6,335 research outputs found

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Computability Closure: Ten Years Later

    Get PDF
    The notion of computability closure has been introduced for proving the termination of higher-order rewriting with first-order matching by Jean-Pierre Jouannaud and Mitsuhiro Okada in a 1997 draft which later served as a basis for the author's PhD. In this paper, we show how this notion can also be used for dealing with beta-normalized rewriting with matching modulo beta-eta (on patterns \`a la Miller), rewriting with matching modulo some equational theory, and higher-order data types (types with constructors having functional recursive arguments). Finally, we show how the computability closure can easily be turned into a reduction ordering which, in the higher-order case, contains Jean-Pierre Jouannaud and Albert Rubio's higher-order recursive path ordering and, in the first-order case, is equal to the usual first-order recursive path ordering

    Automated verification of termination certificates

    Get PDF
    In order to increase user confidence, many automated theorem provers provide certificates that can be independently verified. In this paper, we report on our progress in developing a standalone tool for checking the correctness of certificates for the termination of term rewrite systems, and formally proving its correctness in the proof assistant Coq. To this end, we use the extraction mechanism of Coq and the library on rewriting theory and termination called CoLoR

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Deduction modulo theory

    Get PDF
    This paper is a survey on Deduction modulo theor

    Argument filterings and usable rules in higher-order rewrite systems

    Get PDF
    The static dependency pair method is a method for proving the termination of higher-order rewrite systems a la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed lambda-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the-art first-order automated termination provers. In this paper, we extend the class of higher-order systems on which the static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite systems
    corecore