476 research outputs found

    A Labelled Analytic Theorem Proving Environment for Categorial Grammar

    Full text link
    We present a system for the investigation of computational properties of categorial grammar parsing based on a labelled analytic tableaux theorem prover. This proof method allows us to take a modular approach, in which the basic grammar can be kept constant, while a range of categorial calculi can be captured by assigning different properties to the labelling algebra. The theorem proving strategy is particularly well suited to the treatment of categorial grammar, because it allows us to distribute the computational cost between the algorithm which deals with the grammatical types and the algebraic checker which constrains the derivation.Comment: 11 pages, LaTeX2e, uses examples.sty and a4wide.st

    Higher-order Linear Logic Programming of Categorial Deduction

    Full text link
    We show how categorial deduction can be implemented in higher-order (linear) logic programming, thereby realising parsing as deduction for the associative and non-associative Lambek calculi. This provides a method of solution to the parsing problem of Lambek categorial grammar applicable to a variety of its extensions.Comment: 8 pages LaTeX, uses eaclap.sty, to appear EACL9

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions

    Full text link
    The paper describes the refinement algorithm for the Calculus of (Co)Inductive Constructions (CIC) implemented in the interactive theorem prover Matita. The refinement algorithm is in charge of giving a meaning to the terms, types and proof terms directly written by the user or generated by using tactics, decision procedures or general automation. The terms are written in an "external syntax" meant to be user friendly that allows omission of information, untyped binders and a certain liberal use of user defined sub-typing. The refiner modifies the terms to obtain related well typed terms in the internal syntax understood by the kernel of the ITP. In particular, it acts as a type inference algorithm when all the binders are untyped. The proposed algorithm is bi-directional: given a term in external syntax and a type expected for the term, it propagates as much typing information as possible towards the leaves of the term. Traditional mono-directional algorithms, instead, proceed in a bottom-up way by inferring the type of a sub-term and comparing (unifying) it with the type expected by its context only at the end. We propose some novel bi-directional rules for CIC that are particularly effective. Among the benefits of bi-directionality we have better error message reporting and better inference of dependent types. Moreover, thanks to bi-directionality, the coercion system for sub-typing is more effective and type inference generates simpler unification problems that are more likely to be solved by the inherently incomplete higher order unification algorithms implemented. Finally we introduce in the external syntax the notion of vector of placeholders that enables to omit at once an arbitrary number of arguments. Vectors of placeholders allow a trivial implementation of implicit arguments and greatly simplify the implementation of primitive and simple tactics

    SCC: A Service Centered Calculus

    Get PDF
    We seek for a small set of primitives that might serve as a basis for formalising and programming service oriented applications over global computers. As an outcome of this study we introduce here SCC, a process calculus that features explicit notions of service definition, service invocation and session handling. Our proposal has been influenced by Orc, a programming model for structured orchestration of services, but the SCC’s session handling mechanism allows for the definition of structured interaction protocols, more complex than the basic request-response provided by Orc. We present syntax and operational semantics of SCC and a number of simple but nontrivial programming examples that demonstrate flexibility of the chosen set of primitives. A few encodings are also provided to relate our proposal with existing ones

    Operational Semantics of Resolution and Productivity in Horn Clause Logic

    Get PDF
    This paper presents a study of operational and type-theoretic properties of different resolution strategies in Horn clause logic. We distinguish four different kinds of resolution: resolution by unification (SLD-resolution), resolution by term-matching, the recently introduced structural resolution, and partial (or lazy) resolution. We express them all uniformly as abstract reduction systems, which allows us to undertake a thorough comparative analysis of their properties. To match this small-step semantics, we propose to take Howard's System H as a type-theoretic semantic counterpart. Using System H, we interpret Horn formulas as types, and a derivation for a given formula as the proof term inhabiting the type given by the formula. We prove soundness of these abstract reduction systems relative to System H, and we show completeness of SLD-resolution and structural resolution relative to System H. We identify conditions under which structural resolution is operationally equivalent to SLD-resolution. We show correspondence between term-matching resolution for Horn clause programs without existential variables and term rewriting.Comment: Journal Formal Aspect of Computing, 201

    lim+, delta+, and Non-Permutability of beta-Steps

    Get PDF
    Using a human-oriented formal example proof of the (lim+) theorem, i.e. that the sum of limits is the limit of the sum, which is of value for reference on its own, we exhibit a non-permutability of beta-steps and delta+-steps (according to Smullyan's classification), which is not visible with non-liberalized delta-rules and not serious with further liberalized delta-rules, such as the delta++-rule. Besides a careful presentation of the search for a proof of (lim+) with several pedagogical intentions, the main subject is to explain why the order of beta-steps plays such a practically important role in some calculi.Comment: ii + 36 page
    • 

    corecore