Journal of Symbolic Computation 47 (2012) 1109-1135

Contents lists available at SciVerse ScienceDirect
ERc Journal of

L ﬂ' Symbolic
¥ Computaticn

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

lim +, 81, and Non-Permutability of 8-Steps
Claus-Peter Wirth

Department of Computer Science, Saarland University, D-66123 Saarbriicken, Germany

ARTICLE INFO ABSTRACT

Article history: Using a human-oriented formal example proof of the lim +-
Received 18 January 2011 theorem (that the sum of limits is the limit of the sum), we
Accepted 15 July 2011 exhibit a non-permutability of B-steps and §*-steps (according to

Available online 24 December 2011 SMULLYAN's classification), which is not visible with non-liberalized

S-rules and dissolves into a problem of mere inefficiency with
further liberalized §-rules, such as the 8+ T -rules. Beside a careful
Automated theorem proving pljesentation of_thg human—priented search for a formal proof of
Human-oriented computer-assisted proof (lim +), our main intention is to show where sequent and tableau
construction calculi are in conflict with human-oriented proof construction.
Formal proofs of standard theorems © 2011 Elsevier Ltd. All rights reserved.
Reductive calculi (sequent, tableau, matrix,
indexed formula tree)
Non-permutability of reductive inference
rules
Liberalized §-rules
§t-rule
Free-variable calculi

Keywords:
Mathematics assistance systems

1. Motivation

In the theoretical part of an advanced senior-level lecture course on mathematics assistance
systems (Autexier et al., 2004/05), I proved in a human-oriented sequent calculus that the sum of
limits is the limit of the sum; for short: (lim +).

In this paper I revisit this proof with the aim to clarify and emphasize some issues regarding the
(non-) permutability of inference steps in computer-assisted proof search.

Mathematics assistance systems are human-oriented interactive theorem provers with strong
automation support. They aim at a synergetic interplay between mathematician and machine. IsA-
BELLE/HOL (Nipkow et al., 2002; Paulson, 1990), Coq (Bertot and Castéran, 2004), PVS (Owre, 2009),
£2MEGA (Siekmann et al., 2002), and QUODLIBET (Avenhaus et al., 2003; Wirth, 2009) are some of the
systems approaching this long term goal.

Computer-assisted proof construction does not necessarily aim at finding exactly those proofs
(up to isomorphism) that would be found by working mathematicians in the absence of computer

E-mail address: wirth@logic.at.

0747-7171/$ - see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2011.12.035

http://dx.doi.org/10.1016/j.jsc.2011.12.035
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:wirth@logic.at
http://dx.doi.org/10.1016/j.jsc.2011.12.035

1110 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

assistance. To the contrary, computer-assisted proof search with powerful automated theorem
provers often results in proofs that would hardly be chosen by working mathematicians.

In the domain of the machines, the actual path taken by a proof hardly matters if a (trustworthy)
computer program proves an obvious lemma completely automatically; and in the rare case that an
open conjecture is proved automatically by a proving system, the mathematicians simply have to find
a way on how to deal with this result: They may ignore the proof, take it for granted, or invent an ad
hoc procedure on how to learn from the proving system.

In the human domain, computer assistance in theorem proving may not be needed, especially if
a traditional mathematician is interested only in those problems that he can solve without machine
assistance and if he omits the proofs of the many tedious technical lemmas of everyday mathematical
practice as trivial (or delegates them to his students).

If, however, cooperation between mathematician and machine is intended, we find these two
domains as well, but now with a higher degree of mutual dependence: If a powerful automated
theorem prover requires a human assistant, then it is today unfortunately still so that this assistant
cannot be just a working mathematician, but must be some well-trained expert, seasoned with the
machine-oriented peculiarities of the proving system. To improve this situation in the future, on
top of our agenda are more intelligent ways to fold lower level proof states into more concise human-
readable forms of representation as well as more human-oriented calculi for machine search (because
the automation of proof search will always fail on the lowest logic level from time to time). Currently,
however, the only generally possible form of cooperation between a working mathematician and a
theorem proving system seems to be that the system follows the proof ideas of the mathematician
and that it is the task of the machine to assist the mathematician, and not vice versa.

Regarding reductive calculi (such as sequent, tableau, or matrix calculi), one of the functions of my
lectures within the course was to show

e where sequent and tableau calculi are in conflict with human-oriented proof construction, and

o why matrix calculi (or indexed formula trees (Autexier, 2003; Wallen, 1990)) cannot only be
seen as a clever implementation of sequent calculi,'! but - more important in our context —
why matrix calculi are also needed to be able to follow the proof search of a working mathema-
tician more closely.?

I approached this goal by giving the students an idea of the premature commitments enforced by some
sequent and tableau calculi, which may require a mathematician to deviate from his intended proof
plans and proof-search heuristics.

In his fascinating book (Wallen, 1990), LINCOLN A. WALLEN criticized the non-permutability of
y-and §-steps® in sequent calculi (cf. Section 2 of this paper). I explained how this non-permutabi-
lity can be overcome by replacing the (non-liberalized) §-rule (which we will call § ~-rule) with the
liberalized §*-rule (Hiahnle and Schmitt, 1992). Along the proof of (Iim +), I then showed that with
the §T-rule, however, another non-permutability becomes visible, now of the 8- and §*-steps.

Before the liberalization, this non-permutability was hidden behind the non-permutability of the
y-and §~-steps.* Moreover, after further liberalization of the §-rule, this non-permutability dissolves

1 Because of the locality of sequent calculi, however, sequent calculi are easier to present and understand than matrix calculi.

2 The problem with sequent and tableau calculi will have become clear in Section 4.9. How matrix calculi can help us to follow
the proof search of a working mathematician more closely can be found in Autexier (2003).

3 This is to be understood according to RAYMOND M. SMULLYAN’s classification and uniform notation of reductive inference
rules as «, B, ¥, and § (Smullyan, 1968).

4 Anonymous reviewers of previous versions of this paper wrote:

“...avery interesting insight, namely that different non-permutabilities can hide each other.”
“To speak of a ‘hidden non-permutability’ is, at best, a questionable interpretation with hindsight.”

The verbalization captures the state of affairs (described in more detail in Section5.2) from the point of view of a working
mathematician: Comparing a calculus and its improved version, if the improved version still has a weakness of design - namely
an enforcing of a premature commitment that was not visible before because of a further weakness of the simple version - then
the weakness of the simple version may well be said to have “hidden” the remaining weakness of the improved version.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1111

into a problem of mere inefficiency. This may be the reason why the non-permutability problems of
B-steps are not only unpublished, but had even been denied by experts of the field.

Beside this hard result on non-permutability, following the lecture, in this paper we will address
several soft aspects of formal calculi for human-machine interaction. Moreover - to the best of our
knowledge for the first time - we publish a more or less readable, complete, and human-oriented proof
of a mathematical standard theorem in a standard general-purpose formal calculus (Sections 3 and 4).
We discuss the non-permutabilities of this example proof (Section 5), prove the non-permutability of
its crucial 8- and §*-steps (Section 6), and discuss related problems (Section 7).

2. Weaknesses in design of reductive calculi

As already explained in Wallen (1990), the search space of sequent or tableau calculi may suffer
from the following weaknesses in design:

e irrelevance,
o enforcement of notational redundancy, and
e non-permutability.

Unless explicitly stated otherwise, the points described in the following apply to sequent and tableau
calculi alike.

Irrelevance means, e.g., that when proving the sequent

A, —(B A Loves(Romeo, y;)), Loves(Romeo, Juliet)
with A and B some big formulas, we may try to prove A or —B for a long time, although this is not
relevant if they are false.

Note that, in this paper, sequents are just lists of formulas understood disjunctively. (This is the
simplest form of sequents that will do for two-valued logics.)

We call free y-variables (after the y-steps, which may introduce new ones) (written as yg) what
has the standard names of “meta” (Nipkow et al., 2002) or “free” variables (Fitting, 1996). Indeed, free
y-variables must be distinguished from the true meta-variables and the other kinds of free variables
we will need.

The means to avoid irrelevance is focusing on connections, just as the one between
—Loves(Romeo, ¥;) and Loves(Romeo, Juliet). In practice of mathematics assistance systems, it is
often necessary, however, to expand connectionless parts to support the speculation of lemmas, which
then provide a “connection” that is not syntactically obvious, but closes the branch nevertheless.
This is especially the case for inductive theorem proving for theoretical (Kreisel, 1965) and practical
(Schmidt-Samoa, 2006a,b,c) reasons.

Notational Redundancy means (in a sequent-calculus proof) that the offspring sequents repeat the
formulas of their ancestor sequents again and again. This is partly overcome in the corresponding
tableau calculi. But even tableau proofs repeat the subformulas of their principal formulas® as side
formulas again and again. Structure sharing can overcome this redundancy and does not differ much
for sequent, tableau, or matrix calculi, because information on branch, y-multiplicity, and fairness
has to be stored anyway.

Non-permutability is the subject of this paper. Very roughly speaking, it means that the order of
inference steps (i.e. applications of reductive inference rules) may be crucial for a proof to succeed.

5 The notions of a principal formula and a side formula were introduced in Gentzen (1935) and refined in Schmidt-Samoa
(2006¢). Very roughly speaking, the principal formula of a reductive inference rule is the formula that is taken to pieces by that
rule, and the side formulas are the resulting pieces. In Fig. 1, the principal formulas are the formulas above the lines except
the onesin I', I7, and the side formulas are the formulas below the lines except the ones in I", IT.

1112 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

Roughly speaking, permutability of two steps S; and Sy simply means the following:

In a closed proof tree where Sy precedes S; and where Sy was already applicable before Sy, we can
do the step S before Sy and expand the resulting new subtree into a closed proof tree nevertheless.

This informal definition of non-permutability will suffice until Section 6.2, where the reader can find
the details of a technically involved formal definition.

When several formulas in a sequent classify as principal formulas of «-, 8-, y -, or §-steps, the search
space is typically non-confluent. Therefore, a bad order of application of these inference steps may
require the search procedure to backtrack or to construct a proof on a level of y-multiplicity that is
higher than necessary or higher than what a mathematician would expect. Note that in the latter case,
a human user has little chance to cooperate successfully in proof construction: Which mathematician
would give a system the hint to apply a lemma twice when he knows that one application suffices?®

For example, when we do a y-step first and a §-step second, a proof may fail on the given level
of y-multiplicity, whereas it succeeds when we apply the §-step first and the y-step second. For
sequent calculi without free variables (Gentzen, 1935), this is exemplified in Wallen (1990, Chapter 1,
Section4.3.2). The reason for this non-permutability is simply that, for the first alternative, the
y-step cannot instantiate its side formula with the parameter introduced by the §-step because of
the eigenvariable condition.

This non-permutability is not overcome with the introduction of free y-variables, resulting in
the so-called “free-variable” calculi (Hihnle and Schmitt, 1992; Fitting, 1996; Wirth, 2004): The
reason for the non-permutability is now that (for the first alternative) the variable-condition blocks
the free y-variable y” introduced by the y-step against the instantiation of any term containing the
free 8~ -variable x* introduced by the §~-step. In inference systems that use SKOLEMization instead
of variable-conditions, however, this non-permutability is isomorphically expressed as follows:
y” becomes an argument of the SKOLEM term x° (...y”...) introduced by the §~-step, which then
causes unification of y” and X" (... y” . ..) to fail by the occur check.

This non-permutability is overcome in Wallen (1990, Chapter2) with a matrix calculus which
generates variable-conditions that are equivalent to the effect of Outer SKOLEMization. A fortiori,
this non-permutability is overcome by the replacement of the §~-steps with §*-steps, because
87T -steps (Hihnle and Schmitt, 1992) extend a variable-condition only equivalently to Inner SKOLEM-
ization (which is an improvement over Outer SKOLEMization, i.e. less blockings (or less occurrences of
free y-variables in SKOLEM-terms); cf. (Nonnengart, 1996) or (Wirth et al., 2009, Note 59)).

Optimization Problems where a badly chosen order of inference steps does not cause a failure of
the proof attempt (at the given level of y-multiplicity) but only an increase in proof size, are not
subsumed under the notion of non-permutability. A typical optimization problem is the following:
The size of a proof crucially depends on the -steps being applied not too early and in the right order.
This is obvious from a working mathematician’s point of view: “Do not start a case analysis before it
is needed and make the nested case assumptions in an order that unifies identical argumentations!”

Thus, assuming an any-time behavior of a semi-decision procedure for closedness running in
parallel (because simultaneous rigid E-unification is not co-semi-decidable (Degtyarev and Voronkov,
1998)), the folklore heuristics is roughly as follows:

Step1: Apply all «- and §-steps, guaranteeing termination by deleting their principal formulas from
the child sequents (either directly syntactically in sequent calculi, or indirectly by some
bookkeeping for search control in tableau calculi).

Step2: Ifay-ruleis applicable to a principal formula that has not reached the current threshold for
y-multiplicity in some branch, do such a y-step, namely the one with the most promising
connections, and then go to Step 1.

Step3: Ifa B-rule is applicable, then apply the most promising one, deleting its principal formula
from the child sequents, and then go to Step 1.

Step4: Ifa y-rule is applicable, then increase the threshold for y-multiplicity and go to Step 2.

6 Cf. the discussion in Section 1.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1113

3. Background required for the example proof

Before we go on with this abstract expert-style discussion in Section5, we do the proof of (lim +)
in Section4. To this end, we now present a sub-calculus of the calculus of Wirth (2004), whose
development was driven by the integration of FERMAT’s descente infinie into state-of-the-art deduction,
with human-orientedness as the second design goal. The calculus uses variable-conditions instead of
SKOLEMization. Variable-conditions are isomorphic to SKOLEMization in the relevant aspects of this
paper, but admit the usage of simple variables instead of huge SkoLEM terms. This improves the
readability of our formal proof significantly. We assume the following sets of variables to be disjoint:

V, free y-variables, i.e. the free variables of Fitting (1996)

Vi free 8-variables, i.e. nullary parameters, instead of SKOLEM functions

Voouna bound variables, i.e. variables to be bound, cf. below
We use ‘@’ for the union of disjoint classes. We partition the free §-variables into free § ~-variables and
free T -variables: V; = V- W V. We define the free variables by Vi, := V, W V; and the variables by
V := Vyouna ¥ Viree. Finally, the rigid” variables by V5 ==V, W V;.. We use Vi (I") to denote the set of
variables from V, occurring in I".

We do not permit binding of variables that already occur bound in a term or formula; that is:
Vx. A is only a formula if no binder on x already occurs in A. The simple effect is that our formulas are
easier to read and our y - and §-rules can replace all occurrences of the bound variable x. Moreover, we
assume that all binders have minimal scope (i.e. Vx. AV B reads (Vx. A) vV B, and not Vx. (A V B)).

Let o be a substitution. We say that o is a substitution on X if dom(o) € X. We denote with“I"c”
the result of replacing each occurrence of every variable x € dom(o) in I with o (x). Unless stated
otherwise, we tacitly assume that all occurrences of variables from V,,,,q in a term or formula or in the
range of a substitution are bound occurrences (i.e. that a variable x € V,.,q 0ccurs only in the scope of
a binder on x) and that each substitution o satisfies dom(o) C Vi, S0 that no bound occurrences
of variables can be replaced and no additional variable occurrences can become bound (i.e. captured)
when applying o.

Definition 1 (Variable-Condition, o -Update, R-Substitution).
A variable-condition is a subset of Viee X Viee.
Let R be a variable-condition and o be a substitution. The o-update of R is
R U {(zf, x™) | x™ cdom(o) Az € Viee (0 (X)) .
o is an R-substitution if o is a substitution and the o-update R’ of R is well-founded; i.e. for every
nonempty set B, there isa b € B such that thereisnoa € Bwith aR'b. O

Note that (x™, y™) € R is intended to mean that an R-substitution o must not replace x™¢ with a
term in which y™™ could ever occur. This is guaranteed when the o-updates R’ of R are always required
to be well-founded. Indeed, for 2 € V(o (x™)), we get z™ R’ x™ R' y blocking z™ against
terms containing y™. In practice, a o -update of R can always be chosen to be finite. In this case, it
is well-founded iff it is acyclic.

3.1. Inference rules for reduction within a proof tree

In Fig. 1, the inference rules for reductive reasoning within a tree are presented in sequent
style. Note that GENTZEN would have inverted the inference rules such that passing the line means
consequence. In our case, passing the line means reduction, and trees grow downward.

7 Contrary to free §~-variables (which are true parameters in the sense that they cannot be instantiated in purely reductive
calculi), free §*-variables are indeed rigid in the sense that we may globally instantiate some of them simultaneously in
the whole proof forest, provided that we can prove that their associated choice-conditions are met by this instantiation; cf.
Section 3.1. Thus, though introduced by §-rules, the §*-variables are very close to y-variables in the sense that we could define
the y-variables as §'-variables with empty choice-conditions, i.e. with identically true choice-conditions. This closeness is
actually implemented as identity in Wirth (2011).

1114 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

Let A and B be formulas. Let I" and IT be sequents, i.e. disjunctive lists of formulas. Let X € Vjounq be @
bound variable, and let # be the current proof forest, such that V() contains all variables already
in use, especially those from I, IT, and A. Note that A is the conjugate of the formula A, i.e. BifAis
of the form —B, and —A otherwise.

a-rules < : r——AI I (AVB) IT I —(AAB) IT I (A=B) IT I (A=B) IT
o Ara ABI I ABrn ABrm AB Il
B-rules B. L @AnB) 1 I -(AvB) 1T r-@=5n r-@Asp n
B Al Arn AIn Arin
B2 Brn Brn Brno Brn
y-rules %: Let t be any term (by default a new free y-variable):
I 3xA I I —-VxA @I
Afx—t} I' XA NI Afx—t} I' —=VxA I
&~ -rules 5*([1*): Let X~ € V- \ V(¥) be a new free §~-variable:
0 r VxA IT
Alx—>x"} I' T V,u(I Vx.A IT) x {x}
' —3xA I1

Alx—>x"} I' T V(I —3xA IT) x {x"}
ST -rules %: Let x*" € Vi \ V(F) be anew free §*-variable:
0

I VxA 1T {(x*", Alx—~x5")))}
Alx—>x"Y T T Viee(Vx.A) x {¥*'}

r —3xA I {(x*, Alx—x" D)}
Alx—>x5} T I Vee(—3XA) x {x*)

Fig. 1. The reductive rules of our calculus.

Of course, all rules in Fig. 1 are sound. Moreover, they even satisfy the stronger property of being
solution preserving for the rigid variables in the sense of Wirth (2004, Section 2.4): A solution to the
rigid variables of the child sequents (i.e. the lower sequents, the premises) is a solution to the parent
sequent as well (i.e. the upper sequent, the conclusion). For our proof of (lim +) this means that (up-
dating our global variable-condition R) we can globally apply any R-substitution on any subset of V, to
the whole proof forest without destroying the soundness of the instantiated proof steps in any proof
tree.

Instead of an eigenvariable condition, the § - and § *-rules come with a binary relation on variables
to the lower right, which must be added to the current variable-condition R. The §*-rules come with
an additional relation to the upper right, which has to be added to the R-choice-condition C. This
choice-condition is an optional part of the calculus. It may store a structure-sharing representation
of an e-term (Hilbert and Bernays, 1968/70; Giese and Ahrendt, 1999; Wirth, 2008, 2011) for a free
87T -variable, which may restrict the possible values of this variable. As they play only a marginal role
in the example proof of Section 4, we do not have to discuss choice-conditions here. Note, however,
that without a choice-condition, the §™-rules would only be sound but not solution preserving; cf.
Example 3 in Section 5.3.

Indeed, the calculus contains different kinds of §-rules in parallel. Therefore, the §~-rules have to
refer to the free §*-variables (introduced by the §* -rules) in their variable-conditions, and vice versa.?

8 Examples 2.6, 2.9, 2.19, and 2.50 of Wirth (2004) show that these references are necessary for soundness (and that we even
have to consider the transitive closure of the introduced variable-conditions (without actually having to compute it)). If we
have only one kind of free §-variables, then the variable-conditions introduced by the §*-rules are indeed smaller than the ones
of the related 5~ -rules, resulting in the intended liberalization. As explained in Note 1 of Wirth (2008) and in Note 3 of Wirth
(2011), this liberalization becomes effective in all practically relevant cases also if we mix both kinds of variables and rules.
All in all, the §~-variables, on the one hand, have the advantage that they can be instantiated in the application of a sequent
as a lemma or as an induction hypothesis; on the other hand, the §*-variables are introduced by the §*-rules with (in effect)

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1115

Allin all, we have to extend our global variable-condition R every time we do a - or § *-step and
every time we globally instantiate a rigid variable from V, 4 by a substitution o (to the o-update, cf.
Definition 1). Extension of R always preserves soundness and even the solutions of the rigid variables,
because it can only restrict the ways in which open branches may be closed (by instantiation of rigid
variables). As R has to remain well-founded? however, it is advantageous to keep R as small as
possible.

3.2. Lemma application between proof trees

The reason why we speak of a proof forest is that a proof may be spread over several trees that are
connected by generative application of the root of one tree in the reductive proof of another tree, either
as a lemma or as an induction hypothesis. While the application of lemmas must be well-founded,
induction hypotheses may be applied to the proof of themselves and mutually. In this paper, we only
need lemma application.

Lemma application works as follows. When alemmaAy, ..., A, is a subsequent of a leaf sequent
I’ to be proved (i.e. if, for alli € {1,...,m}, the formula A; is listed in I'), its application closes
the branch of this sequent (subsumption). Otherwise, the conjugates of the missing formulas C; are
added to the child sequents (premises), one child per missing formula. This can be seen as cuts on

C; plus subsumption. More precisely, a sequentAq, ..., An, By, ..., B, can be reduced by application
of thelemma Ay, ..., An, Cq, ..., C, (modulo associativity, commutativity, and idempotency of the
disjunctive “,") to the sequents

C1,A1,...,An, B, ..., By .- Cpy Aty ooy Am, By, ..., By

In addition, before every application of a lemma we can instantiate its free 6~ -variables locally
and arbitrarily.!® This instantiation of outermost § ~-variables mirrors mathematical practice!' saves
repetition of initial §-steps, and is essential for induction, where the weights depend on these free
8~ -variables to guarantee well-foundedness. There will be a sufficient number of self-explanatory
examples of application of open lemmas (i.e. yet unproved lemmas) in Section 4.

4. The proof of (lim +) (limit theorem on sums in R)
4.1. Explanation and initialization

Compared to the proof of (lim +) as presented in the lecture courses, the version we present here
admits a more rigorous argumentation for non-permutability of 8 and 6" in the following sections.?
By standard mathematical abuse of notation, we want to prove the theorem

smaller variable-conditions than the ones that the corresponding §~-rules would introduce (i.e. more instantiations possible,
more ways of closing a branch).

9 Because $-rules introduce fresh variables, well-foundedness can only be a problem for the instantiation of rigid variables;
cf. Definition 1.

10 Actually, there is an exception here, which, however, is irrelevant to this paper: We may instantiate all the free §~-vari-
ables of a lemma except those that depend on rigid variables which (in rare cases) may already occur in an input lemma. More
precisely, the set of free § ~-variables of a lemma & we may instantiate is

{ Y eV(®) | Vs (®) x {y"} SR }.

Typically, V,s+ (@) is empty and no restrictions apply. This is the case for all lemmas occurring in this paper.

Note that we also may extend this set of free §~-variables by extending the variable-condition R; indeed, an extension by
Vys+ (@) x Vp-(P) admits us to instantiate all §~-variables of @.

1 Itis standard mathematical practice to omit the outermost universal quantifiers in the notation of lemmas and to instantiate
the resulting free variables with fresh instances tacitly every time a lemma is applied.

2 | did not succeed in finding a really satisfying definition of non-local permutability that fits the non-local situation of the
failure of the (lim +) proof as presented in the lecture courses (Wirth et al., 2003/04; Autexier et al., 2004/05). The problem
was to permute the critical B-step from below the critical §"-steps to a place far up above the §*-steps. And on this partial
path from 8 down to 6T there were other inference steps which may or may not contribute to the non-permutability. Thus,
instead of globalizing the notion of permutability I localized the example proof; although the original version had pedagogical
advantages.

1116 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

(lim+) limy(P +g"®)= lim f"(x) + lim&gr(x)

X—)XO X—)X?\; X—>X

Before we start the formal proof, we expand (lim +) into a better notation:
lim £ () =y}

. X=Xy . — — s
a: A lim gm0 = y) = XL“%(fro+e™)) =y +y)
X‘)XO

The reader should be aware that, although the introduced implication symbol now makes implicit
assumptions on the existence of limits clearer, the symbol “="in Formula (1) is still no real equality
symbol! In fact, the symbol “="in pseudo-equations such as lim (x? sin %) = 0, or, more formally,

x—0

say)1(13} ty = t’ (definiendum), is defined by the formula (definiens)

Ve>0. 38>0. Vx#z. (|t—t'| <& < [x—z| <8).

Note that Ve>0. A and 36>0. B and Vxz#z. C (definienda) abbreviate Ve. (0 < ¢ = A) and
35. (0 < § AB) and Vx. (x#z = C) (definientia), respectively. Thus, when we will speak of
an expansion of “Ve>0. ...” (from definiendum to definiens) or simply of an expansion of V, we
mean the replacement of Ve>0. A with Ve. (0 < ¢ = A) for some formula A in a reductive
proof step. Analogous proof steps are meant by expansion of 3 and expansion of lim, respectively.
For convenience, we will often reorder the formulas listed in the sequents without mentioning this
explicitly.

We initialize our global variable-condition R by R := @, and our global R-choice-condition C by
C:=4d.

4.2. Expanding the Proof Tree with Root (1)

By two «-steps and expansion of lim from definiendum to definiens, we reduce (1) to its single
child (1.1), writing (1?) for (1.1):
- . (P 0+g" () — UF)l < ¢
1%): Ve>0. 36>0. Vx#x; . (- |x—x§| =8
lim f7Co #yp. lim g"(0) #yg

X—)Xo X—)XO

)

By expansion of “Ve>0. ...” from definiendum to definiens, then by a §~-step'® (introducing &%),
by an a-step, and finally by an expansion of 3, we reduce (12) to:
5. . [P (0)+8" () — G +y2)] < &7
(1°): 36. (0 < SAVX#X,. < - |x—xg’|<8 ,
0£e™, lim f7(x) #y;. lim g"(x) #y,
xeng xaxér

A y-step (introducing 6”) yields:

& & S5 5~ 5

.. , N [P (0+8" ()~)| <& 5

(1%: 0 < & AVX#£X) . (e kx| <8 (1)

Note that the “(13)” listed at the end of Sequent (1) is intended to mean that the whole parent sequent
(13) is part of the child sequent (14).

Expanding lim and V, plus a y -step, each twice, we get (cf. Fig. 2 for &):

13 e could just as well use the corresponding §*-step here and introduce £°* instead of ¢, without any relevant effect on
the later discussion, although the 6*-step would add {x§ , f*, ", ¥}, ¥5 } x {&*"} to our current global variable-condition.
The reason we prefer a §~-step here is simply the following general heuristics: “Use 8~ -steps exactly for the outermost (in the
sense that no y-quantifier precedes them) §-quantifiers!” The justification behind this heuristics is that - in the special case
of an outermost §-quantifier — on the one hand, the liberalization achieved in general by the §*-steps does not apply, whereas,
on the other hand, the §~-variables enable lemma and induction-hypothesis application.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1117

In the proof of Section4, Formulas (2), (3), (4), (5), (6), (7), (8), (9) (where the boxes around the
formulas just indicate the matching in the lemma application), the sequents I", &, ©, £2, the
substitution o, and the term t abbreviate the following, respectively:

(2): min(y”,z") <y~

(3): zy < zf, z) A2L, 2 LzE

4): z§ < min(z}y, 25)), z5 £25,, 7 £z

(5): |(z0 +z1)— (z2 +z3)| < |zO —z2 |+ |z1 —z3

(6): ’zf<z§ ‘ ’ zy £z ‘ 23 £z§
(7): 25425 < zi+28s, | 25, 420, |,]ﬁ;%%\
e e
®): S+5 <&
5
9): 0 < 5, 0£&”

o =
: B . F~Gy) =1 < &
I Ver. (0 < & =35>0, Vx; £x5. (e i<k

Ig‘s’(xg) — Yyl <é&
& |xg—x)| < 3
I(f‘*(X)+g*(X)) =yl <™
|x— Xo <8
I (0+8” (=0 +yp)l <&
|x—x3| < 87

—Ve,. (0 < &g = 38;>0. Vx; £x .

EI(S.(O <5AVx¢x§.(<z

))

0%857

e: _|< 0 < & A Vxp#xj. (= lfr(xf)_yﬂ <& %

o)

0 < &8 AVX#x). (-

xp—xy | < 8"
(x < &g
—35,. (0 < 8¢ A Vxg#x). < - :ig—(x% i/g(S'g g
0#£e”, I

: . ") —yf | < e
st 5 f f
$2: 0£8%, —VxpsxD. (e |28
5 5= y
. S |g (xg)_ |<8g
048, , —Vxs#X; . (e x| < Sﬁ
07&6’S
o. {x}’l—>x§+, xp>x", 87 min(8Y, 6?)}
t: | P +8" () — G +y5) |
Fig. 2. Global abbreviations for the proof of Section 4.
=
) —(0 < &/ =35>0 Vxy #£x5 . I ("f)_yf <)),
(1?) (< & = > Xr # X - le x0|<8f
- lg” () vy | < &g =
—-(0 < &) = 38,>0. Vxg £x5. (o e Xi | <g8)) g

Two S-steps and two expansions of 3 yield the following three child sequents:
5 1. Yo y 5 |g (Xg)_yg | < 8g
(1°.1): 0 < ¢, (0 < gg = 30,>0. Vxz #xy. (e x5 <5 ,

") —yp | < &f)

|Xf—X507| < 5f

M

@

(1.2): 0 < &, —35:>0. Vx; #x5. (-

1118 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

5 3. . - () —yr| < e
(1°.3): Haf. < 0 < (Sf A VXf;éXO. < - |Xf—X607| z 8f ,

_ - lg” (Xg)—yg | < &g
36, (0 < 85 A Vxg#x) . (e x| <8 ,

&3]

A §*-step (introducing (Sf”) applied to the first formula at (1°.3) yields

= 5 v
- 5t 5 |f (Xf)_yf I < gf
(0 < & A Vxr#xg . < e x| <8 ,

_ - lg” (Xg)—yg | < &g
36, (0 < 8g N Vxg#Xg . (e |xg—x| <8, ,
where R is extended with {x}, f*", yj‘? NARS {8}”}, and the choice-condition C with:

& 5~ Y
. N N 7 ()3 | <]
{ 5 (0 < & A Vxp#x. (e x| < 5?7 .

&3]

For convenience, we prefer to refer to this sequent in the following reordered form:

(0 +8" (0~ T+ < &)

& |x=x| < 87 @

(15.3.1): 0 < 8" AVX#X). (

4.3. A bad turn

Now we apply a B-step to the first formula of the sequent (1°.3.1). Note that this 8-step will
make the whole following subproof fail! (A reader who is interested only in a successful example
proof may continue reading with Section 4.6.)

(1°.3.1.1): 0 <58, 6
5 : s (P +8" () — (f +y)l < &”

(1°.3.1.2): VX £ Xy . (e =xi| <8 f g

A §T-step (introducing 8?), two a-steps, and expansion of V, applied to (1°.3.1.2), yield (cf. Fig. 2 for

2):

(1°.3.1.2.1): Vx. (x;éxg:><

, O

(P (0+8" (%) — f +yg)l < e” o
5= ’

& x—xp| <&

where R is extended with {xg, 8", y; , &z} x {8?}, and C with:

|87 (Xg)—yg | < &g
5t 5+ 5 g g g
{ 3y (0 < 85 A Vxg#Xg. (IXg—x | < 8?

A 8+ -step (introducing x*") and two «-steps yield (cf. Fig. 2 for t):
(15.3.1.2.1%): X'=xi, t <&, |X¥T—x| £, R
where R is extended with {xg, ", g%y}, vy, ", 8"} x {x*"
and our R-choice-condition C with
[(X = (t<e” & W=x<8))}

Expansion of V and a y -step, each twice, namely to the second and fourth formulas of £2, yield:

I~ e)—yf 1 <¢f
& xX-xgl <8 ’

lg” (xg)—yg | < &g
= gyl <8) ’
X=X, t < &7, XX £ 87, 2

(15.3.1.2.13): - X#AG =

= x#Ex =

14 Note that this is an unforced early application of a B-step to this B-formula, against the folklore heuristics
presented in Section2. We do this B-step right now, because (in Section6) we want to prove the non-permutability
of this B-step and the first subsequent § " -step (introducing 8?). This position of application in our proof tree would be more

natural (but would still not resulting in a successful proof), if the second subsequent §+-step (introducing x*") came right after
this B-step (because it is enabled only by the B-step).

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1119

4.4. Partial success

2 B-steps, each twice, yield:
(P312.83.0): X #x), X'=x5, ...
(15.3.1.2.13.2): Xp #x5, x¥'=x, ...
(1P312.833): X —x5| < &', X" =xg| £ 8, ...
(15.3.1.2.13.4): [xj—x)| <8, ¥ x| £ 67,
(1%.3.1.2.13.5): P75 —yp | £ &f, |87 (xp) —yo | £ g, X¥'=xg, t <&, X" =x)| £87, 2
By formula unification and some basic knowledge of the domain, we can now easily see that global
application of the substitution o from Section 4.1 admits to close the branches of the first four of these
five sequents. According to Definition 1, the application of ¢ adds

(0, x), (¢, %), (8 87). (82, 8))

to our variable-condition R, which, luckily, remains acyclic, cf. the acyclic graph of Fig. 5. In fact,
Sequents (1°.3.1.2.1%.1) and (1°.3.1.2.13.2) become logical axioms by application of &, and applying
Lemma (2) of Fig. 2 instantiated via {y" +8;", z’+>8;'}, we reduce (1°.3.1.2.13.3) to:

(1°.3.1.2.13.3.1): min(8;’, 8;) £ 8?*, X=Xy < 82, X —x3| £ min(&}”, 85, .
which is subsumed by the transitivity lemma (3) of Fig. 2. Moreover, Sequent (1°.3.1.2.1%.4) can be

closed analogously to (1°.3.1.2.13.3).

4.5. Failure

Abstractly, our proof tree looks as in Fig. 3 now. By application of o, Sequent (1°.3.1.1) has become
0 < min(8?", 8?), e

If its first formula - which is the only new one as compared to its parent sequent - is irrelevant for the
proof of (1°.3.1.1) (in the sense that it is not contributing as a principal formula, cf.(Gentzen, 1935;
Schmidt-Samoa, 2006¢,b)), then we had better prove (1°.3.1) instead, because this saves us the proof
of the whole S,-subtree of (1°.3.1), starting at (1°.3.1.2). We have to notice the following, however:
83" is not introduced before (1°.3.1.2.1), which in (1°.3.1.2.1%) results in the context 0£8;", 0£8;"
(as listed in £2 of Fig. 2) with which we could prove 0 < min(éﬁ*, (Sg’) by Lemma (4) of Fig. 2. Thus,

the B-step applied to (1°.3.1) cannot have any benefit unless it is done below (1°.3.1.2.1).
Now, we have three possibilities in principle:

(1) We can backtrack to (1°.3.1), deleting all its sub-trees.
(2) We could try to use the choice-condition of 8? to find out that it is positive. C((S?) is
0 < 85 A Vxg#x). (18" () Yy | < &f & IXg—x5| <8y).
But this guarantees 0 < 8? only if also the second part of the conjunction can be shown to be
satisfiable, for which we again lack the context.

(3) We can prove (1°.3.1.1) by proving its subsequent ©. As © is already a subsequent of (1°.3.1),
this means that we could prove already (1°.3.1) this way: Indeed, after finding this proof for @,
we could backtrack to (1°.3.1) and replay the proof we found for @. In this way, the whole
previous subproof below (1°.3.1.2) could be pruned.”®> Therefore, this third possibility has no
advantage over our first one (i.e. all proofs we can find here result in proofs there). Moreover, this
third possibility would result in a higher maximum of y -multiplicity than necessary, because we
would necessarily have to expand the principal y-formula of (1) (i.e. the first formula of (1%)) a
second time.

All in all, by now it should have become plausible that the following lemma holds.

15 This replay mechanism is an essential part of the powerful automation of proof construction in QUODLIBET and was
introduced in Schmidt-Samoa (2006b). To the best of our knowledge, it is the only such mechanism of proof re-use.

1120 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

M

—_
N

ol lim, ¥, 85 (%), o, 3
)

vo(min(8}".63")

—_

(1%
1im2, ¥2, yo(e]), v0(e})
(1)

2 2
1 5.3
B1 2 ﬁzN\

(1°.1) (13.2) (1°.3)

—_

—_

856
(1°.3.1)
2| B2

(1°.3.1.1) (1°.3.1.2)

—_

+ 56T 2
s5@h. a2 v

(1°.3.1.2.1)

—_

55 (%), o

(1°.3.1.2.1%)

—_

2
V2, (")

(1°.3.1.2.1%)
Fig. 3. Non-permutability of 8 at (1°.3.1) and 8+ at (1°.3.1.2):
no chance to prove 0 < min(Bf”, 8?) at (1°.3.1.1).

Lemma 2. Using the reductive rules of Fig. 1 with a y-multiplicity threshold of 1, the current proof tree
(with the partial instantiation o) cannot be expanded and simultaneously instantiated to a closed proof
tree below its open nodes (1°.1), (1°.2), and (1°.3.1.1). O

For a proof of Lemma 2 see Section6.1. Note that the validity of Lemma 2 depends on the

8~ -and 8" -rules being the only §-rules available: With 8+ -rules the situation would be different,
cf. Section 5.4. Moreover, as our proof trees are customary AND-trees!® Lemma 2 means that - given

16 AND-trees are customary for sequent calculi. This means that - to close a proof tree — we have to close all its branches,
or, equivalently, that the conjunction of the leaf sequents entails the root sequent. AND/OR-trees are standard in artificial
intelligence and computer science. They are most useful in automated theorem proving for presenting several alternative
possibilities in a proof simultaneously. To the best of our knowledge, QUODLIBET (Avenhaus et al., 2003; Kiihler, 2000; Wirth,
1997) was the first theorem prover where AND/OR-trees were implemented in the 1990s, with primarily interactive intentions.
In the first decade of the 34 millennium, they turned out to be most useful in automation as well (Schmidt-Samoa, 2006b). For
the new generation of mathematics assistance systems, AND/OR-trees have now become an essential ingredient (Autexier,
2003; Autexier et al., 2006).

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1121

(1°.3.1%)
B
B :
,B,c,rz A B C, 2
B
3} :
5 5 5
A B, 0 <&, @ s | =0ty)l <e
, b, < &7, A,B,Vx;éxo.(<: |x—x50|<87 , 2
v, 55 ("), of
A, B, ’x‘”:xﬂ, ’|x5+—x§| £8], t <&, R
Here A denotes the formula —|< [fr(xfy)—y)‘ﬂ < 5}' = Ix;—xgl < 8}”) B and C denote the
second and third 8-formula of the sequent (1°.3.1%), respectively.

Fig. 4. Non-permutability of 8 at (1°.3.1%) and
B at the B,-child of (1°.3.1%):
no chance to prove x{ #xj at leftmost leaf.

the current proof tree - the whole proof attempt is failed for a y-multiplicity of 1 (unless we admit
backtracking).

4.6. Backtracking to a non-failed proof tree

As Item 1 in the before-mentioned list of possibilities is obviously the only reasonable one, let us
restart from (1°.3.1) — not without storing o and its connections before.
Applied to (1°.3.1), a §"-step (introducing 5?), two a-steps, two expansions of V, and two y -steps
yield as in Section 4.3 (and with the same extensions of R and C):
8 (Y 5~ Y
5 2y. . Y b If (Xf)_yf | < &
(1°.3.1%): < Xf§£xo = < = |X;—X§| < B}H ,
- lg” (xg)—vg | < &g
- Y & g g g
(X #Xo = (& xg—x] < 8? ’
5~ 5= (v 5 &
0 < & AV (7 00+g” N =0F I <6)
& x—=xy| < &7

Now we have to expand one of the three first S-formulas of (1°.3.1%). Note that the third one is the

one whose expansion made our proof fail before. We should have learned that it is difficult to avoid
failed proof trees.

4.7. A Non-permutability of two B-steps

The discussion in this section is technically involved. The reader may skip this section on a first
reading and continue with Section 4.8.

If we expand the first 8-formula of Sequent (1°.3.12) before the third, this will result in the subtree
depicted in Fig. 4. Its first 8-step can represent progress only if the first (8;-) child is easier to prove

than the root itself. But the only reasonable connection of its only new formula x}f #x) || is to the

1122 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

third formula of the rightmost leaf; via our substitution . Thus, we would have to copy

the proof starting below the second (8,-) child of the root to its first (81-) child. But, if we do so, this
proof will fail again, for the following reason:

The sequent of the B,-child of a B-step to the third formula of the leftmost leaf of Fig. 4,
after — just as on the way to the rightmost leaf of Fig. 4 — expansion of V, another §*-step (introducing
xi*), and two a-steps, reads as follows:

X AN

But if we now instantiated x; with x5", we would also have to instantiate the occurrences of x; in the

B, || X=Xy || [=x5 | £87| | (T)+8" () — 0F +vp) | < &, 2.

)

rightmost leaf of Fig. 4 in the same way, where, however, we have to instantiate xfy with x*" (as can
be seen in from the Sequents (1°.3.12.2.1.3) and (1°.3.12.2.1.5) in Section 4.8). This means that this
subproof fails at a y-multiplicity threshold of 1."
Note that - with the 8+ -rule (Beckert et al., 1993) instead of the §™-rule - we could have
introduced the variable x*" in the copied proof a second time, resulting in a non-failed proof attempt.
This non-permutability of two 8-steps will be further discussed in Section 5.1.

4.8. Continuing with the previously fatal 8-step

The discussion of Section 4.7 shows that expanding the first g-formula of (1°.3.12) leads to a failure
of the proof on the current threshold for y-multiplicity again. By symmetry, the same holds for the
second. Thus, we take the third. Note that the 8-step we have to do now is the one whose too early
application forced us to backtrack before.
A B-step to the third g-formula of (1°.3.12), and expansion of V yield:
(1P.3.12.1): 0 < 87, 0£8)", 0£8),
8 (Y 5~ Y
53129 o ot ") —yp | <
(1°.3.1°.2): XpFEXg = < - |x}/_x507| - 5?‘ ,
lg” (xg)—yy | < eg
— Y 5~ £ g 4
Xg7Xo = (e WXl <ol ,
(P70 +g” ()~ 0+l < &
VX. (XF£ Xy :>(e x| <o , £2
As a 8~ -step with the first formula of the last line of (1°.3.12.2) as principal formula would block the
later instantiation of xjf and xy with the newly introduced free §-variable, for the proof to succeed on
the current threshold for y-multiplicity, we have to take a §"-step instead. Note that this problem
did not occur for Sequent (1°.3.1.2.1) of Section 4.3, in which xfy and xg did not occur yet. Beside the
8T -step extending R and C as in Section 4.3, we do two a-steps. This results exactly in what was seen
before at the end of Section 4.3, with the exception of a different label:
") —yf | <&)

59 12 . = x/£xE
(15.3.12.2.1): < X 7#Xo = (& X=X <8
(i o (B <o
70 = Ixgxl <8 ’
X=xr,t <&, X=Xy £, R

17 Contrary to the rightmost leaf of Fig. 4, we cannot close this branch via the connection between the fourth formula

x> —xgﬂ # 87 | and the positive subformula of the formulaA (viao, (2),and (3) as at the end of Section 4.4),

because this connection is only available at the original position, but not at the position the subproofis copied to, simply because
the positive subformula is not present at the latter position (it is part of the ,-side formula A of the S-step at the root of the
subtree of Fig. 4).

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1123

7L 5 P
er € €g

Py
Yg

|

I gy g
Fig. 5. (Acyclic) variable-condition R.
With dotted edges: final state in Section 4.10.

Without dotted edges:
state after application of o, both in Section 4.4 and in Section 4.8.

Again, two B-steps to each of the first two formulas, yield:
(P3.1221.0): X #x5, X¥'=x5, ...
(15.3.12.2.1.2): xj#x5, 8 =x},
(1°.312.213): [xf—x5| <&, ¥ =x5| £,
(1°.3.12.214): |x—x)| <&, X' —=xy| £87, ...
(1P.3.02.215): |f7() —yf | £ef, 187 () —y5 | £eg, X¥'=xp, t <™, ¥ =xg| £ 8, 2
As before in Section 4.4, application of o admits the closure of the four branches of (1°.3.12.2.1.[1-4]).
But now, contrary to what made us backtrack before, (1°.3.12.1) becomes
0 < min(8?', 8?), 0#£82, 0485, ...,
which is subsumed by an instance of Lemma (4) of Fig. 2.

4.9. A working mathematician’s immediate focus

Note that (1°.3.12.2.1.5) would have been the immediate focus of a working mathematician. He
would have sequenced all the S-steps after doing the crucial steps of the proof which we can do in
our formal sequent calculus only now. Note that the matrix (or indexed formula tree) versions of our
calculus enable us to support this human behavior. Let us repeat Sequent (1°.3.12.2.1.5) here with
some omissions and some reordering:

E<e, PTGy | £, 1870y | £ el
where t < &% actually reads (with some added wave-front annotation to be used in Section 4.10)

(F@H+em) |- [+ |1 < 1)

Now the essential idea of the whole proof is to apply Lemma (5) of Fig. 2 via
{z5 = 7 (), 2 = g" ("), 25 =y, 25 + y;), by which we get:

(13122150 ||t £ ") =yf [+ 18" @)—yp ||| |t <& |,

") =yp | £ &f, 187 (D) —yy | £ &g ...

4.10. Automatic clean-up

The rest of the proof is perfectly within the scope of automatic proof search today. When we apply
the other transitivity lemma (6) of Fig. 2 to (1°.3.12.2.1.5.1) as indicated by the single and double

1124 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

boxes in the goal and the lemma, via { z} > t, zJ — &”, zJ — |[f"(¢)=yf | +1g”) =yi | },
we get:
(1°.3.12215.1%): [f" () —y7 |+ 8" () -y | <&,

7=y £ 6 ||| 18")=y | £ e

In Yoshida et al. (1994), not only this step, but even the two steps from (1°.3.12.2.1.5) to
(1°.3.1%2.2.1.5.12) are automated with the wave-front annotation of t < &% as given in Section 4.9
(which is generated by the givens of |f“’(x5+)—yj‘?| < ¢ and |g‘r(x‘“)—y?| < gg in the context of
t < &% in(1°.3.12.2.1.5)), provided that the following two lemmas (annotated as wave-rules) are in
the rippling system:

(zo +20) |~ | @G +25) | = | (g —5) + (7] —23)

llzg +2z5 || <zg, |lzgl+lz5 || £z

Applying Lemma (7) of Fig. 2 (monotonicity of +) in the obvious way, we get:
(15.3.12.2.1.5.1%): [f‘*(x”)—y}ﬂ + 18" () —yy | £ &f + &g,
7D =y I+ 18")~y | <&, ...
5
The R-substitution {¢— -,
(1°.[1-2]) with Lemmas (3), (8), and (9), respectively. The final variable-condition is acyclic indeed.
Its graph is depicted in Fig. 5. The whole proof tree with a minor permutation of the critical B-step is
depicted in Fig. 7.

-
ey -} closes the remaining open branches of (1°.3.12.2.1.5.1%) and

5. Discussion of the non-permutabilities

The non-permutability of 8 and § at the nodes (1°.3.1) and (1°.3.1.2), respectively (cf. Fig. 3), as
well as the non-permutability of 8 and 8 at the node (1°.3.1?) and its 8,-child node, respectively (cf.
Fig. 4), have become practically evident by the proof of (lim +) in Section 4. Now we have to answer
the question why the non-permutabilities of S-steps have not been realized before.

It was well-known that the only problem with the sequencing of 8-steps that occurs either with
the 8§~ -rules or else with the 8+ -rules (Beckert et al., 1993) is that a bad choice makes the proofs
suffer from the repetition of common sub-proofs, which is an optimization problem not subsumed
under the notion of non-permutability, cf. Section 2.

Thus, we should make it even clearer why - contrary to the § - and 8+ —rules - just the §*-rules
show the non-permutability with the S-steps.

5.1. Non-permutability of § and B is only a secondary problem

The non-permutability of 8 and § is the primary problem, and the only one we have to explain.
It causes the non-permutability of 8 and 8 we have seen in Fig. 4 as a secondary problem as follows:

The 2nd B-step in Fig. 4 must come before the 15t -step, simply because the 2d B-step generates
the principal §-formula of the § ¥ -step resulting in the rightmost leaf, and this § -step (introducing x°*)
must come before the 15t 8-step; namely for the leftmost leaf’s first formula xjf #x} to be of any use
in the proof. Writing “Sy <geason S1” for “step Sy has to precede step S; because of REASON”, this
means that

J 45t
2MB <superformula g (X)) < B-8T -non-permutability L

causes the non-permutability of 18 and 2mg by the transitivity of < .
As already discussed in Section 4.7, the non-permutability of 8 and 8 disappears if we replace the
8*+-rule with the 8" -rule.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1125

5;7 — 0" <—— 6y
- -7 %

Fig. 6. (Cyclic) state of variable-condition R
for alternative proof of Section 5.2 with § ™ -rules only.

5.2. 8§~ instead of 5T

Let us see how the proof of (lim +) would look like with the § ~-rules as the only §-rules available.
Roughly speaking, in the proof of Section 4, we have to replace each free §™-variable v’ with a free
8~ -variable v}~ and check how the variable-condition changes: &, (8!2*) and 8, (8,) applied to (1°.3)
of Section4.2 and (1°.3.1.2) of Section 4.3 (cf. Fig. 3) add {ef, ez, 87} x {8;’} and {ef, &g, 87} x {82’}
to the initially empty variable-condition R, respectively. 8, (x") applied roughly at (1°.3.1.2.1) adds
{sfy, gz, 87} x {x"} later.

Thus, after applying
o = {x}n—»{*, XX, 8> min((Sf, (Sg)}
the o ~-updated variable-condition is extended with
{7, %)), (X, xp), (87, 87), (85, 87)}
and looks as in Fig. 6. Compared to the graph of Fig. 5, it is small but cyclic: The two curved edges at
the very bottom are new (among others), and they cause the cycles. Thus, ¢ ~ is not an R-substitution
and cannot be applied.

Therefore, in our example proof of Section4 as depicted in Fig. 3, we have to move the
y-step applied to (1) down below (1°.3.1.2.1).'® A fortiori, this movement of the y-step forces the
problematic B-step at (1°.3.1) to be moved below (1°.3.1.2.1) as well; simply because its principal
pB-formula is the side formula of the y-step.

Indeed, if we replace the §T-rules with 6~ -rules, the non-permutability of the B- and the §*-
steps is hidden behind the well-known non-permutability of the y- and the §~-steps, cf. Note 4 in
Section2. Only when the latter non-permutability is removed by replacing the §-rules with §*-
rules, the former becomes visible.

5.3. Free §*-variables can escape their quantifiers’ scopes

The non-permutability of the 8- and §T-steps is closely related to the following peculiar liberality
of the §*-rules, which they share with the 8+ -rules (Beckert et al., 1993), the §*-rules (Baaz and
Fermiiller, 1995), and the §* —rules (Cantone and Nicolosi-Asmundo, 2000), but not with the §°-
rules (Giese and Ahrendt, 1999) and the §~-rules. While soundness of both the §~- and §*-rules
and preservation of solutions of the § ~-rules are immediate, the preservation of solutions of the §*-
rules requires the restriction of the values of the free § "-variables by choice-conditions (Wirth, 2004,
Theorem 2.49). Even without introducing the semantics of the several kinds of free variables of (Wirth,
2004) here, the reader may grasp the idea of the following example, namely that a solution for x” that
makes the lower sequent true, may make the upper sequent false:

18 Note that we cannot move it deeper because it has to precede &, (x*) (i.e. the former 80* (**")): Indeed, the principal formula
of this § ~-step is a subformula of the side formula of the y -step.

1126 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

Example 3 (Reduction & Liberalized §).
A §t-step canreduce (Vy. —=P(y)), P(x")
to —P(y*"), P(x”) with empty variable-conditionR=@. 0O

Let us argue semantically at first: In the intuitively straightforward notion of validity (formalized in
(Wirth, 2004, Sections 2.2.3 and 2.2.5)), the lower sequent is valid if we solve the free y-variable x”
by assigning the value of y** to it. This solution is admissible because the empty variable-condition is
not putting any restrictions on such a solution. The upper sequent, however, is not true with respect
to this solution in a structure 4§ in that P*(a) is TRUE and P*(b) is FALSE for some values a, b from
the universe of 8. To see this, suppose that y*" has the value b, which is admissible unless a choice-
condition restricts the value of y*" in the way indicated to the upper right of the § *-rule in Fig. 1. Then,
for the solution given above, x” and y** both have the value b. Thus, in 4§, the upper sequent evaluates
to FALSE (as a result of the intermediate FALSE, FALSE), whereas the lower sequent evaluates to
TRUE (as a result of TRUE, FALSE (the comma denoting disjunction)).

Let us now argue syntactically: After applying the R-substitution

ut = ey,

the lower sequent is a tautology, whereas the upper sequent is not.

To the contrary, in case of §~-rules, solutions to free y-variables are always preserved. This can
be seen as follows: If we apply a §~-rule instead of the § " -rule in our given example (resulting in the
new lower sequent —P(y*), P(x”)), then this application adds {(x”, y°)} to the variable-condition,
thereby blocking the analogous solution

poo= Xy,
simply because p~ is no {(x”, y*)}-substitution, cf. Definition 1.

Roughly speaking, via 1T, the § T-variable y** escapes the scope of the quantifier Yy on the bound
variable y which was eliminated by the introduction of y°*; indeed, in the upper sequent of Example 3,
the variable x” does not occur in the scope of the quantifier Vy. Atleast with matrix calculi and indexed
formulas trees (Autexier, 2003; Wallen, 1990), this “escaping” is a natural way to talk about this
peculiar liberality of the §*-rule.

Note that this kind of escaping also happens in Fig. 3 of the proof of (lim+): Taking the tree of
Fig. 3 to be an indexed formula tree, roughly speaking, the quantifier for 8? is situated at the term

position (1°.3.1.2), but, via o, it escapes to term position (1°.3.1.1).
54. 8+ instead of §*

Let us see how the proof of (lim +) would look like with the 8+ -rules (Beckert et al., 1993) as the
only §-rules available. This does not change anything in the proof as given in Section 4, but allows us
to use the identical free §T-variable 8? again when repeating the §-step which introduced it. Thus,
starting from (1°.3.1.1) of Section4.3, we can repeat some of the steps done in proof of (1°.3.1.2),
namely “ 85 (82), 3 " of Fig. 3, but now as “ 87 (8)), @ " Note that the 8*-rules would allow
84 (8% only, with a fresh variable 8. The resulting sequent is
(1°.3.1.1.1): 0 < min(§}',8)), 2
It is like (1°.3.1.2.1) of Section 4.3, but with the S,-side formula of the critical 8-step replaced with
the B;-side formula 0 < min(S}”, (S?). This formula admits to close this branch with the formulas

0768]?' and 0;&5? (as listed in £2 of Fig. 2), applying Lemma (4) of Fig. 2 as at the end of Section 4.6.

Note that this proof with the 8+" -rules does not have a higher number of y -steps than the proof
attempt failing in Section4.5. Also the maximum number of §-steps per formula and per path is
still 1. Nevertheless, the multiple expansion of the same §-formula in different paths is somehow
counter-intuitive, especially in the sense that working mathematicians interacting with a computing
system and supporting it in the construction of closed proof trees (as indicated in Section 1) would
not expect such steps from their experience with natural language proof construction. Luckily, in
indexed formula trees based on the §* " -rules, §-formulas have to be expanded only once. This again
means that these matrix versions are more human-oriented than the tableau or sequent versions.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1127

6. Proof of the non-permutability of 8 and §*

As we have seen in Section 5.2, the non-permutable B-step necessarily follows a y -step that would
be non-permutable without the liberalization from §~ to §*. It follows indeed necessarily, because the
principal formula of the §-step is the side formula of the y-step.

o The y-step yo(min(aj‘?*, 8)) is permutable with the liberalized 5" -step 6()*(8?).
5

e The y-step yo(min(éf*, 35)), however, is non-permutable with the §~-step &, (82’).

And even with the liberalization:
e The B-step is still non-permutable with the §*-step 85 (8?).

As the principal formula of the g-step can be regenerated by a second expansion of the principal
formula of the y-step, we cannot prove the non-permutability unless we restrict the y-multiplicity.
But, according to the description of the notion of non-permutability in Section2, we may indeed
restrict the y-multiplicity, in which case the crucial step, namely Lemma 2, admits the following
semantical proof.

6.1. Proof of Lemma 2 (cf. the end of Section 4.5)

Let us remove the three y-formulas which form the sequent I" (cf. Fig. 2) from the sequents
(1°.1), (1°.2) (cf. Section 4.2), and (1°.3.1.1) (cf. Section 4.3). As these y-formulas were already once
expanded at (1) and (1%) (cf. Fig. 3), this removal represents a restriction of the y -multiplicity of the
removed y-formulas to 1, and results in the following sequents (after some reordering):

BT+ 0 < &, 0£e™ 0 < & = 38,>0. Yxgx 187 () Vg | < 2
(PN\T+): 0 < g, O£, — < &g = >0 Vxg#xg . | g | <5, ,
(P 0+ ()~ Y] < &
& |x=xj| < min(§;", 85)
() -y | < ef
&= x—xy| <5
(0 +g" ()~ +y0)| < ™)

& |x=xj| < min(§;", 87)

0 < min(5)§’, 82*) AVXEX. (

)

(BB2\I'+): 0 < g, 0£&", —36>0. Vx; #x5. (

0 < min(8;", 8;') A VX#XG. (
P31\ 0 < min(s)",57), 046",

5 () —yt y

xp—xg | < &7
_ - 87 (xg)—yg | < &g
A6,. | 0 < 85 A Vg #X] . (e |xg—x| <8,
The related variable-condition R is shown in Fig. 5 (without the dotted edges) and the current
R-choice-condition C is given as
" I(F () +g" () —f +yp)l < &
5 - st 5= [s
A (CENZ e Wl < mingy L8 ’
IF"(xp)—yf | < ef
= x| <8
lg” (xg)—yg | < &g
&+ &5+ 5 g g g
8 | 0 < &, AV #£X. < & (x| <5§+
It now suffices to show that there is no proof of (1°.1\I"+), (1°.2\I"+), and (1°.3.1.1\I"+) with the
8~- and 8" -rules as the only §-rules available.
We do this with a trivial transformation given by the substitution

vi= (887, 88T

)

8 | 0 < 8 AVX#EX]. (

1128 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

of an assumed proof of (1°.1\I"+), (1°.2\I"+), and (1°.3.1.1\I"+) on the one hand, and with a
deviation over invalidity and soundness on the other hand, as follows:

Instantiating the sequents (1°.1\I"+), (1°.2\I"+), and (1°.3.1.1\I"+) by v we get the sequents
BNF=): 0 < &, 0£e”, = 0 < &7 = 38,50, Vx, £x 187 () =y | < e
. . £ s g g . g 0 - = |Xg_xg| < (Sg s
I ®)+8" () —f +yg)l < &
& |x—=xg| <min(8;, 8))
Lf‘sf(xfz—yj”cpl <égf
= |Xf—Xg | < 5f
[(FT X +g" () —(f +yg)l < e”
& |x—xy| < min(é}, 83)

0 < min(8‘“,8§)/\‘v’x;ﬁx§. <

)

(13.2\I"'—-): 0 < g}, 0£&", =36>0. Vx; #X). <

0 < min(8‘r,6§)/\‘v’x¢x§. <

1331.1\"'-): 0 < min(af*, 85), 0ge”,
=(0 < 87 A VXX (") —yp | <ef < Ixp—x5| <8)),
_ - lg” (x)—yg | < &g
= (0 < 8 A Vxg#x, . (e x| <8,
The conjunction of these sequents is invalid according to the standard semantics for parameters as
well as the semantics of Wirth (2004). This can be seen by
{81, &0, &1, x>0, yj=0, yi—>0, f"r ax0, g ix0}.

Indeed, if we instantiate (1°.1\1"—), (1°.2\I"—), and (1°.3.1.1\I"—) with this substitution and then

AB-normalize and simplify these sequents by equivalence transformations in the model of the real
numbers R, we get the three sequents

0 < &
1% Y g
0 < ¢, false, < 0 =< & (& V>0, Ix; #0. [xg| < I) > false

N 0 < g fal
¢, false, & VE>0. 3k #0. x| < &) alse

Y

false, false, =(0 < & < 3% #0. |x| < 1), —-(- 35:>gg. T, £0. [xg| < 5)

Further equivalence transformation in R results in the three contradictory sequents
0 < 8fy
0 < &, 07&5;
0£ef, Ofeg

Thus, as our calculus is sound, it cannot prove (1°.1\I"=), (1°>.2\I"—), and (1°.3.1.1\I"'—)
simultaneously.
Regarding free §-variables that occur already in the upper sequents of our rules (i.e. in the conclusions),
the following holds: The ' -rules treat free § - and free § T -variables alike; and, for free §~-variables,
the 8~ -rules generate a smaller variable-condition than for free §*-variables (cf. 'V, (...) in Fig. 1;
cf. also Note 8). Therefore, a proof of (1°.1\I"+), (1°.2\I"+), and (1°.3.1.1\I"+) would immediately
translate into a proof of (1°.1\I"—), (1°.2\I"—), and (1°.3.1.1\I"—) with - after application of the
substitution v - unchanged inference steps, and with a possibly smaller variable-condition.®
Thus, we conclude that there is no proof of (1°.1\I"+), (1°.2\I"'+), and (1°.3.1.1\T"+). q.e.d.
Finally note that the above trivial proof transformation does not result in a sound proof if we replace
the 8+-rules with the 8+ -rules: Indeed, the §* -rules may re-use 8?, but not 8;’.

19 Note that we do not replace 8*-rules with 8 ~-rules here; all we do is to replace some §*-variables in the sequents with
8~ -variables.

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1129

6.2. Defining permutability

A reader with a good mathematical intuition can and should directly consider the non-permutability
of B- and 87 -steps as a corollary of Lemma 2 proved above. A formalist, however, may well require
some rigorous definition of permutability. There were good reasons not to present a formal definition
of permutability earlier in this paper:

The logically weakest reasonable definitions of permutability I can think of, still result in the
non-permutability we want to show. Indeed, we may choose any definition of permutability that
contradicts Lemma 2. For instance, as it strengthens our non-permutability result, we should (and
will) use a notion that is weaker than the following standard one: Two inference steps S; and Sy are

locally directly permutable if replacing an occurrence of Sl;ﬁ in a closed proof tree (where Sy is
also applicable instead of Sy) with Soiilso results (mutatis mutandis) in a closed proof tree.

5 0 3

In fact, there is no definition of permutability or non-permutability in WALLEN’s whole book
(Wallen, 1990), although the avoidance of non-permutability is one of its main subjects, cf. Section 2.

My formalization of the notion of permutability will depend on the notions of a principal meta-
variable of an inference rule and is somewhat technical and difficult, even in the rudimentary form we
will present below.

To avoid clutter, we define permutability only for sequent calculi. The definition for tableau calculi
is analogous. Formally, for each inference rule, we have to define which meta-variables are principal
and which are not. On the one hand, the meta-variables of the principal formulas have to be principal,
and an instantiation of all principal meta-variables must determine the existence of an instantiation
of the other meta-variables such that the inference rule becomes applicable. On the other hand, it is
not appropriate to define all meta-variables of an inference rule to be principal, because this results
in a general non-permutability of inference steps.

Definition 4 (Principal Meta-Variables). In our inference rules of Fig. 1 in Section 3.1 exactly the
meta-variables A, B, x, t, ", and x*" are principal; and the other meta-variables (i.e. I", IT) are not
principal. In lemma-application steps as explained in Section 3.2, the A and C; are principal, whereas
the B; are not. For technical simplicity, we ignore our definitional expansion steps on V, 3, lim,
assuming a complete expansion of these definitions right from the start. O

Definition 5 (Inference Step). A proof tree is a labeled tree whose root is labeled with a sequent and
whose paths are labeled with sequents and inference steps alternately, such that there is a proof
history of applicable inference steps (expansion steps) and global applications of R-substitutions on
free y-variables (which instantiate the free y -variables of their domains in all occurrences in all labels
of the proof tree, i.e. in all sequents and in all inference steps), starting from a proof tree consisting only
of a root node. (Of course, the parent and child nodes of a node labeled with an inference step must
be labeled with the conclusion and the premises of this inference step, respectively.)

A proof tree is closed if all its leaves that are not labeled with inference steps are labeled with axioms.
An inference step is a triple (I, , o) labeling a node in a proof tree where [is an inference rule and
7 and p are substitutions of the principal and non-principal meta-variables of I, respectively; such
that I(wrWwp) describes the inference step with parent (conclusion) and child (premise) nodes as an
instance of the inference rule I. O

Note that in Definition 5 we indeed have to refer to the proof history because the §*-step 80+ ((Sg*)

applied to (1°.3.1) at the beginning of Section4.6 would not be admitted if we applied the
R-substitution o before expanding the proof tree by the §*-step. This is because §*-steps have to
introduce new free §*-variables, and o would have introduced the variable 8? already before.
Roughly speaking, permutability of two steps S; and Sy simply means the following: In a closed proof
tree where Sq precedes S; and where S; was already applicable before Sy, we can do the step Sy before S
and expand the resulting new subtree into a closed proof tree nevertheless.

1130 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

Definition 6 (Permutability). Let (I, 1, 01) and (Iy, 7g, 0o) be two inference steps.
(I1, 1, 01) and (Ip, 7o, 0o) are permutable for a given threshold m for y-multiplicity if
for any closed proof tree T with y-multiplicity m satisfying that

(1) n; is an inference node in T labeled with (I;, 7;, 0;), fori € {0, 1},

(2) ng, nq are, in this order and with only a sequent node in between, on the same path in T from the
root to a leaf, and

(3) thereis a substitution ¢ such that the parent sequents (conclusions) of Iy (;roWog) and of I; (771 We)
are identical;

there is a closed proof tree with y-multiplicity m which differs from T only in the subtree starting
with ng and the root label of this subtree is (I1, 771, ¢).

(I1, 1, 01) and (Ip, 7o, Qo) are permutable if they are permutable for any given threshold m € N of
y-multiplicity.

I1 and Iy are generally permutable if all inference steps of the forms (I, 1, 01) and (Ip, 7o, 0o) are
permutable. O

Example 7. For inferring the non-permutability of 8 and §* from Lemma 2, we have to instantiate
Definition 6 as follows:
ne ~ (1°.3.1)—>(1°.3.1%) (cf. Section 4.6)
Iy is (87, —3) of Fig. 1in Section 3.1
X = Jg;
X 8y

8" ()~ < 5
A - <0<8g/\Eng;£x‘§.(& Xe) =Yy 2))

& |xg—x)| < 8
0 < min(8}', 8)
" 0+g”)
r >
00 = T oA wxxt —F)
& |x=xg| < min(§;", 83)

<& e

mT— ...

n; ~ “anew step of an alternative closed proof tree that results from the closed proof tree of
Section 4.6 by permuting the B-step at (1°.3.12) and the steps &2, yo(x*")° applied to
(1°.3.1). This alternative proof tree is depicted in Fig. 7. (Only for pedagogical reasons,
we delayed the B-step with its failure-potential until we were forced to do it.)”

Iy is (B, A) of Fig. 1 in Section 3.1

A~ 0c< min(8]?+, 6?);

0+)| _ »

—OF +yy)

& |x=xg| < min(8;", 83)

T =

B +— Vx#x).

Now, the non-permutability of the critical 8- and §*-steps of Example 7 follows from Lemma 2,
because there is no alternative proof tree which differs only in the subtree starting at ng and having a
new subtree there starting with the critical 8-step. The deeper reason for this is that the instantiated
free y-variables occur outside the subtree of the §"-step, cf. Section 5.3. According to Lemma 2, there
is no proof of (1°.1), (1°.2) and (1°.3.1.1) with the instantiation by &. Since the partial instantiation
by o agrees with the full instantiation in the closed proof tree of the successful proof of Fig. 7, we have
the required witness for the non-permutability of 8 and 8, indeed. Thus, as corollaries we get:

Corollary 8. On a threshold for y-multiplicity of 1, the inference steps

((B; A), 1, 01) and ((8", —=3), 70, 00)
(as labels of the nodes ny and ny, resp.) as given in Example 7 are not permutable. O

(1°.3.12.2.1.1)

(1°.3.1%.2.1.3)

1iLemmas (2)and (3)

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

M

12 | o2, lim, ¥, 85 (7). o, 3
(1)
1] yo(min(8f",85")
(1%
2
1| lim2, v2, y0<§>
(1°)
(1°.2) (1%.3)
1 | Lemma(9) 1 BJ(S}H)
o (1%.3.1)
1| 85565
(15.3.1.1)
1/31 2| B2
(1°.3.1.1.1) (1°.3.1.1.2)
llLemmaM) copy | a2, 1o ()%, v?
o (1°.3.12.2)

—_

sy), of

(1°.3.12.2.1)

1 2 52
B1 B2, B1 2

(1°.3.12.2.1.2)

3
B

(1°.3.12.2.1.4)

4

5| g2
B2, 1 P

(1°.3.12.2.1.5)
1 lLemmas (2)and (3) 1 | Lemma(5)

o (1°.3.12.2.1.5.1)

1.1.1 | Lemmas (6), (7), and (8)

.
Fig. 7. Closed proof tree with non-permutable 8- and §*-steps.

Section 4.1

Section 4.2

Section 4.2

non-

permutable

steps

Section 4.6

Section 4.8

Section 4.8

Section 4.9

Section4.10

1131

1132 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

Theorem 9. B- and 5 -steps are not generally permutable,

o neither in the sequent calculus of Wirth (2004) (cf. our Fig. 1 in Section 3.1),
e norinstandard free-variable tableau calculi with 8" -rules as the only §-rules, such as the ones in Fitting
(1996); Hihnle and Schmitt (1992). O

7. Further discussion of related subjects

When the §*-rules occurred first in (Hihnle and Schmitt, 1992) (where their whole treatment
takes only four pages actually), they seemed so simple and straightforward. Today, a dozen years
later, they are still not completely understood. We have shown that the §*-rules still have unrealized
properties, such as the non-permutability of 8- and §*-steps. Indeed, there are several open problems,
such as, from theoretical to practical:

7.1. Complexity?

Does the non-elementary reduction in proof size (Baaz and Fermiiller, 1995) from the 6~ - to
the 8+ -rules mean a non-elementary reduction in proof size from §~ to §*, or from §* to s+t
(exponential at least Beckert et al. (1993)), or both?

7.2. More non-permutabilities

Why were the non-permutabilities of S-steps presented in this paper not noticed before? May
there be others around?

7.3. Is soundness sufficient in practice?

The notion of safeness (soundness of the reverse inference step, for failure detection after
generalization, e.g. for induction) seems to become standard (Autexier, 2005; Nipkow et al., 2002;
Wirth, 1997, 2004). And in Wirth (1998, 2004, 2008, 2011) we have also added the notion of
preservation of solutions. This means that the closing substitutions on the rigid variables of the sub-
goals must solve the input theorem’s rigid variables, which make sense as placeholders for concrete
bounds and side conditions of the theorem which only a proof can tell.

7.4. Are the known notions of completeness relevant in practice?

The mere existence of a proof is not sufficient for mathematics assistance systems, where we need
the existence of a proof that closely mirrors the proof the mathematician interacting with the system
has in mind, searches for, or plans. (Readers who think that the § ~-rules would admit human-oriented
proof construction should try to do the proof of (lim +) with the §~-rules as the only é-rules!)

I must admit, however, that I do not know how to grasp a practically relevant notion of
completeness. The sequent calculus of our inductive theorem prover QUODLIBET (Avenhaus et al.,
2003; Kiihler, 2000; Schmidt-Samoa, 2004, 2006a,c,b; Wirth, 1997, 2005, 2009) has been improved
over a dozen years of practical application to admit our proofs; and it still needs some further
improvement.

7.5. Calculi for automation plus interaction

The automatic generation of a non-trivial proof for a given input conjecture is typically not
possible today and probably will never be. Thus, beside some rare exceptions - as the automation

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1133

of proof search will always fail on the lowest logic level from time to time - the only chance for
automatic theorem proving to become useful for mathematicians seems to be a synergetic interplay
between the mathematician and the machine. For this interplay - to give the human user a chance to
interact - the calculus itself must be human-oriented. Indeed, it does not suffice to compute human-
oriented representations; not in the end, and - as the syntactical problems have to be presented
accurately - also not intermediately in a user interface.

8. Conclusion

We have exhibited unknown non-permutabilities of 8-steps that surprised experts of the field:
in Sections 4.3-4.5 a non-permutability of a B-step with a §t-step; and in Section4.7 a non-permu-
tability of a B-step with a B-step. In Section5.1 we have explained why the latter is a consequence
of the former, and in Sections 5.2-5.4 we have made clear how it comes to the former non-permu-
tability and why it is so surprising. In Section6.1 we proved Lemma 2, according to which the proof
attempt in Section 4.5 is indeed a failed one for a y -multiplicity threshold of 1. In Section 6.2 we have
formalized a local notion of non-permutability and showed that Lemma 2 implies the existence of
such a non-permutability of a 8- with a §T-step indeed.

Although the non-permutability of 8- and §*-steps is not visible with (non-liberalized) §~-rules
and dissolves into a problem of mere inefficiency with further liberalized §-rules, the optimization
of the sequencing of the B-steps is always of practical importance, both for efficiency of proof search
and for human-orientedness of proof presentation. The same holds for the optimization problem of
finding a good order of application for the §-steps.

Even with more liberalized §-rules available today (such as s+F - 6%, §* -, and §¢-rules, cf.
Section5.3), the §'-rules remain important, both conceptually and for stepwise presentation and
limitation of complexity in teaching, research, and publication. For instance, the §*-rules are the free-
variable tableau rules used in the current edition of MELVIN FITTING’s excellent textbook (Fitting, 1996).

The §™-rules may also serve as a sound fallback in case that further liberalized §-rules turn out to be
unsound. For instance, until very recently (Cantone and Nicolosi-Asmundo, 2005), nobody realized
that the §*- and §*"-rules were unsound in their original publications (incl. their corrigenda!).?°

Section4 contains what seems to be the first publication of a more or less readable, complete,
and human-oriented proof of a mathematical standard theorem in a standard general-purpose formal
calculus. This paradigmatic example may be beneficial for the future discussion of human-computer
interaction in proof construction.

Although more useful for proof search in classical logic than HILBERT (Hilbert and Bernays, 1968/70)
and Natural Deduction calculi (Gentzen, 1935), sequent (Gentzen, 1935) and tableau calculi (Fitting,
1996) are still not adequate for a synergetic interplay of human proof guidance and automatic proof
search (Wirth, 2004), which we hope to achieve with matrix calculi such as CoRE (Autexier, 2003).

In Section 5.4, we have described why we consider the possibility to overcome the non-permutabi-
lity of B and 8T by replacing the §T-rules with the 8+ -rules not to be adequate for human-oriented
reasoning yet.?! We hope that it has become clear from our presentation that not only automated

20 The §*-rule was unsound as printed in the lecture notes (Baaz and Fermiiller, 1995). It was first corrected by the authors
right at the 5t Int. Conf. on Tableaus and Related Methods, St. Goar (Germany), 1995. It had to be corrected once more in the
presentation of (Cantone and Nicolosi-Asmundo, 2005) by MARIANNA NicoLosI-ASMUNDO, where also the 8*"-rule had to be
corrected as compared to (Cantone and Nicolosi-Asmundo, 2000).

21 ap anonymous referee of a previous version of this paper wrote:

“The arguments against the use of s+t (that the proofs found this way are not human-oriented) are not convincing.
It is well-known that improved Skolemization rules can be simulated with applications of the cut rule. So one could
proceed as follows. Use s+ for proof generation, for presentation insert the respective cut steps. This way any forms
of sophisticated Skolemization could be replaced by case distinctions, which are easily understandable by any human
user.”

The point that was missed in this critique is described in Section7.5.

1134 C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135

theorem proving, but also human-oriented reasoning requires matrix calculi and indexed formula
trees (Autexier, 2003; Wallen, 1990). Both for human- and machine-oriented theorem proving, we
need these calculi also to admit a lazy sequencing of B-steps (so that the connection-driven path
construction may tell us in the end, which sequencing of the 8-steps we need).

As the automation of proof search will always fail on the lowest logic level from time to time, be
aware: The fine structure and human-orientedness of a calculus does matter in practice!

Acknowledgements

I would like to thank several reviewers of previous versions of this paper for their great help in
turning these lecture notes into a scientific paper, especially CHAD E. BRowN. [would also like to
thank the lecturers and students of the course (Autexier et al., 2004/05) and its predecessor (Wirth
et al., 2003/04) (in which my first formalization of the proof of (lim +) was presented) for teaching
each other and for sharing all those joys of logic, especially SERGE AUTEXIER, CHRISTOPH BENZMULLER,
MARK BUCKLEY, DOMINIK DIETRICH, ARMIN FIEDLER, DIETER HUTTER, ANDREAS MEIER, MARTIN POLLET,
MARVIN SCHILLER, TOBIAS SCHMIDT-SAMOA, JORG SIEKMANN, WERNER STEPHAN, FABIAN M. SUCHANEK,
MARC WAGNER, and MAGDALENA WOLSKA.

References

Autexier, S., 2003. Hierarchical contextual reasoning. Ph.D. Thesis, FR Informatik, Saarland Univ.

Autexier, S., 2005. On the dynamic increase of multiplicities in matrix proof methods for classical higher-order logic.
In: Beckert, B. (Ed.), 14th Int. Conf. on Tableaus and Related Methods, Koblenz, 2005. In: Lecture Notes in Artificial
Intelligence, vol. 3702. Springer, pp. 48-62.

Autexier, S., Benzmiiller, Ch., Brown, C.E,, Fiedler, A., Hutter, D., Meier, A., Pollet, M., Rock, G., Schmidt-Samoa, T., Siekmann,
J., Stephan, W., Wagner, M., Wirth, C.-P., 2004/05. Mathematics Assistance Systems. In: Lectures Winter Term 2004/05.
Universitdt des Saarlandes. URL: http://www.ags.uni-sb.de/~omega/teach/MAS0405.

Autexier, S., Benzmiiller, Ch., Dietrich, D., Meier, A., Wirth, C.-P., 2006. A generic modular data structure for proof attempts
alternating on ideas and granularity. In: Kohlhase (2006), pp. 126-142. URL: http://www.ags.uni-sb.de/~cp/p/pds.

Avenhaus, J., Kiihler, U., Schmidt-Samoa, T., Wirth, C.-P., 2003. How to prove inductive theorems? QuodLibet ! In: Baader (2003)
pp. 328-333. URL: http://www.ags.uni-sb.de/~cp/p/quodlibet.

Baader, F. (Ed.), 2003. 19th Int. Conf. on Automated Deduction, Miami Beach (FL), 2003. In: Lecture Notes in Artificial
Intelligence, vol. 2741. Springer.

Baaz, M., Fermiiller, Ch.G., 1995. Non-elementary speedups between different versions of tableaux. In: Baumgartner, P.,
Hahnle, R., Posegga, J. (Eds.), 5th Int. Conf. on Tableaus and Related Methods, St. Goar (Germany), 1995. In: Lecture Notes
in Artificial Intelligence, vol. 918. Springer, pp. 217-230.

Beckert, B., Hihnle, R., Schmitt, P.H., 1993. The even more liberalized é-rule in free-variable semantic tableaus. In: Gottlob et al.
(1993, pp. 108-119).

Berka, K., Kreiser, L. (Eds.), 1973. Logik-Texte - Kommentierte Auswahl zur Geschichte der modernen Logik, 2nd rev.ed. (1st
ed.1971; 4th rev.rev.ed.1986). Akademie-Verlag, Berlin.

Bertot, Y., Castéran, P., 2004. Interactive Theorem Proving and Program Development — CoQ’Art: The Calculus of Inductive
Constructions. In: Texts in Theoretical Computer Science. Springer.

Caferra, R., Salzer, G. (Eds.), 2000. Automated Deduction in Classical and Non-Classical Logics. Lecture Notes in Artificial
Intelligence, vol. 1761. Springer.

Cantone, D., Nicolosi-Asmundo, M., 2000. A Further and Effective Liberalization of the §-Rule in Free-VariableSemantic Tableaus.
In: Caferra and Salzer (2000, pp. 109-125).

Cantone, D., Nicolosi-Asmundo, M., 2005. A sound framework for delta-rule variants in free variable semantic tableaux. In: Letz
(2005, pp. 51-69). Journal version: Cantone and Nicolosi-Asmundo (2007).

Cantone, D., Nicolosi-Asmundo, M., 2007. A sound framework for delta-rule variants in free variable semantic tableaux.
J. Automated Reasoning 38, 31-56.

Cohn, A.G. (Ed.), 1994. Proc.11th European Conf. on Artificial Intelligence(ECAI). John Wiley & Sons.

Degtyarev, A., Voronkov, A., 1998. What you always wanted to know about Rigid E-Unification. J. Automated Reasoning 20,
47-80.

Fitting, M., 1996. First-order Logic and Automated Theorem Proving, 2nd rev.ed. (1st ed.1990). Springer.

Gabbay, D., Woodes,]. (Eds.), 2004ff. Handbook of the History of Logic. North-Holland (Elsevier).

Gentzen, G., 1935. Untersuchungen iiber das logische SchlieBen. Math. Z. 39, 176-210, 405-431, also in Berka and Kreiser (1973,
pp. 192-253). English translation in Gentzen (1969).

Gentzen, G., 1969. In: Szabo, ManfredE. (Ed.), The Collected Papers of Gerhard Gentzen. North-Holland (Elsevier).

Giese, M., Ahrendt, W., 1999. Hilbert’s e-terms in automated theorem proving. In: Murray, N. (Ed.), 8th Int. Conf. on Tableaus and
Related Methods, Saratoga Springs (NY), 1999. In: Lecture Notes in Artificial Intelligence, vol. 1617. Springer, pp. 171-185.

Gottlob, G., Leitsch, A., Mundici, D. (Eds.), 1993. Computational Logic and Proof Theory, Proc.3rd Godel Colloquium. In: Lecture
Notes in Computer Science, vol. 713. Springer.

Hahnle, R., Schmitt, P.H., 1992. The liberalized §-rule in free-variable semantic tableaus, WWW-version of Oct. 23, 1992; 9 pp.
Also in J. Automated Reasoning (1994) 13, pp. 211-221, Kluwer (Springer), received Sep 28, 1992.

http://www.ags.uni-sb.de/~omega/teach/MAS0405
http://www.ags.uni-sb.de/~cp/p/pds
http://www.ags.uni-sb.de/~cp/p/quodlibet

C.-P. Wirth / Journal of Symbolic Computation 47 (2012) 1109-1135 1135

Hilbert, D., Bernays, P., 1968/70. Die Grundlagen der Mathematik, 2nd rev.ed. (1st ed.1934/39). Springer.

Hutter, D., Stephan, W. (Eds.), 2005. Mechanizing Mathematical Reasoning: Essays in Honor of Jorg H. Siekmann on the Occasion
of His 60th Birthday. In: Lecture Notes in Artificial Intelligence, vol. 2605. Springer.

Kohlhase, M. (Ed.), 2006. 4th Int. Conf. on Mathematical Knowledge Management (MKM), Bremen, 2005, Revised Selected
Papers. In: Lecture Notes in Artificial Intelligence, vol. 3863. Springer.

Kreisel, G., 1965. Mathematical logic. In: Saaty (1965, Vol. III, pp. 95-195).

Kiihler, U., 2000. A Tactic-Based Inductive Theorem Prover for Data Types with Partial Operations. Infix, Akademische
Verlagsgesellschaft Aka GmbH, Sankt Augustin, Berlin. Ph.D. Thesis. Univ. Kaiserslautern, ISBN 1586031287. URL:
http://www.ags.uni-sb.de/~cp/p/kuehlerdiss.

Letz, R. (Ed.), 2005. Proc. 5 th Int. Workshop on First-Order Theorem Proving (FTP’2005). No. 13-2005 in Fachberichte Infor-
matik, Universitdt Koblenz-Landau, ISSN 1860-4471. URL:http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-
13-2005.pdf.

Nipkow, T., Paulson, L.C., Wenzel, M., 2002. IsABELLE/HOL— A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer
Science, vol. 2283. Springer.

Nonnengart, A., 1996. Strong skolemization. Research Report MPI-I-96-2-010, Max Planck Inst. fiir Informatik, Im Stadtwald,
D-66123 Saarbriicken, URL: http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1996-2-010.

QOdifreddi, P. (Ed.), 1990. Logic and Computer Science. Academic Press (Elsevier).

Owre, S., 2009. PVS specification and verification system. web only: URL: http://pvs.csl.sri.com.

Paulson, L.C., 1990. IsABELLE: The next 700 theorem provers. In: Odifreddi (1990, pp. 361-386).

Saaty, T.L. (Ed.), 1965. Lectures on Modern Mathematics. John Wiley & Sons, New York.

Schmidt-Samoa, T., 2004. The New Standard Tactics of the Inductive Theorem Prover QuodLibet. SEKI-Report SR-2004-01 (ISSN
1437-4447). SEKI Publications, Saarland Univ. URL: http://www.ags.uni-sb.de/~cp/p/sr200401.

Schmidt-Samoa, T., 2006a. An even closer integration of linear arithmetic into inductive theorem proving. Electronic Notes in
Theoretical Computer Sci.. 151. 3-20. URL: http://www.ags.uni-sb.de/~cp/p/evencloser. URL:
http://dx.doi.org/10.1016/j.entcs.2005.11.020.

Schmidt-Samoa, T., 2006b. Flexible heuristic control for combining automation and user-interaction in inductive theorem
proving. Ph.D. Thesis, Univ. Kaiserslautern. URL: http://www.ags.uni-sb.de/~cp/p/samoadiss.

Schmidt-Samoa, T., 2006c. Flexible heuristics for simplification with conditional lemmas by marking formulas as forbidden,
mandatory, obligatory, and generous. J. Appl. Non-Classical Logics 16, 209-239. URL:
http://dx.doi.org/10.3166/jancl.16.208-239.

Siekmann, J., Benzmiiller, Ch., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A., Horacek, H., Kohlhase, M., Meier, A., Melis,
E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.-P., Zimmer,]., 2002. Proof development with 2 MEGA.
In: Voronkov, A. (Ed.), 18th Int. Conf. on Automated Deduction, Kebenhavn, 2002. In: Lecture Notes in Artificial Intelligence,
vol. 2392. Springer, pp. 144-149 URL: http://www.ags.uni-sb.de/~cp/p/omega.

Smullyan, R.M., 1968. First-Order Logic. Springer.

Wallen, L.A., 1990. Automated Proof Search in Non-Classical Logics. MIT Press.

Wirth, C.-P., 1997. Positive/Negative-Conditional Equations: A Constructor-Based Framework for Specification and Inductive
Theorem Proving. Vol. 31 of Schriftenreihe Forschungsergebnisse zur Informatik. Verlag Dr. Kova¢, Hamburg. PhD thesis,
Univ. Kaiserslautern, ISBN 386064551X. URL: www.ags.uni-sb.de/~cp/p/diss.

Wirth, C.-P., 1998. Full first-order sequent and tableau calculi with preservation of solutions and the liberalized §-
rule but without Skolemization. Research Report (green/grey series) 698/1998, FB Informatik, Univ. Dortmund, URL:
http://arxiv.org/abs/0902.3730. Short version in Gernot Salzer, Ricardo Caferra (Eds). Proc.2 nd Int. Workshop on First-
Order Theorem Proving (FTP'98), pp. 244-255, Tech. Univ. Vienna, 1998. Short version also in Caferra and Salzer (2000, pp.
283-298).

Wirth, C.-P., 2004. Descente Infinie + Deduction. Logic J. of the IGPL 12, 1-96. URL: http://www.ags.uni-sb.de/~cp/p/d.

Wirth, C.-P., 2005. History and future of implicit and inductionless induction: beware the old jade and the zombie! In: Hutter
and Stephan (2005, pp. 192-203). URL: http://www.ags.uni-sb.de/~cp/p/zombie.

Wirth, C.-P., 2008. Hilbert’s epsilon as an operator of indefinite committed choice. J. Appl. Logic 6, 287-317. URL:
http://dx.doi.org/10.1016/j.jal.2007.07.009.

Wirth, C.-P., 2009. Shallow confluence of conditional term rewriting systems. J. Symbolic Computation 44, 69-98. URL:
http://dx.doi.org/10.1016/j.jsc.2008.05.005.

Wirth, C.-P., 2011. A Simplified and Improved Free-Variable Framework for Hilbert’s epsilon as an Operator of Indefinite
Committed Choice. SEKI Report SR-2011-01 (ISSN 1437-4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure
Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D-28359 Bremen, Germany, URL: http://arxiv.org/abs/1104.2444.

Wirth, C.-P., Benzmiiller, Ch., Fiedler, A., Meier, A., Autexier, S., Pollet, M., Schiirmann, C., 2003/04. Human-oriented
theorem proving — foundations and applications. Lectures winter term 2003/04, Universitit des Saarlandes. URL:
http://www.ags.uni-sb.de/~cp/teaching/hotp.

Wirth, C.-P., Siekmann,]., Benzmiiller, Ch., Autexier, S., 2009. Jacques Herbrand: Life, logic, and automated deduction. In: Gabbay
and Woods (2004ff, Vol. 5: Logic from Russell to Church, pp. 195-254).

Yoshida, T., Bundy, A., Green, 1., Walsh, T., Basin, D., 1994. Coloured rippling: An extension of a theorem proving heuristic. In:
Cohn (1994, pp. 85-89).

http://www.ags.uni-sb.de/~cp/p/kuehlerdiss
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-13-2005.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-13-2005.pdf
http://www.uni-koblenz.de/fb4/publikationen/gelbereihe/RR-13-2005.pdf
http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1996-2-010
http://pvs.csl.sri.com
http://www.ags.uni-sb.de/~cp/p/sr200401
http://www.ags.uni-sb.de/~cp/p/evencloser
http://dx.doi.org/10.1016/j.entcs.2005.11.020
http://www.ags.uni-sb.de/~cp/p/samoadiss
http://dx.doi.org/10.3166/jancl.16.208-239
http://www.ags.uni-sb.de/~cp/p/omega
http://www.ags.uni-sb.de/~cp/p/diss
http://arxiv.org/0902.3730
http://www.ags.uni-sb.de/~cp/p/d
http://www.ags.uni-sb.de/~cp/p/zombie
http://dx.doi.org/10.1016/j.jal.2007.07.009
http://dx.doi.org/10.1016/j.jsc.2008.05.005
http://arxiv.org/1104.2444
http://www.ags.uni-sb.de/~cp/teaching/hotp

	 lim + , δ+ , and Non-Permutability of β -Steps
	Motivation
	Weaknesses in design of reductive calculi
	Background required for the example proof
	Inference rules for reduction within a proof tree
	Lemma application between proof trees

	The proof of (lim+) (limit theorem on sums in R)
	Explanation and initialization
	Expanding the Proof Tree with Root (1)
	A bad turn
	Partial success
	Failure
	Backtracking to a non-failed proof tree
	A Non-permutability of two β -steps
	Continuing with the previously fatal β -step
	A working mathematician's immediate focus
	Automatic clean-up

	Discussion of the non-permutabilities
	Non-permutability of β and β is only a secondary problem
	δ- instead of δ +
	Free δ + -variables can escape their quantifiers' scopes
	δ++ instead of δ +

	Proof of the non-permutability of β and δ +
	Proof of lemma no completion (cf. the end of Section4.5)
	Defining permutability

	Further discussion of related subjects
	Complexity?
	More non-permutabilities
	Is soundness sufficient in practice?
	Are the known notions of completeness relevant in practice?
	Calculi for automation plus interaction

	Conclusion
	Acknowledgements
	References

