=AB, AB=AB,

C=BC, AC=ABC, BC=ABC, BC=ABC. Removing duplicates gives: A, AB,

BC,ABC.

Building the transition matrix can be illustrated by using five example functions:

One (out x, inout Y)

Two (in X, out Z)

Three (out Y, out W)

Four (in W)

Five (in Y, in Z)

Step 1, build the VT:

IW=WY, X=XY, Y=WY, z=xz

Step 2, list the parameters for each function:

I XY, XZ, YW, W, YZ

Step 3, enumerate the combinations

I	
xy = {x, Y, XY}
xz = {x, z, xz}
YW = {Y, W, YW}

Chapter 2 Automated Testing Methodology 	 Page 81

Hazel Anne Shaw October 2005

Iw = {w}
YZ = {y, z, yz}

Summarising:

I x, y, XY, z, xz, w, WY, YZ

Step 4, expand with the values from the VT.

x = XY

Y = WY

XY = XYWY = WXY

Z '" xz

xz = XYXZ = xyz

w = WY

WY = WYWY = WY

YZ = WYXz = WXYX

Summarising this gives the states:

IXY, wy, WXY, xz, XYZ, WXYX

This produces the following matrix:

There are states available to call each function. Walking through the matrix using

the checking algorithm (see Appendix E) shows that every state can be achieved.

Chapter 2 Automated Testing Methodology Page 82

pr

Hazel Anne Shaw 	 October 2005

Algorithm B

This algorithm produces a useable matrix with the test input files described in

Chapter 3, section 3.3. It has been implemented, but its effectiveness for testing has

not been evaluated.

1. 	 Build the variable tree (VT). The variable tree is indexed using the variable

names. For each function, create a list of output parameters (inlout is treated as

an output) and add these to the variable list. The inlouts are distinguished from

the outputs, as the inJouts need further processing. For example if we have four

functions with the following parameters A (out), A(inJout)B(out\ BCin)C(out), C(in).

Then the VT will be: A = {A, Aio B}; B = {Aio B}; C= {C}.

2. 	 Expand inpuVoutputs with the outputs. Continuing the previous example, the

Aio need to be expanded. A = {A, Aio B} so everywhere Aio appears, this needs

to be replaced with A and Aio B. This is done once, with no further looping to

replace variables still marked as inpuVoutput. Duplicates are removed. The

example VT has now become: A = {A, AB}; B = {AB}, C = {C}

3. 	 For each function, list its variables as a set. Firstly list variables that are inputs

(including inpuVoutput). Then list all variables for each function as a set.

Continuing the previous example, this produces the following lists: (inputs) A,

B, C and (all) A, AB, Be, C.

4. 	 Expand the sets of variables with the variable tree. F or example, every time

variable A appears, it is replaced with A and AB. Remove duplicates.

Using the same example as before:

Step 1, build the VT:

Chapter 2 Automated Testing Methodology 	 Page 83

$

Hazel Anne Shaw October 2005

Step 2, Expand input/output parameters in the VT. Ensure self-expansions are

carried out prior to other expansions using that variable. F or example, Y is

expanded before X:

I w={WY}, X={WXY} , Y={WXY, WY}, z={z}

Step 3, create a list of variable sets from the functions

(in and in/out) (all)
one Y XY
Two X XZ
'I'hree YW
Four W W
Five YZ YZ

r;
Step 4, expand each with the values from the VT

I'~ . '

Y = WXY, WY
XY = WXY

X = WXY

xz = WXYZ

YW = WXY WY

W = WY

YZ = wxyz wyz

Then remove duplicates:

Iwxy, WY, wxyz, wyz

Producing the following matrix:

WXY wyz wxyz

0

WY one
WXY Unset
WYZ

wxyz Unset

Chapter 2 Automated Testing Methodology Page 84

J

J

Hazel Anne Shaw October 2005

2.4 THE EXECUTION PHASE

Once the tests have been generated, they are run twice: first on the oracle system

and then on the SUT. Before the tests are run on each system, it may be necessary

to edit the configuration file. Custom parameters can be defined whose values may

need to be different depending upon whether the test is run on the oracle system or

the SUT. This may be because the oracle does not implement some features in

quite the same way as the SUT.

The results from running each test are written to a separate file. The output

resulting from executing each TCD file is written to the file with markers delimiting

the output from each TCD file. The markers include the name of the TeD file,

which will be used for the comparison phase. The test results from the oracle

system and the SUT are written to different locations. These test outputs become

the inputs to the comparison stage.

A clean-up routine is executed between each test. This clean-up routine ensures

that a failure in an earlier test does not cascade and result in many, if not all,

subsequent tests failing. This cascade of failures will result in wasted test effort.

2.5 THE EVALUATION PHASE

The evaluation phase needs to handle the differences in output between the oracle

and the SUT. Some of the differences will be where there are bugs in the SUT.

However, AHtest concentrates on using an oracle that is already available.

Therefore the oracle is unlikely to be perfect. This imperfection of the oracle will

cause expected differences that need to be handled gracefully, while the unexpected

differences (which are likely to be bugs in the SUT) are flagged so they can be

rectified.

Various approaches to solve the problem of selectively ignoring or matching the

outputs from the two systems were investigated. One approach was to use regular

expression matching to indicate the parts of the test output that should match. This

Chapter 2 Automated Testing Methodology Page 85

ji

Hazel Anne Shaw October 2005

approach was discounted for two reasons. Firstly, regular expression matching is

very difficult to get right. Even experienced software engineers struggle with

regular expressions. Secondly, the exact output from the two systems was being

specified as regular expressions for each test written. This was moving away from

using the oracle system to check the results, and relying more on the regular

expressions. Details of this approach are in Appendix e.

A second approach was to use "Rules". A rule is a function that attempts to make a

specific change to the test output. A rule is successfully applied when it has

changed the test output. Alltest applies the specified rules until the output from the

SUT and oracle match or until all specified rules have been exhausted.

Initially tests were written by hand, and each rule was applied over the whole test

output. This was too coarse, which meant that important details were ignored

making it difficult to specify rules accurately enough. The decision was made to

describe the functionality of the SUT as small units (these were the "units of

functionality" described in section 2.1.1 and implemented as TeD files). The test

cases were then generated from these TeD files with each rule being applied only

over the output resulting from executing the TeD file. Figure 19 shows rules being

used for the evaluation.

The TeD file specifies which rules can be applied to the test output. This is

important as it prevents the use of rules which may allow a test to pass, when it

should fail. The rules to apply are specified with the "USERVLE" keyword within

the second section of the TeD file.

:~ ,~' :1
,"),

~'t J
~;10 ,, ,

Chapter 2 Automated Testing Methodology Page 86

1

Hazel Anne Shaw October 2005

Test

•

Execute 1eSt

System Under Orace rutputTest output

Col1l'are (22Ijj
Output I......I----I~

Figure 19 Using rules for the evaluation phase

Rules are implemented as functions in a scripting language. They can be defined in

special rule script files or within the TeD file itself. In total there are three levels of

rules that can be defmed. The top level rules are "global" rules. These are rules

that are supplied with Alltest as a fundamental set of rules. They may also be

developed by companies using Alltest if they were testing multiple products but

found some additional generic rules were useful. The second level rules are "shared

local" rules. These rules are applicable to any TeD file in the interface, and would

be written to allow testing of a particular product. Both "global" and "local shared"

rules are defmed within rule script files. Finally, there are "local" rules. These

apply to a particular TeD file, and are defined within the TeD file itself.

Rules have two types: line rules which are applied to a single line of output; and file

rules which are applied to the whole output for the specific TeD file. The name of

Chapter 2 Automated Testing Methodology Page 87

Hazel Anne Shaw October 2005

the function implementing the rule indicates both that it is a rule, and which type it

is. For example RULE_LINE_XYZ or RULE_FILE_XYZ, where XYZ is the unique

name for the rule. Other procedures in the files are ignored (they may be required

to implement the rules, but are not actually the rules themselves).

A successful application of a rule will occur when a change is made to the line or

file. However, it is up to the rule to correctly indicate this. Therefore, when

defining a rule, the rule must specify whether it was applied successfully (the file or

line was changed) or otherwise.

The comparator applies the rules m the order they appear in the TCD file.

However, all the possible line rules are applied before any file scope rules are

attempted.

2.6 IMPLEMENTATION

Alltest has been written using a range of different technologies. Section 2.6.1

discusses the choice of language used to implement tests and section 2.6.2 describes

how tests are produced.

2.6.1 Choosing a Language for Test Cases

When developing a test suite the programming language used to implement a test is

an important consideration. It is inappropriate to defme a new language when well

supported and documented languages already exist. Both scripting languages and

compiled languages may be appropriate. In Chapter 1 (section 1.5.3) three

questions were raised regarding language choice. These questions are answered

here.

Chapter 2 Automated Testing Methodology Page 88

Hazel Anne Shaw 	 October 2005

Is it better to write a test as a small executable program,

compiled from code, or should a test case be written in an

interpreted language?

It is best to use an interpreted language to write tests as scripts. However, there are

occasions when it may be necessary to use compiled code in a test.

An interpreted language avoids the overhead associated with compiling code prior

to running it. Removing the need for compilation makes tum-around of test scripts

much quicker, because a test can be written and run immediately without waiting

for compilation. In addition, there is no need for tests to be compiled to hide the

implementation of sensitive code (essential for commercially valuable applications).

Speed is also not an issue. An interpreted language is fast enough for executing a

test, but may not be fast enough for a released application.

Interpreted languages integrate very well with other components. They can act as

"glue" to bring functionality (both interpreted script and compiled binaries)

together. This makes them particularly useful for testing, as tests often need to

interface to many different parts of a system (for example, the command line, APIs

or specially written test interfaces).

What are the advantages and disadvantages of using an

interpreted language or a compiled language for implementing

the tests?

The advantages of using an interpreted language are:

• 	 implementation speed: it is much quicker to write and immediately run a

test if it does not need to be repeatedly compiled between every change.

• 	 low complexity: as a result of not needing to include a compiler in the

process when tests are being generated automatically.

~
'1 .. I

Chapter 2 Automated Testing Methodology 	 Page 89

Hazel Anne Shaw 	 October 2005

• 	 ease ofuse: it is often easier to write code in an interpreted language than

in a compiled language.

• 	 cross platform support and execution. Theoretically a script should run

unmodified on multiple operating systems as long as an interpreter is

available for the target operating system.

The disadvantages ofusing an interpreted language are:

• 	 execution speed: this is often slow. However, for testing it is often not

important that the tests run very quickly.

visibility of code. A script written in an interpreted language is readable

in any text editor. This may allow other people to see how the script

works. For testing this is not a problem as the script is unlikely to be seen

by anyone outside a particular company. In fact this could be considered

an advantage, as it is much quicker to see the exact code that is running

the test. There can sometimes be doubt that an executable program used

for testing is actually carrying out the same functionality as the code

which apparently implements it. This is because the code and the

executable can become separated. Multiple copies of the executable may

be available but these may not have proper versioning to link them to a

specific version of the code.

The advantages ofusing a compiled language are:

• 	 execution speed for areas where a small bit of functionality is used very

regularly. If during testing a particular function is used a lot it is probably

worth speeding up the execution time by implementing the functionality

in a compiled language.

• 	 interfacing into the low level functionality ofthe operating system.

Chapter 2 Automated Testing Methodology 	 Page 90

E

Hazel Anne Shaw 	 October 2005

The disadvantages of using a compiled language are:

• 	 cross platform support. The test will need recompiling before it can be

run on different platforms

• 	 relationship between code and executable. This can often be broken. It is

important to properly version compiled tests so that the code that

implements the test can be guaranteed to have resulted in the executable.

This adds overhead and can be difficult to achieve reliably.

Are there benefits to combining interpreted and compiled

languages when writing tests?

It is sometimes beneficial to be able to use compiled code to carry out some

activities. For example, some operations may be particularly time consuming if

they are written in an interpreted language. If testing carries out these operations

regularly it may be useful to write these operations in a language that can be

compiled to produce an executable or library. Alternatively some operations may

only be possible from compiled code (for example, access to low level operation

system commands, or to API functions to the SUT).

Therefore, there are occasions when combining interpreted and compiled code is

beneficial and sometimes essential. The choice of interpreted language may affect

how easy this is to do. For example, Tel can be extended by writing functions in C

that are made available to the interpreter through libraries. Within a script it is

impossible to tell whether a library function is being called from an interpreted or

compiled library.

Defining Test Cases in Alltest

The decision was taken to use an interpreted language to define the tests in Alltest.

Tel was chosen for a number of reasons. Firstly, Tel is a widely available scripting

language that is supported on Windows, Unix operating systems such as Linux, and

Chapter 2 Automated Testing Methodology 	 Page 91

Hazel Anne Shaw 	 October 2005

Macs. Secondly, Tel is extremely flexible. It can be easily extended to produce a

specialist interpreter or it can be directly embedded into other applications.

Libraries can be written in C or Tel allowing a developer to write functions for Tel

applications in the most appropriate language technology.

Alternative scripting languages include Perl and Python. These are both extremely

popular, especially within the Linux developer community. Table 6 provides a

summary of the strengths and weaknesses of the languages in relation to the

proposed use as a language to support a test suite. The features discussed are:

• 	 Language goal- the original focus of the language

• 	 How easy the language is to learn. The language needs to be easy to learn .

to avoid discouraging people from using the test suite. 	

,

• 	 How easy the language is to maintain. Maintenance of test scripts is a

significant problem. A language that allows programs to be easily

understood sometime after they were written will make maintenance

eaSIer.

• 	 How easy the language is to extend. The language chosen needs to be

extended with special functions written in C/C++ that enable interface

functions from the software being tested to be called from within scripts.

1# 	 How easy the language is to embed. The suite developed needs to call the

scripting language for the tests. The best way to do this is to embed the

interpreter into the test suite.

• 	 Platform support. It is important to select a scripting language that has

good cross-platform support. Using a language that works best on a

single platform will prevent the methodology being used on other

platforms.

Chapter 2 Automated Testing Methodology 	 Page 92

Hazel Anne Shaw October 2005

Perl is too Unix centric to be a good choice as a scripting language for a cross

platform test suite. Python is potentially a good choice, especially as the syntax has

a lightweight feeling. However, Tel was developed to be extendable and

embeddable (ideal for use in a test suite). In addition it has a wide user community

on Unix and Windows, which shows there is good cross-platform support.

Alltest has been written using a combination of C, Tel and LexIY acc. The

comparator and the rules written for the evaluation phase are in Tcl. Tel is also

used as the language to write the executable section of the TCD files. However, Tel

is not sufficient on its own for implementing Alltest. The TCD files need to specify

which rules are used during the evaluation phase and what are the inputs and

outputs to the TCD file. LEX and Y ACC have been used to implement a language

parser to process this information in the TeD files. Finally, C has also been used to

implement AlItest. In particular the algorithms used to create the Markov Chain

Transition Matrix and then walk the matrix are implemented using C.

Chapter 2 Automated Testing Methodology Page 93

----- - ----

Language Language goal How easy is it to
learn?

Tel Designed as an
embeddable and
extensible

Very easy if C is
already known.

genenc
language.

Perl Designed as a
text processing
language.

Easy if Sed and
Awk are known.

Python 	 General purpose Online
object oriented documentation
scripting and tutorials
language. available.

Appears to be a
straightforward
language to learn.

Table 6 Comparison of Tel, Perl and Python

How easy is it to
maintain?

Very easy with a
readable style.

Difficult as it has
a particularly
unreadable style.

Very readable.
Indentation
delimits statement
groups. Many see
this use of
indentation as a
serious weakness.

How easy is it to
extend (using
ctC++)?

Designed for this
purpose.

Adapted to allow
this.

Adapted to allow
this.

-_._

How easy is it to
embed (within
ctC++ programs)?

Designed for this
purpose.

Adapted to allow
this.

Adapted to allow
this.

-"

Platform support

Originally UNIX
but good user
community on
Windows.

Good UNIX
support.
Available on
Windows, but not
always reliable.

Good on UNIX.
Interpreter also
available for
Windows.

I

•

Hazel Anne Shaw October 2005

2.6.2 Producing the Test Cases

The generator produces two types of output: the test cases and a library file (see

Figure 16 page 77). These files are written in Tcl. The generated library file

contains a procedure for each TeD file, with the name of the procedure

corresponding to the name of the TeD file. Alltest provides a mechanism for

executing the tests without including the actual script from the executable part of

the TeD file in either the library or the generated test file. This is an abstraction

that means that Alltest does not need to understand the executable section of the

TeD files, as long as an interpreter is specified. This means that the executable part

of the TeD files could be written in any scripting language (such as Perl), though

Tel is currently the only language supported. However, Alltest has been optimised

to use an embedded Tcl interpreter so that it can directly run the executable part of

the TeD files without sending the script to an external interpreter. This

optimisation significantly reduces the time taken to run the tests. It is possible that

other scripting languages may allow the same optimisation to be made.

The test files that are generated use the procedure names from the library file to

execute the tests. Each of these procedures calls RunFunc (also in the library file),

to read the corresponding TCD file and actually execute the test through the

selected interpreter.

RunFunc is shown in Figure 20. It loads alltest.dll which allows a Tcl program to

use the same parsing abilities of the main Alltest executable to parse the executable

section of a TeD file. Alltest.dll contains the procedure At_execute, which is the

Tel entry point into the library. At_execute reads the text from the executable part

of the TCD file and runs it through a Tel interpreter.

Chapter 2 Automated Testing Methodology Page 95

,

a

Hazel Anne Shaw October 2005

proc RunFunc {filename funcname results args} {
load "C:\\alltest\\tests\\alltest.dll"
set cfgname "C: \ \alltest\\config. txt"
upvar $results res
set tcl "C:\\alltest\\interface"
set tcl [file join $tcl $filenarnel
puts "»> $filename BEGIN «<"
set execlist [list AT_execute $tcl $cfgname resl
set execlist [concat $execlist $argsl
if [catch {eval $execlist} tmpl {

puts "»> $filename EXECUTE FAILED «<"

puts $tmp

return 0

}

puts $tmp

puts "»> $filenarne END «<"

return 1

Figure 20 RunFunc procedure from the generated library

Figure 21 shows two procedures generated from the TCD files. Alltest

automatically creates these procedures, so it is not expected that they should be easy

to read.

The first procedure shown in Figure 21 is "NewDirName". It corresponds to the

TCD file NewDirName.tcd. This function has two parameters, FileName and

FileCount, both are inlout parameters. The first two lines in NewDirName handle

the parameters so that they will contain new values when this function returns.

(This is how Tcl handles by-reference parameters). The next line calls RunFunc,

with the name of the TeD file and the name and current values of the input

parameters. Finally, this function checks the result returned by RunFunc, and sets

the return values ofthe parameters.

The second procedure shown in Figure 21 is "movefile". It corresponds to the TeD

file movefile.tcd. In this case, both the parameters are inputs only. Therefore the

processing in movefile is much easier. It simply calls RunFlmc with the name of

the TeD file and the name and current values of the input parameters. There is no

other processing required.

The clean-up is also implemented in Tcl, allowing it to be run through a Tel

interpreter. It may be necessary in the future to expand Alltest to allow any

Chapter 2 Automated Testing Methodology Page 96

i, l "

~ 1 ,I
, , , ,
;;' ,

l

;1
il

II

Hazel Anne Shaw October 2005

executable to be run as the clean-up. If the clean-up cannot succeed for some

reason, it returns a failure that stops Alltest from executing any further tests. In

practice the failure of clean-up may indicate the presence of a bug in the SUT or

oracle.

proc NewDirName { FileName FileCount } {
upvar $FileName _GENFileNameNEG_
upvar $FileCount GENFileCountNEG
if [RunFunc "C:\\alltest\\interface\\NewDirNarne.tcd" "NewDirName" results \

FileName $_GENFileNameNEG_ FileCount $_GENFilecountNEG_] {
if [info exists results] {

upvar $FileName temp

set temp $results(FileNarne)

upvar $FileCount temp

set temp $results(FileCount)

proc movefile { FileName2 FileNarnel } {
if [RunFunc "C:\\alltest\\interface\\movefile.tcd" "movefile" results \

FileName2 $FileName2 FileNamel $FileNarnel] {

if [info exists results] {

}

Figure 21 Procedures in the library file linking the TeD files to the test scripts

2.7 MANAGEMENT OF THE TEST PROCESS

Automated software testing results in a large amount of data to manage. There is

the model that is used to produce the test cases, the tests that are created, the output

from running those tests (in Alltest's case this output is from both the oracle and the

SUT), the results from evaluating the output and any bugs that are found. This

section discusses the different ways this data can be managed, and how this affects

the creation, execution and evaluation of the test results.

2.7.1 Static and Dynamic Test Management

When managing the testing process in a static manner, each phase of generating the

tests, running the tests and evaluating the results, is carried out independently. The

processing is batched. This produces a static suite of tests that does not respond to

Chapter 2 Automated Testing Methodology Page 97

Hazel Anne Shaw 	 October 2005

potential feedback as a result of running the tests. Figure 22 shows the workflow

for a batched testing process.

Generate

Execute

"W '., 	 ~ :l

~ -j

Evaluate

Figure 22 Managing tests with batch processing

Dynamic test management handles a single test at a time. Each test is generated,

run and the test outcome is established. The results from running the test are then

fed back into the generation of the next test. Figure 23 shows the workflow for

dynamic test management.

Chapter 2 Automated Testing Methodology 	 Page 98

$

Hazel Anne Shaw October 2005

App~ critere
Gena-ate to guide

furthEJ 1estirg

Test

Execute Evalua1e

Test

Execution

Output

Figure 23 Managing tests using dynamic generation and execution

2.7.2 Management of the Test Data Repository

The test data repository is a database that contains test data, expected results and

actual results from running the tests. It needs the following features:

• available to everyone working on a development project.

• capable of managing the storage of test scripts.

• able to allow the selection of one or more of the tests to execute.

• capable ofstoring multiple test results.

• able to operate over a range ofplatforms.

One view of the Test Data Repository is as a central database or repository (for

example, in a configuration control system such as CVS). This view can be used

for the following discussion on managing the Test Data Repository.

Chapter 2 Automated Testing Methodology Page 99

Hazel Anne Shaw October 2005

There are four ways to manage the test process, depending upon whether the tests

are created statically or dynamically and if the expected results are generated at the

same time as the tests are run:

Option (1): fully dynamic management. Each test is generated one at a time. The

results from testing can be fed back to influence future test generation. The test

data is stored in the repository for future use. The expected results are generated

one at a time for each test. Figure 24 shows database access for a test suite using

dynamic management.

Figure 24 Test management for dynamic testing

Expected

Outcome

Feedl:eck 10
guide testing

Generate test
data for a
single test

Generate
expected

outcomefcr
test

Actual
Outcome

Execute lest

BJaluate

Results

Results

Chapter 2 Automated Testing Methodology Page 100

I

Hazel Anne Shaw October 2005

Option (2): basic static management. All the tests are generated in one go. Extra

tests can be created, but there is no feedback from the results to use when creating

more tests. The expected results are generated on the same system as that used for

running the tests. The expected results can be used repeatedly when re-running

tests, or they can be regenerated if required. The expected results are not stored in

the Test Data Repository. Figure 25 shows database access for a test suite which

uses basic static management.

Genera1e
Tests

Execute Test
Genera1e
Expected
Outcomes

Expected Actual
Outcomes Outcomes

Evalua1e
Results

Results

Figure 25 Test management using generated expected outcomes

Option (3): static management with stored expected results. All the tests are

generated in one go and stored in the Test Data Repository. The expected results

are generated and stored in the repository with the test data. The system running the

tests then uses these results when evaluating the actual test results. See Figure 26.

Chapter 2 Automated Testing Methodology Page 101

, ,.
,
'I

i!
Ii
i

Hazel Anne Shaw
October 2005

Generate
Tests

Generale
Expocted
Outcomes

Execute Test

Actual
Outcomes

Evaluate
Results

Results

Figure 26 Test management using stored expected outcomes

...

Option (4): static management with two sets of expected outcomes. All the tests

are generated in one go and stored in the Test Data Repository. A "Master" copy of

the expected results are generated and stored in the repository (this is basically the

same as option (3)). The system running the tests generates its own version of the

expected results, as for option (2). The expected results generated and the stored

master expected results can be compared. If there are any discrepancies these can

be flagged or automatically corrected. If there are any discrepancies during

evaluation of the test output, then the master versions stored in the database may

also be consulted. See Figure 27. This deals with the case where the host computer

system being used to run the tests may have a problem that prevents all the tests

from running properly. If the results from both the Oracle system and the SUT are

generated on the same host computer system, this problem may not be detected.

However, keeping master versions of test results requires more effort to maintain a

usable test suite. It would be much simpler to add a short test at the beginning of

each test run that confirms the host computer system is correctly configured and

working.

Page 102Chapter 2 Automated Testing Methodology

Hazel Anne Shaw October 2005

Execute Test

Actual
Outcomes

Evaluate

Genera1e
Tests

Collllare
generatoo am

master

Genera1e
Expa::ted
Outcomes

Expe::ted
Outcomes

expec1ed Resu~s

Resu~s

Figure 27 Test management using two sets of expected outcomes

The advantages and disadvantages of these approaches can be evaluated with

respect to four factors (time, confidence, flexibility and simplicity):

Time. The time taken to generate the expected results and run a complete set of

tests. Option (3) produces the best result in terms of time spent during testing,

because the expected results are generated just once, at the same time as the test

data.

Confidence. Option (4) allows full confidence in the results generated. Any

environmental issues are handled by creating a new set of expected results for the

current test configuration. The expected results can be checked against the master

results either prior to running the tests or if discrepancies arise while running the

tests.

Page 103Chapter 2 Automated Testing Methodology

Hazel Anne Shaw October 2005

Flexibility. Option (1), the dynamic method is the most flexible. It allows results

from executing one test, or the set of tests so far, to feedback and influence future

test generation.

Simplicity. Option (2) is the simplest. A new set of expected results is generated

for the system running the tests. These are then used, and re-used while running the

same set of tests on the SUT. There is no issue involved with the synchronisation

or re-synchronisation of test results in the test data repository if the set of tests is

added to or modified during maintenance.

Table 7 gives an indication of how the four approaches compare when assessed

against each of these four parameters. The overall column adds up the number of

stars for each of the four parameters to give a new star rating (0-3=8, 4-5=*,6
7=** and 8-12=***). As can be seen, option (4) performs extremely poorly

because of the time taken and the complexity of managing testing via this approach.

Options (2) and (3) perform about equally. The choice between them depends upon

whether simplicity is the overriding factor (in which case option (2) is the best) or if

confidence in the result comparison is the overriding factor (in which case (3) is the

best approach). There is always going to be a trade off between the different

factors. However, in many engineering environments simplicity is likely to be the

wmner. Mistakes are more likely to happen using a process that is excessively

complex.

Time Confidence Flexibility Simplicity Overall

Option 1 (7)** * *** * **
Option 2 ** * ** *** *** (8)

Option 3 *** * *** (8)** **
Option 4 • *** * • * (4)

Key: • Poor * * * Excellent * * Good *OK

Table 7 Comparing the different test management options

Page 104 Chapter 2 Automated Testing Methodology

Hazel Anne Shaw October 2005

A static approach to managing the testing process has been chosen for AlItest.

Tests are generated separately from the task of running the tests and evaluating the

results. This approach was chosen because batched processing of tests was a simple

option, especially as there was no requirement to feed results from the testing back

into the start of the process for a subsequent generation of tests. However, in the

future Alltest could be changed to allow dynamic test management. This would

facilitate research into test generation based upon previous test runs.

The test data repository of Alltest can be managed in any of the three static fomls

discussed in this section. However, during this research the test results have been

generated as required, so option (2) has been employed.

2.7.3 The Bug Tracking Database

Bugs that have been found need to be managed. This is usually done with a bug

tracking database. The bug tracking database is used to record the bug when it is

first found. As the bug is investigated and eventually fixed, the database is used to

track the bug's status. Bug tracking databases can be purchased off the shelf or can

be developed using a standard database application. The latter option allows the

database to be customised fully to the needs of the organisation, taking account of

workflow and procedures. It also allows the database to be integrated with other

applications used in development, such as the test suite and code versioning systems

such as CVS.

The author developed a bug tracking database for the team developing and

maintaining Manager. This was written using Lotus Notes and provided a solution

for over five years1. It was designed as a stand alone application and does not

integrate with any other development tools. Despite this, everyone developing,

1 The development team have now moved to using Bugzilla, an open source bug tracking system. One of the
primary reasons for this move was the continued resistance to using a system based upon Lotus Notes.
Another reason was the perceived time needed to maintain and develop an in-house solution to managing the
bugs.

Page 105Chapter 2 Automated Testing Methodology

___ __ _

,I
I
,
,

Hazel Anne Shaw October 2005

testing, maintaining and supporting Manager has used the Lotus Notes bug tracking

database for over five years.

A bug tracking database can be used to provide information on the types of bugs

discovered and whether there are common sources of these bugs (for example, the

same errors being repeatedly made in the code, or parts of the SUT, resulting in a

disproportionate number of bugs). To this end a bug taxonomy was added to the

database. The taxonomy was based upon IEEE Standard Classification for

Software Anomalies (IEEE 1994). This gives a classification scheme for bugs,

specifying mandatolY and optional fields. For example, one part of the

classification scheme is "Project Activity", which is broken down into nine

categories. Another part is "Project Phase" which is broken down into six

categories, most with at least four subcategories.

This IEEE standard is designed to be a general taxonomy applicable to any software

development organisation. However, developers using this Lotus Notes bug

tracking database struggled to use the taxonomy, frequently requiring guidance as to

the proper classification of bugs. A second problem was that the taxonomy

required the bug to be classified on a number of levels, resulting in a large number

of fields. This acted as a disincentive to complete the classification accurately. As

a result, though the taxonomy remained until Bugzilla replaced the database in

Spring 2003, bugs entered into the database were frequently left unclassified.

The author has a number of conclusions regarding the introduction of a taxonomy

into a bug tracking database. The first conclusion is that though a standard

taxonomy should be applied, it is important to modify the taxonomy to reflect the

terminology and processes used by the company. The second conclusion is that for

the taxonomy to be successful some effort must go into training developers and

testers to use the taxonomy properly. The enforcement of proper use of such a

taxonomy may prove to be a challenging management problem. The taxonomy

should also be very easy to fill in, with only a small number of fields. Finally, there

should be a clear benefit to the developers and testers to fill in these fields. For

Page lorChapter 2 Automated Testing Methodology

~--------- j:J\lli_R

Hazel Anne Shaw October 2005

example, completion of the taxonomy could be included as part of their

perfonnance metrics.

2.8 How TO USE ALLTEST

This chapter has described Alltest, explaining how it automates all three phases of

the software testing process. This section concludes the chapter by discussing how

Alltest is used in practice.

Once the Interface has been written and tested (see section 2.1.5) Alltest can be

used to test the SUT. Figure 28 is a flowchart showing the steps taken when using

Alltest. The fIrst action is to confIgure Alltest ready for generating tests. The

values that need setting are: markovyrobability_end_test,

markovyrobability_same_state and generator_num_tests. These values

control the flavour of the tests produced and how many tests are created. The charts

and equations in Chapter 3 show the effect of altering these parameters. In practice

markovyrobability_end_test should be set very low (less than 0.2) for tests of

any meaningful length to be generated.

Once Alltest is confIgured, the tests can be generated. If the generation is run a

number of times, then the tests already created are kept and the generation creates

additional tests. For example, if generator_num_tests is set to 100, and the

generation is run ten times, 1000 test fIles will be created. The generation is

different each time, so file 1 will not be the same as fIle 101, etc.

Once the tests have been generated, they are executed twice: once on the oracle and

once on the SUT. The confIguration fIle may need editing prior to each test run to

set custom parameters that may have different values for the SUT and oracle.

The next step is to run the evaluation. The confIguration fIle may need editing

again to ensure that parameters for the SUT and the oracle are specified correctly.

The tests are run on the oracle system and the results are saved into a directory. The

tests are then run on the SUT and the results saved into a different directory.

Chapter 2 Automated Testing Methodology Page 107

tl.• :

. " i

Hazel Anne Shaw October 2005

Finally, the tester needs to check the results of the comparison. A summary file is

produced: overall. log. This file lists every test and whether the test passed or

failed. It also includes a summary of the number of test results compared and the

total number that passed or failed. It contains no other detail. Next the tester looks

for tests that have failed and opens the appropriate test log (e.g. testO . log), and

searches for the word "FAILED". This will fmd any places where the comparison

failed to match the outputs from the SUT and the oracle system. The log file shows

the output from the SUT and oracle tests following the application of the rules. It

may be necessary to open the corresponding SUT and oracle output files and fmd

the matching segment to see what the original output from the tests was before the

application of the rules.

At this point there are two possibilities. The first is that a real problem has been

found and needs investigation. The second possibility is that the rules have not

been successful in ignoring output that should be considered identical. At this point

testing moves into a debugging phase, either on the interface or on the SUT.

Page 108Chapter 2 Automated Testing Methodology

Hazel Anne Shaw 	 October 2005

Edit the config file setting the correct values for:
rnarkov-probability end test
rnarkov-probability=sam;_state

\
"

generator_num_tests 	 \
\
\
\ Configuration file:

config. txt,,
I
1
I

,IGenerate the tests by running:
all test g <base directory>

t 	 ---------""
,

\
\
\

Generated test files
Execute tests on oracle system by running: Interface:and library in Tcl
alltest r <base directory> consisting of

1
I t multiple TCD files .

\'... /
\

\\
\

......... _-----;" 	 I,•
------_ \"'-,. --r------------.....L----------. ,/1,
__ 1, 	>-"'.; "
"
,

/,,/ Execute tests on SUT by running: __ -- I,
./ --- alltest r <base directory> I

I/ 	 , ,I 	 t 1
1I

I 	 ,f --------	 1
f
I
I
I

I

f
I

oracle system SUT 	 I

Test output from the Test output from the 	
I

I

I

,I "
-----'~-- ... -	 ,

I

,I ,
Compare the test outputs by running: /

...... ,;/
<Oracle log dir>
alltest c <base directory> <SUT log dir>

t

Is testingTest results from
the oracle system Check the results of the tests complete'?

Testing is complete

* Checks for completeness of testing include:
1. 	 Have the tests produced adequate coverage? This may be code coverage of the SUT, code

coverage of the oracle or coverage of states in the transition matrix.
2. 	 Are more tests required that are longer, shorter, or have more or less depth
3. 	 Were any failures found in the SUT, and as a consequence is further testing or re-testing

required?
t These commands launch the automated testing processes

Figure 28 Using Alltest to generate and execute tests, and check results

Page 109Chapter 2 Automated Testing Methodology

------------~~ ~ ~----

CHAPTER 3 EVALUATION AND DISCUSSION

This chapter presents the experimental design, execution and results from the

experiment and a discussion of those results.

3.1 EXPERIMENTAL DESIGN

In order to test the methodology three pieces of software are required. The first

piece of software implements the methodology. This is Alltest and it has been

I
I

described in full in Chapter 2. The second piece of software is the System Under

Test (SUT). Existing commercial software, called Manager, has been selected as "

I the SUT, and is described below. Finally an oracle system is needed. NTFS has

I been chosen as the oracle, and is described in section 3.1.2.

,
3.1.1 Manager

Manager is complex commercial systems software that controls optical data storage

libraries. Manager controls the library changer, which is the robot in the library that

moves disks from storage slots into drives. Once a disk is in a drive, Manager

writes data to, or reads data from, the disk. Manager includes file systems, a

number of device drivers, a process to control the changer in the library, a database

to store the directory structure of the disks in the library, a graphical user interface

(GUI) and an Application Program Interface (API). Manager is written in 'C' and

consists of over 300,000 lines of code, excluding the GUI. Hence Alltest was run

against a substantial piece of software. Manager's file system functionality has

been targeted for this experiment. This does not use the GUI or the API (except for I, test set-up). However, it does exercise most of the threads and device drivers

, described in the next two paragraphs.

t, The main Manager executable consists of the following threads: Main process (this ,
creates all other processes at start-up); one Changer process for each changer (i.e.

jukebox or library) being controlled by Manager; one Drive process for each drive

I Page 110

I,
l

---------- ..II!II.ilIi!!\1!\:<[_~-

Hazel Anne Shaw October 2005

being controlled; Timer process and Watchdog process. The Main process includes

the process queue, which performs the queuing and scheduling of tasks that

Manager is servicing.

There are also four device drivers running in the kernel: COMS, PFS, SCSI and

BUFFERS. COMS provides inter-process communication between the different

threads and other processes. PFS is a file system driver. This interacts closely with

the operating system to provide a single drive letter to access the library. SCSI is a

storage class driver that claims SCSI devices for Manager to control. BUFFERS

provides a mechanism for transferring data between PFS (in the kernel) and the

drive process (in user land).

Manager is complex because of the number of interacting components, and because

it interacts with low-level operating system services. Its complexity and the fact

that it is commercial, make it an ideal candidate as a test bed for evaluating a novel

testing methodology.

Manager's file systems have undergone a great deal of manual testing and have

been used for many years by customers. Manager supports three file system

formats for reading and writing data: Plasmon, UDF (Universal Disk Format) and

AFS (Archive File System). Of the three formats Plasmon is the oldest, and AFS is

the newest. Plasmon is an early implementation of the BCMA 167 standard. This

standard is the predecessor of the UDF standard. AFS is a proprietary file system

that implements WORM behaviour on all disks. The file system tested was

"Plasmon" .

3.1.2 NTFS

In order to test the file system behaviour an oracle was needed that performed

similar functionality. In this case there are many possible oracles to choose from.

Manager's file systems should appear just like a native file system to any

Page 111Chapter 3 Evaluation and Discussion

-----------_.' ...,,

Hazel Anne Shaw October 2005

application that uses them, so NTFS, a file system on Windows 2000, has been

chosen as the oracle.

3.2 CHECKING ALLTEST

Alltest has been thoroughly tested during its development. Unit testing, module

testing and system testing have all been carried out to ensure that Alltest is reliable

software. However, additional heuristic checks can be carried out to confirm that

AlItest generates tests as expected. These additional checks are explained in this

chapter.

The generator uses two parameters to alter the type of tests it generates. These

parameters are:

1. The probability of ending the test

2. The probability of staying in the same state

Some statistics gathering code has been added to the generator. This allows the

capture of data to enable the examination of the effect of altering the probabilities of

ending the test and of staying in the same state. The statistics code assumes that

any TeD files that set an output are "Initialisation" calls, and any TeD files that

only have inputs are "Action" calls. For the set of TeD files created to test

Manager these assumptions are true.

F or each point, 1000 tests were generated and the statistics noted from these.

Appendix F shows the values used to generate the tests, and the mean and standard

deviations of the numbers of transitions and types of transitions in each test

generated.

An estimate for the average length of a test, which is the number of transitions (t),

can be calculated where p = probability of ending the test on this transition.

Page 112 Chapter 3 Evaluation and Discussion

· ;
Hazel Anne Shaw October 2005

1
t=

P

The calculation is in Appendix G.

The graph in Figure 29 shows the effect of changing the probability of ending the

test on the actual test length. For clarity the graph is plotted logarithmically. No

other properties (such as number of change states) are shown. This is because the

probability of ending a test has a very strong influence on the test length, so that

when the probability is 0.15 or above, the tests are all so short as to be meaningless.

The line shown on the graph is t = p-l.

Figure 30 shows the result of varying the probability of staying in the same state

(q). The equations for the lines shown on Figure 30 are:

Number of transitions (t) t== 1000

Transitions that remain in the same state (s) s== 1000q

Transitions that cause a change in state (c) c == (I-q)IOOO

The average number of transactions (t) is t = p-l (as above). For the set of tests

generated p is set to 0.001. Therefore t = 1000 for all these tests.

The values of t, s, and c, are related such that t == s + c. s is directly proportional to

q, and c is inversely proportional to q giving the equations s = 1000q and

c = (l-q)IOOO. These equations are plotted on Figure 30, showing a good fit

between these lines and the generated data points.

Trend lines are not plotted for the other three sets of data ("action" calls (a),

"initialisation" calls (i) and ''unset'' calls (u». This is because their trend lines are

dependent on the number and types of TeD files in the interface. However, the

probability of staying in the same state does influence the number of "action" and

Page 113 Chapter 3 Evaluation and Discussion

Hazel Anne Shaw October 2005

"initialisation" calls made, and have an inverse relationship with the number of

"unset" calls made. The values of t, a, i, and u are related such that t = a + i + u.

In Figure 29 and Figure 30, the calculated lines plotted against the recorded values

show a good fit. This gives confidence that Alltest is creating and traversing the

Markov Chain Transition Matrix correctly when the tests are generated.

Page 114 Chapter 3 Evaluation and Discussion

-------------~y~

••

Hazel Anne Shaw October 2005

"initialisation" calls made, and have an inverse relationship with the number of

"unset" calls made. The values of t, a, i, and u are related such that t = a + i + u.

In Figure 29 and Figure 30, the calculated lines plotted against the recorded values

show a good fit. This gives confidence that Alltest is creating and traversing the

Markov Chain Transition Matrix correctly when the tests are generated.

Page 114Chapter 3 Evaluation and Discussion

-

1If''''l'T';-@tN .' Ilii ".,•• "'$ "W"<'M_ •••.•,'~.~18i;:¥*ti;i8it&!P}.\'td!!I;;;',~!.1~~~.4~",\1JlI§s~~.t_~~dl:f"~_~.~_~~~';;:.Iftg".i'~~'~~l8'{.N""w/,«o,_. :;;:.. <"',~ .'4""'-"",,,,-»,

Average transitions per test

10000 1

en 1000

c::

0

:0=
'00
s::
~ ..-0 100 1\ [• transitjon~

....
Q)
.0
E
::J
c::
Q)
0> 10CC!....

>

<t:
Q)

1 I , "==: : : ~ -, .•!
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of ending the test (from current state)

Figure 29 Effect of varying tbe probability of ending the test

Average transitions per test

•
I • ••.•. , •••• • • I

1000 I ,... • •• /it" _ A ' ~
, w w/~ /"// b

"'"~ 4,$

',,"'-..... /./"

(/) A "......,... iIo AI. ,'"~~ 6 ~~~ t::.c: 800 • transitionso - ./"
''':; ~''-__ ,c/" t::. A

)!(same states'en '''_ ia ;'~/ If 6.c "-- ~.... 6.
ro __ A / ~ ~ tl change states
...... '

b. l:l:- III t::. .,,,,/~ o action calls'0 600 6. A ~ Ii;;. /,;, .;"

~"::v,,/ IA
..... t::. A A init callsA /-,,~, .ID II'" l:l. Aff' ;t:.~,.0 <~ ~":---.....~ I!j, unset calls

E e ~~
"

-,,_ l.
::l 400 * F ~-C //"~, ..~~ ,j. o o o
Q) /' ~,~' 0
g> ~..-' ";, 0 -Q",
..... .,-_'" ,'" Q'~ Ji&A:/f~ '. 0 lj~; ~"'- ~Q)

200 ~/x> 0 0 -.~~ ... /' "I(.. 0 0 tiI.l' -",-f!;~ 0 O~· 0~~' 0 0 ~~ r-"'~ 0 ' ~'~'-.o ~,O • ---,----'-----r -----,---,--""..."
10.8 0.9

0.3 0.4 0.5 0.6 0.70.20.1

Probability of staying in the same state

o

Figure 30 Effect of varying the probability of staying in the same state

-

--

Hazel Anne Shaw October 2005

3.3 	DESCRIPTION OF THE EXPERIMENT

The experiment using Alltest to test Manager against NTFS has been to establish

the effectiveness of the methodology and the amount of effort required to use the

methodology. The methodology must be shown to be cost effective, hence the time

taken to develop the interface is important. An interface has been written and

various data recorded:

• 	 The time taken to write interface files (TeD files including rules for the

comparison).

• 	 The bugs found by testing Manager with Alltest.

• 	 The time taken to run sets of tests and to compare the results.

The person who wrote the interface was the author of this thesis. She is an

experienced programmer, with more than eight years commercial experience of C,

and a number of years experience of C++, Delphi, Pascal and Tcl. This should be

taken into account when considering how much effort a tester or less experienced

programmer would need to apply when using Alltest.

The interface contains 19 TCD files (see Table 8). Each TCD file contains a Unit

of Functionality (UOF). The table shows that there are 10 files used for initialising

parameters, and 9 files that actually carry out actions during tests. In the table,

''Num Lines" specifies the total number of lines in the TeD file, including blank.

lines and comments. "Num Rules" specifies the number of rules created

specifically to test Manager and does not include global rules written for the Alltest

suite.

The generator produces a transition matrix automatically using these TeD files.

Seven parameters are initialised in the TeD files. However, FileName is needed

twice, which gives eight parameters. The resulting matrix has 20 states and is

shown in Appendix A.

Chapter 3 Evaluation and Discussion 	 Page 117

Hazel Anne Shaw October 2005

Initialisation Files

Filename Function prototype Num Num
Lines Rules

BaseDir.tcd BaseDir(out string FileName, in string 46 0
TestVol, inout integer FileCount)

InitialiseCount. tcd InitialiseCount(out integer 24 0
InvFileCount, out integer FileCount)

, InitialiseDelParam. tcd InitialiseDelParam(out integer 15 0

j
DelParams)

lnitialiseSubDir.tcd InitialiseSubDir(out integer SubDir) 15 0
NewDirName.tcd NewDirName(inout string FileName, 121 0

inout integer FileCount)
NewShortName.tcd N ewShortN ame(out string 28 0

ShortFileName, in string FileName)
NewWildcardName.tcd NewWildcardName(inout string 90 0

FileName, inout integer FileCount)
SetDelParams. tcd SetDelParams(inout integer 15 0

DelParams)
SetSubDir.tcd SetSubDir(inout integer SubDir) 24 0
testvolume. ted testvolume(out string TestVol) 24 0

Action files

Filename Function prototype Num Num
Lines Rules

eopyfile.tcd copyfile(in string FileName2, in string 26 0
FileName1)

de1.tcd del(in integer DelParams, in string 106 0
FileName)

listdir basic. tcd Listdir basie(in string FileName) 46 1
mkdir.tcd Mkdir(in string FileName) 44 0
mkfile.tcd Mkfile(in string FileName) 49 0
movefile. tcd movefile(in string FileN ame2, in 285 1

strinAFileNamel)
readfile. tcd readfile(in string FileName) 40 0
renamefile. ted renamefile(in string ShortFileName, 124 1

in string FileName)
rrndir.tcd rrndir(in integer SubDir, in string 46 0

FileName)
Table 8 Interface files written to evaluate A1ltest

Chapter 3 Evaluation and Discussion Page 118

I

-
Hazel Anne Shaw October 2005

3.4 EXPERIMENT AND RESULTS

This section gives a stage-by-stage account of the creation of the TCD files and

rules needed to test Manager's file system. It examines the effort taken and the

bugs found. Ten bugs were found despite Manager being mature and thoroughly

tested software. Of these bugs, seven of them were ranked with a severity of high

or very high. The timings show that only modest programmer effort was needed.

'While Alltest was being implemented, nine TCD files were created (see Table 10).

These files do not form part of the effort-experiment. With these nine interface files

a total of four bugs were recorded:

Bug 1 error codes returned from the SUT do not match those from the oracle.

Bug 2 rd Is Iq fails to remove files with very long names.

Bug 3 mkdir fails to make intermediate directories.

Bug 4 mef_open hangs when stand-alone drive is mapped across a network.

~
For the effort-experiment a further ten interface files and additional rules were

written and the time to develop them recorded. Table 11 shows these TCD files and II.•..••,·.....•. rules. The following gives a stage-by-stage summary of the effort-experiment and
. , the bugs found in Manager.

Stage 1 Create TCD files and rules to handle renaming files, moving files and

directory listings. Following creation of the TCD files and rules, ten tests were

generated and run and seven tests failed. An additional line was added to

ListDir_Basic.tcd to USERULE LINE FAYAILURE_MESSAGE. This resolved

six of the failures. The final failure was a bug in Manager (bug 5).

With these four additional interface files the following bugs were found:

Bug 5 creating a new file failed.

Chapter 3 Evaluation and Discussion Page 119

-

Hazel Anne Shaw October 2005

Bug 6 rename file over itself has different result on SUT.

Bug 7 net use / d hangs.

Bug 8 move directory fails with "access is denied".

Stage 2 Rule added to ignore failure caused by bug 6.

Stage 3 Rule added to handle move failures that are reported over multiple lines.

Stage 4 TeD files added to handle removing a directory (rrndir). Initially included

subdir specification within the test itself. However, it became apparent that the

subdir specification should be an input parameter into rmdir. This required the

creation of S etSubDir. ted and the addition ofInitialiseSubDir.tcd.

Stage 5 Add rule to handle case when move fails for both SUT and oracle.

Stage 6 TeD files added to handle deleting a file. The command line function

delete has a large range of parameters: Ip (prompt, not relevant for automated

testing), IF (force deletion of read only files), Is (recursive deletion through sub

directories), IQ (quiet, opposite of Ip and always set for the automated test), IA

(attributes: R read-only file, s system file, H hidden file, A file with archive flag set.

If the attribute is prefixed with - this means "not".) In order to set these parameters

the easiest option was to use bit setting and checking; and have only one parameter

as an input to deLtcd.

After the six interface files were added at Stage 4 and Stage 6, the following bugs

were found:

Bug 9 renaming files produces empty file.

Bug 10 rename file21 *1.* has different message on SUT.

Chapter 3 Evaluation and Discussion Page 120

Hazel Anne Shaw 	 October 2005

In total ten bugs were found within Manager. Table 9 shows the number of bugs

found at each severity rating. Full descriptions of these bugs are in Appendix B.

Severity Description Number
Very High Causes corruption to data 1
High Failure of feature which will impact upon customers 6
Medium Failure of feature which can be simply worked around 1
Low Problem with data/text output 2

Table 9 Number of bugs found listed by severity

TeD filename File type Description

BaseDir.tcd Initialisation Creates a filename, including drive letter.

E.g. x:\Filel.
CopyFile.tcd Action 	 Given two filenames, calls the command

line function to copy the first filename to
the second filename.

InitialiseCount. tcd Initialisation 	 Initialises the FileCount and InvFileCount
parameters. These parameters are used as
inputs to other TCD files.

MkDir.tcd Action Calls the mkdir command line function.
MkFile.tcd Action Creates a file of the specified name and

writes a small amount of data to the file.
NewDirName.tcd Initialisation 	 Given an input filename (for example, the

output from BaseDir.tcd) this creates a
filename. The filename may include both
valid and invalid characters, may be long
or short and mayor may not include an
extension.

NewWildCardName.tcd Initialisation 	 Given an input filename (for example, the
output from BaseDir.tcd) this creates a
filename containing wildcard characters.

ReadFile.tcd 	 Action Opens a specified file and reads some data
from it.

TestVolume.tcd Initialisation Obtains the test volume (drive letter) from
the main configuration file.

Table 10 TeD fIles created during the development of Alltest

Chapter 3 Evaluation and Discussion 	 Page 121

I

- -

Stage TeD fIle or Rule name or Change
1 RenameFile.tcd

MoveFile.tcd

ListDirBasic.tcd

NewShortName.tcd

RULE LINE IGNORE DATES

RULE LINE IGNORE BLANKS

RULE LINE IGNORE VOLUME

RULE FILE RENAME IGNORE SELF2 - -

RULE_FILE_MOVE_IGNORE_BOTH_FAIL3

Table 11 TeD files and rules added

File type
Action
Action
Action
Initialisation

Rule

Rule
Rule
Rule

Rule

Description

Call the command line function to rename a file.

Call the command line function to move a file.

CaIIY out a directory listing using the "dir" command.

RenameFile.tcd requires a filename without any path. This TCD

file takes a filename with a path and removes the path except for

the last element.

Ignores dates, as these are only valid if files are created at exactly

the same time. Uses regular expression matching which is

difficult - hence the time taken to complete rule

Ignores blanks.

Ignores the volume.

Added to RenameFile.tcd. This rule uses regular expression

matching, which is difficult to get right. Initially this took I hour

32 minutes to write. However, the file needed to be adjusted to

handle the full path correctly, adding 40 minutes to the

development time.

Some move failures are reported over two lines, but the existing .

failure handling rule only deals with failures over one line. This

rule handles move failures over two lines.

-- -_._._

----------- ----

~ 	 ~~~~~~~~~~~~~~~~~".ldIi"_~"~~"""""""·~T___",,_,-__ 	 __

Sta2e Teo fIle or Rule name or Change FileJy])e Descril!.tion

4 rmdir.ted Action Calls the command line function to remove a directory.

Add subdir extension to rmdir. ted Action Handle removing sub directories
SetSubDir.ted 	 Initialisation Rework subdir into a separate file, and change rrndir.tcd to handle

this additional input
InisialiseSubDir.ted Initialisation
Change rmdir. ted Action Modify rrndir. tcd to print out the value of the subdir parameter
RULE FAIL MOVE IGNORE BOTH FAIL5 - - -- Rule 	 Handle move failing on both oracle and SUT but with a different

message
Del.ted6 Action 	 Implements del command line function. One of the inputs is a

bitmap to specify the parameters for the del command.
InitialiseDelParam.ted Initialisation Initialise the parameter bitmap
SetDelParams.ted Initialisation Randomly set the parameter bitmap

Table 11 TeD Files and rules created (continued)

• •

Hazel Anne Shaw October 2005

The time taken to write the whole interface can be estimated by extrapolating the

timings that have been recorded. Lines of code (LaC) is the measure that has been

used as the basis for the extrapolation. LOe is not a very good measure of program

complexity. However, for the program files being examined, it is a consistent

measure. Other measures that could be used as a basis for an extrapolation are, the

number of parameters in the TeD file or the number of rules used. Number of

parameters may map onto Function Point Analysis (Symons 1991), and may be

worth exploring for future estimates. However, the code in the TeD files takes the

majority of the time to write, therefore it is sensible to use the code as the basis for

extrapolating the time taken to write the TeD files. The code in the TeD files is

written in Tel, which has a consistent style. For example, an WeIse statement is

always written as shown in Figure 31. This means that an WeIse statement

(regardless of the tests to be executed, and excluding the statements to be executed)

will always cover 3 lines. This is different from e, for example, where different

coding styles result in very different line counts.

Table 12 shows each TeD interface file created, with a breakdown of its

characteristics, including the time taken (estimated or recorded) to write the file.

"Num lines" is the number of lines of code in the given procedure. It includes

comment lines, together with those lines before the procedure that describe it. It

excludes blank lines. "Initial comment lines" is the number of lines of comment at

the top of the TeD file. "Total time taken" is rounded up to the next whole minute.

Times given in brackets are estimated. Procedures called "main" are the executable

lines in the TeD file that are not actually part of a procedure. Table 13 shows the

same information for each rule written.

if [a_test} {

statements to execute

} else {

#statements to execute

}

Figure 31 Code showing example "if I else" statement in Tel

Page 124 Chapter 3 Evaluation and Discussion

Hazel Anne Shaw October 2005

For the TCD files where timings were recorded:

• 1291ines (including comments, but excluding blank lines)

• 143 minutes (2 hours 23 minutes)

Extrapolating to all TCD files:

• 464 lines (including comments, but excluding blank lines)

• 514 minutes (8 hours 34 minutes)

For the rules where timings were recorded:

• 240 lines

• 282 minutes (4 hours 42 minutes)

Extrapolating to all rules:

• 552 lines

• 649 minutes (10 hours 49 minutes)

In total 19 hours 23 minutes were used to write the interface. Which IS

approximately equivalent to three working days.

Page 125 Chapter 3 Evaluation and Discussion

------------------.................~

- -

20

~"'~"'1"P""M""'T"'-U-'_:~>~'_?,r,"1!'41ri""'~;_;"'>'''';'''':~7~~","t'.·1IIliI;P_'T.<-.~,'l'

File Type initialisation Num Parameters Num Rules Initial Procedures Num Total Total

lor action Inputs Outputs Inlout Used comment lines lines lines Time Taken

BaseDir.tcd initialisation 1 1 1 2 1 (22 minutes)
Imain 19

CopyFile.tcd action 2 0 0 4 1 4
(4 minutes)

main 3

InitialiseCount. tcd initialisation 0 2 0 0 4 8
(9 minutes)

lQ1ain 4

MkDir.tcd action 1 0 0 3 1 22
I

(24 minutes)
main 21

MkFile.tcd action 1 0 0 4 1 15
(17 minutes)

~ain 14
:N"ewDirName.tcd initialisation 0 0 2 2 1 94

(104 minutes)
main 93

NewWildCardName.tcd initialisation 0 0 2 2 1 59
(65 minutes)

main 58

ReadFile.tcd action 1 0 0 4 1 14

(16 minutes)
lnain 13

TestVolume. ted initialisation 0 1 0 2 2 6

(7 minutes)

nam 4
Table 12 Breakdown of the characteristics of the TeD interface files

I

_ .. -

File 	 Type initialisation Num Parameters NumRules Initial Procedures Num Total Total

~r action Inputs Outputs In/out Used comment lines lines lines ~imeTaken

MoveFile.tcd (version 2) action 2 0 0 3 1 93

MoveFile 5

TSValidN arne 12

(103 minutes)
CheckStatus 33

lMoveDirectory 22

! main 20

ListDir Basic.ted 	 action 1 0 0 7 1 4

6 minutes
main 3

iMoveFile.tcd action 2 0 0 3 1 5

4 minutes

main 4

RenameFile.tcd action 2 0 0 3 1 4

6 minutes
Imain 3

NewShortName.tcd 	 initialisation 1 1
 0 2 1 	 5

4 minutes

main 4

RmDir.tcd 	 action 2 0 0 3 7 	 16

7 minutes
main 9

SetSubDir.tcd 	 initialisation 0 0 1 0 1
 11
 10 minutes
main 10

lnitialiseSubDir.tcd 	 initialisation 0 1 0 0 2 	 4
 1 minute
main

Table 12 Breakdown of the characteristics of the TeD interface files (continued 1)

I

2

File Type initialisation Num Parameters NumRules Initial Procedures Num Total Total
br action Inputs Outputs Infout Used comment lines lines lines ~imeTaken

Del.ted action 2 0 0 3 20 73
main 53

InitialiseDelParam. tcd initialisation 0 1 0 0 2 4
105 minutes

main 2
SetDelParams. ted initialisation 0 0 1 0 1 3

main 2

Table 12 Breakdown of the characteristics ofthe TeD interface files (continued 2)

Associated Procedures File

ListDir Basic. ted
Rules\Lines.tc1

Rules\Lines. tel

MoveFile.tcd
helper move replace MoveFile.tcd
helper rule ignore single check MoveFile.tcd

RenameFile.tcd
helper rename replace RenameFile. tcd

MoveFile.tcd
helper move replace MoveFile.tcd
helper rule ignore single check MoveFile.tcd

Rules\Lines.tel
Rules\Lines.tcI

subpaths native Rules\Lines. tel
subpaths tel Rules\Lines. tel
subpaths vol letter Rules\Lines. tel

Rules\Lines. tel
Rules\FileSys. tel

Rules\FileSys.tel
Rules\rearrange.tel

Rules\rearrange. tel
helper remove blank Rules\rearrange.tel

Initial
Comment
Lines

7

1

Num lines

14
17

35

41
9
36

80
8
4 added = 45
unchanged
39 added = 75
5
37
16
11
25
55

18

28
35

9
22

Total Time
Taken

25 minutes

35 minutes

90 minutes

132 minutes

(51 minutes)

if6 minutes)

(113 minutes)

(65 minutes)
(21 minutes)

(33 minutes)

(41 minutes)
(11 minutes)
(26 minutes)

Rule name

RULE LINE
RULE LINE

RULE LINE

RULE FILE

RULE FILE

RULE FILE
extended version

IGNORE VOLUME
IGNORE BLANKS

IGNORE DATES

MOVE IGNORE BOTH FAIL

RENAME IGNORE SELF

MOVE IGNORE BOTH FAIL

RULE LINE

RULE LINE

RULE LINE
RULE LINE

RULE LINE

RULE FILE
RULE FILE

NOCASE
SUB PATHS

IGNORE NUMBERS
FS IGNORE FILEID
FS FAILURE MESSAGE
REARRANGE
REMOVE BLANK LINES

Table 13 Breakdown ofthe characteristics of rules

Hazel Anne Shaw October 2005

3.5 EFFORT

Ten bugs were found with an interface that took an estimated nineteen and a half

hours to write. Therefore each bug took nearly two hours effort to find. Effort

spent isolating the bugs, finding further infonnation and ensuring that the bugs can

be repeated is not included in the time to find each bug. Such time would be

required whatever method was used to find the bug, as it is an essential part of the

test/debug/fix process. However, automation does help in establishing whether a

test failure is repeatable. For example a test run can be repeated. Analysing the

outcomes from the repeated test run against the previous outcomes will establish

whether the failure occurred in exactly the same way each time (for example bug 3,

the mkdir bug) or whether the same failure occurred in different places (for example

bug 5, the file creation bug). This is the first step in isolating the bug, and takes

very little additional manual effort for the tester.

However, considerable computer time is needed. For example, it took over fifteen

hours (unattended) to run 300 tests against Manager. The time taken is the result of

Manager's performance. The same tests on NTFS only took a few minutes.

Manager's performance is much better when it is driving a jukebox instead of a

stand-alone drive. This is because Manager's architecture is slightly different when

controlling a jukebox. A database is used and there is much more caching, enabling

much a better write performance. The PC used to run Manager was quite old and

slow, which also impacted upon the time taken.

The comparison of the results from the 300 tests took nearly 2 hours of computer

time. The slowness of the comparison is due to the method used to implement it.

No time has been spent during the development of Alltest to optimise the

comparison. It should be possible to make very significant improvements to the

time taken for comparisons.

Analysis of the comparison results is done manually. However, time need only be

spent on the tests that have been flagged as failed. The tester needs to establish

Page 130Chapter 3 Evaluation and Discussion

Hazel Anne Shaw October 2005

whether a failure is a real bug or is an acceptable difference, in which case the rules

may need updating to compensate. If a real bug has been found the tester may wish

to spend further time analysing the issue to manually reproduce the problem, or

reduce the steps needed in the test to the minimum required to reproduce the issue.

They may also choose to re-run a set of tests on the SUT to establish if the problem

seen is random or reproducible. Time freed up from writing and executing tests

means a tester will have more time to investigate issues and the development team

will benefit by receiving better bug descriptions.

3.6 EFFECTIVENESS

At the start of this research project a bug-tracking database was developed. This

was used to record all bugs found in Manager by the customer and by existing in

house testing. None of the bugs found by Alltest had been previously recorded in

the bug-tracking database. This implies that the bugs had not been found through

conventional means by the software development or test teams. This is a surprising

result. Manager is mature software, which has undergone many hours of manual

testing and is used by many customers.

Of the bugs found one of them was very surprising (bug 8, the move directory bug).

Manager has undergone thorough manual testing and many years of use by various

customers. Yet, Alltest found this bug that was simple to reproduce and should

have been found with the previous manual testing.

F our of the bugs found during this experiment were the result of the oracle

demonstrating unknown or surprising behaviour. In particular the error codes bug

and the mkdir bug (bug 1 and bug 3) would not have been found without an oracle

implementing correct behaviour. Without a good oracle it is not possible to

establish satisfactorily whether the software has passed or failed a test. This fact is

established in the literature, though there is little emphasis in the literature on

selecting oracles.

Chapter 3 Evaluation and Discussion Page 131

Hazel Anne Shaw October 2005

Four of the bugs were discovered with the clean-up code or because of interactions

between the clean-up code and the tests. Between the tests a clean-up routine is run

that leaves the system in a consistent state. Unfortunately this clean-up routine also

used file system commands. As a result some of the bugs found were due to

interactions between the clean-up code and the tests generated. The original clean

up routine used "rd Is Iq" to remove files and directories. However, this found bug

2 (rd Is Iq fails to remove files with long names). So a more advanced clean-up

routine was produced that used Manager's administrative API functions. This

clean-up routine needed to:

1. Disconnect the network share (net use /d)

2. Connect to Manager (mcCopen)

3. Format the media (mcCformat)

4. Close the connection to Manager

5. Reconnect the network share (net use)

As a result of this more complicated approach a total of three bugs were found

(bugs 4, 5 and 7). These bugs are the result of interactions between the test cases

generated by Alltest, and the clean-up code manually written. They are also the

result of interactions between different parts of the system. For example, bug 5

(creating file fails) was due to the interaction between the command used to format

the media (an administrative API call) and creating a file (a standard file system

function). The discovery of such bugs highlights the importance of automated

integration testing and system testing. Component testing alone will not find all the

bugs.

Bug 9 (rename produces empty file) is a very severe bug resulting in corruption of

the file system. Such corruption could result in loss of a customer's data. The

potential cost of such a data loss (either to the customer or to the supplier of the

Chapter 3 Evaluation and Discussion Page 132

iliA

Hazel Anne Shaw October 2005

system) could be huge. This makes Bug 9 a valuable bug to find and outweighs the

nineteen and a half hours effort to write the interface.

Table 14 summarises the discussion of how the testing strategy affected the type of

bugs found.

0'0 (l)

~ 0..

Bug number and description

Co.t:
(1)

~
C/J

-::: ro
(l) §
(l) ro

~ s
>~ ro
~
'0 ~ bJ.l
...... '05 ::: .S
.,c;::lti
rncSB

'0
(l)

E
(1)

~
:::
0.....
~
S
0
~

ro
~ (l)
o~
o bJ.l
~ .S
~o <Zl

::: B
0,,",

..0 0

·is ~
fr.E
~ ~

'"t::)
(1)

..9<
(1)

~
(1)

--'
<)

~
1 Error Codes High ./

2 rd Is Iq fails with long filenames High ./

3 mkdir fails Medium ./

4 mcf open hangs High ./

5 creating a new file fails Hil;h ./ ./

6 rename file over itself Low ./

7 net use Id hangs High ./

8 move directory fails High ./

9 renaming produces empty file Very High ./ ./

10 renaming file give different messages Low ./

Table 14 Summary of benefit of Alltest against bugs found

In total, ten bugs were found in Manager during this experiment. Eight were found

within the file system operations and two were unrelated to the file system. One

bug (bug 8) should have been found using manual techniques. For all other bugs

found, at least one of automation, stochastic testing, or using an oracle was

significant. Therefore it is reasonable to say that the methodology is successful in

finding bugs.

3.7 CHOOSING AN ORACLE

It is clear from the results given in this chapter, that the methodology is viable.

However, selecting a suitable oracle is a key part to successfully applying this

Chapter 3 Evaluation and Discussion Page 133

Hazel Anne Shaw October 2005

methodology. This section examines choosing an oracle in a commercial software

development environment.

An oracle should provide as much functionality as possible, reducing the areas

where another approach needs to be taken. For example it may be reasonable to

aim at an oracle giving a high coverage (for example 80%) of the features being

tested. Except for truly novel software, it is usual that applications or systems build

upon the features of previous systems. They may have totally rewritten those

features, or be building a more advanced version of some competitor software, but

the core features of the software are likely to operate in a similar way. Differences

may need to be handled, but this is where the interface and rules really help.

There are many sources of potential oracles. An obvious one is open-source

software. There is a vast range of software available that is open-source: operating

systems (Linux), web servers (Apache), web browsers (Netscape), bug tracking

databases (Bugzilla) and office productivity tools (Open Office) to name a few.

Software may be available either free or for extended trials, for example: email

clients (Eudora) and graphics editing (Paint Shop Pro). Such software may not

have all the features the SUT implements. However, they do provide an oracle

which implements behaviour of many of the core features of the SUT.

Larger systems or more specialised software may pose a problem that is not

addressed by open source software. In these cases it is likely that there is a

competitor that implements similar software. Not all functions would be the same,

but again, enough to make the approach worthwhile. There is a question regarding

the ethics of this approach. However, most marketing functions will have examined

competitor software closely (possibly bringing it in-house for a thorough

examination), leaving the way open to use this software as part of the testing

strategy.

A bigger question arises over patents. If there are features in the competitor

software that are patented, then features in the SUT software should not be the

Chapter 3 Evaluation and Discussion Page 134

..

Hazel Anne Shaw October 2005

same. However, patents usually describe method rather than outcome, so this may

not be an issue as the outcome is what is important. The largest disincentive to

using this approach is when a company is producing software so close to that of a

competitor that the competitor believes the copyright or patent has been infringed.

If this happened and a competitor's software was used as part of the testing process,

then it may become harder for the company to defend the case. Though the issue of

ethics and patents may need considering when using competitor software as an

oracle for testing, the issue really occurs when designing the system. If the system

has been specified and designed independently of any competitor software, then as

long as patents are not infringed, there should be no problem in using competitor

software as an oracle for testing.

The topics of ethics, intellectual property and patents are very complex. For

example, different countries have dissimilar rules for the granting of patents.

Therefore, these topics are beyond the scope of this thesis and are not going to be

discussed any further.

Finally, an oracle can be selected that is a direct predecessor. In this case the oracle
"

and the SUT may be quite closely related. Companies often rewrite software

completely, rewriting the old features while adding new ones. This may be the

result of needing to redesign the software as a whole to enable it to be used in ways

not originally envisaged. Alternatively, the software may be moving to a new

platform or a new language that is now more appropriate. Such a predecessor is

ideal for use as an oracle. A more closely related predecessor, which will be a

direct ancestor (such as a previous version where new features have been added) is
r 1

reasonable. However, this limits the testing to regression testing.

To summarise, oracles can be selected from a number of sources: open-source
i! software, software from a competitor or direct predecessors.

Chapter 3 Evaluation and Discussion Page 135

Hazel Anne Shaw October 2005

3.8 ApPLYING THE METHODOLOGY IN PRACTICE

Unit testing is the first type of dynamic testing that can be carried out on newly

developed software. It can be carried out as soon as some code, such as a function,

has been compiled and is ready to run. From this, testing progresses through

component testing, integration testing, subsystem testing, system testing, field

testing and acceptance testing. The methodology described in this thesis can be

applied to a number of these areas.

However, it is inappropriate to apply this methodology to unit testing. This is

because unit testing should concentrate on the function independently of other code

areas. The developer should be carrying out unit testing. They should be aiming to

obtain a reasonable level of coverage, for example 100% branch coverage (Beizer

1990). An automated oracle is not required for this type oftesting. The developer

should know what the inputs and expected outputs are for the function under test.

Straightforward approaches such as equivalence partitioning and boundary value

analysis should be applied to maximise the likelihood of detecting errors in the

code.

The experiment carried out with Manager and NTFS has shown that the

methodology works for component testing. However, this methodology is also

suited for applying to subsystem, integration and system testing. For these areas a

suitable oracle (or oracles) will need to be found. If a suitable oracle is available,

the methodology can be used for subsystem or system testing. Where the oracle

models only part of the behaviour, multiple oracles may be needed. Further work is

needed to assess the practicality of using multiple oracles. However, different

oracles could be used for different components being tested.

3.9 IMPROVEMENTS TO THE IMPLEMENTATION OF ALLTEST

Alltest is prototype software that implements the methodology ofusing pre-existing

software as an oracle and automatically generating stochastic tests. The experiment

Page 136
Chapter 3 Evaluation and Discussion

"

Hazel Anne Shaw October 2005

probability of staying in the same state increases, the number of initialisation calls

made should fall.

The number of initialisation calls does not fall as the probability of staying in the

same state rises because the Markov Chain Transition Matrix allows initialisation

calls to be made, even when there is no change of state. For example, ifyou are in a

state defined by having variable X set, it is still possible to repeatedly call

"set variable X" and not change state. Repeated calls to "set variable X" will result

in X being set to different values. As a result the probability of staying in the same

state does not have the desired effect of allowing repeated operations on a single

object.

The solution to this problem is to explicitly define "initialisation" and "action" TCD

files. The Markov Chain Transition Matrix should then be built such that

"initialisation" TCD files are only called when a change of state will actually result.

If a change of state does not result then "action" TCD files are the only ones that

can be called.

3.10 RESEARCH AIMS REVIEWED

Chapter 1, section 1.5 gives a set of research aims. There were criteria for a

successful test methodology, objectives for the methodology developed and a set of

research questions that needed to be answered, either in general or for the

methodology developed.

The criteria for a successful test methodology (see Table 15) and the objectives for

the methodology (see Table 16) have been met. The research questions have also

been answered and are discussed in below.

Chapter 3 Evaluation and Discussion Page 138

----________________.el:'~~~'"';:'~

.'

Hazel Anne Shaw October 2005

with Manager and NTFS has shown that the methodology works. However, there

are potential improvements that could be made to the implementation of Alltest.

Firstly, the comparison phase was rather slow. This is the result of the way each

segment of the test output is written to a file and compared with a new instance of

the TCL interpreter. This is obviously long-winded and significant improvements

could be made by re-implementing the comparison phase in a more realistic

fashion.

Secondly, two algorithms for calculating the states for the matrix have been

presented in this thesis. The first of these has been used to 'develop the test cases

and find bugs in Manager. However, upon implementation of an algorithm that

checks the matrix, it was discovered that the generated states included two that

could not be reached. This is a minor problem as all TeD files could still be called

from the other states. However, it does introduce a memory inefficiency into the

transition matrix. Therefore, a second algorithm is presented that produces a more

memory efficient transition matrix. This algorithm has been implemented into

Alltest but has not been used to test Manager, so it is not known whether the

algorithm will have an impact upon the effectiveness ofthe tests.

Finally, improvements could be made to the way the different types of TCD file are

treated within the Markov Chain Transition Matrix. Values recorded for the

number of initialisation calls, action calls and unset calls are plotted in Figure 30. It

can be seen that the number of initialisation calls made increases slightly as the

probability of staying in the same state increases, while the number of unset calls

decreases. The intention was that many operations can occur on a single object

when there is a high probability of staying in the same state, and many different

objects will be used when the probability of staying in the same state is low. If this

were to happen we would expect that the number of initialisation calls and the

number of unset calls were almost the same (there should be the same, or slightly

more, initialisation calls than unset calls, because the move to the end test state can

occur from any state in the Markov Change Transition Matrix). Therefore, as the

Chapter 3 Evaluation and Discussion Page 137

jiS ¥

Hazel Anne Shaw October 2005

Criteria
Minimise the manual
effort needed.
Maximise the likelihood
of detecting an error.

Minimise the likelihood
of reporting false
negatives.

Minimise the likelihood
of reporting false
positives.

How criteria has been met
This is dealt with in the research questions (see section
3.10.3)

Tests generated are stochastic and can be automatically
executed.
Testing aims to fmd bugs in sofuvare, so as tests are easy
to generate, any tests that do not detect errors can be
thrown away, and new tests created.
The use ofpredecessor software as an oracle allows each
executed test to be checked automatically.
All these things together mean that a large number of
tests can be created, executed and their results checked
very quickly, which maximises the likelihood of finding
an error in the SUT.
Rules are used to allow differences between the oracle
and the SUT. If a test fails, but the failure is not found to
be significant, then new rules can be added to ignore that
failure in the future.
Rules are applied to a small area of the test output - as
defined by the units of functionality. By restricting
where rules are applied, the possibility of a real
mismatch being incorrectly ignored is minimised.

Table 15 Criteria for a successful test methodology

Objective
The methodology
should result in test
suites that are
maintainable
The methodology must
be usable by software
testers and developers.

A minimum of training
should be necessary to
be able to use the
methodology in a
productive way.

How the objective has been met
This is dealt with in the research questions (see section
3.10.2)

Techniques that involve manual creation of models or
the development of formal specifications have been
avoided. These techniques either involve a great deal of
effort or specialist knowledge.
Instead the interface is written using a standard
procedural scripting language (with small additions) to
describe the units of functionality of the SUT. Most
software developers and testers will be able to define the
UOFs and the rules for comparison.
Appendix H provides a usage ~ide f~r using Alltest. It
is envisaged that this is all that IS reqUlred to
productively use Alltest, or other sofuvare implementing

the methodology.

Table 16 Objectives for the methodology developed

Page 139
Chapter 3 Evaluation and Discussion

Hazel Anne Shaw October 2005

3.10.1 Oracle Problem

What form should the oracle take?

This research has demonstrated that predecessor software can be used as an oracle

to test software. The oracle used does not need to be perfect, but a method must be

available to handle cases where the SUI's behaviour legitimately deviates from that

of the oracle.

The methodology developed uses an interface to define the functionality of the SUT

and oracle. The interface specifies how the functionality of the two systems is

accessed and rules are used to handle differences in output.

3.10.2 Maintainability

How are tests written using the new methodology to be

maintained?

The methodology developed by this research does not require a suite of tests to be

maintained. Instead an interface is used which is the only part of the test suite that

needs maintenance.

How are changes in the software reflected in the work required

to maintain the test suite?

Tests are generated from an interface containing descriptions of UOFs. If the SUT

changes, then instead of each test being rewritten, the appropriate UOFs are

modified. Tests can then be generated from scratch and the old ones thrown away.

How should "broken" tests be managed?

A broken test is one that no longer runs (for whatever reason). Tests often break

when there are changes to the software under test. Using this methodology, either

the interface is corrected (automatically correcting the tests) or the tests are

Page 140Chapter 3 Evaluation and Discussion

mr -

Hazel Anne Shaw October 2005

discarded and new tests are generated. This removes the requirement to examine

possibly hundreds of tests to establish what they are doing and if they are at all

useful.

3.10.3 Automation

How much manual effort is needed to implement, run and

analyse the results from the tests?

Manual effort is needed when defming the interface to the SUT and Oracle system.

Tests can be generated, executed and results evaluated, without manual effort. The

only effort needed is to initiate the process. The methodology supports the

debugging process by allowing tests to be repeated.

What is the minimum manual effort that can be expected?

It is impossible to fully automate the testing process, there are always going to be

jobs that will need skilled input. For example, isolation and debugging of problems

will need to be carried out manually. Though automation does help with

reproducing bugs. The methodology developed during this research involves the

creation of an interface that describes the functions carried out in the software and

rules used during the comparison.

3.10.4 Procedures

What procedures should be followed when creating a test and

managing the test throughout its lifetime?

The methodology developed moves away from a set of tests that need to be

maintained for the life of the SUT. Instead an interface should be written, from

which tests are generated. These tests can be discarded should errors not be found

(either immediately or some time in the future when the test suite has become

Page 141
Chapter 3 Evaluation and Discussion

Hazel Anne Shaw October 2005

"stale"). If tests become broken (perhaps because of changes in the SUT), the

interface can be fixed instead of needing to make changes to multiple tests.

3.10.5 Implementation

The implementation questions are addressed in Chapter 2, section 2.6.1.

3.10.6 Managem.ent

How should tests be managed?

Chapter 2, section 2.7 gives four approaches to the management oftests. Alltest has

been implemented using a static method to manage the tests. This is the simplest

approach.

The best approach to managing tests is to treat the tests as disposable. By using an

interface to abstract between the tests and the SUT, it is possible to throwaway tests

once they are no longer useful. This removes a huge burden in relation to

maintenance effort and also helps to prevent testers becoming complacent. Having

a large suite of tests that are executed regularly does not necessarily provide any

useful information about the SUT. The only tests that should be retained are those

that successfully find bugs.

There is never enough time to run tests that will completely exercise the SUT.

Therefore, it is better that different tests are run each time, than to keep re-running

the same tests that do not fmd bugs. This ensures that different functionality is

executed in the SUT at each test run. Some specific tests may need to be kept and

used in different tests runs, for example, if certain areas of the SUT are known to be

buggy, or the test recently found a bug. However, the rest of the tests should be

regenerated to increase the variety of tests that are executed.

Chapter 3 Evaluation and Discussion Page 142

i
I

I
I
~

Hazel Anne Shaw October 2005

What data are needed, and how are these to be managed?

Chapter 2 section 2.7 discusses the data that are needed to test software. The data

are: test inputs, expected test outputs, actual test outputs, and the test result. If a test

has failed this will lead to further data that needs to be managed. These data are the

bug description, including details of the test environment and the status of the bug

(for example, bug confIrmed, bug fixed, fix tested, fix verified).

These data are stored in two different repositories (or databases). The first is the

test data repository. This includes the test inputs and expected outputs. It may

include the actual results from the test run. The second is the bug tracking database.

This will record a bug when it is first suspected. Then as the bug is investigated and

fixed, this database tracks the different stages and records information relating the

cause of the bug and the fix applied.

What about management of the same set of tests over multiple

platforms?

It is important when testing software that the methodology is applicable over

different platforms. A great deal of commercial software is written that needs to

run on different platforms, so the testing tools should cope with this. Alltest has

been written using Tel (this has interpreters available for Windows, UNIX and

Macs) and C. If Alltest is recompiled for a different platform (the C functionality

used should port over to UNIX or other platforms with minimum changes) then any

interface developed (and tests generated by Alltest) can be used on any platform.

It may be necessary when writing the interface to consider the platforms explicitly.

For example, the names and behaviour of operating system commands may not be

the same on different platforms. The interface that is written may need to cope with

this.

Page 143 Chapter 3 Evaluation and Discussion

l$,=-Z;:

Hazel Anne Shaw October 2005

3.11 SUMMARY

This chapter has described an experiment into the effectiveness and efficiency of

the methodology. Prototype software called Alltest has been written to implement

the methodology. Alltest has been used to test commercial software, called

Manager, against an appropriate oracle.

In total ten bugs were found in Manager. The interface took 19 hours 23 minutes to

write. This means that, excluding the time needed to analyse failed tests, each bug

took less than two hours of manual effort to find. The analysis of the test failures

was helped by the ability of the test suite to rerun the tests.

This chapter finished by reviewing the aims and objectives for the methodology

developed, and the specific research questions asked in Chapter 1, section 1.5.

Page 144
Chapter 3 Evaluation and Discussion

z .u

CHAPTER 4 CONCLUSIONS

The previous chapters have described a methodology that uses predecessor software

as an oracle. The methodology included techniques to automatically create the

tests, execute the tests and evaluate the results from running the tests. This chapter

outlines the main contributions to knowledge made by this research and outlines

areas of interest for future research.

4.1 OUTCOMES OF THIS RESEARCH

One of the main aims of this research was to fInd a solution to the oracle problem.

There were additional aims, relating to the applicability of the solution in

commercial environments and to the maintainability of the tests.

An holistic approach has been taken to this research, such that all parts of the

process of automated software testing have been addressed from the creation of the

tests, through execution to evaluation ofresults.

This has resulted in a methodology in which a number of techniques have been

developed, but which link together to produce a software testing methodology that

is commercially viable for component, subsystem, integration and system testing.

Research in the area of software testing has often implicitly assumed the presence

of a suitable oracle without explicitly defming what the oracle should be (Baresi

and Young 2001, Weyuker 1982). For example, Whittaker and Thomason (1994,

page 816) say:

"We assume the presence of an oracle that is capable of comparing the

output of P with the intended behavior, f, and correctly classifying

success or failure."

Page 145

Hazel Anne Shaw October 2005

There is no additional information regarding the type of oracle that would be

suitable for this, nor how such an oracle may be obtained.

There has, however, been some research explicitly looking at the use of oracles in

software testing. For example, Vouk (1990) has addressed the use of n-version

software as a testing oracle. Brilliant et al (1990) examine the effect of coincident

errors on the effectiveness of n-version programs, which is applicable when the

oracle is one of the n-version programs. Dual-programming, where a high-level

language is used to write an executable oracle, has been examined by Ghiassi and

Woldman (1994). Other work has been carried out into M-mp testing and back-to

back testing. All of these methods require an executable model of the SUT to be

written. This is a strategy that uses a great deal of resources, so is only viable when

applied to small safety critical parts of a larger system.

This previous research has ignored the possibility of using predecessor software as

the oracle. It is generally accepted that small utility programs can be used as

oracles for unit testing, for example employing standard mathematics routines for

checking implementations in other languages (Beizer 1990). However, using

predecessor software as an oracle for testing a full system or components within

that system has not been investigated before. Predecessors do not have to be direct

ancestors of the SUT, but may be software that perfonns (in part) similar

functionality to the SUT but has been independently created. For example, the

word-processor "Word 2003" has many predecessors, both direct and indirect.

Word 2000 and Word 6 are both direct predecessors of Word 2003.

Word Perfect 5.1 and Star-offIce's word-processor are indirect predecessors for

Word 2003. Yet all these software perform similar functions and could all be

potential oracles for testing.

The methodology developed by the research presented in this thesis uses

predecessor software as an oracle. As Chapter 3 has shown, the use of predecessor

software as an oracle is a viable solution to the oracle problem. This is an important

contribution to knowledge made by this research.

Page 146Chapter 4 Conclusions

Hazel Anne Shaw October 2005

The predecessor software may not be a perfect oracle for the SUT. Its outputs may

be different from the SUT and the way functionality is initiated may also be

different. The methodology developed by this research uses an interface to handle

these differences. Various approaches to handling the output were tried during this

research. The successful solution uses rules that are applied to very focused parts of

the output from each system. These rules allow the comparison to ignore specific

parts of the test output, allowing a match to be made if appropriate.

Ensuring that the rules are only applied to the correct part of the test output required

each test to be defmed as a series of small pieces of functionality. These became

known as Units of Functionality (OOF). For each UOF, rules can be specified that

will be used by the comparator to find a match between the SUT and the oracle

system. If all the rules are applied, and the comparator is still unable to match the

output from the two systems, then the whole test is declared as failed, with the

specific mismatch highlighted in the output files from the comparator.

The use of rules, and the method used to link rules to specific parts of the output, is

key to the successful use of predecessor software as an oracle, and is an innovative

technique that makes a direct contribution to knowledge.

The tests are created automatically from the interface files, and consist of a series of

"calls" to each UOF. For automation to minimise the manual effort needed, a

highly automated method ofcreating these tests was required.

Research has been carried out which uses Markov Chain Transition Matrices as

usage models of software for statistical testing (Whittaker and Poore 1993; Walton

et a11995, Whittaker and Thomason 1994, Whittaker et a12000, Poore et al2000;

Walton and Poore 2000a). These models are hand-built, with only the transition

probabilities being applied automatically.

The research presented in this thesis has taken the use of Markov Chain Transition

Matrices and provided two algorithms that can automatically produce Markov

Chapter 4 Conclusions Page 147

I

p

Hazel Anne Shaw October 2005

Chain Transition Matrices from the UOFs. The additional data required by the

algorithms to produce the matrices are the inputs and outputs to each UOF.

The algorithms produce a Markov Chain Transition Matrix (MCTM) that defines

states based upon the combinations of inputs and outputs used by the UOFs. The

resulting MCTM includes probabilities for staying in the same state, changing state

and ending the test. It also includes "functions", which are calls to the UOFs.

These functions can only be called from certain states in the MCTM. When these

functions are called a state transition will occur if any variables that define the state

in the MCTM are set or unset by the function call. The algorithms that allow the

automatic creation of the MCTM from a small amount of data (the UOFs) is

another major contribution to knowledge by this research.

As discussed in Chapter 1, section 1.3.4 there is little research published into the

practicalities of executing tests and providing structured frameworks for managing

the tests. Of the commercial and open source tools examined that support

automated testing, there are three main types. The first type is capture/playback

tools that allow manual actions on a GUI to be recorded (and saved) and played

back at sometime in the future. The second type is frameworks that allow the

ordered execution of manually created test scripts. The third type is tools that

support the creation of stubs. None of these types allow the automated creation of

tests. Therefore dealing with the issue of how tests are created, stored and executed

is a key problem that needed to be resolved for this research.

This research has examined how the tests should be managed. A framework has

been developed that allows each phase of the test process to be automated as far as

possible. For the methodology to be useable in commercial development

environments it is important to show how it will be managed, and how each

individual technique works with the other techniques.

Finally, the holistic approach taken to this research means that each aspect of the

testing cycle from test creation, through execution to evaluation of test results has

Page 148Chapter 4 Conclusions

____________,;",i

•

Hazel Anne Shaw October 2005

been examined. This has resulted in a methodology that uses a range of

inter -related techniques to carry out each essential phase of the test process. It has

also allowed the development of a methodology where minimal maintenance effort

is required. Should part of the SUT change, then instead of each test that exercises

that part of the SUT having to be changed, the only change required is to the

definition of the UOF in the interface. If a tester feels it is appropriate they can

rerun the test generation and throwaway all previously generated tests. This

significantly reduces the maintenance required for the test suite, solving a

significant problem with test automation.

A technique that addresses the maintenance issues of automation, and a coherent

and inter-related methodology for automated software testing, provide the fmal

contributions to knowledge for this research.

4.2 FURTHER WORK

This section covers future potential research areas. Some of the future research

directly evolves from the research in this thesis. However, some of the potential

research areas are the result of new trends and techniques that are being developed

in software engineering that may be applied to software testing, and these

techniques should be investigated.

This section starts with a discussion ofways that the methodology can be developed

further. This section then examines the broader areas of research within software

testing and other technologies that can either be applied to software testing, or

where there is room for research into software testing to take place.

,!

Page 149 Chapter 4 Conclusions

Hazel Anne Shaw October 2005

4.2.1 Automatic Production of TeD Files

There is scope for further automation when writing the functional part of the

interface. For example, if IDLI files are available for a CORBA2 interface, these

could be used to automatically produce the TCD files required for the interface.

The manual steps would then be the production of the rules, and informing the

comparison phase which rules to apply.

4.2.2 Automatic Initialisation of Variables

A second improvement is to remove the need for inputs to be initialised. It should

be possible for the generation phase to detect the inputs that have not been

initialised, and assign values to them based upon the type given in the TCD files

using the variable. It may be necessary to define suitable values that such inputs

can take, as part of the TeD files in which they are used. Some values will still

need to be manually defined, for example, a number can easily be set automatically,

but a filename (including volume and directories) may be difficult to define

properly, especially if specific valid and invalid characters in the filename need to

be tested.

4.2.3 Dynamic Testing

Alltest could be expanded to test in a dynamic fashion, generating each test, then

executing it on the oracle and the SUT and immediately comparing the outputs. In

this mode, testing should continue until the tester decides to stop the testing. This

prevents available computing time being wasted, for example by allowing tests to

run overnight, only being stopped when the tester returns in the morning.

I IDL means Interface Definition Language. IDL is part of CORBA (Common Object Request Broker
Architecture). CORBA is used to enable separate system components to talk to each other, locally or over a
network.

2 CORBA means Common Object Request Broker Architecture. CORBA is used to enable separate system
components to talk to each other, locally or over a network.

Chapter 4 Conclusions Page 150

lIB

Hazel Anne Shaw October 2005

Optionally the tester may wish to have the testing stop early ifthe SUT is failing too

many of the tests.

4.2.4 Adaptive Testing

Research should also be carried out into test generation based upon previous test

runs. Often bugs cluster in certain areas of code. This may be due to the
f

complexity of some areas, or misunderstandings arising from the originali
specification of the application. It would be beneficial to allow automated testing to

identify such areas. The testing could then continue either avoiding the area until

I
\

bugs are isolated and fixed, or concentrating tests on that area to fmd as many of the

bugs as possible.

4.2.5 From Text Based to Graphics Based Testing Il
The software tested with this methodology was accessed via the command-line or

API functions. However, this methodology is not limited to textual inputs and

outputs. It is possible that the SUT and oracle are graphical programs. It should be

possible to use this methodology using commercial "record and replay" tools that

treat elements in a graphical application as "widgets". The interface can be written

so that the widgets are accessed to cause actions (for example, selecting "open file"

in a word processor from the menu), and results obtained (for example, text in a

document), so that the generation, execution and comparison can still be carried out.

It may also be possible to use "macros" or other programming features, built into

the oracle or SUT to drive the functionality being tested.

4.2.6 Templates

The use of templates to guide testers in the development of TeD files and rules may

be beneficial to testers. Some work should be carried out to establish the most

common forms that the TeD files and the rules take. :,

I

I Chapter 4 Conclusions Page 151

I

Hazel Anne Shaw October 2005

4.2.7 Using Multiple Oracles

This research has concentrated on the idea of using predecessor software as an

oracle. The use of more than one oracle has been hinted at but has not been

developed. The SUT may have different areas of functionality that are best

modelled by different oracles. Therefore, to test the SUT it may be necessary to

have two, three or more oracles to provide the expected outcomes. This poses a

problem, as the interface will need to work with these different oracles. It may be

necessary to provide some linkage between the different oracles to enable the

outputs from one oracle to relate to previous actions taken with another oracle.

4.2.8 Helpful Warnings

It is possible that TCD files are not included in the generated Markov Chain

Transition Matrix. This occurs if there is a mismatch between TeD files that use

parameters, and those that set them. The generation phase should identify such

TCD files and issue a warning.

4.2.9 Evaluation of the Methodology on Different Types of

Software

This methodology has been evaluated using Manager as a test subject. However,

there are many different types of software where using predecessor software as an

oracle may be appropriate. Research is needed to determine the types of

applications that can use this methodology in a productive manner, and how much

coverage predecessor software provides when used as an oracle.

4.2.10 Usage Models and Editing The Markov Chain Transition

Matrix

If a usage model existed for the oracle system, then this data could be incorporated

into the Markov Chain Transition Matrix to produce random tests that model

expected usage ofthe SUT.

Chapter 4 Conclusions Page 152

Hazel Anne Shaw 	 October 2005

In order to achieve this it will be necessary to provide a mechanism to save a

generated transition matrix, edit the matrix manually, and reload the matrix into

Alltest. Currently Alltest creates the transition matrix automatically from the TCD

files in the interface. This matrix is lost after the test generation is complete.

4.2.11 Reverse Engineered Specifications

The RES technique introduced in Chapter 2 (section 2.2.1) should be revisited.

There have been (and continue to be) advancements in the computer understanding

and handling of natural languages, for example the SIFT system (Lutsky 2000), that

would contribute to making the RES technique usable.

4.2.12 Agents, Distributed Software and the Grid

Currently there is a great dea1 of research into Agent Oriented software (Zambonelli

and Omicini 2004), distributed software and projects using and developing "the

Grid" (Bennan et aI2003). These techniques pose interesting future directions for

testing research:

• 	 The application of traditional and novel software testing techniques to

software that has been developed using these architectures. This will be

to detennine which techniques are most effective for testing agent

software, distributed software and software implementing the Grid and

Grid applications.

• 	 The application of novel software testing techniques that use software

agents, Grid architecture or other distributed software models to test

software of any architecture.

As an example of Grid or distributed techniques being applied to testing software,

components or complete systems could be tested using the idle time of a computer

(implemented as a screensaver or a background process). There are a number of

large projects that use the huge computational power available in idle computers to

Chapter 4 Conclusions 	 Page 153

•

Hazel Anne Shaw October 2005

aid them. For example, the project to fmd a model for the climate in the 21 st

century (Climate Prediction 2005), or the search for extraterrestrial intelligence

(SET! 2005). These techniques could be applied to the testing of software. With

appropriate centralised support, distribution of test cases and subsequent collation of

results, it should be possible to use the idle computing time available in any

organisation to test that organisation's software products. Difficulties that need to

be resolved when applying this technique include: the management of the test cases;

management of test data for test runs on different software releases; and

coordination of test runs. Coordination, to avoid duplication of testing, can be an

issue if many computers are testing an application on a single computer or if each

computer is running tests on their own copy of the software.

Agent oriented software is a very different software development paradigm to

standard structured or object oriented software development. The following is a

succinct definition (Zambonelli and Omicini 2004):

"Agent-based computing promotes designing and developing

applications in terms of autonomous software entities (agents), situated

in an environment, and that can flexibly achieve their goals by

interacting with one another in tenns of high-level protocols and

languages. "

In short an application is written as a set of independent agents. Each agent is

programmed with goals. The agents work to achieve these goals by interacting with

each other. Agents may require specific techniques to test them thoroughly, or may

be applied to the testing ofother application software.

4.3 REVIEW OF CONTRIBUTIONS TO KNOWLEDGE

Identified in section 4.1 are three major contributions to knowledge: the use of

predecessor software as an oracle; the use of rules and the method used to link rules

to the specific parts of the output; and the algorithms that allow the automatic

Chapter 4 Conclusions Page 154

•

Hazel Anne Shaw October 2005

creation of Markov Chain Transition Matrices from a small amount of data. There

are also important advances in the methodology for framework software to run the

tests. A number of possibilities for developing this work are identified in

section 4.2.

Chapter 4 Conclusions Page 155

ttWM MiA!! FE - '? i¥#i Wi! §lJ4MmJa:s

APPENDIXA TRANSITION MATRIX

The generator will produce a transition matrix using the TCD interface files. The

matrix shown here was produced with the TCD files shown in Table 8 page 118.

The matrix was generated with the following parameters:

Probability end test = 0.005

Probability stay in same state = 0.8

The matrix is shown over pages 157 to 164. Figure 32 shows how the matrix fits

together.

States States

Paramaters Pararraters

1!l First 1l Fifth
N
(j) Page B5 Page

States States

1!l

co
Ci5 Second ~ Sixth

Page Page

States States

1l
l!l Third ~ Seventh
(j) (j)

Page Page

States States

1!l

]i Fourth ~ Eighth
(j) Ci5

Page Page

Figure 32 Transition matrix split over 8 pages

Page 156

0 1 2 3 4 5 6 7 8 9

FileName1 TestVoll FileName! FileNamel FileName!

'" TestVoll ShortFileNamel Te.~tVoll TestVol1

~ ShortFileName 1 FileName2 FileCountl TovFileCountl

p.. FileCount! DelParamsl FileCountl

FileNamel FileNameI
ShortFileNamel Te~tVolI

FileCountl

TestVol1
FileName2
FileCountl

FileName!
TestVolI
FileCOImtl
SuhDiri

0 0.249
testvolume

1 O.R
testvolume
renamefile
readfile
NewWildcardName
NewShortName
NewDirName
mkfile
mkdir
li~tdir has;c
RaseDir

2 0.097 O.R
no function testvolume

3 O.R
listdir hasie
mkdir
mkfile
NewShnrtName
readfile
renamefile
renamefile
read file
NewShortName
movefile
mkfile
mkdir
listdir hasic
convfi1e

4 O.R
testvolume
SetDelParams
readfile
NewWilclcarclName
NewDirName
mkfilc
mkrlir
listdir hasic
InilialiscDelPa
del

L-. ___. RaseDir

0.097
no functioo

0195
no function

i

-

1 2 3 4~
5

6

O.O:W 	 0.039.7
New~hortName 	 TnitialiseDelPa

8

9

r> 6 7 8 19
OR

te~tvolume

readfile

/10Q7

no function

NewWildcardName
NewDirName
mkftle
mkdir
Ii~tdir hasic
TnitialiseCount
RaseDir

0)<
renamefile
readfile
New~hortName

mkftle
mkdir
Ii~tdir hasic

o.o:w 	 O.R 0.039
TnitialiseCount 	 testvolume TnitialiseSuhDi

readftle
NewWildcardName
NewDirName
mkftle
mkrlir
listrlir hasic
RaseDir

O.R
RaseOir
lishlir hasic I

mkrlir
mkfile
NewOirName
NewWildcarrlName
readfile
testvolume

0.195 O.R
no function teslVolume

~elSuhDir

rmdir
readftle
NewWildcardName
NewDirName
mkftle
mkdir
listdir hasic
TnitialiseSuhDi
RaseDir I

0
0

0
,

r

~

IV
)

I",

1-<"'1

: <
'I

-
Ie

c
c

§
c

" '"§
'-5

'"§

:9eE "
:9eE "

SeE c

c
c

c
c

cO
cO

cO
c

"
"

a
C

":l
"

C

~

e
ll'

c C

.
~

~..2
e

c
e

c

c

''5 c "
0ij c

SeE c :9eE c

<::
c
-: c

c
c
c

c
.,.,

-
~

:!:
=

~

0

-

-'"

c: c"B c:
~
<
2

0
0

c c

cc:

c:
.S;
tl
c:

~
<
2

r-
c C

cc:

I",

'"

~

r<"1

_<"'l.

c: c
""5 c:

£::<2
,....

q c
c c:

c: c.£ c
&
:
~

-
1

0

C

c '"
;S

r......
oo-

a-

.l!.:.

-------------_:h

10 II 12 13

Tp.otVnll TnvFil"C'mmt 1 SubDirl T".tVnll
'" InvFil"C'nnntl Fil"C'nnntt Fil"N.m,,?2FilP.C'nnntl Fil"C'cmntt
os SlIhnirl

"...

n (I)49 (I ?49
Tnitl~li~~(mnt Initioli."S"hni

1

14

T""tVn11
Fil"N.m,,')
Fil"C'nnnt1
n"IP"r.moi

15

Tp.<tVnll
Fil"N.m,,')
InvFit"C'ol1ntl
Fil,,('nllntl

16

Fil"N.m"t
T".tVnll
Fit"N"m,,')
Fil"C'ollntl

17 18

DeIParamsl Fil .. N.m"l
T".tVnll
ShnrtFil"N"m"l
Fit"Nom,,')
Fil"C'onntl

(I ?49
Tniti"li."nPlP"

(I (197
R:l~p.n1r

19

0.005

0.005

b

,
(\ (197
Tniti;lli~p.r(mnt

0.005

0.005

14 0.005

"

o '"
o

o
o

'"
V

I
:9

o
o

o
c
i

ci
ci

ci

0
0

~

~

is
C

0
-

0
'

«
"

~

~

-
~

2!
\0

C

c

ex:'"
c

ex: '" ~

:: <:r.; Q
;

..:
o

c
t

~
 :.;

'"
c
,:

I'-" 0:

~
O'~
<!! OJ:
c
]

C

-!'
(j ~

~

O'~
-<t OJ:
c

o
~

M

C
,:

10 11 12 13 14

10 OR 004<)
tp~tv"'nmp. no fnnf'Jlon
TnitiHIi.,,('onnt

11 o OQ7 OR
tf"H~tvolnmp. Tniti~1i!C:r.r.onnt

11 	 OR
~"t~l1hnir
Tnit;:\li"p.~nhni

~n 	 OR
RH""OirI

! li.toir hH.i"

mlnHr
mkfil"
NpwDirNRmp.
Np.wWilrl"HrrlNHm"
rp.Hrlfilp.
mulir
tf":~fvolnmf':

!Sp:t~nhnjr

Tniti:11i~P.~l1hni

14 	 OR
R;l~~nir

tip.l
Hs:trfir hm::i~

mkllir
mldH"
Np.wnirNnmf~

NpwWHrlc.:orrlN"mp
rp'"elfilp
tf":t::roohlmp:
~p.tnp.lpj:Jrnrn~

TnitiHli<f'n"IP"

l~ 00Q7

no fllnf'tion

15

004<)

RH""nir

16 17 18 19

0.005

0.005

0.005

0.005

0.005

OR
RH<P.nir
Hc;;:.tdir hn~ir
m!aHr
mkfil..
Np.wnirN:lmp

Np.wWil<l""ToNllmp.
r~mtfi'p.

tf':.;;:fvohlme:
Tniti~li",!"r()nnt

0.005

__

IO 11 12 13 14 15 16 17 18 19

fi 	 0 ~ 0 Ofi'i 0.005
R~""Dir N<,wShnrtNMn"
li<!clir hH,i" N"wSh()rtN~mp.

ml((lir
m1cfilp.
N<'wDirNlimp.
NpwWilel"HrllN~m"

r<,,,tifil.,
tp.~tvnhlmp.

r,,~elfil ..
N"wWilelPHrelNHm"
Np:wnirN:tlnp.
mnv.,fil.,
mlcfil ..
mlcelir
1 ktelir h~.i"
Ponnvfilp.

RH~~nir

17 	 0 R 0.005
S"tD"IP"rHtn"
Tn-itiH1i~pnplp~

lR 	 OOQ7 () R 0.005
nn hmr.tion H:I!C::t>:.nir
nn fhn~t1nn l1~t(Ht' h::\~i(';

mkelir
m1cm"
Nf':wDirNamp.
N"wShnrtN~m"
N"wWilri"RrriNHm"
"'Helm"
rp:m-llnp:fifp:
fp:~tvnhl'np.

rr:nflmf"filp:

r"Hrlm"
Np.wWit(h".nrclN~mp:

Np:ws'hnrtNnmp:
NpwDirNRIl1f':
nlonVf~filf\

mlcfih'
Inlafir
li ...trfir hn.c;:ir
ronvfilp

i Q 1-------1------ HA,,'Dir __
'--·----'------L-----..L--___-.l______L ____L __________. 1

--~':.." ~_,,__c---~__,)

APPENDIX B BUG DESCRIPTIONS

Bug 1. "error codes from the SUT do not match those from the

oracle"

Severity High
Number of Interface Files 0
Number of tests generated 0
Number of tests executed 0
First test number bug occurred on All tests
Products containing bug ELM 2.03.45i
Date bug found Unknown
Configuration
All configurations
Interface File Summary
Unrecorded

Many of the test inputs into file system operations are invalid. It is expected that

the file system will fail the attempted operation. However, for almost all failures

the error code retumed by Manager's file system often differs from the code

returned by NTFS.

This could be a serious issue for OEM customers who write software to use

Manager as a back-end to their solutions. They expect that Manager's file systems

will return the same errors as given by the NTFS file systems. OEMs will often

write their products using NTFS and then replace NTFS with Manager.

For the purposes of testing, this issue has been ignored by using rules to replace

error messages by a single error message. This means that as long as an action fails

(or succeeds) on both the SUT and oracle, the test does not fail.

It is extremely unlikely that this issue would have been identified using alternative

testing techniques, unless it was manually identified as a potential issue and

explicitly investigated.

Page 165

lliI._

i

Hazel Anne Shaw October 2005

Bug 2. "rd Is /q fails to remove files with very long names"

Severity High
Number of Interface Files 9
Number of tests generated 100
Number of tests executed 100
First test number bug occurred on Clean-up code
Products containing bug ELM 2.03.20 (Development build)

ELM 2.03.45i

Date bU2 found 28th September 2001

Configuration

Tests run from Constance.

Manager running on Aquarius controlling a stand-alone drive.

Disk in Plasmon format.

Interface File Summary

testvolume(out string TestVol)

readfile(in string FileName)

NewWildcardName(inout string FileName, inout integer FileCount)

NewDirName(inout string FileName, inout integer FileCount)

mkfile(in string FileName)

mkdir(in string FileName)

InitialiseCount(out integer InvFileCount, out integer FileCount)

copyfile(in string FileName2, in string FileName1)

BaseDir(out string FileName, in string TestVol, inout integer FileCount)

This problem was found with the clean-up code run between tests (rather than with

a specific generated test). The clean-up code used rd Is Iq to recursively delete

directories created during the previous test. The bug was found by the clean-up

code, because the clean-up was more advanced (at this stage) than the operations

being used for tests. This bug became apparent quite quickly during tests. It was

not necessary to run the comparison.

This is an issue that had not been found during nomal testing. The author

suspected that there were issues with long name mangling in Manager. Filename

mangling occurs when a long filename is converted into a short filename (eight

characters, a dot and a three character extension). The short filename is accessible

to DOS applications. However, problems with filename mangling had never been

Page 166Appendix B Bug Descliptions

,

October 2005Hazel Anne Shaw

seen before. It is unlikely this bug would have been found manually, unless the

suspicions about filename mangling had been followed up.

Detection of this problem illustrates the importance of randomised testing. It is the

way that the filenames were generated from the interface by the Alltest software

that enabled this problem to be found.

!~
'I

t

Page 167Appendix B Bug Descriptions

Hazel Anne Shaw October 2005

Bug 3. "mkdir fails to make intermediate directories"

Severity Medium
Number of Interface Files 9
Number of tests generated 100
Number of tests executed 100
First test number bug occurred on 1 (indexed from 0)
Products containing bug ELM 2.03.20 (development build)

ELM2.03.45i
Date bug found 28th September 200 1
Confi2uration
Tests run from Constance.
Manager running on Aquarius controlling a stand-alone drive.
Disk in Plasmon format.
Interface File Summary
testvolume(out string TestVol)
readfile(in string FileName)
NewWildcardName(inout string FileName, inout integer FileCount)
NewDirName(inout string FileName, inout integer FileCount)
mkfile(in string FileName)
mkdir(in string FileName)
InitialiseCount(out integer InvFileCount, out integer FileCount)
copyfile(in string FileName2, in string FileNamel)
BaseDir(out string FileName, in string TestVol, inout integer FileCOtmt)

If mkdir is used to create a directory where intermediate directories do not exist,

then mkdir will not create the intermediate directories on Manager. However, on

NTFS file systems mkdir does create intermediate directories if they do not exist.

Prior to Alltest discovering this problem the author was not aware that mkdir could

create intermediate directories if they did not exist. Having "extended attributes"

enabled on the machine that the tests are being run from may cause the issue, as

extended attributes do change the behaviour of mkdir.

This is a real issue with Manager that was not detected previously because the

behaviour of mkdir was not known. The combination of automatic test generation

with predecessor software as an oracle has enabled this bug to be discovered.

Page 168Appendix B Bug Descriptions

I

Hazel Anne Shaw October 2005

Bug 4. "mcf_open hangs when drive is mapped across a network"

Severity High
Number of Interface Files 9
Number of tests generated 100
Number of tests executed 45
First test number bug occurred on Clean-up code before test number 45
Products containing bug ELM 2.03.45i
Date bug found 23 fd November 2001
Confi2Uration
Tests run from Indefatigable.
Manager running on Aquarius controlling a stand-alone drive.
Disk in Plasmon fOID1at.
Interface File Summary
testvolume(out string TestVol)
readfile(in string FileName)
NewWildcardName(inout string FileName, inout integer FileCount)
NewDirName(inout string FileName, inout integer FileCount)
mkfile(in string FileName)
mkdir(in string FileName)
InitialiseCount(out integer InvFileCount, out integer FileCount)
copyfile(in string FileName2, in string FileNamel)
BaseDir(out string FileName, in string TestVol, inout integer FileCount)

When running the tests, they will sometimes stop during clean-up. Leaving the test

to run for 112 hour or more does not make any difference.

Analysis of the problem revealed that as part of the clean-up routine mcf_ open is

called, but never returns. The problem may be related to sharing Manager's drive

letter over a network. The machine running the tests then maps to this network

drive. A workaround for the problem is to un-map the drive before clean-up and

re-map it after clean-up.

This is an issue with Manager that has not been seen before and could affect many

customers. It was found by clean-up code, as the clean-up code is more advanced

than the tests currently being executed. It took a while to isolate the issue and find

the cause. Once the cause was found it was possible to provide a work around.

This issue prevented further testing, so it was imperative to isolate it. It is

Appendix B Bug Descriptions Page 169

A ..

Hazel Anne Shaw October 2005

extremely unlikely that this issue would have been found with manual testing, as the

repetitiveness of the automated tests almost certainly contributed to the issue being

found.

j

I,
I
I

Appendix B Bug Descriptions Page 170

..

Hazel Anne Shaw October 2005

Bug 5. "creating a new file failed"

Severity High
Number of Interface Files 13
Number of tests 2enerated 10
Number oftests executed 10
First test number bug occurred on 1 (Index from 0)
Products containing bug ELM 2.03.45i
Date bug found 29m November 200 1
Configuration
Tests run from Indefatigable.
Manager running on Aquarius controlling a stand-alone drive.

Disk in Plasmon format.

Interface File Summary

testvolume(out string TestVol)

renamefile(in string ShortFileName, in string FileName)

readfile(in string FileName)

NewWildcardName(inout string FileName, inout integer FileCount)

NewShortName(out string ShortFileName, in string FileName)

NewDirName(inout string FileName, inout integer FileCount)

movefile(in string FileName2, in string FileNamel)

mkfile(in string FileName)

mkdir(in string FileName)

listdir_basic(in string FileName)

InitialiseCount(out integer InvFileCount, out integer FileCount)

copyfile(in string FileName2, in string FileNamel)

BaseDir(out string FileName, in strin-.& TestVol, inout integer FileCount}

Manager failed with the following:

Making File t:/Filel
FS_OpenFile t:/Filel W
FS_OpenFile: couldn't open "t:/Filel": invalid argument
Unable to create t:/Filel

The file creation should have succeeded, as creating the file on the oracle was

successful.

This bug took a lot of investigation to narrow down the scenario causing the

problem. The first question was: is this issue random or reproducible? The

Appendix B Bug Descriptions Page 171

.,

Hazel Anne Shaw October 2005

problem occurred on a number of tests meaning that it was repeatable, though not

reproducible because it appeared to be random.

The first step was to eliminate possible external causes. Different hardware was

tried (drive, media and PC were all changed) and the problem still occurred. The

next step was to eliminate the possibility of the problem occurring within the test

suite software (Alltest or Tel). Changes to the calls being made in Tel were tried,

especially the fileopen and fileelose calls, which were re-written as a C DLL instead

of using the Tcl commands. The changes did not affect the bug. This made it

unlikely that the problem was within Alltest. Further examination of the Tel code

itself made it unlikely that the problem was with Tel.

This made it more likely that the cause of the bug was Manager. To finally rule out

Alltest and Tel, a system monitoring tool (filemon!) was used to show what calls

were being sent to Manager and how Manager was responding. The author ran the

tests on Manager, stopping them after 2 hours (test34) to see if sufficient

information has been gathered. The comparison was run: 35 tests executed, 26

passed, 9 failed.

The failed tests were:

testl - rename issue
test2 - rename issue
*test6 - creation of file issue (once)
test11 - move errors different
*test15 - creation of file issue (once)
test26 - move failure (new problem)
test28 - move failure (new problem)
*test29 - creation of file issue (once)
test34 - rename issue

Looking at the three tests which had failed with the file creation, and examining

filemon's log file, it became clear that:

1 Filemon is the monitoring tool used. It is a freeware tool available from http://www.sysintemals.com. It can
be used to monitor the low-level system calls being made to the kemellevel file system device driver.

Appendix B Bug Descriptions Page 172

http:http://www.sysintemals.com

!!II

Hazel Anne Shaw October 2005

1. Command sent to Manager was no different to those when manager

succeeded to create the file.

2. The failure was always the first file access onto the Manager controlled

media.

So, if the requests to create files were absolutely correct, and all the failures were

occurring at the very fIrst file access following the clean-up, the problem is

definitely with Manager.

The clean-up code was modified to add a configurable 15 second delay.

Re-running the tests resulted in no failures due to writes randomly failing.

To conclude, it is likely that the mcf format command (which formats the media

during clean-up) is returning before the media is fully mounted. Consequently,

writes immediately after the format sometimes fail. This is a timing issue

(confirmed when the 15 second delay prevented this problem from happening), but

the problem lies entirely with Manager.

This bug took a lot of manual effort to isolate, once the problem was noted. It is

likely that without automation the bug would have been ignored, or its cause

wrongly attributed to hardware failure. However, the ability to re-run the tests

repeatedly enabled the problem to be properly isolated.

Techniques that concentrate on unit or component testing would never have

detected this bug. The problem was a timing issue with interaction between

different functional areas. For example, component testing may have tested

mef_format (which is an administrative function) or tested writing data to a file

through the file system interface. However, it is by combining these functions

through system level testing that this bug was found. This highlights the

importance ofsystem level testing. By using an oracle aimed at system level testing

this bug was detectable using automated testing.

Appendix B Bug Descriptions Page 173

----_______..____flf~

Hazel Anne Shaw October 2005

Bug 6. "rename file over itself has different result on SUT"

Severity Low
Number of Interface Files 13
Number of tests generated 100
Number of tests executed 61
First test number bug occurred on 1 (Index from 0)
Products containing bug ELM 2.03.45i
Date bug found 19th February 2002
Configuration
Tests run from Constance.
Manager running on Aquarius controlling a stand-alone drive.

Disk in Plasmon fonnat.

Interface File Summary

testvolume(out string Test Vol)

renamefile(in string ShortFileName, in string FileName)

readfile(in string FileName)

NewWildcardName(inout string FileName, inout integer FileCount)

NewShortName(out string ShortFileName, in string FileName)

NewDirName(inout string FileName, inout integer FileCount)

movefile(in string FileName2, in string FileName1)

mkfile(in string FileName)

mkdir(in string FileName)

listdir_basic(in string FileName)

InitialiseCount(out integer InvFileCount, out integer FileCount)

copyfile(in string FileName2, in string FileName1)

BaseDir(out string FileName, in string TestVol, inout integer FileCount)

The following command copies a file over itself:

I Rename fileX. fileX.

On NTFS there is no error, however on Manager the rename failed:

A duplicate file name exists, or the file cannot be found.

This is not a severe error. However, if Manager is to behave in the same way as

NfFS then this error should not have occurred. Again discovery of this bug

highlights the importance of an appropria.te automated oracle for use in component

or system testing. Without such an oracle this bug would not ha.ve been detected.

Appendix B Bug Descriptions Page 174

http:appropria.te

11

Hazel Anne Shaw October 2005

Bug 7. "net use /d hangs"

Severity High
Number of Interface Files 13
Number of tests generated 100
Number of tests executed 4
First test number bug occurred on Clean-ul' code before test number 4
Products containing bug ELM 2.03.45i
Date bug found 19ID February2002
Configuration
Tests run from Constance.
Manager running on Aquarius controlling a stand-alone drive.

Disk in Plasmon format.

Interface File Summary

testvolume(out string TestVol)

renamefile(in string ShortFileName, in string FileName)

readfile(in string FileName)

NewWildcardName(inout string FileName, inout integer FileCount)

NewShortName(out string ShortFileName, in string FileName)

NewDirName(inout string FileName, inout integer FileCount)

movefile(in string FileName2, in string FileNamel)

mkfile(in string FileName)

mkdir(in string FileName)

listdir_ basic(in string FileName)

lnitialiseCount(out integer InvFileCount, out integer FileCount)

copyfile(in string FileName2, in string FileNamel)

BaseDir(out string FileName, in string TestVol, inout integer FileCount)

net use /d hangs during clean-up code. This occurs when the previous test was very

short. It seems likely that the problem is a timing issue within Manager. A five

second pause was added to the beginning of the clean-up code. When the tests were

rerun they all ran successfully without the clean-up hanging.

This is the fourth issue that has been found because of the way the clean-up code

behaves. Again this is an interaction ofthe clean-up code with the type of tests that

have been run. Running the clean-up code alone would not have found the bug.

Page 175 Appendix B Bug Descriptions

.•~ ---------________.,4~?\,'"' ..

Hazel Anne Shaw October 2005

Bug 8. "move directory fails with access is denied"

Severity High
Number ofInterface Files 13
Number of tests generated 100
Number of tests executed 100
First test number bug occurred on Test number 26 (Index from 0)
Products containing bug ELM 2.03.45i
Date bug found 26th June 2002
Configuration
Tests run from Constance.
Manager running on Aquarius controlling a stand-alone drive.
Disk in Plasmon format.
Interface File Summary
testvolume(out string TestVol)
renamefile(in string ShortFileName, in string FileName)
readfile(in string FileName)
NewWildcardName(inout string FileName, inout integer FileCount)
NewShortName(out string ShortFileName, in string FileName)
NewDirName(inout string FileName, inout integer FileCount)
movefile(in string FileName2, in string FileName!)
mkfile(in string FileName)
mkdir(in string FileName)
listdir_basic(in string FileName)
InitialiseCount(out integer InvFileCount, out integer FileCount)
copyfile(in string FileName2, in string FileName!)

. BaseDir(out string FileName, in stringTestVol, inout integer FileCount)

Create a directory then attempt to move it. This results in an "access is denied"

error being returned. The directory is empty (no files have been created in it).

t:\file7\ede.2Create a directory:

l
move t:\file7\ede.2 filelOAttempt to move (empty) directory:

access is deniedReceive error:

~
i The issue can be reproduced at the command line. This is a bug in Manager,
i

though investigation is needed to locate the cause of the problem. l ,I
i
i
!
I Page 176Appendix B Bug Descriptions I
I
I
i

Hazel Anne Shaw October 2005

This bug should have been identified with good quality module testing. It is

surprising to find a bug that can so easily be reproduced in software that has

undergone thorough manual testing and many years of use by various customers.

Page 177 Appendix B Bug Descriptions

Hazel Anne Shaw October 2005

Bug 9. "renaming fIles produces empty fIle"

Severity Very h~h (causes data conuptionl
Number ofInterface Files 19
Number of tests generated 25
Number of tests executed 25
First test number bug occurred on Test 4 (index from Ql
Products containing_bug ELM 2.03.45i
Date bug found 12th Ju!y2002
Configuration
Tests run from Constance.
Manager running on Aquarius controlling a stand-alone drive.
Disk in Plasmon format.
Interface File Summary
testvolume(out string TestVol)
SetSubDir(inout integer SubDir)
SetDelParams(inout integer DelParams)
rmdir(in integer SubDir, in string FileName)
renamefile(in string ShortFileName, in string FileName)
readfile(in string FileName)
NewWildcardName(inout string FileName, inout integer FileCount)
NewShortName(out string ShortFileName, in string FileName)
NewDirName(inout string FileName, inout integer FileCount)
movefile(in string FileName2, in string FileName1)
mkfile(in string FileName)
mkdir(in string FileName)
listdir_basic(in string FileName)
InitialiseSubDir(out integer SubDir)
InitialiseDelParam(out integer DelParams)
InitialiseCount(out integer InvFileCount, out integer FileCount)
del(in integer DelParams, in string FileName)
copyfile(in string FileName2, in string FileName1)
BaseDir(out string FileName, in strinATestVol, inout integer FileCount)

The following steps reproduce this issue:

create 2 files.

Read second file created

Rename second file over first file (will fail)

Rename first file to a new filename

read new file - blank bytes returned!

Appendix B Bug Descriptions Page 178

Hazel Anne Shaw October 2005

This problem cannot be reproduced from the command line. However, the isolated

sequence of steps is:

write File4

write File9

read File9

rename File9 FilM This will fail as file4 exists

rename File4 File7 Successful

read File7 This will read blank bytes, not the data originally written in File4

At the end of this sequence of steps File4 still exists but it has a size of zero bytes.

Both File9 and File7 also exist, and they have the correct number of bytes.

This issue is reproducible, though further investigation is needed to identify where

in Manager the problem is occurring.

Detection of this bug highlights the importance of stochastic testing. It is extremely

unlikely that a test engineer would have written a test which included these steps

manually. Additionally, once the steps to cause the bug were isolated it became

clear that the bug could not be reproduced from the command-line, a script was

needed to carry out the test. This reinforces the importance of using scripts to carry

out testing tasks, as the time taken between steps is often critical.

Appendix B Bug Descriptions Page 179

FH_

Hazel Anne Shaw October 2005

Bug 10. "rename file21 *1.* has in different message on SUT"

Severity Low
Number of Interface Files 19
Number of tests generated 300
Number of tests executed 300
First test number bug occurred on Test number 14 (Index from 0)
Products containing bug ELM 2.03.45i
Date bug found 2na August 2002
Configuration
Tests run from Indefatigable.
Manager running on Aquarius controlling a stand-alone drive.
Disk in Plasmon format.
Interface File Summary
testvolume(out string TestVol)
SetSubDir(inout integer SubDir)
SetDelParams(inout integer DelParams)
rmdir(in integer SubDir, in string FileName)
renamefile(in string ShortFileName, in string FileName)
readfile(in string FileName)
NewWildcardName(inout string FileName, inout integer FileCount)
NewShortName(out string ShortFileName, in string FileName)
NewDirName(inout string FileName, inout integer FileCount)
movefile(in string FileName2, in string FileNamel)
mkfile(in string FileName)
mkdir(in string FileName)
listdir_basic(in string FileName)
InitialiseSubDir(out integer SubDir)
InitialiseDelParam(out integer DelParams)
InitialiseCount(out integer InvFileCount, out integer FileCount)
del(in integer DelParams, in string FileName)
copyfile(in string FileName2, in string FileNamel)
BaseDir(out string FileName, in strinK TestVol, inout integer FileCount}

Rename a file using a wild card. The message returned by Manager is different

from that returned by NTFS.

Appendix B Bug Descriptions Page 180

_ WE;;;Mt"::iM

--

•

APPENDIX C TEST AND COMPARE (TAC) DATA FILE

USING PATTERNS

This appendix details the Test and Compare (TAC) data file.

For every command (or set of commands) that need to be run, a data file is created.

This has the following form:

test_command "dir *.* Ib Is"
BEGIN

MANYNOORDER testdirectory;Exact(fn)
END

Test commands are placed at the beginning of the file. These are the commands

that fmID the test. Each test command line starts with the keyword test_command.

If multiple test_ conunand lines are given, then each command will be executed in

turn.

The following key words can be used at the beginning of a test file:

test_command specifies the command(s) to execute from the command line
for this test

test file specifies a Tel file that contains the tests. If this is specified
then any test command key words will be ign_ored.

If lines do not begin with any of the keywords specified above then they specify

new patterns for matching data against, or for redefming the existing patterns used.

BEGIN marks the start of the actual patterns used for matching against the data.

The following describes the keywords that will found at the beginning of the lines

following this:

Page 181

..

Hazel Anne Shaw October 2005

BEGIN/END defines the be~inning and end of the pattern section
MANY 	 specifies that this pattern should match one or more lines
MANYNOORDER specifies that this pattern matches one or more lines. But that

the output from the SUT and the oracle may be in different
orders. Puts the lines into alphabetical order before
comparing, ensuring that they should match.

ONCE 	 thisj)attem will only match one line.

After END, no more is read from this data file. Therefore, if any comments are

needed, they can go at the bottom of a data file. It is very useful to put comments

into a test file. They ensure that maintenance in the future is as easy as possible.

Patterns consist of descriptive names, and actions to carry out. The following are
Ii

defined:II
"

II
date11 	 has the form DDIMMIYY or DIMN or a combination

I time has the form hh:mm or h:m or a combination
int any integer number
intthous any integer number possibly containing thousand separators:

10,000 1,234 123 etc.
decimal any number possibly containing a decimal place: 10.001

1.234 123 etc.

fn
 filename of the form abcdef.xxx or .123 or abcdef etc.
anything 	 matches anything on the line. Careful use ought to be made

of this. DO NOT use at the beginnings oflines where proper
matches need to be made. It can be used at the end of lines
where the contents really do not matter

blank 	 an entirely blank line, use this pattern on it's own.
ws 	 whitespace. There is almost certainly no need to use this.

The pattern matching allows for whitespace between
variables defined, though they will still match even if there is
no white space.

Additional patterns can be set up if needed, or if patterns need to be redefined for a

particular test definition. This is done at the beginning of the data file. The pattern

matching is done using regular expressions as implemented in Tcl. For example,

the definition for date is: [O-9]? [0-9] / [0-9]? [0-9] / [0-9]? [0-9]. This will

match a string such as 01/07/99. It will also match a string like 99/9 S/9 7. This is

Page 182Appendix C Test and Compare (TAC) Data File Using Patterns

..

Hazel Anne Shaw 	 October 2005

not a valid date. To create a tighter defInition for date, the following line is

included at the top ofthe data file (before BEGIN):

I date {[0-3]? [0-9] / [0-1] ? [1-9] / [0-9] [0-9] }

This defInition will then be used in place of the default definition. This is useful for

readability in a script, where there is no need to have variables called "mydate" or

"datel" etc.

In the same way, new defInitions can be made, specifying a name that is not a

keyword or a current pattern variable.

Finally, there are the comparison keys. These do not define the pattern, but how the

pattern should be treated to confIrm that the match is correct. If a pattern variable is

used on it's own, then no further checking is made, the match of the string to the

pattern is suffIcient, and the SUT does not need to match the oracle.

Alternatively, a pattern can be the parameter for a comparison key. The comparison

keys currently defined are:

Range 	 specifies that the matched number (it has to be a number nothing
else will make sense) should be within a given range. There are
three parameters:

Range (pattern, x, y)

Pattern the name of the pattern variable
x the lower range bound
y the upper range bound

if sutmatch is the number matched on the sur and ormatch is
the number matched on the oracle then:

lower bound = ormatch - x
upper bound = ormatch + y
lower bound <= sutmatch <= upper bound

If the pattern fails this match (including a check for none
numeric match) then the whole test will fail at this point.

exact the match from the SUT must be identical to the oracle:
Exact (pattern)

literal this comparison key contains a literal string rather than a pattern:
Literal ("Hello this is a literal string")

Page 183Appendix C Test and Compare (TAC) Data File Using Patterns

Hazel Anne Shaw October 2005

oneof instead of a single match, the pattern can match one of a number
of possibilities. This is the only comparison key that can contain
other comparison keys. However, oneof cannot contain another
oneof, because it is unnecessary. Each parameter in oneof is
separated by "I":

Oneof (pattern 1 Range (pattern, x, y) 1 Literal ("xx"))

testdirectory this is treated in the same way as a pattern keyword. However, it
cannot be redefined. It specifies that the pattern should match
the path of the system that the test is currently being run on.

Each comparison key or pattern variable on the line is separated by";". This

specifies that the patterns to be matched are separated by zero or more white space.

White space consists of tabs and spaces. New lines are not included, as each line in

the data file should match a whole line oftest output.

There are occasions when a pattern is used so often, that it needs to be defmed and

used when needed. What is needed is a "procedure" specifying a common pattern.

This is achieved using USE and SUB:

test command dir

test numfiles 10

test_dirdepth 2

USE library/filesys.lib

BEGIN

SUB directory_and_dots

END

Where the file library/filesys.lib contains:

DEFSUB directory_and_dots

BEGIN

ONCE Literal (Volume in drive);anything

ONCE Literal (Volume Serial Number is);anything

ONCE blank

ONCE Literal (Directory of);anything

ONCE blank

ONCE date;time;Literal«DIR~);Literal(.)

ONCE date;time;Literal«DIR~);Literal(..)

MANYNOORDER
Exact(date);Exact(time) ;oneof(Literal«DIR~) !Range(intthous,S,5»;Exact(fn)

ONCE Exact(int);Literal(File(s» ;Range(intthous,5,S);Literal(bytes)

ONCE intthouSiLiteral(bytes free)

SUB END

Page 184 Appendix C Test and Compare (TAC) Data File Using Patterns

•

& ·,.,w

Hazel Anne Shaw October 2005

Library files can contain multiple patterns. A test file can specify multiple files to

use patterns from.

There are a number of things that are not covered:

1. 	 Sub patterns cannot use other sub patterns. Though this is quite a limitation,

this "language" is intended for quite a restricted purpose, therefore making this

limitation less of a problem.

2. 	 Sub patterns cannot be declared in a main test file, they must be declared in a

separate file and then references using the "USE" keyword.

3. 	 There is no way to specify that a sub pattern may be repeated multiple times. A

"MANYSUB" keyword as required.

To run the tests a customised Tcl interpreter runs a script called TAC. TCL. The data

file is interpreted by TAC, which in turn runs a series of scripts interpreted by Tel.

Page 185Appendix C Test and Compare (TAC) Data File Using Patterns

&!

•

APPENDIX D GENERATING THE TRANSITION MATRIX

Chapter 2 section 2.3.3 describes two algorithms for generating the states in the

Markov Chain Transition Matrix. This appendix presents other approaches that

were tried. Each section describes the problems with the matrix generated.

Each of the following methods is illustrated with five functions:

One (out x, inout Y)

Two (in X, out z)

Three (out Y, out W)

Four (in W)

Five (in Y, in z)

Method Attempt 1

The first approach is to consider states based upon inputs (and combinations of

those inputs) to functions. This produces the following list of inputs:

I Y, x, W, YZ

Taking these inputs this produces the following states:

IYOYx=x
w=w
YZ = Y, Z, YZ

Summary of states:

I Y, x, w, z, YZ

This will not produce a usable matrix. For instance Parameters Y and W are only

ever initialised together, yet these never appear together in the matrix, so function

Three will not appear in the matrix so cannot be called. The matrix is not shown for

this method - as it is trivial. See the later methods for example of how a matrix

looks.

Page 186

WlMjw, in •

iM.,p

Hazel Anne Shaw October 2005

Method Attempt 2

The next approach is to use combinations ofoutputs with inputs.

The inputs are:

I Y, Z, W, YZ

The outputs are:

I XY, Z, YW

The states produced from these are:

I Y, Z, W, YZ, x, XY, YW

Giving the following matrix:

Note that the state:XZ is not in the matrix. Therefore function Two is not in the

matrix and cannot be run. This is because the inputs and outputs have been handled

separately.

All other proposed methods attempt to combine the inputs and outputs.

Method Attempt 3

States are generated in the following manner:

Page 187Appendix D Generating the Transition Matrix

iCillll'_ll

Hazel Anne Shaw October 2005

1. 	 Examine the output parameters. Make a list of output parameters (ignore

parameters that act as inputs and outputs) that only appear in groups. These

groups can then be considered as a single parameter.

2. 	 Produce combinations of inputs, ensuring that the special combined parameters

are always used together.

Output parameters are:

I x, z, YW

Input parameters are:

I Y, x, W, YZ

Expanding the combinations of the input parameters gives:

I Y, 	 x, W, z, YZ

Replacing all instances ofW and Y with YW (from the outputs) gives the final list

of states:

I WY, x, z, WYZ

Note the output parameters should also be included in the list. This is because an

output may not be used in any functions as an input. However, this example uses

all the set outputs in at least one function as inputs.

The state XZ is not present. The matrix produced using this method is not usable.

Method Attempt 4

The next step is to consider not just the inputs to functions, but all the parameters

used or set by a fimction. The result is the following algorithm:

Page 188Appendix D Generating the Transition Matrix

we •

III!

Hazel Anne Shaw 	 October 2005

1. 	 Go through the functions and build a VariabIe Table (VT). The VT contains a

list of all output parameters. It is indexed on each output parameter. For each

output parameter, there is a list of all output parameters it is used with. For

example, if we have 4 functions that initialise parameters A, AB, BC, C. Then

the VT will be: A = {A, AB}; B = {AB, BC}; C= {BC, C}.

2. 	 For each of the functions, create a list of all parameters.

3. 	 Create combinations of these parameters to produce unique states.

4. Expand each state with the grouping infom1ation in the VT.

Using the same example as before:

Step 1, build the VT:

I x = {XY}; Y = {YW, XY}; Z = {z}; W = {YW}

Step 2, list the parameters for each function:

IXY, XZ, YW, w, YZ

Step 3, create combinations of these parameters.

XY = {x, Y, XY}

xz = {x, z, xz}

YW = {Y, W, YW}

W = {w}

YZ = {Y, z, YZ}

Summarising:

I x, 	Y, XY, Z, xz , W, YW, YZ

Step 4, Expand with infonnation from VT

Ix. xy
Y = YW, XY

XY = XYWY I XYXY = XYW I XY

Appendix D Generating the Transition Matrix 	 Page 189

Hi

Hazel Anne Shaw October 2005

IZ.Zxz '" XYZ
W = YW
YW '" YWYW, XYYW
Zy '" ZYW, ZXY

Removing duplicates gives the following states:

I XY, yw, XYW, z, XYZ, ywz

Immediately this is better, since the state XYZ means that function Two can be

called. This produces the following matrix:

o YW XYW z XYZ YWZ

o

XY
YW Unset

XYW Unset

z
XYZ Unset

YWZ

~ee

All functions have been included in this matrix. It is necessary to see if the matrix

is commutable. For this the checking algorithm is used (see Appendix E).

States State Used State Reached
XY Yes II
yw Yes II

XYW Yes II
Z

XYZ Yes I
YWZ

State Z (and consequently YWZ) cannot be reached. It is possible that an Unset

function could be added to get to Z from XYZ. However, there is no function to get

from Z straight back to XYZ, so this is a dangerous solution.

Appendix D Generating the Transition Matrix Page 190

•

APPENDIX E CHECKING THE MATRIX

A further algorithm was developed to confIrm that the matrix created contained

states that could always be transitioned into and out of. This was used manually

and also implemented into Alltest.

Create a table with three columns. In the first column list all the states in the matrix

excluding the initial state and the end state. The second column lists the states that

are reachable. The third column lists the states that have been checked.

Examine the matrix starting at the initial state. In the second column mark those

states that can be reached from the initial state.

Now, loop though the table:

• 	 Select a state that is reachable (this is marked in the second column), but

has not been checked (this is marked in the third column). The state

selected is the "current state".

• 	 Examine the transition matrix and mark in the second column the states

that are reachable from the "current state".

• Mark in the third column that the "current state" has been checked.

Continue until all states that are reachable have been checked.

Once the checking has stopped, examine the table for any states that have not been

reached. If any exist, the matrix is not fully commutable.

Page 191

•

APPENDIX F TESTING THE GENERATOR

This appendix lists the data used to generate the charts in Chapter 9. The charts

produced are Figure 29 and Figure 30.

Data for Changing Probability of Staying in Same State

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.001 0.001 Test 1
Transitions 1 6940 1039.9 1037.7

Same States 0 13 0.9 1.4

Change States 1 6936 1038.9 1036.7

Action Calls 0 5 0.3 0.7

Init Calls 0 3471 520.6 519.0

Unset Calls 1 3467 518.9 518.3

0.001 0.050 Test 2
Transitions 1 6526 1066.4 1024.6

Same States 0 317 47.8 46.4

Change States 1 6261 1018.6 978.7

Action Calls 0 105 16.7 16.7

Init Calls 0 3299 541.0 519.1

Unset Calls 1 3131 508.8 489.3

0.001 0.100 Test 3
Transitions 2 6514 1025.8 1029.2

Same States 0 592 92.5 94.2

Change States 2 5922 933.3 935.5

Action Calls 0 225 32.0 33.6

lnit Calls 3329 527.7 528.6

Unset Calls 1 2960 466.1 467.8

0.001 0.150 Test 4
Transitions 2 8414 949.7 947.7

Same States 0 1100 128.6 129.0

Change States 2 7314 821.1 819.2

Action Calls 0 404 45.0 46.5

Init Calls 1 4354 494.7 492.4

Unset Calls 1 3656 410.0 409.6

Page 192

Hazel Anne Shaw 	 October 2005

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.001 	 0.200 TestS
Transitions 1 7445 995.3 980.7
Same States 0 1330 180.6 179.5
Change States 1 6115 814.6 801.8
Action Calls 0 497 62.8 63.8
Init Calls 0 3891 525.7 517.0
Unset Calls 1 3057 406.8 400.9

0.001 	 0.250 Test 6
Transitions 3 6742 1071.1 1041.1

Same States 0 1500 245.0 239.7

Change States 3 5242 826.1 802.0

Action Calls 0 551 85.3 85.6

lnit Calls 2 3598 573.4 555.7

Unset Calls 1 2620 412.4 401.0

0.001 	 0.300 Test 7
Transitions 1 8554 1083.8 1081.4

Same States 0 2337 299.0 301.0

Change States 1 6217 784.8 781.1

Action Calls 0 819 104.5 108.6

Init Calls 0 4627 587.5 583.7

Unset Calls 1 3108 391.8 390.5

0.001 	 0.350 Test 8
1054.3Transitions 	 2 6825 1011.0

0 2220 327.5 343.7Same States
Change States 2 4605 683.5 711.3

113.6 122.1Action Calls 	 0 804
578.1InitCalls 1 3719 556.2

Unset Calls 2302 341.2 355.6

~,

fl 0.001 0.400 Test 9
I' 1038.1
~ Transitions 1 6970 1049.0
) 2600 390.8 389.3Same States 0
~ Change States 4370 658.1 649.5

I
) 135.5 138.6Action Calls 0 896

3931 585.0 576.6lnit Calls 	 0
324.8328.5Unset Calls 	 1 2185

T'!
I

I
I

~

J 	 Page 193AppendixF Testing the Generator

t
~
~
~

wn.

Hazel Anne Shaw October 2005

Minimum MaximumP(end) P(same)

0.001 0.450 Test 10
Transitions
Same States
Change States
Action Calls
Init Calls
Unset Calls

0.001 0.500 Test 11
Transitions
Same States
Change States
Action Calls
Init Calls
Unset Calls

0.001 0.550 Test 12
Transitions
Same States
Change States
Action Calls
Init Calls
Unset Calls

0.001 0.600 Test 13
Transitions
Same States
Change States
Action Calls
!nit Calls
Unset Calls

0.001 0.650 Test 14
Transitions
Same States
Change States
Action Calls
InitCalls
Unset Calls

Average
(mean)

Standard
deviation

1034.4
435.7
598.7
151.3

584.4

298.8

1006.1
427.0
579.7
153.3
565.0

289.9

997.3
468.3
529.0

162.2
571.1
264.0

995.0
471.7
524.2
169.4
566.1

262.0

1044.3
542.7
501.6
188.7
605.4

250.2

1049.1
547.7
502.1
197.7
603.4
251.0

957.3
544.9
412.4
187.0
564.6
205.6

968.4
555.6
413.5

196.9
568.3
206.7

1005.7
624.6
381.1
214.7
601.0
189.9

985.3
615.4
370.7

219.3
584.8
185.3

1
0
1
0

0
1

1
0

1
0
0
1

1
0
1

0
0
1

2
0
2

0
1
1

1
0
1

0
0
1

6285
2651
3634

957
3594

1817

9202
4449
4753

1632
5194
2376

9917
5106
4811
1875
5638
2404

8033
4603

3430
1590
4729
1714

7774
4790
2984

1652
4631
1491

Appendix F Testing the Generator Page 194

t,iibiW

-

Hazel Anne Shaw October 2005

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.001 0.700 Test 15
Transitions 1 7540 1018.4 1031.7
Same States 0 5041 684.6 697.7
Change States 1 2499 333.9 334.8
Action Calls 0 1671 232.8 246.8

Init Calls 0 4619 619.3 622.5
Unset Calls 1250 166.3 167.4

0.001 0.750 Test 16
Transitions 2 7895 1075.6 1105.5

Same States 0 5704 779.9 805.3

Change States 2 2191 295.8 301.0

Action Calls 0 1939 262.8 284.1

Init Calls 1 5007 665.6 677.3

Unset Calls 1 1095 147.3 150.5

0.001 0.800 Test 17
Transitions 3 8473 1015.0 1002.4

Same States 0 6608 789.4 782.9

Change States 2 1865 225.6 220.3

Action Calls a 2275 266.0 278.9

Init Calls 2 5510 636.8 622.0

Unset Calls 1 932 112.2 110.1

0.001 0.850 Test 18
Transitions 1 9160 1099.7 1070.3

Same States 0 7569 914.4 894.7

Change States 1591 185.3 176.5

Action Calls 0 2760 305.0 323.0

Init Calls 0 5605 702.6 671.4

Unset Calls 795 92.0 88.2

0.001 0.900 Test 19
Transitions 2 7895 1031.7 1069.3

Same States 0 7055 913.7 951.7

Change States
Action Calls

2

0

840

2493

118.0

293.7

118.5

344.9

lnit Calls 4983 679.6 681.7

Unset Calls 419 58.4 59.2

Page 195
Appendix F Testing the Generator

Hazel Anne Shaw October 2005

Minimum Maximum P(end) P(same)

0.001 0.950 Test 20
Transitions
Same States
Change States
Action Calls
lnit Calls
Unset Calls

0.001 0.995 Test 21
Transitions
Same States
Change States
Action Calls
Init Calls
Unset Calls

Average
(mean)

Standard
deviation

1080.3

1016.7

63.6

305.4

743.7

31.2

1088.8

1028.6

61.2

381.4

714.0

30.5

987.8

980.1

7.6

78.7

905.5
3.6

941.0

936.1

5.8

228.9

823.5
2.8

3

1

2

0

2

1
0

1

0

0
1

8993

8489

504

3527

5904
251

6347

6317

32

2230

6332

16

Appendix F Testing the Generator Page 196

we

Hazel Anne Shaw 	 October 2005

Data for Changing Probability of Ending Test

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.001 0.001 Test 1
Transitions 1 7310 1056.1 1038.9

Same States 0 9 0.9 1.3

Change States 1 7301 1055.2 1038.0

Action Calls 0 5 0.3 0.7

Init Calls 0 3656 528.7 519.6

Unset Calls 1 3650 527.1 519.0

0.020 	 0.001 Test 2
Transitions 1 466 47.1 46.1

Same States 0 2 0.0 0.2

Change States 1 466 47.1 46.1

Action Calls 0 1 0.0 0.1

Init Calls 0 234 23.9 23.2

Unset Calls 1 232 23.2 22.9

0.040 	 0.001 Test 3
Transitions 1 154 23.7 23.0

Same States 0 1 0.0 0.1

Change States 1 154 23.7 23.0

Action Calls 0 1 0.0 0.1

Init Calls 0 77 12.2 11.7

Unset Calls 1 77 11.6 11.3

0.060 	 0.001 Test 4
Transitions 1 126 16.3 15.6

Same States 0 2 0.0 0.1

Change States 1 126 16.3 15.6

1 	 0.1Action Calls 0 0.0

lnit Calls 0 64 8.3 8.0

Unset Calls 1 8.062 	 7.6

0.080 0.001 	 Test 5
1 84 12.2 11.6Transitions

1 	 0.1Same States 0 0.0

Change States 1 84 12.2 11.6

0 1 	 0.0 0.0Action Calls
43 	 6.0lnit Calls 0 	 6.2

5.6Unset Calls 	 1 41 6.0

Page 197Appendix F Testing the Generator

-w..

-

Hazel Anne Shaw October 2005

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.100 0.001 Test 6
Transitions 1 63 9.5 8.8

Same States 0 1 0.0 0.1

Change States 1 63 9.4 8.8

Action Calls 0 0.0 0.0

Init Calls 0 32 4.8 4.6

Unset Calls 31 4.6 4.2

0.120 0.001 Test 7
Transitions 1 57 8.1 7.6

Same States 0 1 0.0 0.1

Change States 1 57 8.1 7.6

Action Calls 0 0 0.0 0.0

Init Calls 0 29 4.1 4.0

Unset Calls 1 28 4.0 3.6

0.140 0.001 TestS
Transitions 1 40 7.1 6.4

Same States 0 1 0.0 0.1

Change States 1 40 7.1 6.3

Action Calls 0 0 0.0 0.0

Init Calls 0 20 3.6 3.4

Unset Calls 1 20 3.5 3.0

0.160 0.001 Test 9
Transitions 1 50 6.1 6.0

Same States 0 1 0.0 0.1

Change States 1 50 6.1 6.0

Action Calls a 1 0.0 0.0

lnit Calls 0 26 3.0 3.3

Unset Calls 1 24 3.1 2.8

0.180 0.001 Test 10
Transitions 1 35 5.6 5.0

Same States 0 1 0.0 0.1

Change States 1 35 5.6 5.0

Action Calls 0 0 0.0 0.0

InitCalls 0 18 2.7 2.7

Unset Calls 1 17 2.8 2.3

Appendix F Testing the Generator Page 198

Hazel Anne Shaw October 2005

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.200 0.001 Test 11
Transitions 1 30 4.7 4.0
Same States 0 1 0.0 0.1
Change States 1 30 4.7 4.0

Action Calls 0 0 0.0 0.0
Init Calls a 16 2.3 2.2

Unset Calls 1 14 2.4 1.8

0.220 0.001 Test 12
Transitions 1 37 4.6 4.2

Same States a 1 0.0 0.0
Change States 1 37 4.6 4.2

Action Calls a a 0.0 0.0
Init Calls a 19 2.2 2.4

Unset Calls 1 18 2.4 1.9

0.240 0.001 Test 13
Transitions 1 25 4.1 3.5

j
l

Same States
Change States
Action Calls

a
1
a

1
25
0

0.0
4.1
0.0

0.0
3.5
0.0

~

1, !nit Calls
Unset Calls

a
1

12
13

2.0
2.2

2.0
1.6

l
I 0.260 0.001 Test 14

Transitions 1 22 3.7 3.1

1
1

Same States
Change States

0
1

2
22

0.0
3.7

0.1
3.1

Action Calls 0 0 0.0 0.0

Init Calls 0 12 1.7 1.8

Unset Calls 1 11 2.0 1.4

0.300 0.001 Test 15
Transitions 1 23 3.3 2.8

Same States 0 0 0.0 0.0

Change States 1 23 3.3 2.8

Action Calls 0 0 0.0 0.0

Init Calls a 13 1.5 1.6

Unset Calls 1 10 1.8 1.3

Appendix F Testing the Generator Page 199

..';

Hazel Anne Shaw October 2005

P(end) P(same)

0.400 0.001 Test 16
Transitions
Same States
Change States
Action Calls
!nit Calls
Unset Calls

0.500 0.001 Test 17
Transitions
Same States
Change States
Action Calls
!nit Calls
Unset Calls

0.600 0.001 Test 18
Transitions
Same States
Change States
Action Calls
lnit Calls
Unset Calls

0.700 0.001 Test 19
Transitions
Same States
Change States
Action Calls
Init Calls
Unset Calls

0.800 0.001 Test 20
Transitions
Same States
Change States
Action Calls
lnit Calls
Unset Calls

Minimum Maximum

1 18
0 a
1 18
0 a
0 10
1 9

1 15
0 a

15
0 a
0 8
1 7

1 8
0 0

8
a 0

a 5
3

1 6
a a
1 6
0 0
0 3

3

1 5

0 0
1 5

0 a
a 3

1 3

Average Standard
(mean) deviation

2.5 2.0
0.0 0.0
2.5 2.0
0.0 0.0
1.1 1.2
1.5 0.9

2.0 1.4
0.0 0.0
2.0 1.4
0.0 0.0
0.7 0.9
1.3 0.6

1.6 1.0
0.0 0.0
1.6 1.0
0.0 0.0
0.5 0.7

1.1 0.4

1.4 0.8
0.0 0.0
1.4 0.8
0.0 0.0
0.3 0.6
1.1 0.3

1.2 0.5
0.0 0.0
1.2 0.5

0.0 0.0
0.2 0.4
1.0 0.2

Appendix F Testing the Generator Page 200

"$ ••

Hazel Anne Shaw October 2005

P(end) P(same) Minimum Maximum Average Standard
(mean) deviation

0.900 0.001 Test 21
Transitions 1 3 1.1 0.4
Same States 0 0 0.0 0.0
Change States 1 3 1.1 0.4
Action Calls 0 0 0.0 0.0
Init Calls a 2 0.1 0.3
Unset Calls 1 2 1.0 0.1

0.950 0.001 Test 22
Transitions 1 3 1.1 0.3
Same States 0 1 0.0 0.0
Change States 1 3 1.1 0.3
Action Calls 0 0 0.0 0.0
!nit Calls 0 2 0.1 0.3
Unset Calls 1 2 1.0 0.1

Appendix F Testing the Generator Page 201

!M" + SA

-

APPENDIX G AVERAGE LENGTH OF TEST

Chapter 3 gives the average length of the test as

1
t=

P

Where: 	 t is the average number oftransitions in a test

p is probability ofending the test on this transition

The calculation for this is as follows:

q = probability ofnot ending the test on this transition

q=l-p

Pn = Probability of finishing on the nth step

= fn{qn-l)p
n=O

Page 202

Hazel Anne Shaw October 2005

d n00

t=P-Lq
dq n=O

d {l_qn}

= P dq l-q

qn tends to zero as n tends to infinity

t=L
p2

1
t=

P

Appendix G Average Length ofTest Page 203

.&

-

APPENDIX H USINGALLTEST

This appendix discusses how to debug the System Under Test (SUT) and how to

analyse failed tests. It also describes how to install Alltest and how it is used to test

Manager.

This appendix a.ssumes that Alltest is run from the base directory, where the

directories shown in Table 17 are sub directories from the base directory.

Directory Description

Interface Contains the TCD files making up the interface.

Libr~ Contains Tcllibrary files used by the interface.

Tests The directory containing the generated test files.

Orelog The directory where the oracle results reside. (configurable).

Sutlog The directory where the SUT results reside. (configurable).

Results The direct()ry where the comparison writes the results from the test.

Rules The directory containing global (supplied) rules for Alltest.

Compare Contains the Tel code for comparing the SUT and oracle results.

Table 17 Directory structure of Alltest

Debugging the Interface

If the rules have failed in some way, then they need to be updated. Care must be

taken to ignore as little as possible. If rules are too general, then tests may start to

pass when they should have failed. If there is test output that should be considered

as equivalent, but the rules do not ignore the differences, then it is necessary to

debug the rules. The tester needs to save the appropriate segments from the oracle

and SUT output files into separate files and re-run the comparison for the single

TCD file:

alltest k <ted filename> <sut filename> <oracle filename> <result filename>

Page 204

ELaaaaa &&Ii

n·,,"·,

Hazel Anne Shaw October 2005

The tester should check that the results produced match those of the original

comparison. If they do not the most likely cause is a difference in white-space as a

result of copying the segments.

The next step is either to add further USERULE lines or to create new rules for the

TeD file. The tester should keep re-checking the comparison until the results are

correct.

The full comparison can then be carried out again on the whole test results. There

is no need to re-run the tests on either system. Once the full comparison is

complete, re-examine the results as before.

Debugging the System Under Test

If the problem appears to be with the SUT, there are a number of debugging

strategies that can be employed. As with any development and debugging activity,

the best approach will vary for different developers.

The first thing to do is to re-run the single test again and see if the results are the

same. If the test did not fail in the same way, or did not fail at all, then it is likely

that there is some timing bug that needs fmding. Re-rwming part or all of the

generated tests and seeing how many failures are different may help locate the

problem. Timing issues are always difficult to fix. However having an automated

tool that can re-run a set of tests identically can greatly reduce the frustration of

identifying this type of issue.

If the test did fail in the same way, then it is likely to be a fully repeatable issue.

The strategy to adopt here is to find the minimum number of steps needed to induce

the problem. This will probably entail working backwards through the test output

for the SUT and finding what steps were actually taken, and the values of

parameters at the time of the failed action. It is useful to try and reproduce the issue

manUally. This is not always possible, especially with time critical problems. If the

failure cannot be manually induced, then short test files can be written by hand for

Appendix H Using Alltest Page 205

a L

Hazel Anne Shaw October 2005

Alltest to run. As the test files are actually Tel, it is possible to set parameter values

and force these to be inputs into TCD files.

Once failures have been analysed and their cause identified, then the SUT can be

corrected and testing can continue.

Analysing Failed Tests

Once a test has been detected as failed, the test and the outcomes need to be

analysed. Analysis is trying to establish:

• 	 Is the failure repeatable, reproducible, or random? Re-running the test,

and analysing other tests that have failed may help determine this.

• 	 Did the SUT fail the test, or is this a false negative?

• 	 If the SUT failed the test, which sequence of steps caused the failure? It

may be possible to determine a set of steps smaller than the whole test.

• 	 Can the failure be repeated manually or is timing critical so that the failure

only occurs when the test is run from a script.

This investigation is important, as it is the first step in fixing the problem. It allows

a thorough bug report to be written which a developer will use to discover where

the software failed.

Examples of how this process is carried out can be seen in the bug reports in

AppendixB.

Using Alltest to test Manager

Preparing and Installing Alltest to test Manager

The current implementation of Alltest includes a simple script for its set up and

installation. To prepare an installation, compile and link alltest.exe and alltest.dll.

Appendix H Using Alltest 	 Page 206

-

Hazel Anne Shaw October 2005

Then run: telsh83.exe prepare_setup. tel from the setup directory. This

creates a directory (release) that contains all the components needed to install

Alltest.

For testing Manager, AlItest is installed over two machines. The first machine is

the test control machine. The second machine is the host machine that runs

Manager.

On the test control machine, install the Tel interpreter. Tcl832.exe which is in the

release directory will install Tel 8.3. Finish the Tel installation by adding the

Tc1\bin directory to the system path variable. Install Alltest by running setup.bat

from the release directory.

On the host machine (which is running Manager), install Td8.3 as before. Also

install the testtools module that contains the server and the Manger API. Compile

the Manager API library (me f _server. dll) against the current release ofManager.

Generating and Running the Tests

Edit eonfig. txt (in all test directory) to setup parameters ready for running the

tests on the oracle. Figure 33 shows part of a configuration file. The file contains

parameters that are used by AlItest during the generation and execution of tests.

Figure 34 shows another part of the configuration file. This time the parameters are

not understood by Alltest, but are used by the interface files and clean-up code to

configure behaviour of the tests while running. Parameters in the configuration file

allow the test behaviour to be modified. For example, a bug may be known, but it

can be worked around until it is fixed. A parameter can be added to the config file,

and the appropriate interface files aItered so that the work around is used until the

bug is fixed. This enables testing to continue without triggering the known bug.

Appendix H Using Alltest Page 207

u

Hazel Anne Shaw October 2005

values used by alltest itself
markov-probability_end_test 0.005
markov-prdbability_same_state 0.8
generator_num_tests 25

files used to check the matrix the generator is producing
markov_log_filename output\matrix. txt
state_btree_1Dg_filenarne output\state.txt

the value of the tel interpreter
tcl_interp tclsh83

path values used when running tests and comparing results
sut~b~th q:/
orc~b-path y:/
sut_hd~th c:/testJ.
orc_hdyath c:/test2

the clean up script (tcl only)

test cleanup cleanup test.tcl

Figure 33 Config file showing parameters used by Alltest

The rest of this file contains parameters that are defined by the

interface files or clean-up code only.

do the mkdir part with the bug intact

bug_mkdir_elements J.

do the movedirectory with the workaround for the bug

bug_movedir J.

mgr_server_host aquarius

mgr_serverJ'Ort 2551

mgr_server_share stalldalone

the cleanup code can either reformat media or

it can delete directories, etc.

if it is reformatting media, the following specify

the filesystem: plasmon, afs, udf

and the volume name to use

cleanup_format_unit_num 1

cleanup_format_filesystem plasmon

cleanup_format_name DISKOOJ.

cleanup can pause at the beginning and end to help resolve timing issues

cleanup_start-pause 5

cleanup_finishyause 15

this specifies the cleanup_method:

deldir recursively delete directories

format reformat a stand-alone drive

other methods can be added as required.

cleanup method format

Figure 34 Config file showing parameters used by clean-up code and interface files

Generate the tests, from the command prompt:

Page 208Appendix H Using Alltest

--------..............

Hazel Anne Shaw October 2005

Icd alltest
alltest g .

Run the tests on the oracle system:

I alltest r .

Rename logs directory to orclog. Re-edit config. txt to setup parameters ready

for running the tests on the SUT. The parameters that most need changing will be

the clean-up method as the method used on the SUT is different to the oracle, and

the path on which the tests are being run.

I alltest r .

Rename logs directory to sutlog. Re-edit config. txt to specify the correct

parameters for the SUT and oracle. Run the comparison:

I alltest c .. \sutlog .\orclog

Examine the results: results\overall.log gives the total number of tests that

passed or failed, as well as the final result for each test. Examining individual logs

will help determine the cause of the failure. For example, if overall. log gives

testlO as failed, then examine results\testlO .log to highlight the comparison

that failed. Further re-runs of the test and investigation may then be needed to

isolate the cause ofthe failure.

Setting up the Host Machine

On the host machine two processes need to be running: Manager and the server

process. First configure the server process. Edit server. ini (in

testtools\tcl\utils\server) to specify the port number used for

communication between the server and the test controller. Run

tclsh83. exe mgr_server -i: server. ini. Start rwming Manager. Share a

disk or a drive from the jukebox so that the test controller can access the drive.

Appendix H Using Alltest Page 209

2

GLOSSARY

API Application Program Interface. This is a published interface to a product that

allows developers to use the product within other applications.

C A compiled programming language.

CVS Concurrent Versions System. This is an open-source version control system.

Filemon This is a tool available from http://www.sysinternals.com.Itis

exceptionally useful when analysing problems on Manager. It consists of a file

system filter driver and a console. The filter driver sits above any file system and

monitors all the commands sent to the file system and the results of those

commands. This information is printed out on the console. The data can be saved

or automatically logged to a file for further analysis.

Gill Graphical User Interface.

Lex Lexical Analyser.

MCTM Markov Chain Transition Matrix

SUT System Under Test. This is the application or software being developed, and

currently being tested.

TAC Test and Compare.

TCD Test Command Description.

Tel Tool Command Language. This is an interpreted language. It is used

extensively in the implementation of Alltest.

UOF Unit of Functionality.

VT Variable Table. This is a data structure created as part of the algorithm that

generates the MCTM.

Yacc Yet Another Compiler-Compiler.

Page 210

M

http://www.sysinternals.com.Itis

REFERENCES

Abramson, D., Sosic R. (1996). A Debugging and Testing Tool for Supporting

Software Evolution. Automated Software Engineering 3, 1996, Pages 369 - 390.

Abramson, D., Watson, G. (2003) Debugging scientific applications in the .NET

Framework. Future Generation Computer Systems, Vol19, No 5, Pages 665-678.

Abramson, D., Watson, G., Dung, L. P. (2002) Guard: A tool for migrating

Scientific Applications to the .NET Framework. ICCS 2002, Lecture Notes in

Computer Science, Vo12330, Pages 834-843.

Aichemig B. K. (1999) Automated black-box testing with abstract VDM oracles.

SAFECOMP '99, Lecture Notes in Computer Science, Vol 1698, Pages 250-259.

Antoy S., Hamlet D. (2000) Automatically checking an implementation against its

formal specification. IEEE Transactions on Software Engineering, Vo126, No 1,

Pages 55-69.

Armour, P. G. (2004) The Unconscious Art of Software Testing. Communications

ofthe ACM, Vol 48, No 1, Pages 15-18.

Avritzer, A., Weyuker, E. J. (1995) The automatic generation ofload test suites and

the assessment ofthe resulting software. IEEE Transactions on Software

Engineering, Vo121, No 9, Pages 705-715.

Baresi L., Young M. (2001) Test Oracles. Technical Report CIS-TR-01-02.

http://www.cs.uoregon.edul~michal/pubs/oracles.html (accessed 4 September 2005)

BCS (2002) A Glossary ofComputing Terms, Tenth edition. Addison Wesley.

ISBN 0-201-77629-4.

Page 211

:::&Ed =

http://www.cs.uoregon.edul~michal/pubs/oracles.html

.'

Hazel Anne Shaw October 2005

Berman F., Fox G., Hey T. (2003), The Grid: Past, Present, Future. Grid

Computing: Making the Global Infrastructure a Reality, Chapter 1, Pages 9-50,

John Wiley and Sons, ISBN: 0470853190. Chapter 1 available from:

http://www.grid2002.org/grid2002sample/chapter1.pdf(accessed 4 September

2005)

Bertolino, A. (2003) Software Testing Research and Practice, ASM2003, Lecture

Notes in Computer Science, Vol 2589, Pages 1-21.

Bertolino, A., Strigini L. (1996) On the use of testability measures for dependability

assessment. IEEE Transactions on Software Engineering, Vol 22, No 2, Pages 97

108.

Beizer, R (1990) Software Testing Techniques, Second edition. International

Thompson Computer Press. ISBN 1-850-32880-3.

Beizer, B. (1997) Tutorial- An Overview of Testing. International Software

Quality Week Europe, 4th November 1997.

Bicheno J. (1998) The Quality 60, PICSIE Books, ISBN 0 9513829 7 7.

Brealey S. (2000) University's £8m "Millennium Dome". Varsity- The

Cambridge Student Newspaper, 29th September 2000.

Brilliant S. S., Knight J. C., Leveson N. G. (1990) Analysis of faults in an

N-version software experiment. IEEE Transactions on Software Engineering, Vol

16, No 2, Pages 238-247.

Brown A. J. (1993) Specifications and Reverse-Engineering. Software

Maintenance: Research and Practice, VoL 5, Pages 147-153

Brown D. R, Roggio R. F., Cross II J. H. and McCreary C. L. (1992). An

Automated Oracle for Software Testing. IEEE Transactions on Reliability, VoL 41,

No.2, Pages 272 - 280.

References Page 212

http://www.grid2002.org/grid2002sample/chapter1.pdf(accessed

Nt _ ~

Hazel Anne Shaw
October 2005

Bullseye (2005) BullseyeCoverage Product Summary.

http://www.bullseye.comJproductlnfo.html (accessed 4 September 2005)

Cavarra, A., Crichton, c., Davies, 1. (2004) A Method for the automatic generation

of test suites from object models. Information and Software Technology, Vol 46,

Pages 309-314

Climate Prediction (2005) ClimatePrediction.Net Gateway

http://www.climateprediction.net (accessed 23 October 2005)

Cohen D. M., Dalal S. R., Parelius J., Patton G. C. (1996) The Combinatorial

Design approach to automatic test generation. IEEE Software, Voll3, No 5, Pages

83-87

Cohen D. M., Dalal S. R., Fredman M. 1., Patton G. C. (1997) The AETG System:

An approach to testing based on combinatorial design. IEEE Transactions on

Software Engineering, Vol 23, No 7, Pages 437-444

Collins (1998) Collins English Dictionary, Fourth Edition, ISBN 0-00-472168-3.

Csallner, c., Smaragdakis, Y. (2004) JCrasher: an automatic robustness tester for

Java. Software - Practice and Experience, Vol 34, No 11, Pages 1025-1050.

Cusumano M. A., Selby R. W. (1996) Microsoft Secrets, HarperCollins, 1996,

ISBN: 0-00-255692-8

Cusumano, M., MacCormack, A., Kemerer, C. F., Crandall, B. (2003). Software

Development Worldwide: The State of the Practice. IEEE Software, Vol 20, No 6,

Pages 28-34.

Curtis H., Vella A., Burkhardt D., Broadbent M. (1998) Automated Test Suites

from Reverse Engineering and Planguage; Software Quality Week, San Francisco,

May 1998.

Page 213
References

--------..........

http:http://www.climateprediction.net
http:ClimatePrediction.Net
http://www.bullseye.comJproductlnfo.html

•

Hazel Anne Shaw October 2005

Dillon, E., Meudec, C. (2004) Automatic Test Data Generation from Embedded C

Code. SAFECOMP 2004, Lecture Notes in Computer Science, Vol 3219, Pages

180-194.

Dustin E., Rashka J., Paul J. (1999) Automated Software Testing. Addison-Wesley~

ISBN: 0-201-43287-0.

Edwards S. H. (2001) A framework for practical, automated black-box testing of

component-based software. Software Testing, Verification and Reliability, Vol 11,

No 2, Pages 97-111

Edwards, S. H., Sitaraman, M., Weide, B. W., Hollingsworth, 1. (2004) Contract

Checking Wrappers for C++ Classes. IEEE Transactions on Software Engineering,

Vol 30, No 11.

Finkelstein A. (2001) CAPSA and its implantation, Report to the Audit Committee

and the Board of Scrutiny, University of Cambridge. Part A: Processes and

decision-making. Cambridge University Reporter, Vol CXXXII No 6, 2nd

November 2001, Pages 155-176

Finney K. (1996) Mathematical Notation in Formal Specification: Too Difficult for

the Masses? IEEE Transactions on Software Engineering, Vol 22, No 2, Pages 158

159

Fox News (2003) Massive Blackout Cripples Northern U.S. Friday, August 15,

2003. hrtp:llwww.foxnews.com/story/0.2933.94772.00.html (accessed 4 September

2005)

Ghiassi M., and Woldman K. I. S. (1994). Dual Programming Approach to

Software Testing. Software Quality Journal, 3, 1994, Pages 45 - 58

Gilb T., Graham D. (1993) Software Inspection. Addison-Wesley.

ISBN 0-201-63181-4.

Page 214
References

Hazel Anne Shaw October 2005

Gilb T. (1997a) Requirements-Driven Management: A Planning Language.

Crosstalk, Jun 1997, http://www.stsc.hill.af.mil/crosstalkl1997 /06/requirements.asp

(accessed 4 September 2005)

Gilb T. (1997b) Evolutionary Project Management. Proceeding International

Software Quality Week Europe 97.

Gilb T. (1996) Requirements-Driven Management: A Planning Language.

http://www.stsc.hill.af.mil/SWTesting/ gilb.html

No longer available online. Link may become available from:

http://www.gilb.comJPages/2ndLevel/gilbdownloadother.htm1#req-driv-mang

Glass R. L. (2004) The Mystery of Fonnal Methods Disuse. Communications of

the ACM, Vol 47, No 8, August 2004, Pages 15-17.

Halstead M. H. (1977) Elements ofSoftware Science. Elsevier.

ISBN 0-444-00205-7.

He Z., Staples G., Ross M., Court I., Hazzard K. (1997) Orthogonal software

testing: Taguchi methods is software unit and subsystem testing. Logistics

Information Management, Vol 10, No 5, Pages 189-194.

Hoffman D. M., Strooper P. (1991) Automated Module Testing in Prolog. IEEE

Transactions on Software Engineering, Vol 17, No 9, Pages 934-943.

Hoffman D. (1999) Heuristic Test Oracles. Software Testing & Quality

Engineering, March/April 1999, Pages 29-32.

IBM (2005a) Rational Rose Data Modeler.

http://www-306.ibm.com!software/ awdtools/ developer/ datamodeler/ (accessed 4

September 2005)

References

http://www-306.ibm.com!software
http://www.gilb.comJPages/2ndLevel/gilbdownloadother.htm1#req-driv-mang
http://www.stsc.hill.af.mil/SWTesting
http://www.stsc.hill.af.mil/crosstalkl1997

Hazel Anne Shaw October 2005

IBM (2005b) Rational Test Realtime.

http://www-306.ibm.comlsoftware/awdtools/testlrealtime/features/index.html

(accessed 4 September 2005)

IEEE (1994) IEEE Standard Classification for Software Anomalies, IEEE Std

1044-1993. ISBN 1-55937-708-9, SH94399 (print) and ISBN 0-7381-0406-X,

SS94399 (PDF).

Jeffries, R., Anderson, A., Hendrickson, C. (2001) Extreme Programming Installed,

Addison-Wesley. ISBN 0-201-70842-6

JUnit (2005) JUnit.Org. Testing Resources for Extreme Programming

http://www.junit.orglindex.htm (accessed 4 September 2005)

Juristo, N., Moreno, A. M., Vegas, S. (2004) Reviewing 25 years of Testing

Technique Experiments. Empirical Software Engineering, Vol 9, No 1-2,

Pages 7-44

Kit E. (1995) Software Testing in the Real World. Addison-Wesley.

ISBN: 0-201-87756-2.

Leveson N. G., Turner C. S. (1993) An investigation of the Therac-25 accidents.

IEEE Computer, Vol 26, No 7, Pages 18-41.

Libes, D. (2005) The Expect Home Page. http://expect.nist.govlindex.html

(accessed 4 September 2005)

Lions J. L. (1996) Ariane 5, Flight 501 failure, Report by the inquiry board.

Available from http://ravel.esrin. esa.itl docs!esa-x-181geng.pdf (accessed 4

September 2005)

LogicaCMG (2005). Testing Times for Board Rooms.

http://www.logicacmg.com/pdfltrackeditestingTimesBoardRooms.pdf (accessed

13th October 2005).

Page 216References

http://www.logicacmg.com/pdfltrackeditestingTimesBoardRooms.pdf
http://ravel.esrin
http://expect.nist.govlindex.html
http://www.junit.orglindex.htm
http:JUnit.Org
http://www-306.ibm.comlsoftware/awdtools/testlrealtime/features/index.html

...

Hazel Anne Shaw October 2005

Lutsky P. (2000) Infonnation extraction from documents for automating software

testing. Artificial Intelligence in Engineering, Vol 14, Pages 63-69.

McCabe T. J. and Watson A. H. (1994). Software Complexity. Crosstalk,

December 1994, http://www.stsc.hlll.af.mil/crosstalkl1994112/xt94d12b.asp

(accessed 4 September 2005)

Mandl R. (1985) Orthogonal Latin Squares: An application of experiment design to

compiler testing. Communications ofthe ACM, Vol 28, No 10, Pages 1054-1058.

Manolache 1. 1. and Kourie D. G. (2001) Software testing using model programs.

Software - Practice and Experience, Vo131, Pages 1211-1236.

Marick B. (1995) The craft ofsoftware testing. Prentice-Hall.

ISBN 0-13-177411-5

Marick, B (2005a) Testing Foundations - Tools. http://www.testing.com/tools.html

(accessed 4 September 2005)

Marick B. (2005b) The Testing Team's Motto.

http://www.testing.com/writings/purpose-of-testing.htm (accessed 4 September

2005).

Mercury (2005a) Mercury WinRunner.

http://www.mercury.com/us/products/quality-centerlfunctional-testing/winrunnerl

(accessed 4 September 2005)

Mercury (2005b) Mercury QuickTest Professional.

http://www.mercury.comlus/products/quality-center/functional-testinglquicktest

professional! (accessed 4 September 2005)

Michael, C. C., McGraw, G., Schatz, M. A. (2001) Generating Software Test Data

by Evolution. IEEE Transactions on Software Engineering, Vol 27, No 12, Pages

1085-1110.

Page 217
References

http://www.mercury.comlus/products/quality-center/functional-testinglquicktest
http://www.mercury.com/us/products
http://www.testing.com/writings/purpose-of-testing.htm
http://www.testing.com/tools.html
http://www.stsc.hlll.af.mil/crosstalkl1994112/xt94d

-

Hazel Anne Shaw October 2005

Myres, G. J. (1979) The Art ofSoftware Testing. John Wiley and Sons.

ISBN 0-471-04328-1.

NERC (NORTH AMERlCAN ELECTRIC RELIABILITY COUNCIL) Steering

Group (2004). Technical Analysis of the August 14,2003, Blackout: What

Happened, Why, and What Did We Learn? July 13th 2004.

:ftp:llwww.nerc.com!pub/sys/aILupdl/docslblackout!

NERC_ Final_ Blackout_Report _07_13_ 04.pdf (accessed 4 September 2005)

OSR (2000). You're Testing Me - Testing WDMlWin2K Drivers. The NT Insider,

Vol 7, Issue 6, Open Systems Resources Inc.

Ostrand, T. J., Weyuker, E. 1., Bell, R. M. (2005) Predicting the Location and

Number ofFaults in Large Software Systems. IEEE Transactions on Software

Engineering, Vol3l, No 4, Pages 340-355.

Parzen, E. (1960) Modern Probability Theory and Its Applications. Wiley,

New York. Reprinted as Wiley Classics Library 1992. ISBN 0-471-57278-0.

Phadke M. S. (1997) Planning efficient software tests. Crosstalk, October 1997

Poore, J. H., Walton, G. H., Whittaker, 1. A. (2000) A constraint-based approach to

the representation of software usage models. Information and Software

Technology, Vo142, Pages 825-833.

Poore, J. H., Trammell, C. 1. (1998) Engineering Practices for Statistical Testing.

Crosstalk, April 1998.

Poulsen K. (2004) Tracking the blackout bug. Security Focus, April 7th 2004.

http://www.securityfocus.comlnews/8412 (accessed 4 September 2005)

Prowell, S. J. (2000) TML: a description language for Markov chain usage models.

Information and Software Technology, Vol 42, Pages 835-844.

References Page 218

http://www.securityfocus.comlnews/8412
ftp:llwww.nerc.com!pub/sys/aILupdl/docslblackout

Hazel Anne Shaw October 2005

Prowell, S. 1., Poore, J. H. (2004) Computing system reliability using Markov chain

usage models. The Journal ofSystems and Software, Vol 73, No 2, Pages 219-225

Rankin, C. (2002) The Software Testing Automation Framework. IBM Systems

Journal, Vo141, No 1, Pages 126-139

Ross P. 1. (1988) Taguchi Techniquesfor Quality Engineering. McGraw-Hill, New

York. ISBN 0-07-053866-2

Savoye, R. (2005) DejaGnu. http://www.gnu.orglsoftware/dejagnul (accessed 4

September 2005)

Segue (2005) SilkTest. http://www.segue.comlproducts/functional-regressional

testing/silktest.asp (accessed 4 September 2005)

SETI (2005) Seti@home. http://setiathome.ss1.berkeley.edu (accessed 23 October

2005)

Silberschatz, A., Galvin P. B. (1999) Operating Systems Concepts, Fifth Edition.

John Wiley and Sons, Inc. ISBN 0-471-36414-2

So, S. S., Cha, S. D., Shimeall, T. 1., Kwon, Y. R. (2002) An empirical evaluation

of six methods to detect faults on software. Software Testing, Verification and

Reliability, Vol 12, No 3, Pages 155-171

Software Research (2005) TestWorks. http://www.soft.com/Products/stwindex.html

(accessed 4 September 2005)

Sommerville, I. (2004) Software Engineering, 7th Edition. Addison Wesley. ISBN

0-321-21026-3

STAF (2005) Software Testing Automation Framework (STAF)

http://staf.sourceforge.netlindex.php (accessed 4 September 2005)

References Page 219

http://staf.sourceforge.netlindex.php
http://www.soft.com/Products/stwindex.html
http:http://setiathome.ss1.berkeley.edu
http://www.segue.comlproducts/functional-regressional
http://www.gnu.orglsoftware/dejagnul

Hazel Anne Shaw October 2005

Staknis M. E. (1990) Software quality assurance through prototyping and

automated testing. Information and Software Technology, Vo132, No 1, Pages 26

33.

Symons C. R. (1991) Software Sizing and Estimating. John Wiley & Sons.

ISBN 0-471-92985-9.

Tel Developer Xchange (2005) Tcl/Tk. http://www.tcl.tklsoftware/tc1tk1 (accessed 4

September 2005)

UML (2005) UML Success Stories,

http://www.uml.orgluml_success_stories/index.htm (accessed 4 September 2005)

u.S.-Canada Power System Outage Task Force (2004). Final Report on the August

14, 2003 Blackout in the United States and Canada: Causes and Recommendations.

April 2004. https:llreports.energy.govlBlackoutFinal-Web.pdf(accessed 4

September 2005)

Vincenzi, A. M. R., Maldonado, J. c., Wong, W. E., Delamaro, M. E. (2005)

Coverage testing ofJava programs and components. Science ofComputer

Programming, Vol 56, No 1-2, Pages 211-230.

Vinter O. (1997) How to apply static and dynamic analysis in practice. Software

Quality Week, Brussels, November 1997.

Viscarola, P., Mason, W. A. (1999) Windows NT Device Driver Development.

Macmillan technical publishing USA. ISBN 1-57870-058-2.

Voas, 1. M., Payne J. E., and Miller K. W. (1993) Automated Test Case Generation

for Coverages Required by FAA Standard DO-178B. Proceedings ofComputers in

Aerospace 9, Oct 93, San Diego. Available from

http://www.cigital.com/papers/downloadlaiaa_l_93.ps (accessed 4 September2005)

References Page 220

http://www.cigital.com/papers/downloadlaiaa_l_93.ps
https:llreports.energy.govlBlackoutFinal-Web.pdf(accessed
http://www.uml.orgluml_success_stories/index.htm
http://www.tcl.tklsoftware/tc1tk1

Hazel Anne Shaw October 2005

Voas J., Charron F., McGraw G., Miller K., Friedman M. (1997) Predicting how

badly "good" software can behave. IEEE Software, Vol 14, No 4, Pages 73-83.

Vouk M. A. (1990) Back-to-back testing. Information and Software Technology,

Vol 32, No 1, Pages 34-45.

Walton G. H., Poore, J. H., Trammell, C. 1. (1995) Statistical Testing of Software

Based on a Usage Model. Software-Practice and Experience, Vol 25, No 1,

January 1995, Pages 97-108.

Walton G. H., Poore, 1. H. (2000a) Generating transition probabilities to support

model-based software testing. Software-Practice and Experience, Vol 30, Pages

1095-1106.

Walton G. H., Poore, 1. H. (2000b) Measuring complexity and coverage of software

specifications. Infonnation and Software Technology, Vol 42, Pages 859-872.

Watson, A. H. and McCabe, T. 1. (1996) Structured Testing: A Testing

Methodology Using the Cyc10matic Complexity Metric. NIST Special Publication

500-235, August 96, http://www.mccabe.comJiCLresearch_nist.htm (accessed 4

September 2005)

Welch, B. B. (1999) Practical Programming in Tel and Tk, Third edition, Prentice

Hall, ISBN 0-13-022028-0.

Weyuker, E. 1. (1982) On Testing non-testable programs, The Computer Journal,

Vol 25, No 4, Pages 465-470.

Whittaker,1. A. (2000) What is Software Testing? And Why is it So Hard? IEEE

Software, Vol 17, No 1, Pages 70-75.

Whittaker,1. A., Poore 1. H. (1993) Markov Analysis of Software Specifications.

ACM Transactions on Software Engineering and Methodology, Vol 2, No 1,

January 1993, Pages 93-106.

References Page 221

http://www.mccabe.comJiCLresearch_nist.htm

Hazel Anne Shaw October 2005

Whittaker, J. A., Rekab, K., Thomason, M. G. (2000) A Markov chain model for

predicting the reliability of multi-build software. Information and Software

Technology, Vol 42, Pages 889-894.

Whittaker, J. A., Thomason, M. G. (1994) A Markov Chain Model for Statistical

Software Testing. IEEE Transactions ofSoftware Engineering, Vol 20, No 10,

October 1994, Pages 812-824.

Williams, T. W., Mercer, M. R., Mucha, J. P., Kapur, R. (2001) Code Coverage,

What Does it Mean in Terms of Quality? Proceedings Annual Reliability and

Maintainability Symposium, 2001. Pages 420-424.

Weyuker, E. J. (2004) How to judge testing progress. Information and Software

Technology, Vo146, No 5, Pages 323-328.

Zambonelli F., and Omicini A. (2004) Challenges and Research Directions in

Agent-Oriented Software Engineering. Autonomous Agents and Multi-Agent

Systems, Vol 9, No 3, Pages 253-283.

References Page 222

