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Abstract. This paperpresents a studyofoperational and type-theoretic properties of different resolution strategies
inHorn clause logic.We distinguish four different kinds of resolution: resolution by unification (SLD-resolution),
resolution by term-matching, the recently introduced structural resolution, and partial (or lazy) resolution. We
express them all uniformly as abstract reduction systems, which allows us to undertake a thorough comparative
analysis of their properties. To match this small-step semantics, we propose to take Howard’s System H as a
type-theoretic semantic counterpart. Using SystemH, we interpret Horn formulas as types, and a derivation for
a given formula as the proof term inhabiting the type given by the formula. We prove soundness of these abstract
reduction systems relative to SystemH, and we show completeness of SLD-resolution and structural resolution
relative to System H. We identify conditions under which structural resolution is operationally equivalent to
SLD-resolution. We show correspondence between term-matching resolution for Horn clause programs without
existential variables and term rewriting.

Keywords: Logic programming, Typed lambda calculus, Reduction systems, Structural resolution, Termination,
Productivity.

1. Introduction

Horn clause logic is a fragment of first-order logic that gives theoretical foundation to logic programming. A set
of Horn clauses is called a logic program. SLD-resolution is the most common algorithm in logic programming
for automatically inferring whether, given a logic program � and a first-order formulaA, � � σA holds for some
substitution σ . SLD-resolution is semi-decidable as not all derivations by SLD-resolution terminate. Terminating
SLD-resolution is quite well understood (see for example the textbook by Lloyd [Llo87]), and SLD-resolution
has been successfully incorporated into a number of logic programming language implementations. However,
nonterminating SLD-resolution is more challenging to handle.

Example 1 Consider the following logic program defining the infinite stream of zeros. It consists of one Horn
clause:

κ1 : ∀ y .Stream(y) ⇒ Stream(Cons(0, y))
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For query Stream(x ), it gives rise to the following SLD-derivation:

� � {Stream(x )} �κ1,[Cons(0,y1)/x ] {Stream(y1)} �κ1,[Cons(0,y2)/y1,Cons(0,Cons(0,y2))/x ]

{Stream(y2)} �κ1,[Cons(0,y3)/y2,Cons(0,Cons(0,y3))/y1,Cons(0,Cons(0,Cons(0,y3)))/x ] {Stream(y3)} � . . .

At each derivation step, we record the clause that is used to make the resolution step and the computed substitu-
tion. For this derivation, it is impossible to find a finite substitution σ such that � � σ (Stream(x )). Nevertheless,
the query Stream(x ) is computationally meaningful, since it computes the infinite stream of zeros for x .

The importance of developing approaches for computing with infinite data structures in logic programming
has been argued by van Emden, Lloyd, et al [Llo87] in the 80s and more recently the topic has been revived
by Gupta, Simon et al. [GBM+07, SBMG07]. In the classical approach [Llo87], a semantic view was taken: if a
nonterminating SLD-resolution derivation for � andA accumulates computed substitutions σ0, σ1, . . . in such a
way that (. . . (σ1(σ0(A)))) is an infinite ground formula, then (. . . (σ1(σ0(A)))) is said to be computable at infinity.
Computation at infinity is proven to be sound with respect to the greatest Herbrand model, i.e., given a logic
program �, if a formula A is computable at infinity with respect to �, then A is also in the greatest Herbrand
model of�. Importantly for us, the notion of infinite formula computed at infinity captures themodern-day notion
of producing an infinite data structure. We will use the terminology global productivity to describe computation
at infinity. For example, the derivation shown in Example 1 is globally productive, as it computes the infinite
stream of zeros at infinity. However, this approach did not result in implementation and in general proving global
productivity is nontrivial.

An alternative approach has been proposed by Gupta, Simon et al. [GBM+07, SBMG07]: subgoals produced
in the course of an infinite SLD-derivation can be memorized, and if any two subgoals are unifiable, then the
derivation is said to be closed coinductively. This approach was implemented as an extension to Prolog and called
CoLP (Coinductive Logic Programming). Its applications are limited, as CoLP does not terminate for the SLD
derivation that produces an infinite formula with irrational tree structure, as in this case the derivation does not
feature any unifiable subgoals. CoLP’s approach was not intended to capture the notion of global productivity.
For example, the query P (x ) for the clause P (y) ⇒ P (y) will exhibit a cycle and will be coinductively proven
by CoLP, but it will not compute an infinite formula at infinity. In other words, the derivation for P (x ) is not
globally productive despite being coinductively provable by CoLP.

In this paper, we introduce yet another approach to the potentially infinite derivations by the SLD-resolution.
When SLD-resolution produces a finite or infinite ground answer for a variable in the query, we say the query
is locally productive at that variable (see Definition 12). This gives us an alternative notion of productivity for
logic programming. In order to formally define this notion of local productivity, we introduce a lazy version
of resolution (called partial resolution). Firstly, we label those variables in the queries for which we want to
compute substitutions. Partial resolution then takes the labels into account when performing the computation,
by giving priority to subgoals with labelled variables. The resolution will stop when all the labels in the queries
are eliminated, or in other words, when all required substitutions have been computed.

Finally, a third notion of productivity for logic programming, an observational productivity, has been re-
cently introduced by Johann, Komendantskaya et al. [JKK15, KJM16]. It depends on a new kind of resolution
(structural resolution). Structural resolution depends crucially on term-matching resolution, obtained by restrict-
ing unification used in the SLD-resolution to term matching. Term-matching resolution is used in e.g. type
class resolution [JJM97] in functional programming. It has different operational properties compared to the
SLD-resolution. For example, taking the program in Example 1, the query Stream(x ) can not be reduced by
term-matching resolution, as it is not possible to match Stream(Cons(0, y)) with Stream(x ).

Structural resolution combines terminating termmatching steps with unification steps. For example, consider
the following derivation (where → denotes a term-matching step, and ↪→ applies the substitution obtained by
unification to the current query):

� � {Stream(x )} ↪→κ1,[Cons(0,y1)/x ] {Stream(Cons(0, y1))} →κ1

{Stream(y1)} ↪→κ1,[Cons(0,y2)/y1,Cons(0,Cons(0,y2))/x ] {Stream(Cons(0, y2))} →κ1

{Stream(y2)} ↪→κ1,[Cons(0,y3)/y2,Cons(0,Cons(0,y3))/y1,Cons(0,Cons(0,Cons(0,y3)))/x ] {Stream(Cons(0, y3))} →κ1

{Stream(y3)} ↪→ . . .

Note that the overall derivation is nonterminating, but all term-matching derivations are finite in the above resolu-
tion trace. This separation of term-matching and unification allows the formulation of observational productivity:
given a program � and a queryA, if a derivation forA is infinite, and it features only terminating term-matching
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resolution steps, then this derivation is called observationally productive. As discussed by Komendantskaya, Jo-
hann et al. [KJ15, KJM16] observational productivity implies global productivity.

To illustrate these three notions of productivity, we consider three logic programs in the following table.

Name �1 �2 �3
Program P (x ) ⇒ P (x ) P (x ) ⇒ P (K (x )) P (x , y) ⇒ P (x ,G(y))
Query P (x ) P (x ) P (x , y)
Productivity None Global, observational, local at x Observational, local at y

• Program �1 is not productive for the query P (x ) by any of these three notions of productivity: it does
not compute an infinite ground formula, it is not terminating by term-matching resolution, and it does not
compute a ground answer for x .

• Program�2 is globally productive for the queryP (x ) as it computes an infinite formulaP (K (K (. . .))).We can
see that �2 is observationally productive because it is terminating by term-matching resolution. Also, �2 is
locally productive at x for the query P (x ) since SLD-resolution computes a ground infinite answerK (K (. . .))
for the variable x .

• Program �3 is not globally productive for the query P (x , y) as SLD-resolution computes an infinite formula
P (x ,G(G(. . .))) that is not ground. It is observationally productive, since the second argument for P is
decreasing from right to left by the subterm relation, i.e. y <subterm G(y) and that ensures termination of
term-matching resolution. Note that �3 is not locally productive at x for the query P (x , y), but it is locally
productive at y since G(G(. . .)) is an infinite ground answer for y .

In this paper, we establish a framework for a comparative analysis of different kinds of resolution and different
notions of productivity. Firstly, we use a uniform style of small-step semantics for all these kinds of resolution and
formulate themasabstract reduction systems.Wecall the resulting abstract reduction systemsLP-Unif,partialLP-
Unif, LP-TM, and LP-Struct, respectively. Using this framework, we ask and answer several research questions
about operational properties and relations of these reduction systems. Are LP-Unif and LP-Struct equivalent for
terminating derivations, and under what conditions? Are LP-Unif and LP-Struct equivalent for observationally
productive programs? Since the termination of LP-TM is essential for the observational productivity, are there
any suitable program transformation methods to ensure LP-TM termination?

We give a type-theoretic semantics to all these reduction systems. Notably, we take System H (based on
Howard’s work [How80]) as a calculus to capture the type-theoretic meaning of logic programming. We show
that LP-Unif, partial LP-Unif, LP-TM and LP-Struct are sound relative to System H. Moreover, LP-Unif is
complete relative to System H, and under a meaning preserving transformation, LP-Struct is also complete
relative to SystemH.

We discover that, given a program� and a formulaA, LP-Struct is operationally equivalent to LP-Unif under
two conditions: when all LP-Struct derivations for � are observaionally productive and when all clauses in �
are non-overlapping. Thus the termination of LP-TM plays a crucial role not only in ensuring observational
productivity, but also in ensuring the operational equivalence of LP-Struct and LP-Unif, which in its turn is
crucial for our proofs of soundness and completeness of LP-Struct with respect to H.

We give a formal analysis of properties of LP-TM resolution. We show how LP-TM relates to term rewriting
systems by introducing a transformation method that translates any logic program without existential variables
into a term rewriting system (we call this process functionalisation). After functionalisation, standard term rewrit-
ing methods for detecting termination can be applied. We also give an alternative transformational method that
renders all logic programs LP-TM terminating and non-overlapping. The method is related to Kleene’s realiz-
ability method [Kle52], and we therefore call it realizability transformation.

The technical content of this paper is organized as follows.

• In Sect. 2, we prove soundness and completeness of LP-Unif with respect to the type system H. This means
H can be used to model logic programming.
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• In Sect. 3, we formally define partial resolution as an abstract reduction system and call it partial LP-Unif.
Based on this formalism we define local productivity. Partial LP-Unif provides a possibility of shifting the
focus from deciding entailment for a given query to computing substitution answers.

• In Sect. 4, we formally define LP-Struct and identify two conditions that ensure that LP-Struct is operationally
equivalent to LP-Unif.

• In Sect. 5, we define functionalisation and show the exact relation of LP-TM to term rewriting systems. We
use existing termination detection techniques from term rewriting to detect termination of LP-TM.

• In Sect. 6, we define realizability transformation and show that this transformation preserves the operational
meaning of a logic program.We use it to show the equivalence of LP-Struct and LP-Unif for the transformed
program. As a corollary, we obtain the soundness and completeness of LP-Struct relative to System H for
the transformed program.

Finally, in Sects. 7 and 8 we survey related work and conclude the paper.

2. Horn formulas as types

In this section, we use Howard’s type system H to model logic programming. We use an abstract reduction
system (called LP-Unif) to model the small-step semantics of the SLD-resolution. The purpose of this section
is to set up a type-theoretic framework for the rest of the paper, where Horn formulas are viewed as types in
a type system and resolution corresponds to the proof construction. We show the correspondence between the
small-step semantics of resolution and SystemH. This result can be viewed as an alternative to the classical-style
soundness and completeness results for the SLD-resolution relative to Herbrand models. Using System H as an
alternative semantics for logic programmingmay be beneficial in twoways: (1) the usual notion of an unsuccessful
SLD-derivation can be understood as proving an implicative formula in which the unresolved subgoals comprise
the antecedent (see Lemma 1). (2) It allows further extensions such as adding fixpoint typing rule by Fu et
al [FKSP16], which provides proofs for some nonterminating computations.

Definition 1 (Syntax)
Term t ::� x | K (t1, . . . , tn )
Atomic Formula A,B ,C ,D ::� P (t1, . . . , tn )
Formula F ::� A | F ⇒ F ′ | ∀ x .F
Horn Formula/Horn Clause H ::� ∀ x .A1, . . . ,An ⇒ B
Proof Evidence p, e ::� κ | a | e e ′ | λ a.e
Axioms/Logic Programs � ::� · | κ : H ,� | a : F ,�

Proof evidence is given by lambda terms.We use capitalised words to denote function symbols. Constant evidence
is denoted by κ. We write A1, . . . ,An ⇒ B as a short hand for A1 ⇒ · · · ⇒ An ⇒ B . We write ∀ x .F for
quantifying over all free term variables in F , and [∀ x ].F denotes F or ∀ x .F . We use A to denote A1, . . . ,An ,
when the number n is unimportant. If n is zero for A ⇒ B , then we write ⇒ B . Horn clause formulas have
the form ∀ x .A ⇒ B , and queries are given by atomic formulas. We use FV(t) to denote the set of all free term
variables in t .

The following is a type system based on Howard’s work [How80], intended to provide a type theoretic inter-
pretation for LP.

Definition 2 (Howard’s SystemH for logic programming)

(κ : H ) ∈ �

� � κ : H
Axiom

(a : F ) ∈ �

� � a : F Var
� � e1 : F1 ⇒ F2 � � e2 : F1

� � e1 e2 : F2
App

� � e : ∀ x .F
� � e : [t/x ]F Inst

� � e : F
� � e : ∀ x .F Gen

�, a : F1 � e : F2

� � λ a.e : F1 ⇒ F2
Abs

Note that the type for the constant in the rule Axiom is required to be Horn formula. It has been observed
that the Cut rule and proper axioms in intuitionistic sequent calculus can emulate logic programming [GTL89]
(Sect. 13.4).
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The following rule is a version of Cut rule, working only with Horn formulas.

� � e1 : A ⇒ D � � e2 : B ,D ⇒ C
� � λ a. λ b.(e2 b) (e1 a) : A,B ⇒ C Cut

We can use rules Abs and App to emulate Cut rule, thus the Cut rule is admissible in Howard’s system H.
We will use C to denote the deduction system that consists of rules Axiom, Cut, Inst, and Gen. The subsystem
C provides a natural framework to work with Horn formulas, but H is more expressive, since it allows full
intuitionistic formulas, e.g. H would allow a formula of the form (F1 ⇒ F2) ⇒ F3.

Definition 3 Beta-reduction on proof evidence is defined as the congruence closure of the following relation:
(λ a.e) e ′ →β [e ′/a]e. We say a proof evidence e is strongly normalizing if e admits no infinite →β-reductions.

The following three theorems are standard for a type system such as H. For proofs we refer the reader to
Barendregt’s excellent book [Bar92].

Theorem 1 (Strong normalization) If � � e : F in H, then e is strongly realisable with respect to beta-reduction
on proof evidence.

Theorem 2 (Inversion)

• If � � a : F , then (a : F ′) ∈ � and σF ′ ≡ F for some substitution σ .
• If � � κ : H , then (κ : ∀ x .A1, . . . ,An ⇒ B ) ∈ � and σ (A1, . . . ,An ⇒ B ) ≡ H for some substitution σ .
• If � � λ a.e : F , then �, a : F1 � e : F2 and σ (F1 ⇒ F2) ≡ F for some substitution σ .
• If � � e1 e2 : F , then � � e1 : F1 ⇒ F2, � � e2 : F1 and σF2 ≡ F for some substitution σ .

Theorem 3 (Type preservation) SystemH is type preserving, i.e. if � � e : F in H and e →β e ′, then � � e ′ : F .

Note that system C as a type system is not type preserving. For example, consider � � (κ1 : A ⇒ B , κ2 :
B ⇒ C , κ3 : C ⇒ D). In C, we have � � λ a.κ3 ((λ b.κ2 (κ1 b)) a) : A ⇒ D . But λ a.κ3 ((λ b.κ2 (κ1 b)) a) →β

λ a.κ3 (κ2 (κ1 a)) and � 
� λ a.κ3 (κ2 (κ1 a)) : A ⇒ D in C. Thus we often work withC through its embedding in
H, which is type preserving and strongly normalising.

Definition 4 (Unification) We say that t is unifiable with t ′ with substitution γ (denoted t ∼γ t ′), if {t � t ′} �∗ γ
according to the following rules:

{K (t1, . . . , tn ) � K (s1, . . . , sn )} ∪ E � {t1 � s1, . . . , tn � sn} ∪ E
{K (t1, . . . , tn ) � G(s1, . . . , sm )} ∪ E � ⊥
{t � t} ∪ E � E
{K (t1, . . . , tn ) � x } ∪ E � {x � K (t1, . . . , tn )} ∪ E
{x � K (t1, . . . , tn )} ∪ E � ⊥ if x ∈ FV(K (t1, . . . , tn ))
{x � t} ∪ E � {x � t} ∪ [t/x ]E if x 
∈ FV(t)

Unification can be routinely extended to atomic formulas. The symbol ⊥ denotes failure of unification. The
following is a formulation of the SLD-resolution as a reduction system, as given in Nilsson and Maluszynski
[NM90].

Definition 5 (LP-Unif reduction) Given a set of axioms�, we define a reduction relation on the multiset of atomic
formulas:
� � {A1, . . . ,Ai , . . . ,An } �κ,γ ·γ ′ {γA1, . . . , γB1, . . . , γBm , . . . , γAn } for any substitution γ ′, if there exists
κ : ∀ x .B1, . . . ,Bn ⇒ C ∈ � such that C ∼γ Ai .

The second subscript in the reduction is intended as a state, it will be updated by composition along with
reductions. Notation γ · γ ′ should be read as follows: the old state γ ′ is updated, producing a new state γ · γ ′. We
assume fresh names in the form of new numeric indices for the quantified variables each time the above rule is
applied. We write � when we leave the associated state implicit. We use �∗ to denote the reflexive and transitive
closure of �. Notation �∗

γ is used when the final state along the reduction path is γ .



P. Fu, E. Komendantskaya

Given a program � and a set of queries {B1, . . . ,Bn }, SLD-resolution uses LP-Unif reduction to reduce
{B1, . . . ,Bn }:
Definition 6 (LP-Unif) Given a logic program �, LP-Unif is given by the abstract reduction system (�,�).

Example 2 Consider the following logic program �, consisting of Horn formulas labelled by κ1, κ2, κ3, defining
connectivity for a graph with three nodes:

κ1 : ∀ x .∀ y .∀ z .Connect(x , y),Connect(y, z ) ⇒ Connect(x , z )
κ2 : ⇒ Connect(Node1,Node2)
κ3 : ⇒ Connect(Node2,Node3)

The usual SLD-resolution for the queryConnect(x , y) can be represented as the following LP-Unif reduction:

� � {Connect(x , y)} �κ1,[x/x1,y/z1] {Connect(x , y1),Connect(y1, y)} �κ2,[Node1/x ,Node2/y1,Node1/x1,y/z1]

{Connect(Node2, y)} �κ3,[Node3/y,Node1/x ,Node2/y1,Node1/x1,Node3/z1] ∅
Thefirst reduction�κ1,[x/x1,y/z1] unifies thequeryConnect(x , y)with theheadof the ruleκ1 (which isConnect(x1, z1)
after renaming) with the substitution [x/x1, y/z1] (x1 is replaced by x and z1 is replaced by y). So the query is
resolved with κ1, producing the next queries: Connect(x , y1), Connect(y1, y). Note that the substitution in the
subscript of � is a state that will be updated alongside the derivation. In the final state we have an answer
[Node3/y,Node1/x ] for the query Connect(x , y).

2.1. Soundness and completeness of LP-Unif

We have introduced the Howard’s system H and LP-Unif. Now we will show the soundness of LP-Unif, i.e., we
show that a reduction byLP-Unif corresponds to an intuitionistic proof.On the other hand, any first order ground
evidence of type A inH corresponds to a successful LP-Unif reduction (which is the essence of the completeness
result).

Lemma 1 (Soundness Lemma) If � � {A} �∗
γ {B1, . . . ,Bn }, then � � e : B1, . . . ,Bn ⇒ γA for some e in C.

Proof By induction on the length of the reduction.

• Base Case. Suppose the length is one, namely, � � {A} �κ,γ {B1, . . . ,Bn }. It implies (κ : ∀ x .B ′
1, . . . ,B

′
n ⇒

C ) ∈ �, γB ′
i ≡ Bi and C ∼γ A. So we have � � κ : γB ′

1, . . . , γB
′
n ⇒ γC by the rules Axiom and Inst.

• Step Case. Suppose � � {A} �∗
γ1

{A1, . . . ,Ai , . . . ,An} �κ,γ2·γ1 {γ2A1, . . . , γ2B1, . . . , γ2Bm , . . . , γ2An},
where κ : ∀ x .B1, . . . ,Bm ⇒ C and C ∼γ2 Ai . By inductive hypothesis (IH), we have � � e1 : A1, . . . ,An ⇒
γ1A. By Inst and Gen, we have � � e1 : γ2A1, . . . , γ2Ai , . . . , γ2An ⇒ γ2γ1A and � � κ : γ2B1, . . . , γ2Bm ⇒
Ai . Since γ2 is idempotent, we have � � κ : γ2B1, . . . , γ2Bm ⇒ γ2Ai . Thus by Cut rule, we have � � e ′ :
γ2A1, . . . , γ2B1, . . . , γ2Bm , . . . , γ2An ⇒ γ2γ1A for some proof evidence e ′. �

The soundness lemma above ensures that every LP-Unif reduction and its answer are meaningful. The usual
notion of failure in logic programming can be understood as proving an implicative formula in which the an-
tecedent is comprised of the failed subgoals. The notion of success corresponds to a proof of an atomic formula.
For example, consider the logic program � � κ1 : P3(K ) ⇒ P1(K ), κ2 : P2(K ) ⇒ P3(K ). We know that the
queryP1(x ) will fail. But by Lemma 1, we know the resolution for queryP1(x ) will stop atP2(K ) with substitution
[K /x ], and we have the proof � � λ a.κ1 (κ2 a) : P2(K ) ⇒ [K /x ]P1(x ) in C. So in a sense the failed query P1(x )
is still meaningful under the type theoretic interpretation. In Sect. 3 we will use LP-Unif in a way that it does not
have to resolve all the queries, but it still computes useful answers for the variable that we care about.

Theorem 4 (Soundness of LP-Unif) If � � {A} �∗
γ ∅ , then � � e : ∀ x . ⇒ γA for some e in C.
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An evidence is ground if it does not contain free evidence variables. The proof of completeness relies on the
strong normalisation and the type preservation property of H. We first show that the normal form of the proof
given by a successful LP-Unif reduction is first-order. We then show that, if an atomic formula is inhabited by a
ground evidence, there exists a successful LP-Unif reduction for it.

Definition 7 (First-order proof evidence) We define first-order proof evidence as follows.

• A variable proof evidence a and a constant proof evidence κ are first-order.
• If n,n ′ are first-order, then n n ′ is first-order.

For example, (κ κ ′) is considered first-order, but (κ (λ a.κ ′ (κ ′′ a))) is not first-order.

Proposition 1 If n,n ′ are first-order, then [n ′/a]n is first-order.

Lemma 2 If � � e : [∀ x .]A ⇒ B in C, then either e is a proof evidence constant, variable or it is normalisable
to the form λ a.n, where n is first-order normal proof evidence.

Proof By induction on the derivation of � � e : [∀ x .]A ⇒ B .

• Base Case. Rule Axiom. Obvious.
• Step Case.

� � e1 : A ⇒ D � � e2 : B ,D ⇒ C
� � λ a. λ b.(e2 b) (e1 a) : A,B ⇒ C Cut

By IH, we know that e1 � κ or e1 � λ a.n1; e2 � κ ′ or e2 � λ b. λ d .n2, where n1,n2 are fist-order. We
know that e1 a will be normalizable to a first-order proof evidence. And e2 b will be normalized to either κ ′ b
or λ d .n2. So by Proposition 1, we conclude that λ a. λ b.(e2 b) (e1 a) is normalizable to λ a. λ b.n for some
first-order normal term n.

• The Gen and Inst cases are straightforward. �

Theorem 5 If � � e : [∀ x .] ⇒ B in C, then e is normalizable to a first-order proof evidence.

Now let us prove the completeness theorem.

Proposition 2 If e is a ground first-order evidence, then it is of the following form:

• κ

• κ n1 . . . nl , where ni is ground first-order evidence for any i .

Theorem 6 (Completeness of LP-Unif) If � � n : ⇒ A where n is in ground first-order normal form in H, then
� � {A} �∗ ∅.

Proof By induction on the structure of n.

• Base Case. n � κ. By inversion, we know κ : ∀ x . ⇒ A′ ∈ � and γA′ ≡ A for some substitution γ . Thus
A′ ∼γ A, which implies � � {A} �κ,γ ∅.

• Step Case. n � κ n1 n2 . . . nm . By inversion, we have κ : ∀ x . C1, . . . ,Cm ⇒ B ∈ �. To obtain � � n : ⇒ A,
by inversion we have � � κ : ∀ x . C1, . . . ,Cm ⇒ B with γm . . . γ1(B ) ≡ A, and � � n1 : ⇒ C1,� � n2 :
⇒ γ1C2 . . . , � � nm : ⇒ γm−1 . . . γ1 Cm . By the rule Inst, we have � � n1 : ⇒ γm . . . γ1C1,� � n2 : ⇒
γm . . . γ1C2 . . . , � � nm : ⇒ γm . . . γ1 Cm . Thus we have � � {A} �κ,γm ·...·γ1 {γm . . . γ1C1, . . . , γm . . . γ1Cm}.
By IH, we have � � {γm . . . γ1C1} �∗

σ1
∅. So � � {A} �κ,γm ·...·γ1 · �∗

σ1
{σ1γm . . . γ1C2, . . . , σ1γm . . . γ1Cm}.

Again, we have � � n2 : ⇒ σ1γm . . . γ1C2 by rule Inst. By applying IH repeatedly, we obtain � � {A} �∗ ∅.
�
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3. Partial LP-Unif by labelling

In the previous section, we have given a type-theoretic semantics to logic programming. According to it, an
answer for a given query is a substitution applied to a formula that is inhabited by a proof evidence. In that sense,
the soundness lemma (Lemma 1) gives type-theoretic meaning to any LP-Unif reduction, even if it is a partial
derivation, i.e. has unresolved subgoals. In this section, we build upon this result, and propose a lazy version of
LP-Unif, drawing inspiration from lazy functional languages such as Haskell. In particular, we propose to label
certain variables in a given query, in order to prioritize those variables forwhichwewant to compute substitutions.
Partial LP-Unif resolution will only resolve the subgoals that contain labelled variables. This requires to extend
the usual unification to account for labels. We call the resulting unification algorithm labelled unification and the
resulting reduction strategy – partial LP-Unif.

Definition 8 We extend the term definition:
t ::� x | x v | K (t1, . . . , tn ), where x v is a labelled variable.

Definitions of a Horn formula and a formula are extended accordingly.

A label on a variable can be informally understood as a case-expression on a variable in lazy functional
language. When a query has a labelled variable, it forces resolution to compute a value for it. But since we are
in logic programming, the only way to force such evaluation is through label propagation and elimination. The
following definition extends unification to achieve this.

We write tv to denote the labelled version of t , in which all the variables of t are labelled. Note that x v is
identical to (x v )v .

Definition 9 (Labelled unification) We say that t is unifiable with t ′ with substitution γ (denoted t ∼γ t ′), if
{t � t ′} �∗ γ according to the following rules:

{K (t1, . . . , tn ) � K (s1, . . . , sn )} ∪ E � {t1 � s1, . . . , tn � sn} ∪ E
{K (t1, . . . , tn ) � G(s1, . . . , sm )} ∪ E � ⊥
{t � t} ∪ E � E
{K (t1, . . . , tn ) � x } ∪ E � {x � K (t1, . . . , tn )} ∪ E
{K (t1, . . . , tn ) � x v } ∪ E � {x v � K (t1, . . . , tn )} ∪ E
{x � K (t1, . . . , tn )} ∪ E � ⊥ if x ∈ FV(K (t1, . . . , tn ))
{x v � K (t1, . . . , tn )} ∪ E � ⊥ if x v ∈ FV(K (t1, . . . , tn ))
{x � t} ∪ E � {x � t} ∪ [t/x ]E if x 
∈ FV(t)
{x v � t} ∪ E � {x v � tv } ∪ [tv/x v ](	t (E )) if x v 
∈ FV(t)

We use 	t (E ) to denote a labelling operation that labels all the variables in E that occur in t . Formally, 	t (E ) is
defined as σE , where [x v/x ] ∈ σ for any x ∈ FV(t). The set of equations {x1 � t1, . . . , xn � tn} can be viewed as
a substitution. The labelled unification of terms can be extended routinely to the unification of atomic formulas.

We write | t | to denote erasing all the labels in t . We write | σ | to denote removing all the labels in the
substitution σ , and L(A) to denote the set of labelled variables in A. The following lemma shows that labelled
unification is functionally equivalent to the usual (unlabelled) unification.

Lemma 3 If t �γ t ′ and FV(| t |) ∩ FV(| t ′ |) � ∅, then | t |∼|γ || t ′ |.

We use 	γ (A) to denote another labelling operation that labels all variables inA that are labelled in the codomain
of γ . Formally, 	γ (A) is defined as σA, such that, for any x v ∈ FV(codom(γ )), [x v/x ] ∈ σ .

Definition 10 (Partial LP-Unif) We define a reduction relation on a multiset of atomic formulas:
� � {A1, . . . ,Ai , . . . ,An } ⇀κ,γ ·γ ′ {γA1, . . . , γ 	γ (B1), . . . , γ 	γ (Bm ), . . . , γAn} for any substitutionγ ′, ifL(Ai ) 
�
∅ and there exists κ : ∀ x .B1, . . . ,Bn ⇒ C ∈ � such that C �γ Ai .
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The labelling operation 	γ is used in the above definition to make sure that the labels are correctly propagated
to B1, . . . ,Bm . Consider � � κ1 : ⇒ P1(Int), κ2 : ⇒ P2(Int), κ3 : ∀ x .P1(x ),P2(x ) ⇒ Q(List(x )), and the query
Q(z v ). The labelled unifier ofQ(z v ) andQ(List(x )) is γ � [List(x v )/z v ], we need to apply 	γ to P1(x ) and P2(x )
to obtain the resolvents P1(x v ) and P2(x v ).

As a consequence of Lemma 3, the partial LP-Unif is essentially a control strategy for LP-Unif.

Lemma 4 If � � {A1, . . . ,Ai , . . . ,An} ⇀κ,γ ·γ ′ {γA1, . . . , γ 	γ (B1), . . . , γ 	γ (Bm ), . . . , γAn }, then
� � {| A1 |, . . . , | Ai |, . . . , | An |} �κ,|γ ·γ ′ | {| γA1 |, . . . , | γ 	γ (B1) |, . . . , | γ 	γ (Bm ) |, . . . , | γAn |}.
Note that the above lemma implies, as a corollary, that partial LP-Unif is sound with respect toH.

Definition 11 If � � {A} ⇀∗
γ {B1, . . . ,Bn }, L(A) 
� ∅ and L(Bi ) � ∅ for all i , then we say γ is the relative answer

for the labelled variables in A with respect to B1, . . . ,Bn .

Comparing to LP-Unif, partial LP-Unif does not resolve subgoals without labelled variables, and therefore
it terminates as soon as all the labelled formulas are resolved. From the pragmatic perspective, the termination
of partial LP-Unif signifies that we have obtained all the answers we need for the labelled variables, and thus no
further computation is necessary. From the computational perspective, some queries may give rise to nontermi-
nating LP-Unif reduction and the partial LP-Unif strategy offers a lazy version of LP-Unif as an alternative.
This is a useful lightweight solution, as checking (non)termination for logic programming can be at best only
semi-decidable. From the theoretical perspective, relative answers are meaningful according to type-theoretic
semantics of Sect. 2 via Lemma 4.

Labels on variables give us a precise way to formalize the notion of local productivity we mentioned in
Introduction.

Definition 12 (Local productivity) We say the queries A1, . . . ,An are locally productive at the set of labelled
variables V iff ({A1, . . . ,An },V ) ∈ LProdm for any m ≥ 0. We define ({A1, . . . ,An },V ) ∈ LProdm as follows:

• ({A1, . . . ,An},V ) ∈ LProd0 for any A1, . . . ,An ,V .
• ({A1, . . . ,An},V ) ∈ LProdm+1 iff for all x v ∈ V , there exists � � {A1, . . . ,An} ⇀∗

γ {Q1, . . . ,Ql } such that
γ (x v ) � K (t1, . . . , tn ) and ({Q1, . . . ,Ql },L(γ )) ∈ LProdm , where L(γ ) denotes the set of labelled variables
in the codomain of γ .

Note that according to the definition, if a query is trivially locally productive at the empty set of labelled
variables and is trivially locally unproductive if the set of labelled variables are not a subset of the labelled
variables in the query. Thus in general it is more sensible to ask local productivity of a query at all its labelled
variables.

Local productivity is defined by quantifying over all natural numbers m on LProdm , this allows us to prove
local productivity by induction on natural numbers. The requirement γ (x v ) � K (t1, . . . , tn ) in the definition of
LProdm ensures that the answer for a labelled variable x v is at least observable at the function symbol K .

To illustrate local productivity, let us consider the query P (x v ) and the logic program κ : ∀ x .P (x ) ⇒
P (K (x )). We want to show that {P (x v )} is locally productive at x v for any variable x . We just need to show
for any x , ({P (x v )}, {x v }) ∈ LProdm for all m. We proceed by induction on m. Suppose m � 0, we know that
({P (x v )}, {x v }) ∈ LProd0. Suppose m � m ′ + 1, we have a partial LP-Unif reduction � � {P (x v )} ⇀[K (xv

1 )/x
v ]

{P (x v
1 )}. As [K (x v

1 )/x
v ]x v � K (x v

1 ), we just need to show ({P (x v
1 )}, {x v

1 }) ∈ LProdm ′ , which is by the inductive
assumption. This is a very simple case of showing local productivity. In general, it is very challenging to prove
local productivity in advance, and we leave this to future work.

Partial productivity and global productivity do not coincide, in general. For example, for a logic program
κ : P (K ) ⇒ P (K ), the query P (x v ) is locally productive, but it is not globally productive, as, using terminology
of Lloyd [Llo87], no infinite term gets produced at infinity.

We give two further examples of performing finite computation on infinite data structures using partial LP-
Unif.

Example 3 Consider the following logic program �, that observes, via the Nth predicate, elements of an infinite
stream of successive integers defined by From:

κ1 : ∀ x .∀ y .From(S (x ), y) ⇒ From(x ,Cons(x , y))
κ2 : ∀ x .∀ y . ⇒ Nth(Z ,Cons(x , y), x )

κ3 : ∀ x .∀ y .∀ z .∀ u.Nth(x , z , u) ⇒ Nth(S (x ),Cons(y, z ), u)
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For the query Nth(S (Z ), y, z v ),From(S (Z ), y), we only want to know the answer for z v , i.e., the 2nd element in
the stream generated by From(S (Z ), y). We observe the following reduction:

� � {Nth(S (Z ), y, z v ),From(S (Z ), y)} ⇀κ3,γ1≡[Z /x1,Cons(y1,z1)/y,uv
1 /zv ]

{Nth(Z , z1, uv
1 ),From(S (Z ),Cons(y1, z1))} ⇀κ2,γ2≡[xv

2 /uv
1 ,Cons(xv

2 ,y2)/z1]·γ1
{From(S (Z ),Cons(y1,Cons(x v

2 , y2)))} ⇀κ1,γ3≡[Cons(xv
2 ,y2)/y3,S (Z )/y1,S (Z )/x3]·γ2

{From(S (S (Z )),Cons(x v
2 , y2))} ⇀κ1,[y4/y2,S (S (Z ))/xv

2 ,S (S (Z ))/x4]·γ3 {From(S (S (S (Z ))), y4)}
Thus S (S (Z )) is the answer for z v relative to From(S (S (S (Z ))), y4), i.e. the 2nd element in the stream generated
by From(S (Z ), y) is S (S (Z )).

Example 4 Consider the following logic program �:

κ1 : ∀ x .∀ y . ⇒ Take(Z ,App(x , y),Nil )
κ2 : ∀ x .∀ y .∀ z .∀ r .Take(x , z , r ) ⇒ Take(S (x ),App(y, z ),Cons(y, r ))

κ3 : ∀ x .∀ y .∀ s.Fib(y,App(x , y), s) ⇒ Fib(x , y,App(x , s))

The formula Fib(y,App(x , y), s) ⇒ Fib(x , y,App(x , s)) is intended to generate (potentially infinitely long)
Fibonacci word. For example, A,B ,A · B ,B · (A · B ), (A · B ) · (B · (A · B )) . . . (where “,” and “·” both are
shorthand forApp, each element of the stream is the concatenation of the previous two) for query Fib(A,B , yv ).
Now let us execute the query Take(S (S (S (Z ))), y, z v ),Fib(A,B , y), Intuitively, that query computes the prefix
of length 3 in a Fibonacci word:

� � {Take(S (S (S (Z ))), y, z v ),Fib(A,B , y)} ⇀κ2,γ1≡[S (S (Z ))/x1,App(yv
1 ,z1)/y,Cons(yv

1 ,rv
1 )/z

v ]

{Take(S (S (Z )), z1, rv1 ),Fib(A,B ,App(yv
1 , z1))} ⇀κ3,γ2≡[A/x2,B/y2,A/yv

1 ,s2/z1]·γ1
{Take(S (S (Z )), s2, rv1 ),Fib(B ,App(A,B ), s2)} ⇀κ2,γ3≡[S (S (Z ))/x3,App(yv

3 ,z3)/s2,Cons(yv
3 ,rv

3 )/r
v
1 ]·γ2

{Take(S (Z ), z3, rv3 ),Fib(B ,App(A,B ),App(yv
3 , z3))} ⇀κ3,γ4≡[B/x4,App(A,B)/y4,B/yv

3 ,s4/z3]·γ3
{Take(S (Z ), s4, rv3 ),Fib(App(A,B ),App(B , (App(A,B ))), s4)} ⇀κ2,γ5≡[S (Z )/x5,App(yv

5 ,z5)/s4,Cons(yv
5 ,rv

5 )/r
v
3 ]·γ4

{Take(Z , z5, rv5 ),Fib(App(A,B ),App(B , (App(A,B ))),App(yv
5 , z5))} ⇀κ1,γ6≡[App(x6,y6)/z5,Nil/rv

5 ]·γ5
{Fib(App(A,B ),App(B , (App(A,B ))),App(yv

5 ,App(x6, y6)))}
⇀κ3,γ7≡[App(A,B)/x7,App(B,(App(A,B)))/y7,App(A,B)/yv

5 ,App(x6,y6)/s7]·γ6
{Fib(App(B , (App(A,B ))),App(App(A,B ),App(B , (App(A,B )))),App(x6, y6))}

We can see that [Cons(A,Cons(B ,Cons(App(A,B ),Nil )))/z v ] is the answer relative to
Fib(App(B , (App(A,B ))),App(App(A,B ),App(B , (App(A,B )))),App(x6, y6)), i.e. the prefix of length 3 in a
Fibonacci word is indeed A,B ,A · B .

Note that a relative answer γ for a query A can be meaningless under Herbrand model semantics, as γA, or
indeed any of its ground instances, may not be in the least or greatest Herbrand model of the logic program. The
following example illustrates this fact.

Example 5 Consider Example 3. Suppose the Horn formula κ1 is replaced with the following Horn formula:

κ ′
1 : ∀ x .∀ y .False(a),From(S (x ), y) ⇒ From(x ,Cons(x , y))

where False(a) is a formula that does not unify with any clause in the given program. However, we can still
perform the same partial LP-Unif derivation for the query Nth(S (Z ), y, z v ),From(S (Z ), y), just as was shown
in Example 3. But no instance of From(S (Z ), y) will be contained in the least or greatest Herbrand model of that
program.

3.1. Disscussion

This section presented an experiment in applying the type-theoretic semantics formulated in the earlier section
to a practical problem of establishing a sound lazy derivation strategy for resolution. It de-emphasizes the usual
notions of refutation and entailment in logic programming. Based on the type-theoretic semantics given to resolu-
tion via soundness and completeness theorems of Sect. 2, every reduction path of a given query is computationally
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meaningful. This generalizes the traditional declarative semantics approach to logic programming, according to
which only refutation—i.e. the reduction that lead to a normal form given by the empty set—is given a model
theoretic meaning.

Labels we introduced in this section allowed us to annotate the intention of making an observation, and the
labelled unification was formulated to hereditarily preserve this intention. Thus, we achieved a computational be-
havior that is similar to lazy functional programming languages, i.e. partial LP-Unif can make finite observations
on the infinite data.

Related work exists on supporting lazy computation in logic programming. One is by annotating each pred-
icate to be inductive/coinductive [SBMG07], with the intention of resolving the inductive predicate eagerly and
memorizing the coinductive predicate at each step, so that one can stop the resolution whenever the current query
is a variant of the previous memorized coinductive predicate. Our approach differs in that memorization and
variant detection are not needed.

4. Structual resolution

In this section, we represent structural resolution using the abstract reduction formalismwe introduced in Section
2. We first define structural resolution as LP-Struct reduction, thereby also defining LP-TM reduction, which
replaces the unification in LP-Unif by term-matching. We then identify two conditions under which LP-Unif
and LP-Struct are operationally equivalent. These two conditions are the termination of LP-TM and the non-
overlapping requirement for Horn clauses.

Definition 13

• Term-matching (LP-TM) reduction:
� � {A1, . . . ,Ai , . . . ,An} →κ {A1, . . . , σB1, . . . , σBm , . . . ,An}, if there exists κ : ∀ x .B1, . . . ,Bn ⇒ C ∈ �
such that σC ≡ Ai .

• Substitutional reduction:
� � {A1, . . . ,Ai , . . . ,An } ↪→κ,γ ·γ ′ {γA1, . . . , γAi , . . . , γAn } for any substitution γ ′, if there exists κ :
∀ x .B1, . . . ,Bn ⇒ C ∈ � such that C ∼γ Ai .

When combining LP-TM reduction with substitutional reductions, we sometimes write →κ,γ , where the
second subscript is used to store the substitution γ . The second subscript in the substitutional reduction is
intended as a state (similar to LP-Unif), it will be updated along with reduction.

Given a program � and a set of queries {B1, . . . ,Bn }, LP-TM uses only term-matching reduction to reduce
{B1, . . . ,Bn }:
Definition 14 (LP-TM) Given a logic program �, LP-TM is given by an abstract reduction system (�,→).

LP-TM is also sound w.r.t. the type system of Definition 2, which implies that we can obtain a proof for each
reductoin of the query.

Theorem 7 (Soundness of LP-TM) If � � {A} →∗ {B1, . . . ,Bn } , then � � e : ∀ x .B1, . . . ,Bn ⇒ A in C.

Comparing the soundness lemma and Theorem 7, we see that for LP-TM, there is no need to accumulate
substitutions, this is due to the use of term-matching instead of unification for the LP-TM reduction.

We use →μ to denote a reduction path to a →-normal form. If the →-normal form does not exist, then →μ

denotes an infinite reduction path. We write ↪→1 to denote at most one step of ↪→.
We can now formally define structural resolution within our formal framework. Given a program � and a set

of queries {B1, . . . ,Bn }, LP-Struct first uses term-matching reduction to reduce {B1, . . . ,Bn } to a normal form,
then performs one step substitutional reduction, and then repeats this process.

Definition 15 (Structural resolution (LP-Struct)) Given a logic program �, LP-Struct is given by an abstract
reduction system (�,→μ · ↪→1).

If a finite term-matching reduction path does not exist, then →μ · ↪→1 denotes an infinite path. When we
write � � {A}(→μ · ↪→1)∗{C }, it means a nontrivial finite path will be of the shape � � {A} →μ · ↪→ · . . . · →μ

· ↪→ · →μ {C }.
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Now let us recall the execution trace of the query Stream(x ) in Example 1 using LP-Struct:

� � {Stream(x )} ↪→κ1,[Cons(0,y1)/x ] {Stream(Cons(0, y1))} →κ1

{Stream(y1)} ↪→κ1,[Cons(0,y2)/y1,Cons(0,Cons(0,y2))/x ] {Stream(Cons(0, y2))} →κ1

{Stream(y2)} ↪→κ1,[Cons(0,y3)/y2,Cons(0,Cons(0,y3))/y1,Cons(0,Cons(0,Cons(0,y3)))/x ] {Stream(Cons(0, y3))} →κ1

{Stream(y3)} ↪→ . . .

4.1. LP-Struct and LP-Unif

LP-Struct exibits different execution behavior compared to LP-Unif. In general, they are not equivalent. Consider
the program and the finite LP-Unif derivation of Example 2. LP-Unif has a finite successful derivation for the
query Connect(x , y), but we have the following non-terminating reduction by LP-Struct:

� � {Connect(x , y)} →κ1 {Connect(x , y1),Connect(y1, y)}
→κ1 {Connect(x , y2),Connect(y2, y1),Connect(y1, y)} →κ1 . . .

The diverging behavior above is due to the divergence of LP-TM reduction.

Definition 16 (LP-TM termination) We say a program � is LP-TM terminating iff it admits no infinite →-
reduction.

LP-TM termination is important for LP-Struct in two aspects: 1. It is one of the conditions that ensure the
operational equivalence of LP-Struct and LP-Unif. 2. The finiteness of LP-TM reduction is used in defining the
observational productivity in logic programming.

The following example shows that LP-TM termination alone is not sufficient to establish that LP-Unif and
LP-Struct are operationally equivalent.

Example 6 Consider the following logic program (we use K to denote a constant):

κ1 : ⇒ P (K )
κ2 : ∀ x .Q(x ) ⇒ P (x )

The program is LP-TM terminating. For query P (x ), we have � � {P (x )} �κ1,[K /x ] ∅ with LP-Unif, but there is
only one reduction path � � {P (x )} →κ2 {Q(x )} 
↪→ for LP-Struct.

Thus the termination of LP-TM is insufficient for establishing the relation between LP-Struct and LP-Unif.
In Example 6, the problem is caused by the overlapping headsP (K ) andP (x ).Motivated by the non-overlapping
condition for rewrite rules in term rewriting systems ([BN98, Ter03]), we introduce the following definition.

Definition 17 (Non-overlapping condition) Axioms� are non-overlapping if for any κi : ∀ x .B ⇒ C , κj : ∀ x .D ⇒
E ∈ �, there are no substitutions σ, δ such that σC ≡ δE .

The following lemma shows that an LP-TM step can be viewed as an LP-Unif step without affecting the
accumulated substiution.

Lemma 5 If � � {D1, . . . ,Di , . . . ,Dn} →κ,γ {D1, .., σE1, . . . , σEm , . . . ,Dn }, with κ : ∀ x .E ⇒ C ∈ � and
σC ≡ Di for any γ , then � � {D1, . . . ,Di , . . . ,Dn } �κ,γ {D1, .., σE1, . . . , σEm , . . . ,Dn}. �

Proof Since for � � {D1, . . . ,Di , . . . ,Dn } →κ,γ {D1, .., σE1, . . . , σEm , . . . ,Dn }, with κ : ∀ x .E ⇒ C ∈ � and
σC ≡ Di , we have � � {D1, . . . ,Di , . . . ,Dn } �κ,σ ·γ {σD1, .., σE1, . . . , σEm , . . . , σDn }. But dom(σ ) ∈ FV(C ),
thus we have � � {D1, . . . ,Di , . . . ,Dn} �κ,γ {D1, .., σE1, . . . , σEm , . . . ,Dn }. �

The following lemma shows that one LP-Struct step corresponds to several LP-Unif steps, given the non-
overlapping requirement.

Lemma 6 Suppose � is non-overlapping and {A1, . . . ,An } are →-normal. If � � {A1, . . . ,An }(↪→κ,γ · →μ
γ )

{C1, . . . ,Cm }, then � � {A1, . . . ,An } �∗
γ {C1, . . . ,Cm }.
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Proof Given � � {A1, . . . ,An }(↪→κ,γ · →μ
γ ){C1, . . . ,Cm }, we know the actual reduction path can be re-

arranged to the form � � {A1, . . . ,An} ↪→κ,γ {γA1, . . . , γAn } →κ,γ {γA1, . . . , γB1, . . . , γBn , . . . , γAn } →μ
γ

{C1, . . . ,Cm }, where γAi ≡ γC with κ : ∀ x .B ⇒ C ∈ � and Ai ≡ σB . Note that γ is unchanged along
the term-matching reduction. We have rearranged the →-step following right after ↪→ using κ due to the
property of LP-TM. Note that to LP-TM reduce Ai we can only use κ, since otherwise it would mean with
κ ′ : ∀ x .D ⇒ B ∈ �. This implies γC ≡ γ σB , contradicting the non-overlapping restriction. Thus we have
� � {A1, . . . ,An } �κ,γ {γA1, . . . , γB1, . . . , γBn , . . . , γAn}. By Lemma 5, we have � � {A1, . . . ,An } �κ,γ

{γA1, . . . , γB1, . . . , γBn , . . . , γAn} �∗
γ {C1, . . . ,Cm }. �

Lemmas 7, 8 and Theorem 8 show that for a non-overlapping program, LP-Unif is equivalent to LP-Struct
for terminating reductions.

Lemma 7 Given � is non-overlapping, if � � {A1, . . . ,An }(→μ · ↪→1)∗γ {C1, . . . ,Cm} with {C1, . . . ,Cm } in →μ

· ↪→1-normal form, then � � {A1, . . . ,An} �∗
γ {C1, . . . ,Cm } with {C1, . . . ,Cm } in �-normal form.

Proof Since � � {A1, . . . ,An }(→μ · ↪→1)∗γ {C1, . . . ,Cm}, this means the reduction path must be of the form
� � {A1, . . . ,An} →μ · ↪→1 · →μ · ↪→1 . . . →μ · ↪→1 · →μ {C1, . . . ,Cm}. Thus � � {A1, . . . ,An } →μ ·(↪→1

· →μ) · (↪→1 . . . →μ) · (↪→1 · →μ){C1, . . . ,Cm }. By Lemma 5 and Lemma 6, we have � � {A1, . . . ,An } �∗
γ

{C1, . . . ,Cm } with {C1, . . . ,Cm } in �-normal form. �

Lemma 8 Given � is a non-overlapping, if � � {A1, . . . ,An} �∗
γ {C1, . . . ,Cm} with {C1, . . . ,Cm } in �-normal

form , then � � {A1, . . . ,An }(→μ · ↪→1)∗γ {C1, . . . ,Cm } with {C1, . . . ,Cm } in →μ · ↪→1-normal form.

Proof By induction on the length of �∗
γ .

• Base Case. � � {A1, . . . ,Ai , . . . ,An} �κ,γ {γA1, . . . , γB1, . . . , γBm . . . , γAn } with κ : ∀ x . B ⇒ C ∈ �,
C ∼γ Ai and {γA1, . . . , γB1, . . . , γBm . . . , γAn } in �-normal form . We have � � {A1, . . . ,Ai , . . . ,An}
↪→κ,γ {γA1, . . . , γAi , . . . , γAn} →κ {γA1, . . . , γB1, . . . , γBm . . . , γAn }with{γA1, . . . , γB1, . . . , γBm . . . ,

γAn} in→μ · ↪→-normal form. Note that there can not be another κ ′ : ∀ x .B ⇒ C ′ ∈ � such that σC ′ ≡ Ai ,
since this would means γC ≡ γAi ≡ γ σC ′, violating the non-overlapping requirement.

• Step Case. � � {A1, . . . ,Ai , . . . ,An } �κ,γ {γA1, . . . , γB1, . . . , γBl , . . . , γAn}
�∗

γ ′ {C1, . . . ,Cm } with κ : ∀ x .B1, . . . ,Bl ⇒ C ∈ � and C ∼γ Ai . We have � � {A1, . . . ,Ai , . . . ,An} ↪→κ,γ

{γA1, . . . , γAi , . . . , γAn} → {γA1, . . . , γB1, . . . , γBm , . . . , γAn}. By the non-overlapping requirement,
there can not be another κ ′ : ∀ x .D ⇒ C ′ ∈ � such that σC ′ ≡ Ai . By IH, we know� � {γA1, . . . , γB1, . . . ,
γBm , . . . , γAn}(→μ · ↪→)∗γ ′ {C1, . . . ,Cm}. Thus we conclude that � � {A1, . . . ,Ai , . . . ,An }(↪→ · →)∗γ ′
{C1, . . . ,Cm}. �

Theorem 8 Suppose � is non-overlapping. � � {A1, . . . ,An } �∗
γ {C1, . . . ,Cm } with {C1, . . . ,Cm} in �-normal

form iff � � {A1, . . . ,An }(→μ · ↪→1)∗γ {C1, . . . ,Cm} with {C1, . . . ,Cm} in →μ · ↪→1-normal form.

The theorem above implies that for terminating and non-overlapping programs, LP-Unif is equivalent to LP-
Struct. But the termination requirement can be relaxed by only requiring the termination of the →-reduction,
i.e. by requiring termination of LP-TM.

Lemma 9 If � � {A} →κ,γ {B1, . . . ,Bm} and dom(σ ) ∩ ((
⋃

i FV(Bi )) − FV(A)) � ∅, then � � {σA} →κ,γ

{σB1, . . . , σBm }.
Note that the above lemma shows that the reduction → is closed under substitution only under the condition
that dom(σ )∩ ((

⋃
i FV(Bi ))−FV(A)) � ∅, i.e. the domain of the substitution must not contain any variable that

are in Bi but not in A for any i , otherwise it will not be the case. If � � {A} →μ {B1, . . . ,Bm }, we write [A] to
mean the normal form of A, i.e. B1, . . . ,Bm .

Theorem 9 (Equivalence of LP-Struct and LP-Unif) Suppose � is non-overlapping and LP-TM terminating.

1. If� � {A1, . . . ,An } � {B1, . . . ,Bm}, then� � {A1, . . . ,An}(→μ · ↪→1)∗{C1, . . . ,Cl } and� � {B1, . . . ,Bm}
→∗ {C1, . . . ,Cl }.

2. If � � {A1, . . . ,An}(→μ · ↪→1)∗{B1, . . . ,Bm }, then � � {A1, . . . ,An} �∗ {B1, . . . ,Bm }.
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Proof 1. Suppose � � {A1, . . . ,An } �κ,γ {γA1, . . . , γE1, . . . , γEl , . . . , γAn}, with κ : E ⇒ D ∈ � and
D ∼γ Ai . Suppose γD ≡ Ai , we have � � {A1, . . . ,An } →κ,γ {γA1, . . . , γE1, . . . , γEq , . . . , γAn} →μ

γ

{C1, . . . ,Cl }. Suppose γD 
≡ Ai . In this case, we have � � {A1, . . . ,An } →μ {[A1], . . . ,Ai , . . . , [An ]} ↪→κ,γ

{[γA1], . . . ,
γAi , . . . , [γAn ]} →κ,γ {[γA1], . . . , γE1, . . . , γEq , . . . , [γAn ]} →μ

γ {C1, . . . ,Cl }. By Lemma 9, we know that
� � γA1 →μ {[γA1]}, . . . , � � γAn →μ {[γAn ]}. Thus � � {γA1, . . . , γE1, . . . , γEq , . . . , γAn} →μ

{C1, . . . ,Cl }.
2. We just need to show that if {A1, . . . ,An} are →-normal and � � {A1, . . . ,An} ↪→κ,γ {γA1, . . . , γAn} →μ

γ

{B1, . . . ,Bm }, then � � {A1, . . . ,An} �∗
γ {B1, . . . ,Bm}. Suppose � � {A1, . . . ,An } ↪→κ,γ {γA1, . . . , γAn}

→μ
γ {B1, . . . ,Bm }, we have � � {A1, . . . ,An } ↪→κ,γ {γA1, . . . , γAn } →κ {γA1, . . . , γC1, . . . , γCl , . . . , γAn}

→μ
γ {B1, . . . ,Bm } with κ : C ⇒ D ∈ � and D ∼γ Ai . Thus we have

� � {A1, . . . ,An} �κ,γ {γA1, . . . , γC1, . . . , γCl , . . . , γAn}. By Lemma 5, we have � � {A1, . . . ,An } �κ,γ

{γA1, . . . , γC1, . . . , γCl , . . . ., γAn} �∗
γ {B1, . . . ,Bm }. �

Note that the above theorem does not rely on the whole program termination, therefore it establishes equivalence
of LP-Unif and LP-Struct even for nonterminating programs such as the Stream example, as long as they are
LP-TM terminating and non-overlapping. This result has not been described in previous work.

4.2. Discussion

Structural resolution was first introduced in Komendantskaya and Power’s work ([KP11, KPS16]) under the
name of coalgebraic logic programming. It was further developed into a resolution method based on resolution
trees (called rewriting trees) generated by term-matching ([JKK15, KJ15]). The formulation of LP-Struct in this
paper is based on the abstract reduction system framework, instead of the tree formalism in previous work. As
a consequence, for overlapping logic programs, the reduction-based LP-Struct behaves differently compared to
the tree-based formalism (see e.g. Example 6). The novelty of our development in this section is the articulation
of the two conditions that ensure the operational equivalence of LP-Struct and LP-Unif (Theorem 9).

5. Functionalisation of LP-TM

One of the features of LP-Struct is that it refines SLD-resolution by a combination of term-matching and unifi-
cation. LP-TM itself is used in the type class context reduction [JJM97]. The termination behavior of LP-TM is
of practical interest. For example, termination for the type class inference is essential to achieve decidability of
the type inference in languages such as Haskell ([LPJ05], Section 5).

Of course, the termination of LP-TM also implies observational productivity in the context of LP-Struct.
As explained in Introduction and Sect. 4, LP-TM termination is not only essential to ensure the equivalence of
LP-Struct and LP-Unif, but also is important to allow viewing the LP-TM reductions within the nonterminating
LP-Struct reduction as finite observations.

On theother hand, termination andnonterminationdetection arewell-studied in the context of term rewriting.
In this section we show a method that reuses the techniques developed in term rewriting to detect termination
of LP-TM. We first define a process called functionalisation that transforms a set of Horn clauses into a set of
rewrite rules, where the execution of a query is seen as a process of rewriting the query to its proof. As a result,
termination and nontermination detection techniques from term rewriting can be applied to LP-TM, assuming
the logic program contains no existential variables.

In this section we work only with the Horn formulas without existential variables, i.e. for any Horn formula
∀ x .A1, . . . ,An ⇒ B , we have

⋃
i FV(Ai ) ⊆ FV(B ). The restriction that Horn clauses should not contain

existential variables comes directly from a similar requirement imposed in term-rewriting.
Since the idea of functionalisation is to view LP-TM resolution for a query as a rewriting process to its proof

evidence, the rewriting is defined on mixed terms, i.e. a mixture of atomic formulas and proof evidence.

Definition 18 (Mixed terms)

Mixed term q ::� A | κ | q q ′
Mixed term context C ::� • | C q | q C
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Note that C can be ground. Let C[q1, . . . , qn ] mean replacing all the • in C from left to right by q1, . . . , qn .

Definition 19 (Functionalisation) We can construct a set of rewrite rule K (�) from a set of axioms � as follows.
For each κ : ∀ x .A1, . . . ,An ⇒ B ∈ �, we define a rewrite rule B → κ A1 . . . An ∈ K (�) on mixed terms. We
call κ an axiom symbol.

Note that the evidence constant κ for A1, . . . ,An ⇒ B becomes a mixed term function symbol of arity n, with
A1, . . . ,An as its arguments, which is denoted by κ A1 . . . An .

Definition 20 We define a relation C → C ′ to mean that C ′ can be obtained from C by replacing a • in C by some
C1, where C1 
≡ •. We also write the reflexive and transitive closure of this relation as →∗.

The following lemmas show that eachLP-TMstep corresponds exactly to a rewrite step after functionalisation.
As a consequence, it is possible to determine the termination behavior of LP-TM by analyzing the corresponding
term rewriting system.

Lemma 10 � � {A1, . . . ,An } → {A1, . . . , σB1, . . . , σBm , . . . ,An }, where κ : ∀ x .B1, . . . ,Bm ⇒ B ∈ � and
σB ≡ Ai iff C[A1, . . . ,Ai , . . . ,An ] → C ′[A1, . . . , σB1, . . . , σBm , . . . ,An ], where C, C ′ do not contain any atomic
formulas and C → C ′.

Proof By Definition 19, κ : ∀ x .B1, . . . ,Bm ⇒ Ai ∈ � implies Ai → κ B1 . . . Bm ∈ K (�), and vice versa. So
C ′ can be obtained by replacing the i th • in C by κ •1 . . . •m . �

Lemma 11 � � {A1, . . . ,An } →∗ {C1, . . . ,Cl } iff C[A1, . . . ,An ] →∗ C ′[C1, . . . ,Cl ], where C →∗ C ′ and C, C ′ do
not contain any atomic formulas.

Proof We prove both direction together. By induction on the length of →∗.
Base Case. By Lemma 10.
Step Case.
Left to Right:
Suppose � � {A1, . . . ,An } → {A1, . . . , σB1, . . . , σBm , . . . ,An} →∗ {C1, . . . ,Cl }, with κ : ∀ x .B1, . . . ,Bm ⇒
B ∈ � and σB ≡ Ai . Then we know C[A1, . . . ,An ] → C ′′[A1, . . . , σB1, . . . , σBm , . . . ,An ]. Also, C → C ′′, where
C ′′ can be obtained from C by replacing its i th • by κ •1 . . . •m . By IH, C ′′[A1, . . . , σB1, . . . , σBm , . . . ,An ] →∗
C ′[C1, . . . ,Cl ] with C ′′ →∗ C ′. So C[A1, . . . ,An ] →∗ C ′[C1, . . . ,Cl ] with C →∗ C ′.

Right to Left: Suppose C[A1, . . . ,An ] → C ′′[A1, . . . , σB1, . . . , σBm , . . . ,An ] →∗ C ′[C1, . . . ,Cl ] with C →
C ′′ →∗ C ′, where B → κ B1 . . . Bm and σB ≡ Ai . So ∀ x .B1, . . . ,Bm ⇒ B ∈ � and σB ≡ Ai . Thus
� � {A1, . . . ,An } → {A1, . . . , σB1, . . . , σBm , . . . ,An}. By IH, � � {A1, . . . , σB1, . . . , σBm , . . . ,An } →∗
{C1, . . . ,Cl }. Thus, we have � � {A1, . . . ,An } →∗ {C1, . . . ,Cl }. �

Theorem 10 � � {A} →∗ ∅ iff A →∗ e, and e is a ground evidence. As a consequence, the query A is LP-TM
(non)terminating iff A is (non)terminating for K (�).

Proof By Lemma 11. �

Inpractice, functionalisation canalsobeused to implementLP-TM, especially if computing theproof evidence
is the only goal. For example, this is the case for type class inference [FKSP16].

Now we demonstrate how to apply a convenient termination technique in term rewriting called dependency
pair method [AG00] to analyze the termination behavior of LP-TM.

Definition 21 We define the dependency pairs generated from K (�) to be E (K (�)) � {B → Ai | B →
κ A1 . . . An ∈ K (�)}.
Definition 22 A (potentially infinite) sequence of pairs q1 → q ′

1, q2 → q ′
2, . . . inE (K (�)) is aK (�)-chain iff there

is a substitution σ with σq ′
i ≡ σqi+1 for all i .

The above definition of K (�)-chain is using the condition σq ′
i ≡ σqi+1 instead of σq ′

i →∗ σqi+1 in term
rewriting [AG00]. Since the dependency pairs generated from a logic program will always be in the form of
A → B , whereA,B are atomic formulas, rewriting under the predicate is not possible. This greatly simplifies the
termination detection for LP-TM.
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Theorem 11 (Arts-Giesl [AG00])K (�) is terminating iff no infinite K (�)-chain exist.

Theorem 11 allows us to detect the termination of K (A) by looking at the possible K (�)-chain.

Example 7 Consider the following program �:

κ1 : ⇒ P (Int)
κ2 : ∀ x .P (x ),P (List(x )) ⇒ P (List(x ))

The dependency pairs of � are P (List(x )) → P (List(x )) and P (List(x )) → P (x ). We can see P (List(x )) →
P (List(x )) can form an infinite E (K (�))-chain, thus K (�) is not terminating. So � is not LP-TM terminating.

6. Realizability transformation and LP-Struct

Functionalisation provides a way to detect LP-TM termination for LP-Struct. But sometimes there are logic
programs that are not LP-TM terminating but are still meaningful from the LP-Unif perspective (cf. Example 2).
For these programs,we still want to be able to useLP-Struct. To solve this problem,wedefine ameaning preserving
realizability transformation that transforms any logic program into LP-TM terminating one.

Realizability [Kle52]( 82) is a technique that uses a number representing the proof of a number-theoretic
formula. The transformation described here is similar in the sense that we use a first-order term to represent the
proof of a Horn formula. More specifically, we use a first-order term as an extra argument for Horn formula to
represent a proof of that formula.

Lemma 2 and Theorem 5 show that we can use a first-order term to represent a normalized proof evidence.

Definition 23 (Representing first-order proof evidence) Let φ be a mapping from proof evidence variables to first-
order terms. We define a representation function �·�φ from first-order normal proof evidence to first-order terms.

• �a�φ � φ(a).
• �κ p1 . . . pn�φ � Kκ (�p1�φ, . . . , �pn�φ), where Kκ is a function symbol.

Let A ≡ P (t1, . . . , tn ) be an atomic formula and t ′ be a term such that (
⋃

i FV(ti )) ∩ FV(t ′) � ∅, we write
A[t ′] to abbreviate a new atomic formula P (t1, . . . , tn , t ′).

Definition 24 (Realizability transformation) We define a transformation F on Horn formula and its normalized
proof evidence:

• F (κ : ∀ x .A1, . . . ,Am ⇒ B ) � κ : ∀ x .∀ y .A1[y1], . . . ,Am [ym ] ⇒ B [Kκ (y1, . . . , ym )], where y1, . . . , ym are
all fresh and distinct.

• F (λ a.n : [∀ x ].A1, . . . ,Am ⇒ B ) � λ a.n : [∀ x .∀ y ].A1[y1], . . . ,Am [ym ] ⇒ B [�n�[y/a ]], where y1, . . . , ym
are all fresh and distinct.

The realizability transformation systematically associates a proof to each predicate, so that the proof can be
recorded alongside with reductions. Let F (�) mean applying the realizability transformation to every axiom in
�.

Example 8 The following logic programF (�) is the result of applying realizability transformation on the program
� in Example 2.

κ1 : ∀ x .∀ y .∀ u1.∀ u2.Connect(x , y, u1),Connect(y, z , u2) ⇒ Connect(x , z ,Kκ1 (u1, u2))
κ2 : ⇒ Connect(Node1,Node2,Kκ2 )
κ3 : ⇒ Connect(Node2,Node3,Kκ3 )

Before the realizability transformation, we have the following judgement in H:

� � λ b.(κ1 b) κ2 : Connect(Node2, z ) ⇒ Connect(Node1, z )

We can apply the transformation, we get:

F (�) � λ b.(κ1 b) κ2 : Connect(Node2, z , u1) ⇒ Connect(Node1, z , �(κ1 b) κ2�[u1/b])
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which is the same as

F (�) � λ b.(κ1 b) κ2 : Connect(Node2, z , u1) ⇒ Connect(Node1, z ,Kκ1 (u1,Kκ2 ))

We write (F (�),�), to mean given axioms F (�), use LP-Unif to reduce a given query. Note that for a query
A in (�,�), it becomes a query A[t ] for some t such that FV(A) ∩ FV(t) � ∅ in (F (�),�).

The following theorem shows that realizability transformation does not change the type-theoretic meaning
of a program. This is important because it means we can apply different resolution strategies to resolve the query
on the transformed program without worrying about the change of meaning. Later we will see that the behavior
of LP-Struct is different for the original program and the transformed program.

Theorem 12 If � � e : [∀ x ].A ⇒ B in C and e normalized to n, then F (�) � F (n : [∀ x ].A ⇒ B ) inH.

Proof By induction on the derivation of � � e : [∀ x ].A ⇒ B .

• Base Case.
(κ : ∀ x .A ⇒ B ) ∈ �

� � κ : ∀ x .A ⇒ B

In this case, we know that F (κ : ∀ x .A ⇒ B ) � κ : ∀ x .∀ y .A1[y1], . . . ,An [yn ] ⇒ B [fκ (y1, . . . , yn )] ∈ F (�).
• Step Case.

� � e1 : A ⇒ D � � e2 : B ,D ⇒ C
� � λ a. λ b.(e2 b) (e1 a) : A,B ⇒ C

By Lemma 2, we know that the normal form of e1 is κ1 or λ a.n1, and the normal form of e1 is κ2 or λ bd .n2,
with n1,n2 are first-order.

– e1 ≡ κ1, e2 ≡ κ2. By IH, we know that � � κ1 : A1[y1], . . . ,An [yn ] ⇒ D [fκ1 (y1, . . . , yn )] and � �
κ2 : B1[z1], . . . ,Bm [zm ],D [y ] ⇒ C [fκ2 (z1, . . . , zm , y)]. So by Gen and Inst, we have � � κ2 : B1[z1],
. . . ,Bm [zm ],D [fκ1 (y1, . . . , yn )] ⇒ C [fκ2 (z , fκ1 (y))]. Then by the Cut rule, we have� � λ a. λ b.κ2 b (κ1 a) :
A1[y1], . . . ,An [yn ],B1[z1], . . . ,Bm [zm ] ⇒ C [fκ2 (z , fκ1 (y))]. We can see that �κ2 b (κ1 a)�[y/a,z/b] � fκ2
(z , fκ1 (y)).

– e1 ≡ λ a.n1, e2 ≡ λ b.d .n2. By IH, we know that � � λ a.n1 : A1[y1], . . . ,A1[y1] ⇒ D [�n1�[y/a ]] and
� � λ b.d .n2 : B1[z1], . . . ,Bm [zm ],D [y ] ⇒ C [�n2�[z/b,y/d ]]. So by Gen and Inst, we have
� � λ b.d .n2 : B1[z1], . . . ,Bm [zm ],D [�n1�[y/a ]] ⇒ C [�n2�[z/b,�n1�[y/a ]/d ]].
Then by the Cut rule and beta reduction, we have
� � λ a. λ b.([n1/d ]n2) : A1[y1], . . . ,A1[y1],B1[z1], . . . ,Bm [zm ] ⇒ C [�n2�[z/b,�n1�[y/a ]/d ]] in H. We know
that �[n1/d ]n2�[y/a,z/b] � �n2�[z/b,�n1�[y/a ]/d ].

– The other cases are handle similarly.

• Step Case.

� � λ a.n : ∀ x .A ⇒ B
� � λ a.n : [t/x ]A ⇒ [t/x ]B

By IH, we know that � � λ a.n : ∀ x .∀ y .A1[y1], . . . ,An [yn ] ⇒ B [�n�[y/a ]]. By Inst rule, we have � � λ a.n :
[t/x ]A1[y1], . . . , [t/x ]An [yn ] ⇒ [t/x ]B [�n�[y/a ]]

• Step Case.

� � e : F
� � e : ∀ x .F

This case is straightforwardly by IH. �

The following lemmaanda theoremshowthat the extra argument canbeused to record the termrepresentation
of the corresponding proof.

Lemma 12 If F (�) � {A1[y1], . . . ,An [yn ]} �∗
γ ∅, and y1, . . . , yn are fresh, then F (�) � ei : ∀ x . ⇒ γAi [γ yi ] in

H with �ei�∅ � γ yi for all i .
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Proof By induction on the length of the reduction F (�) � {A1[y1], . . . ,An [yn ]} �∗
γ ∅.

• Base Case. Suppose the length is one, namely, F (�) � {A[y ]} �κ,γ1 ∅. Thus there exists (κ : ∀ x . ⇒ C [fκ ]) ∈
F (�)(here fκ is a constant), such thatC [fκ ] ∼γ1 A[y ]. Thus γ1(C [fκ ]) ≡ γ1A[γ1y ]. So γ1y ≡ fκ and γ1C ≡ γ1A.
We have F (�) � κ : ⇒ γ1C [fκ ] by the Inst rule, thus F (�) � κ : ⇒ γ1A[γ1y ], hence F (�) � κ : ∀ x . ⇒
γ1A[γ1y ] by the Gen rule and �κ�∅ � fκ .

• Step Case. Suppose
F (�) � {A1[y1], . . . ,Ai [yi ], . . . ,An [yn ]} �κ,γ1 {γ1A1[y1], . . . , γ1B1[z1], . . . , γ1Bm [zm ], . . . , γ1An [yn ]} �∗

γ ∅,
where κ : ∀ x .∀ z .B1[z1], . . . ,Bm [zm ] ⇒ C [fκ (z1, . . . , zm )] ∈ F (�), and C [fκ (z1, . . . , zm )] ∼γ1 Ai [yi ]. So we
know γ1C [fκ (z1, . . . , zm )] ≡ γ1Ai [γ1yi ], γ1yi ≡ fκ (z1, . . . , zm ), γ1C ≡ γ1Ai and
dom(γ1) ∩ {z1, . . . , zm , y1, .., yi−1, yi+1, yn } � ∅. By IH, we know that F (�) � e1 : ∀ x . ⇒ γ γ1A1[γ y1], . . . ,
F (�) � p1 : ∀ x . ⇒ γ γ1B1[γ z1], . . . ,F (�) � pm : ∀ x . ⇒ γ γ1Bm [γ zm ], . . . ,F (�) � en : ∀ x . ⇒
γ γ1An [γ yn ] and �e1�∅ � γ y1, . . . , �p1�∅ � γ z1, . . . , �pm�∅ � γ zm , . . . , �en�∅ � γ yn . We can construct
a proof ei � κ p1 . . . pm with ei : ∀ x . ⇒ γ γ1Ai [γ γ1yi ], by first apply the Inst to instantiate the quanti-
fiers of κ, then applying the Cut rule m times. Moreover, we have �κ p1 . . . pm�∅ � fκ (�p1�∅, . . . , �pm�∅) �
γ (fκ (z1, . . . , zm )) � γ γ1yi . �

Theorem 13 Suppose F (�) � {A[y ]} �∗
γ ∅. We have F (�) � p : ∀ x . ⇒ γA[γ y ] in H, where p is in normal form

and �p�∅ � γ y .

Nowwe are able to show that realizability transformation will not change the unification reduction behaviour.

Lemma 13 If � � {A1, . . . ,An} �∗ ∅, then F (�) � {A1[y1], . . . ,An [yn ]} �∗ ∅ with yi fresh for all i .

Proof By induction on the length of � � {A1, . . . ,An } �∗ ∅.
• Base Case. Suppose the length is one, namely, � � {A} �κ,γ1 ∅. There exists (κ : ∀ x . ⇒ C ) ∈ � such that
C ∼γ1 A. Thus κ : ∀ x . ⇒ C [fκ ] ∈ F (�) and (C [fκ ]) ∼γ1[fκ /y ] A[y ]. So F (�) � {A[y ]} �κ,γ1[fκ /y ] ∅.

• Step Case. Suppose � � {A1, . . . ,Ai , . . . ,An } �κ,γ1 {γ1A1, . . . , γ1B1, . . . , γ1Bm , . . . , γ1An} �∗
γ ∅, where

κ : ∀ x .B1, . . . ,Bm ⇒ C ∈ � and C ∼γ1 Ai . So we know that κ : ∀ x .∀ z .B1[z1], . . . ,Bm [zm ] ⇒ C [fκ (z )] ∈
F (�) and C [fκ (z )] ∼γ1[fκ (z )/yi ] Ai [yi ]. Thus we have the following reduction:

F (�) � {A1[y1], . . . ,Ai [yi ], . . . ,An [yn ]} �κ,γ1[fκ (z )/yi ]

{γ1[fκ (z )/yi ]A1[y1], . . . , γ1[fκ (z )/yi ]B1[z1], . . . , γ1[fκ (z )/yi ]Bm [zm ], . . . , γ1[fκ (z )/yi ]An [yn ]} ≡
{γ1A1[y1], . . . , γ1B1[z1], . . . , γ1Bm [zm ], . . . , γ1An [yn ]}

By IH, F (�) � {γ1A1[y1], . . . , γ1B1[z1], . . . , γ1Bm [zm ], . . . , γ1An [yn ]} �∗ ∅. �

Lemma 14 If F (�) � {A1[y1], . . . ,An [yn ]} �∗ ∅ with yi fresh for all i , then � � {A1, . . . ,An } �∗ ∅.
Proof. By induction on the length of F (�) � {A1[y1], . . . ,An [yn ]} �∗ ∅.
• Base Case. Suppose the length is one, namely, F (�) � {A[y ]} �κ,γ1 ∅.
We know that (κ : ∀ x . ⇒ C [fκ ]) ∈ F (�) with C [fκ ] ∼γ1 A[y ]. Thus C ∼γ1−[fκ /y ] A. So � � {A} � ∅.

• StepCase. Supposewehave the following reduction:F (�) � {A1[y1], . . . ,Ai [yi ], . . . ,An [yn ]} �κ,γ1 {γ1A1[y1],
. . . , γ1B1[z1], . . . , γ1Bm [zm ], . . . , γ1An [yn ]} �∗

γ ∅
Note that κ : ∀ x .∀ z .B1[zm ], . . . ,Bm [zm ] ⇒ C [fκ (z1, . . . , zm )] ∈ F (�) and C [fκ (z1, . . . , zm )] ∼γ1 Ai [yi ]. So
we know C ∼γ1−[fκ (z )/yi ] Ai . Let γ � γ1 − [fκ (z )/yi ]. We have

� � {A1, . . . ,Ai , . . . ,An } �κ,γ {γA1, . . . , γB1, . . . , γBm , . . . , γAn } ≡ {γ1A1, . . . , γ1B1, . . . , γ1Bm , . . . , γ1An }
By IH, we know � � {γ1A1, . . . , γ1B1, . . . , γ1Bm , . . . , γ1An} �∗ ∅. �

Theorem 14 � � {A} �∗ ∅ iff F (�) � {A[y ]} �∗ ∅.
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Example 9 Consider the logic program in Example 8. Realizability transformation does not change the behaviour
of LP-Unif, we still have the following successful unification reduction path for query Connect(x , y, u):

F (�) � {Connect(x , y, u)} �κ1,[x/x1,y/z1,Kκ1 (u3,u4)/u ] {Connect(x , y1, u3),Connect(y1, y, u4)}
�κ2,[Kκ2 /u3,Node1/x ,Node2/y1,Node1/x1,b/z1,Kκ1 (Kκ2 ,u4)/u ]

{Connect(Node2, y, u4)}
�κ3,[Kκ3 /u4,Kκ2 /u3,Node3/y,Node1/x ,Node2/y1,Node1/x1,Node3/z1,Kκ1 (Kκ2 ,Kκ3 )/u ]

∅
There are logic programs that are overlapping andLP-TMnonterminating (as e.g. the programof Example 2),

we would still like to obtain a meaningful execution behaviour for LP-Struct, especially if LP-Unif aready allows
successful derivations for the programs. Luckily, we can apply realizability transformation to such programs and
apply LP-Struct reduction.

Proposition 3 For any program �, F (�) is LP-TM terminating and non-overlapping.

Proof First, we need to show →-reduction is strongly normalizing in (F (�),→). By Definition 24, we can
establish a decreasing measurement(from right to left, using the strict subterm relation) for each rule in F (�),
since the last argument in the head of each rule is strictly larger than the ones in the body. Then, non-overlapping
property is due to the fact that all the heads of the rules in F (�) will be guarded by the unique function symbol
in Definition 24. �

Corollary 1 (Equivalence of LP-Unif and LP-Struct) F (�) � {A1, . . . ,An }(→μ · ↪→1)∗{B1, . . . ,Bm} iff F (�) �
{A1, . . . ,An } �∗ {B1, . . . ,Bm }.

Proof By Theorem 9 and Proposition 3. �

Using the above corollary and soundness and completeness of LP-Unif, we deduce as a corollary that LP-
Struct is sound and complete relative to system H for the transformed logic program.

Example 10 For the program in Example 8, the query Connect(x , y, u) can be reduced by LP-Struct successfully:

F (�) � {Connect(x , y, u)} ↪→κ1,[x/x1,y/z1,Kκ1 (u3,u4)/u ] {Connect(x , y,Kκ1 (u3, u4))} →κ1

{Connect(x , y1, u3),Connect(y1, y, u4)}
↪→κ2,[Kκ2 /u3,Node1/x ,Node2/y1,Node1/x1,b/z1,Kκ1 (Kκ2 ,u4)/u ]

{Connect(Node1,Node2,Kκ2 ),Connect(Node2, y, u4)} →κ2 {Connect(Node2, y, u4)}
↪→κ3,[Kκ3 /u4,Kκ2 /u3,Node3/y,Node1/x ,Node2/y1,Node1/x1,Node3/z1,Kκ1 (Kκ2 ,Kκ3 )/u ]

{Connect(Node2,Node3,Kκ3 )} →κ3 ∅
Note that the answer for u is Kκ1 (Kκ2 ,Kκ3 ), which is the first-order term representation of the proof of ⇒
Connect(Node1,Node3).

Realizability transformation uses the extra argument as decreasing measurement in the program to achieve
termination of →-reduction. At the same time this extra argument makes the program non-overlapping. Real-
izability transformation does not modify the proof-theoretic meaning and the execution behaviour of LP-Unif.
The next example shows that not every transformation technique for obtaining structurally decreasing LP-TM
reductions has such properties:

Example 11 Consider the following program:

κ1 : ⇒ P (Int)
κ2 : ∀ x .P (x ),P (List(x )) ⇒ P (List(x ))

It is a folklore method to add a structurally decreasing argument as a measurement to ensure finiteness of →μ.

κ1 : ⇒ P (Int, 0)
κ2 : ∀ x .∀ y .P (x , y),P (List(x ), y) ⇒ P (List(x ),S (y))
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We denote the above program as �′. Indeed with the measurement we add, the term-matching reduction in �′
will be finite. But the reduction for query P (List(Int), z ) using LP-Unif reduction will fail:

�′ � {P (List(Int), z )} �κ2,[Int/x ,S (y1)/z ] {P (Int, y1),P (List(Int), y1)} �κ2,[0/y1,Int/x ,S (0)/z ]

{P (List(Int), 0)} 
�
However, the queryP (List(Int)) on the original program using unification reduction will diverge. Divergence and
failure are operationally different. Thus adding arbitrary measurement may modify the execution behaviour of a
program (and hence the meaning of the program). In contrast, by Theorems 12-14, realizability transformation
does not modify the execution behaviour of LP-Unif reduction.

Example 12 Consider the following non-LP-TM terminating and non-overlapping program and its version after
the realizability transformation:

Original program:κ : ∀ x .P (x ) ⇒ P (x )
After transformation:κ : ∀ x .∀ u.P (x , u) ⇒ P (x ,Kκ (u))

Both LP-Struct and LP-Unif will diverge for the queries P (x ),P (x , y) in both original and transformed versions.
LP-Struct reduction diverges for different reasons in the two cases, one is due to divergence of →-reduction:
� � {P (x )} → {P (x )} → {P (x )} → . . .. The another is due to ↪→-reduction: � � {P (x , y)} ↪→ {P (x , fk (u))} →
{P (x , u)} ↪→ {P (x ,Kk (u ′))} → {P (x , u ′)} ↪→ . . .. Note that a single step of LP-Unif reduction for the original
program corresponds to infinite steps of term-matching reduction in LP-Struct. For the transformed version, a
single step of LP-Unif reduction corresponds to finite steps of LP-Struct reduction.

7. Related work

Proof Search, Logic Programming and Type Theory. To the best of our knowledge, studying logic programming
proof-theoretically dates back to Girard’s suggestion to use the cut rule to model resolution for Horn formulas
[GTL89,Chapter 13.4].Miller et al. [MNPS91] use cut-free sequent calculus to represent a proof for a query.More
specifically, given a queryQ and a logic program P ,Q has a refutation iff there is a derivation in cut-free sequent
calculus for P � Q . Using sequent calculus as a proof theoretic framework gives the flexibility to incorporate
different kinds of formulas, e.g. classical formulas and linear formulas into this framework.

Interactive theorem prover Twelf [PS99] pioneered implementation of proof search on top of a depedently
typed system called LF [HL07]. Similar to Twelf, we believe that type systems serve as a suitable foundation
for logic programming. Comparing to Twelf, we specify and analyze different resolution strategies (other than
SLD-resolution) and study their intrinsic relations. We also pay more attention to various kinds of productivity
compared to Twelf.

Structural Resolution. Structural resolution is a result of joint research efforts by Komendantskaya et al.
([JKK15, KP11, KPS16]). The goal of the analysis of structural resolution is to support sound coinductive rea-
soning in logic programming. For example, given the query Take(S (S (S (Z ))), y, z ),Fib(A,B , y) in Example 4,
one may want not only to obtain a substitution for z , but also a guarantee that the queries to Fib are nontermi-
nating and, moreover, that derivations for Fib will not fail if continued to infinity. To support this, productivity
analysis has been developed [KJ15, KJM16] as a compile time technique to detect observational productivity of
logic programs.

Coinductive Logic Programming. Gupta et al. [GBM+07]’s coinductive logic programming (CoLP) extends
SLD-resolution with a method to use atomic coinductive hypotheses. That is, during the execution, if the current
queries {C1, . . . ,Ci , . . . ,Cn } contain a queryCi that unifies via γ with aC ′ in the earlier execution, then the next
step of resolution will be given by {γC1, . . . , γCi−1, γCi+1, . . . , γCn }. The coinductvie hyposesis mechanism in
CoLP can be viewed as a form of loop detection. However, CoLP cannot detect hypotheses for more complex
patterns of coinduction that produce coinductive subgoals that fail to unify. As discussed in introduction, it is
not a suitable tool to analyze the productivity of infinite data structures in logic programming.

Proof Relevant Corecursive Resolution. In our previous work [FKSP16], we extended systemH with fixpoint
operator to allow constructing corecursive proof evidence (given by proof terms containing fixpoint operator) for
certain nonterminating LP-TM reductions. The type system that we use to justify the corecursive proof evidence
is an extension of Howard’s systemH with the fixpoint typing rule. There, the main challenge was to heuristically
and automatically construct corecursive evidence for a given query.
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Logic Programming by Term Matching. LP-TM reduction may seem to be a rare kind of resolution, but it
underliesmanyapplications.Theprocess of simplifying type class constraints is formally described as the notionof
context reduction by Peyton Jones et al. [JJM97]. The context reduction process uses exactly the LP-TM reduction
that we described in this paper. The logic-based multi-paradigm programming language PiCAT [ZF13, ZKF15]
makes extensive use of term-matching with explicit unification. For example, the Fibonacci sequence in PiCAT
is defined as follows:

fib(0,F) => F=1.
fib(1,F) => F=1.
fib(N,F),N>1 => fib(N-1,F1),fib(N-2,F2),F=F1+F2.

Through the functionalisation process, the existing termination detection techniques from term rewriting [Ter03]
can be directly applied to LP-TM. Thus we think our work in Sect. 5 builds a useful link between LP-TM and
term rewriting.

8. Conclusions

Wehave shown thatHoward’s systemH is a suitable foundation for logic programming.Wehave proven soundness
and completeness of LP-Unif with respect to the type systemH. We have developed a partial LP-Unif resolution
strategy based on labels to control LP-Unif reductions and achieve a form of lazy computation. Based on partial
LP-Unif, we have also defined a new notion of local productivity.

We have formally defined structural resolution as LP-Struct, and showed that it in fact combines term-
matching resolution with unification. We have shown that LP-Struct is operationally equivalent to LP-Unif
if the program is LP-TM terminating and non-overlapping. Realizability transformation was suggested as an
efficient method to render all logic programs LP-TM terminating and non-overlapping. We have shown that
the realizability transformation preserves the meaning of the logic program relative to H. The equivalence of
LP-Struct and LP-Unif has been shown, for the transformed program. As a result, we obtained the soundness
and completeness of LP-Struct with respect to H as a corollary.

We have paid a special attention to a study of LP-TM resolution.We have defined a process called functional-
isation that transforms a logic programwithout existential variables into a term rewriting system.We have shown
the exact relation of LP-TM and term rewriting system, and gave an example of using dependency pair technique
from term rewriting to detect the termination of LP-TM.

For future work, we would like to provide a method to establish local productivity for a given query and study
the relation between global productivity and local productivity in more detail. We plan to implement partial
LP-Unif and explore its implications.
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