255,763 research outputs found

    An optimal energy management system for islanded Microgrids based on multi-period artificial bee colony combined with Markov Chain

    Get PDF
    The optimal operation programming of electrical systems through the minimization of the production cost and the market clearing price, as well as the better utilization of renewable energy resources, has attracted the attention of many researchers. To reach this aim, energy management systems (EMSs) have been studied in many research activities. Moreover, a demand response (DR) expands customer participation to power systems and results in a paradigm shift from conventional to interactive activities in power systems due to the progress of smart grid technology. Therefore, the modeling of a consumer characteristic in the DR is becoming a very important issue in these systems. The customer information as the registration and participation information of the DR is used to provide additional indexes for evaluating the customer response, such as consumer's information based on the offer priority, the DR magnitude, the duration, and the minimum cost of energy. In this paper, a multiperiod artificial bee colony optimization algorithm is implemented for economic dispatch considering generation, storage, and responsive load offers. The better performance of the proposed algorithm is shown in comparison with the modified conventional EMS, and its effectiveness is experimentally validated over a microgrid test bed. The obtained results show cost reduction (by around 30%), convergence speed increase, and the remarkable improvement of efficiency and accuracy under uncertain conditions. An artificial neural network combined with a Markov chain (ANN-MC) approach is used to predict nondispatchable power generation and load demand considering uncertainties. Furthermore, other capabilities such as extendibility, reliability, and flexibility are examined about the proposed approach

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    The Role of Interactivity in Local Differential Privacy

    Full text link
    We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k≄1k \geq 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive kk-compositional protocol into an equivalent sequentially interactive protocol with an O(k)O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any kk, there is a fully interactive kk-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an Ω~(k)\tilde \Omega(k) factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests

    Visualising the structure of document search results: A comparison of graph theoretic approaches

    Get PDF
    This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion
    • 

    corecore