Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

The Variable Containment Problem

Stefan Kahrs*

University of Edinburgh
Laboratory for Foundations of Computer Science
King’s Buildings,
Edinburgh EH9 3JZ
United Kingdom

email: smk@dcs.ed.ac.uk

Abstract. The essentially free variables of a term t in some A-calculus,
FVj(t), form the set {z | Vu.t =g v = = € FV(u)}. This set is signifi-
cant once we consider equivalence classes of A-terms rather than A-terms
themselves, as for instance in higher-order rewriting.

An important problem for (generalised) higher-order rewrite systems is
the vartable containment problem: given two terms ¢t and w, do we have
for all substitutions 6 and contexts C[] that FVz(C[t?]) D FVs(Cu])?
This property is important when we want to consider t — w as a rewrite
rule and keep n-step rewriting decidable. Variable containment is in gen-
eral not implied by FVg(t) O FVg(u). We give a decision procedure for
the variable containment problem of the second-order fragment of A™.
For full A™ we show the equivalence of variable containment to an open
problem in the theory of PCF; this equivalence also shows that the prob-
lem is decidable in the third-order case.

1 Introduction

As soon as we make the step from terms to equivalence classes of terms as the
objects of our interest, the question whether a variable occurs (free) in such an
object becomes a bit delicate. Should the variable occur in all terms of the class
or only in some, or can we sensibly ask this question at all?

Typically, the equivalence relation = in question is preserved by substitution
application, i.e. t = u implies t = u? for arbitary substitutions 6. In particular,
if t =u and @ is free in ¢ but not in u then t[y/z] = u[y/z] = u for any variable
(or term) y. This suggests the following definition:

Definition 1. Let =, be a substitutive equivalence relation. The free variables
modulo =, of a term t, FV,(t), are defined as follows:

FV.(t)= (] FV(u)

t=eu

* The research reported here was partially supported by SERC grant GR/J07303.

https://core.ac.uk/display/63514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the above definition I was deliberately a bit vague about basic notions
such as term, substitution, and free variable, because the concept makes sense for
various (typed or untyped) A-calculi as well as first-order terms. In the following,
we shall concentrate on the equivalence =g and call variables which are free
modulo =g “essentially free”.

For each equivalence class [u]s that contains a normal form u|, we have
FVg(u) = FV(ul). Unfortunately, the set FVg(¢) is in general (for the untyped
A-calculus) not recursive, i.e. the problem z € FVg(t) is undecidable: the set
M, = {t | © € FVg(t)} is closed under B-conversion and non-trivial which
already implies that M, is not recursive (theorem 6.6.2 (ii) in [1]); moreover,
te M, < z cFVg(t).

In [1] the notation & €5 M is used instead of & € FVg(M) (exercise 3.5.15,
notation 4.1.4) — the concept is not really new, even though Barendregt defines
it only for A-theories rather than arbitrary (substitutive) equivalence relations.
Similarly, Middeldorp [15] uses the notation V. ([t]g) to describe the set of
variables that occur in every term that is R-equivalent to .

Most typed A-calculi studied in the literature [3] have a strongly normalising
B-reduction, which implies that FVg(t) is recursive for each typable term ¢: we
reduce t to its B-normal form t| and find the set as FV(t]).

Moving from terms to equivalence classes of terms is not entirely unprob-
lematic: the property FVg(t) C FVs(u) is in a sense less informative than the
ordinary FV(¢t) C FV(u). From the latter we can deduce FV(t) C FV(uf)
and FV(C[t]) C FV(C[u]), which means that the property is a rewrite relation.
But we cannot deduce from the former FV3(t?) C FVs([u?]) or FV5(CJt]) C
FVs(Clu]). Example: the terms ¢t = (z y) and v = (Az. z ¢ y) are in normal
form and have the same essentially free variables {z,y}. But when we apply the
substitution 8 = [(Av. 2’)/x] to both terms then 2’ is essentially free in both
but y is only essentially free in u?; similarly, the context C[] = _ (A\v.z') also
distinguishes these terms: z is essentially free in C[t] but not in C[u].

Why does this matter?

The condition FV(¢) D FV(u) is typically used as a requirement for rewrite
rules t — u, to make sure that rewriting never introduces free variables. This
property is desirable for a number of reasons:

1. Without it, the rewrite system could not be strongly normalising, because
rewriting is substitutive and extra variables on the right-hand sides could
be instantiated to (terms containing instances of) left-hand sides of rules,
including the left-hand side of the very rule with the extra variables.

2. Without it, confluence is unlikely: if ¢ — w and if u contains an extra variable
@ then also t — u[y/«] and confluence would require that v and uly/z] have
a common reduct.

3. To decide the one-step rewrite relation ¢ — u, one has to decide matching
problems, i.e. matching occurrences in t to left-hand sides of rules. This
remains true if we allow extra variables though we have then an additional
matching problem of (a subterm of) u against the instance of the right-hand
side of the applied rule. However, if we consider n-step rewriting for n > 1,

then we have to solve unification problems if the rules have extra variables.

To make the last point clear: we can encode any unification problem as a
two-step rewriting problem of a rewrite system with extra variables as we shall
see shortly. By “unification problem” we mean the following.

Definition 2. The unification problem t = u is the property do. t7 = u’.

Again, I am deliberately vague about what the terms ¢ and u and the substitution
o range over, and how substitution application ¢ is actually defined — terms,
substitutions, and their unification problems exist in a variety of formalisms.

Theorem 3. For any first-order unification problem t = u there is a finite (gen-
eralised) rewrite system R and terms C, D such thatt =u < C —g;—prD.

Proof. We choose symbols C, D, F' not occurring in ¢t and u. R has two rules:
C — F(t,u) and F(z,z) — D. The required intermediate term E with C' —p
E —pg D must have the properties 0. E = F(¢,u)?, because we can only apply
the first rule to C, and similarly 37. F = F(x,x)", because we can only apply the
second rule backwards to D. Both conditions together are sufficient as neither
C nor D are affected by substitution application. Thus, C —p F —g D is
equivalent to the problem Jo. 7. F(t,u)° = F(z,z)” which is equivalent to
Jdo. 37. 7(x) =t A 7(x) = u” which in turn is equivalent to ¢ = u. a

The same kind of situation appears in higher-order rewriting, where it is
even more significant: matching up to fourth-order is known to be decidable
[7, 4, 17], but second-order unification is already undecidable [6]. The decidability
of higher-order matching is still an open problem but it is often conjectured to
be decidable [4].

Remark: In view of Loader’s recent result [12] that (absolute) A-definability
for (arbitrary) finite models of A~ is undecidable this conjecture is rather doubt-
ful. Looking at the details of Loader’s proof we can observe that it shows that
relative A-definability is already undecidable for third-order types which (see
Loader’s proof of Lemma 1 in [12]) implies that absolute A-definability for fourth-
order types is undecidable too; absolute A-definability for third-order types is
decidable [20].

The question about extra variables is generally asked for the instance of a
rule, not for the rule itself. We have already seen that this difference matters in
the presence of higher-order variables and indeed we do not need extra variables
in the rules themselves to solve unification problems:

Theorem 4. For any second-order unification problem t = u there is a finite
(generalised) second-order rewrite system R (with all rules | — r satisfying
FVg(l) 2 FVs(r)) and terms C,D such thatt =u <= C —p;—>rD.

Proof. We choose fresh symbols D, F, G such that the result type of F' and G is
first-order, and a fresh second-order variable y. The rules of R are G (y (Ftu)) —
(F'tu) and as before FF'zz — D. We can only apply the first rule to C = G D by
taking any substitution o such that o(y) = Az. D and have the same situation
as in the proof of theorem 3. O

This observation is based on generalised higher-order rewrite systems [14]. Orig-
inally, HRSs were defined with an additional condition for left-hand sides [16]
which we shall not consider here; suffice it to say that the subterm (y (F'tw)) in
the above proof does not satisfy this condition.

Theorem 4 shows that FV3(l) D FVg(r) is clearly not the right condition
for general higher-order rewriting if we want to ban extra variables and keep n-
step rewriting decidable. We need something stronger, a property which is also
a rewrite relation.

There is a general principle behind the last remark. A rewrite relation is a
relation closed under substitution application and context application, i.e. > is
a rewrite relation iff ¢+ > u implies t > u’ for arbitrary substitutions 8, and
C[t] > Clu] for arbitrary contexts C[|. In a typed scenario, the “arbitrary”
comes with a typing proviso.

The typical use of the term “rewrite relation” is to form the rewrite closure
of a relation R, i.e. the smallest rewrite relation — g which contains R. This is
well-defined, because rewrite relations are closed under arbitrary intersections.
As they are also closed under arbitrary unions, the dual concept is also well-
defined: the rewrite interior of R is the largest rewrite relation —% contained in
R.

The notion of rewrite interior is useful for the following reason. Sometimes
we want to show that all terms in a rewrite relation (given by a rewrite system
R) satisfy a certain property, i.e. t — g u implies tSu, more briefly —g C
S. The proof will hardly ever work directly, because — g is almost always an
infinitary object, it relates infinitely many terms. The solution is to prove instead
a property about R itself, since R is typically a finite relation.

Theorem 5. Let R and S be relations on terms. Then —p C S <= R C —5.

Proof. Trivial by exploiting the following facts: (i) Rewrite interior and rewrite
closure are monotonic w.r.t. to C; (ii) any rewrite relation is a fixpoint of both
the closure and the interior operator, in particular this applies to —p and —%;
(iii) R C —p and -5 C8. a

In words: to show that a rewrite closure — g satisfies an invariant S we can
show that R satisfies —°. In our situation, S is the relation tSu <= FVg(t) D
FVg(u) and variable containment is the interior of this relation.

2 Variable Containment in General
Definition 6. Given two terms ¢t,u € A, their variable containment problem,
t > u, is defined as the following property:

t=u <L YC[].¥0. FV4(C[t]) 2 FVs(Cu]).

For the untyped A-calculus this is obviously an undecidable problem as even the
sets F'Vg(t) are generally non-recursive. We can also ignore the “V6” quantifier

as any substitution application can occur as the substitution derived from a
[B-reduction.

For typed A-calculi the problem has to be slightly restated, restricting ¢t and
u to be well-typed preterms in some context? I and f a substitution mapping
variables in I" to preterms that type-check (with the same type) in some context
A. An analogous restriction applies to C[]. The exact formulation depends on
the particular A-calculus, though the general principle should be clear.

It is possible to formalise it uniformly for all type systems expressible in the
formalism of Pure Type Systems (short: PTS; see [2, 3]), especially the “PTS
with signature” as in [5] which support a proper treatment of constant symbols.
However, this goes somewhat beyond the scope of this paper and therefore we
concentrate on the simply typed A-calculus A~ and its fragments.

In order to formulate the appropriate notion of variable containment for
typed A-calculi we have to adapt the notion of substitution accordingly.

Definition 7. We write 8 : I' — A if § is a function from variables to preterms
and I" and A are contexts such that:

Vee DomI.I'tyx:7= Abrxb(z): 7

For arbitrary type systems, we would have to formulate a similar though more
awkward adaptations for contexts (in the sense: term with hole). However, for
A7 and its n-th order restrictions this is not really necessary due to the following
observations. Suppose ¢t and u have a function type, then t > v < tx > ux
for some fresh x. Thus we can reduce variable containment of arbitrary types to
variable containment of base types. Moreover, if ¢t and u have a base type then
FVs(t) 2 FVs(u) iff for all C[] we have FVg(C[t]) 2 FVs(C[u]). This way we
can avoid the quantification over contexts by restricting our attention to variable
containment for base types. To be precise: this trick requires that substitution
does not affect the types, i.e. it does not apply to A— as presented in [3] where
base types are variables — we need them to be constants.

Definition 8. The variable containment problem for A™ with signature X' is
the following:

Fl—gttu:T@;(T:*)EZ AlFst:7T ANTkFsu:7 A
VAV : I — A.FVs(t?) D FVs(u?)

The property (7 : %) € X' just means that 7 is a base type in the signature.

To decide the variable containment problem we would generally need that
FVg(t) is recursive which is the case for all strongly normalising type systems.
Then we have to find a semantic domain (D, >) to interpret the judgements
I' b5 t : 7 such that the predicate > and the interpretation function are total

2 T use the word “context” for terms with holes C[] and also for sets of pairs of
variables and types I', since it is established terminology for both.

recursive functions and [t] > [u] iff ¢ > u. We follow tradition by using double
brackets [.] for denoting the semantic interpretation of syntactic objects.

There is no other requirement we need for these domains, i.e. D is just a set
and > a binary relation on D. Since > is a preorder (easy to show), we would
need that > is a preorder as well if [_] is surjective.

3 Variable Containment for A’

We begin with the type theory A3”, the second-order fragment of the simply
typed A-calculus A™. In A7", free variables are restricted to at most second-
order types, i.e. types of the form 7, — 7 — .-+ — 7, such that all 7; are base
types. It is possible to define A;” as a PTS, but we shall not do that here, for it
would distract too much from the major issues we want to tackle.

Combinatory reduction systems (CRSs) [10, 11] can be seen as a special
class of rewrite systems in the type theory A3 over extensions of the signature
Y =(0:%,4: (0 = 0) — 0). To get an exact match, no further type constants
(other that 0) or third-order constants (other than A) should be allowed. CRSs
come equipped with an additional restriction for left-hand side of rules (each
free variable is applied to a sequence of distinct bound variables) that makes the
variable containment problem trivial — for CRS rules | — r the property [= r
is equivalent to FV(l) D FV(r).

However, we can drop the restriction for left-hand sides and generalise the
definition of second-order rewrite rule.

Definition 9. Given a A3 -signature X, a Y-rule is a tuple (I 1,r,7), written
I'ty 1 — r:7,such that (i) 7 is a base type, (ii) 'Fyx l:7, (i) 'Fyr:7

An instance of a rule (I,l,r,7) is given by a substitution # : ' — A and a
context C[] such that E F C[z] : o for some type o, some fresh variable z, and
some context F such that (z :7) € E and A+ @ : 7 is a premise of E F Cx] : o,
i.e. A is the context in which the hole of C[] is being type-checked. We omit
the formal definition of the latter, but it can easily be formalised in the style of
a type system. We have t — g u for terms t,u with E ¢ : 7 (analogously for u)
if there is a rule I' by | — 7 : 7, a substitution § : I' - A and a context C[|
(as described) such that C[l%] =g, t and C[r?] =4, u.

Since second-order matching is decidable, we can decide whether we have
an instance of a rule, i.e. the rewrite relation — g is decidable for finitely many
rules. As for first-order rewriting, the transitive closure of — g is undecidable.
As already explained, the two-step rewrite relation — g ; — g is undecidable for
general second-order rewrite systems because of extra variables.

Therefore, it makes sense to require I' Fx [> r : 7 for all rules ' Fx | —
r . 7. Since we require that the type 7 of a rule is a base type, the proposition
I'tx 1l — r:7is well-formed and according to our general observations for base
types it is equivalent to variable containment for the rewrite relation generated
from this rule. In the following we shall omit the subscript X' for judgements.

How can we decide variable containment in A" for two terms ¢ and «? Take
for instance the terms t = F' (z (y z)) (y w) and v = G (y (z 2)) (where w,z,y, z
are variables, # and y second-order), do we have ¢t > w, or u = t, or both,
or neither, and how can we find out? For ¢t = u we have to check FVg(t?) D
FVg(u?) for all substitutions @, but this is an infinitary condition. For second-
order variable containment only two things matter for a substitution: (i) which
variables are free in the substitute, and (ii) for second-order variables v with
substitute Avy,--- ,vn.s, which of the (first-order) variables v; is free in s? The
former limits which variables can be free in the substituted term, from the latter
we can find out which subterms will be erased during normalisation. Consider
the variables and y from the example and their substitutes (z) = Az'.p and
O(y) = A\y'.q: if o' is free in p and y’ is free in g then the free variables in u’
are exactly FV3(0(z)) UFVs(0(y)) UFV5(0(z)) and FV5(%) contains those and
also FV5(8(w)). Thus u # t. If y' is not free in ¢ then FVs(u’) = FV5(0(y))
and FVg(t?) = FV(0(z)) U FV5(8(y)). Finally, if y € FVs(q),z ¢ FVs(p) then
FVs(t) = FV3(8(w)) U FVa(8(x)) U FVp(8(y)) and FVs(u?) = FV,(8(x)) U
FV5(0(y)). So, in all cases we have FVz(t?) D FVg(u?) and thus we have t > u.

The general picture is that we have to consider all free variable occurrences
in a term and see in which argument positions of which other variables these
occurrences are. The following semantic interpretation of terms captures these
observations.

Definition 10. For A;*, we interpret judgements I' - ¢ : 7 as pointwise ordered
functions in Dom I — @(p((Dom I') x N')) where the order on the codomain is
given as:

A>B &L yMeB.IN € A. N C M.

We assume in the following that ¢ is in S-normal form, i.e. if it is not then we
take [I'+t: 7] = [k t| : 7] where ¢] is the normal form of ¢.
If t has the form z t; ---¢, (n > 0) with 2 € Dom I" then:

[TFxty---t,:7](x) = {0}
[TFaxtytn:T(y) ={MU{(z,)} |1 <i<nMec[lFt:71](y)}
ife#y

If ¢ has the form ft;---t, with f € Dom X then

[TFftrtu:rlw) = |J [IFti:ml®)

1<i<n
If ¢t is an abstraction Az: 7. u then

[FT'FXe:rou:T—>o](z)=0
[TEXe:mou:iT > o](y) ={M\ ({z} xN) | Me[lz:7Fu:o](y)}
ife#y

The subtraction of {z} x N (for the abstraction) is only necessary if the type
of z is second-order. This situation can only occur on outermost level, and it
cannot in our second-order rules. One could argue whether these terms exist in
A3, but they do indeed in a PTS-like formalisation.

The interpretation can be explained as follows: if [I" F ¢ : 7](z) = M then
M contains for each free occurrence of x in t the set of argument positions in
variable applications that lie above that occurrence. In particular: if M = () then
x is not free in ¢t and if) € M then there is a topmost occurrence of x in ¢ and
all variables free in §(z) will be free in ¢/ as well.

Definition 11. A substitution § : I' — A preserves a set M C (V x N), written
0= M, iff

VY(z,i) € M.z € Dom I = Jy;,...,y;t.
0(x) =8y AY1,...,Yi- t NY; € FVﬁ(t)

We can read the property 3M € [I' F t: 7](z). 8 | M as follows: “there is

a free occurrence of in t which is not erased when we apply 6 to t”.

Definition 12. A substitution 0 : I" — A is called first-order iff for all (z : o) €
I" the preterm () is not an abstraction.

Thus, if ¢ is a normal form and 6 is a first-order substitution with only normal
forms in its codomain then #? is in normal form too. Obviously, a first-order
substitution preserves any M. This means that IM € [['Ft: 7](z). 0 |E M is
equivalent to € FVg(t) for first-order 6.

Lemmal3. Let I'+t:7,0: 1 — A and y € Dom A be arbitrary. We have
y € FV5(t?) «—
dz € DomI.y € FVg(0(z)) NIM e [I'+t:71](z).0 = M

Proof. We can w.l.o.g. assume that ¢ is in normal form and that # maps variables
to terms in normal form.

First we prove the lemma for first-order substitutions. Using our assumptions
about ¢ and # and the above observations about first-order substitutions, the
lemma reduces to y € FV(t!) <= 3z € Dom .y € FV(§(z)) Az € FV(¢)
which is an obvious property of substitutions.

Now let 0 be arbitrary. We prove the lemma by induction on the term struc-
ture. We just show “=”, “«<” is similar. We only have to consider variable
applications z t{ - - - t,,, constant applications f #; ---t,, and abstractions Az. t'.

Let t be a variable application z t; ---t,. Let 6(z) = Ay; - yn. u. Then
t’| = u¥ where v : E — A is given by v(y;) = t¢| and v(v) = v for v ¢
{y1,-.-,yn}. Observe that v is first-order, i.e. we can apply the lemma to it. We
get:y € FV3(t?) <= y € FVg(u?) <= J2' € Dom E.(y € FV3(v(2'))AIM €
[EFuw:T](z").vE M) <= 2’ € DomE.y € FVg(v(z')) Az’ € FVz(u). For
z' € Dom E, we either have 2’ = y; for some y; or ' € Dom A.

In the former case the condition reduces to y; € FVg(u) Ay € FVg(t!) for
some i. The first part means that 6 preserves M U {(z,4)} iff it preserves M. For

the second we can apply the induction hypothesis and get a variable x € Dom I"
and a set M; € [I'F ¢; : 0] (x) with 6 = M;. Thus 6 = M] = M; U {(#,7)} and
clearly M! € [I'F zt;---t, : T](2).

In the latter case, ' € Dom A, we have y = ' and can choose x = z: since
Qe zty-- -ty : 7](2) we only have to show 6 = (§, but this is trivially true.

For constant applications f ¢y ---t,, we can directly apply the induction hy-
pothesis: y € FVg(ftf---t) < Ji.y € FV3(t!) «— Iz € DomI.y €
FVg(@(z)) AIM € [I'F t; : 03](x). 0 EM <= 3Jax € DomI.y € FVg(0(x)) A
AM eI'F ftr- -ty 7](2).0 = M.

Finally, let ¢t be an abstraction Az.u. We define §' = 6]z — z]. We get:
yeFVa(t?) < ye FVg(ugl)/\y #2z < y#zANJx € DomI'U{z}.y €
FVg(0'(e)AIM e[z:obFu:0'|(z).0' EM < y#zAJz € DomI.ye€
FVgl(z) AIM e [[z:oFu:0'|(z).0 EM < y#zA3x € DomI.y¢€
FVs(@(z)) A\IM € [Iz o b u:o'](z).0 E M\ ({2} xN) < 3z €
DomI.y € FVg(8(z)) NAIM € [I'F Az: 0. u:o'](z). 0 E M. a

Lemmald. I'tt>u:7 < [['Ft:7]>['Fu:T]

Proof. This follows easily from a pointwise extension of lemma 13. Considering
the “=” direction, notice that for each N € [I" F u : 7](z) we can construct a

substitution 6 such that 6 = M iff M C N and y € FVg(0(x)). a

Clearly, [] is a total computable function and so is the order > when re-
stricted to total computable functions. Therefore:

Theorem 15. The variable containment problem for A\3” is decidable.

4 Variable Containment for A\™

We are going to reduce the general variable containment problem for A™ to a
more specific situation, in which we only consider a particular signature and
substitutions into a particular context. This reduction also links the problem to
a problem in the semantics of PCF.

Definition 16. A pseudo-constant in a A\~ -signature X is a term ¢ with () Fx
¢ : o for some type o and:

VI Vo.Vty,... ,tn. I'Fxcty -ty :0 =
Ve € Dom . (x € FVg(cty---t,) <= Ji.xz € FVg(t;))

Any symbol in the signature is obviously a pseudo-constant. The identity
function Az: 0. z is a pseudo-constant if and only if o is a type constant. The
idea behind pseudo-constants is that they behave like constants in many ways,
in particular with respect to the variable containment problem. It is sometimes
useful to assume a constant for any type (for freezing variables), but this would
require an infinite signature. For our purposes it is sufficient to have pseudo-
constants for any type.

Definition 17. A A7 -signature X' is called rich if (i) it includes a base type 0,
(ii) there are constants A : 0 and B : 0 - 0 — 0 in X and (iii) for any other
base type a € X' there are constants C, : 0 > o and D, : @« — 0 in X\

We can extend any signature to a rich signature just by adding the missing
constants. One could also view signatures as rich if they have pseudo-constants
of the required types, but we shall not do that as it only complicates the tech-
nicalities without adding anything substantial. In the following, we assume for
simplicity that there is only one base type 0 in X'. The corresponding adjustments
to the general case are straightforward.

Definition 18. Let X' be rich. For any type o we define a term con, as follows:

cong = A
cong_g = Az: 0.z
cong_,(s—r) = A2: 0. Ay: 0. cong_, (B x (con, o y))

CON(y—r)my = Af: 0 — T.con, ., (f con,)

The function con is well-defined as the right-hand sides of the equations use
“fewer arrows” in the types of con than the corresponding left-hand sides.
Clearly, each con, has type ¢ in the empty context.

Remark: it is worth noting that the terms con, have a more general signifi-
cance, e.g. they show up in [19] where A is 0 and B is addition. As explained in
[9], the map con,_,¢ is the inverse of cong_,, whenever A and B form a monoid;
moreover, in the terminology of category theory [13], they are even morphisms
of (some) actions of this monoid.

Proposition 19. Fach con, is a pseudo-constant.

One consequence of having pseudo-constants for all types is that we can
slightly simplify the variable containment problem.

Lemma20. The variable containment problem I' b5 t = u : T is equivalent to
the following property for a rich extension X' of X:

V6 : ' — X.FVs(t") D FVa(u?) (%)
where X is the fived context (x : 0).

Proof. We prove both implications by contradiction, first (=). The property (x)
is an instance of the variable containment problem if X' is already rich. Otherwise,
let 6 : I' — X be a X'-substitution such that z € FVg(u’) and = ¢ FVz(t?). We
can create a counter-example for variable containment as follows: the context is
A={a:0,b:0— 0 — 0,2’ : 0) and the substitution ¢ : I' — A is given by
é(y) = 6(y)[a/A,b/B,z'/z]. Clearly, u® contains the variable ' essentially free
whilst ¢¢ does not.

Now (<=): suppose variable containment does not hold, i.e. for some context
A, some variable y € Dom A, and some substitution 6 : I' — A we have that

y € FVa(u?) but y ¢ FVg(t?). We can define a substitution ¢ : A — X as
follows:

#(z) = con, if z#vy, zzo € A

#(y) = (congp x)if y: 0 € A

and from this we get a contradiction of (*) using the substitution ¢po6: I' — X:
the pseudo-constant property of all con, makes sure that z is in FVg(u¢°0) while
FVg(t#°?) = 0. O

Variable containment is unaffected by replacing constants by pseudocon-
stants. Based on this observation and lemma 20 we can design a semantic inter-
pretation for types, terms, and judgements to model variable containment. Since
X has only one variable z of type 0, FV(¢) is just a boolean information for any
t with X Fy t : 0. For higher types, we also have to model how the freeness of
x can be affected by G-reduction.

Thus we can interpret 0 : * € X by the partially ordered set {1, T} (with
1 < T) and each function space 0 — 7 by the set of A-definable monotonic
functions from [o] to [7], ordered pointwise. Here, we take the constants L and
T and the function A € [0 — 0 — 0] (greatest lower bound) as primitively
A-definable. Thus, our semantic domain is a fully abstract model for PCFy, i.e.
finitary PCF over the unit type. We come to that later in more detail.

The restriction of the function space to A-definable functions is crucial: the
terms fxx and B (f Ax) (f ¢ A) are equivalent w.r.t. to variable containment
but are different in the full Poset model over [0].

Definition 21. Given a context I" an environment p for I' is a finite map from
the domain of I" to the union of all o] (with () Fx o : %) such that: Vz : o €
I p(z) € [o].

Let X' be rich (otherwise we can make it rich by a signature extension). Given
any context I" and environment p for I', we can interpret judgements I' Fx ¢t : T
as follows.

[[FxXziot:o—=71],=@w—[lz:0bst:T],pm0)
[Fstu:T],=[Fxt:oc—7],([[Fxu:o],)
s oo, = pl)
[[txc:0],=T
IFxc:0-0—-0],=(@—(y—zAy))
[I'txc:o],=[()Fscon, :o]pif o ¢ {0,0—0— 0}

The reason for the special treatment of types 0 and 0 — 0 — 0 is that
con, terms can contain constants of only these two types, so this stops the
recursion. The definition of the interpretation function [_] is well-defined as the
interpretation of each judgement [I" Fx ¢ : o] is in [o]. Moreover, for any given
environment p, the function [_], is clearly recursive.

The interpretation of judgements is in fact independent from the choice of
signature, as all constants of the same type have equal interpretations. The

idea behind this interpretation is the following: we use the fixed context X =
(z : 0) and take T for “x is not essentially free” and L for “z is essentially
free”. Apparently, x does not occur free in any constant ¢ of type 0, which
we model by interpreting ¢ as T. Then, z is essentially free in B t u iff it is
essentially free in either ¢ or u — this explains the interpretation of B (and any
other constant of type 0 — 0 — 0) as A, the greatest lower bound. The rest
of the definition is just book-keeping and reducing more complicated situations
to simpler ones. In particular, Sn-equivalent terms have equal interpretations as
syntactic abstraction and application are modelled by semantic abstraction and
application, and constants of any type can be replaced by pseudo-constants of
the same type as they behave the same w.r.t. the variable containment problem.
As usual, we can compose substitutions and environments.

Definition 22. Let 8 : I' — A be a substitution and p be an environment for
A. We define a function p o 6 as follows:

(pob)(z)=[AF0O(z):7], UIFa:T
Lemma23. Let 0 : 1" — A be a substitution and p be an environment for A.

1. po0 is an environment for I'.

2. For all Tk t:7 we have [AFt? : 7], = [['F t: 7] pop-

Lemma 23 is standard for semantic interpretations of the A-calculus, the proof is
routine and needs hardly any adaptation from (for example) the proof of lemma
24 in [18].

Definition 24. We define an order < on judgements of the same type and con-
text as follows:

('rt:n)<(TFu:t) <= Vp.[I'Ft:7], < [['Fu:T],

Lemma25. Let J;, Jo be judgements J; = I'bFx t; : T.
We have J1 < Jy <= I'Ft; =ty :7T.

Proof. By lemma 20 we can w.l.o.g. assume that Y is rich and restrict our
attention to variable containment w.r.t. the context X . Similarly we can require
X to be the rich extension of the empty signature, because variable containment
and [] are unaffected by replacing constants by arbitrary pseudo-constants.
Since the interpretation of syntactic abstraction and application is by semantic
abstraction and application, 3-reduction does not affect the interpretation. From
this it follows (by a straightforward induction on normal forms) that [X F u :
Olemt =1 <= x € FVa(u).

To prove (<) we need to be able to construct a substitution counterexample
for I' - t1 > tp : 7 whenever we have an environment p such that —[J;], < [J2],.
Because we required each value in the model to be A-definable relative to L, T,
and A, we can find for each value v in [o] a term ¢, such that X ¢, : o and
[X Ft,: 0]z = v. The substitution 6 : I' — X with 6(y) = t,(,) is then the
substitution we were looking for. d

In other words, the variable containment problem is equivalent to deciding
the inequality < in a fully abstract model of PCF; (PCF over the unit type
with constants L and T and A). To decide <, it would be sufficient to effectively
construct such a model, because each type is interpreted by a finite poset. The
connection is rather tight indeed: if we have a partial construction of the model
for types up to order n then we can decide variable containment for A;”.

A recent result by Zaionc [21] means® that variable containment is decidable
for A37, as his technique of creating all A-definable values by some grammar easily
extends to the situation with predefined constants A and B. Sieber’s PCF model
of “logically sequential” elements [20] seems to be effective for finitary PCF and
it is fully abstract up to order 4 and term-generated up to order 3; this also
implies the decidability of variable containment of A3”, though the connection is
less direct than in the case of Zaionc’s result. This improves upon my theorem 15;
but the decision procedures obtained that way are extremely inefficient and of
solely theoretical interest, while the decision procedure outlined earlier for A3
is of polynomial complexity.

For PCF; (PCF over the booleans with constants L, tt, £f, if), effectively
constructing a fully abstract model was posed as an open problem by Jung and
Stoughton in [8]; it is yet unclear whether this is equivalent to our problem.

We can also show that the “effective” construction of a model for PCF; is
necessary to decide < and even the indistinguishability relation .

Theorem 26. The problem of deciding the indistinguishability relation =~ for
PCF; is equivalent to effectively constructing a fully abstract model.

Proof. As explained before, one implication is trivial. It remains to show that ~
gives us a way of constructing a fully abstract model.

We can construct [0] = {L, T} with L < T. Suppose we have constructed
the sets [o;] then we can construct [o; — --- — o, — 0] as follows. Each
element in this set is a function mapping n-tuples to either L or T. There are
only finitely many such functions (as all the [o;] are finite).

To decide whether a particular function F' is A-definable we consider the term
xXF =Af. fayr---ain A--- A fagr - - ag, where the tuples a;; - - - a;, are tuples
of terms representing exactly those tuples (of values) mapped by F to T. Since
the construction of each [o;] is assumed to be complete we can effectively find
a term a for each value v in these sets.

Now take > to be the pointwise extension of the >; such that it is defined
on all monotonic functions, not just the A-definable ones. Now consider any
other function G > F' and its characteristic function xg. Suppose F' is defined
by a term t then [xg t] = L and [xr t] = T. Consequently, xr and x¢g are
distinguishable if F' is A-definable, and thus if xg =~ xr for any G = F then
F cannot be A-definable. Now suppose that xr is distinguishable from xg for
each G = F'. This means that there has to be a term tg for each G such that
[xrta] = T and [xgtc] = L. We can define a term ¢ = Azy -+ - wp.te, @1 - Tp A

8 The title of Zaionc’s paper is a little misleading — he gives the base type order 0
instead of 1, following a deplorable custom in programming language semantics.

---Atg, x1 - Tp where G - - - G, are all functions greater than F'. We obviously
have [xp t] = T and [xg, t] = L for all G;. But this exactly means [¢] = F, i.e.
F'is A-definable.

Hence we can construct Joy — --- — o, — 0] as the set of all monotonic
functions that pass the outlined test, i.e. whose characteristic functions are dis-
tinguishable. O

Unsurprisingly a similar result holds for PCF5, though the proof is a bit
messier, involving pairs of characteristic functions (one for tt, one for £f). We
do not go into that.

5 Conclusion and Open Problems

We have explained why the usual condition FV(l) O FV(r) for higher-order
rewrite rules [— r is inadequate and why it should be replaced by the “variable
containment” property [> 7, the rewrite interior of FVg(l) 2 FVz(r).

We have shown that variable containment is decidable for the third-order
fragment of A7, also giving a constructive solution for the second-order frag-
ment. The general problem for A™ is equivalent to effectively constructing a
fully abstract model for finitary PCF over the unit type.

Open problems are:

— Is the problem for A~ decidable? I have seen a preliminary version of an
unpublished paper which claims that it is indeed. The proof in the paper is
rather complicated and without thorough revision I would not say that the
problem is settled.

— Is variable containment equivalent to providing a fully abstract model for
PCF>? This is very delicate. I had a promising proof idea which I pursued
for a few weeks without getting it to work. One of the referees conjectured
that the PCF5 model is not recursive.

— For which type systems is variable containment undecidable?

— Finally: what about other type systems of the A-cube, is there a similar
correspondence between full abstraction and variable containment for those
systems? Probably yes, but to make any sense of this, one first has to gen-
eralise the definition of full abstraction to these type systems.

Acknowledgments

Many thanks to Alex Simpson with whom I had a number of fruitful discussions
on the subject, especially on the PCF part and theorem 26. Also thanks to the
HOA referees.

References

1. Hendrik P. Barendregt. The Lambda-Calculus, its Syntaz and Semantics. North-
Holland, 1984.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hendrik P. Barendregt. Introduction to generalised type systems. Journal of
Functional Programming, 1(2):124-154, 1991.

Hendrik P. Barendregt. Lambda calculi with types. In Handbook of Logic in
Computer Science, Vol.2, pages 117-309. Oxford Science Publications, 1992.
Gilles Dowek. Third order matching is decidable. In Proceedings of the 7th Sym-
posium on Logic in Computer Science, pages 2-10, 1992.

. Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University of

Edinburgh, 1992.
W. D. Goldfarb. The undecidability of the second-order unification problem. The-
oretical Computer Science, 13:225-230, 1981.

. Gérard Huet and Bernard Lang. Proving and applying program transformations

expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

Achim Jung and Allen Stoughton. Studying the fully abstract model of PCF within
its continuous function model. In Typed Lambda Calculi and Applications, 1993.
LNCS 664.

. Stefan Kahrs. Towards a domain theory for termination proofs. In Rewriting

Techniques and Applications, pages 241-255, 1995. LNCS 914.

Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Centrum voor
Wiskunde en Informatica, 1980.

Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combina-
tory reduction systems: Introduction and survey. Theoretical Computer Science,
121:279-308, 1993.

Ralph Loader. The undecidability of A-definability, 1994.

Saunders MacLane. Categories for the Working Mathematician. Springer, 1971.
Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their conflu-
ence. Technical Report TUM-194333, Technische Universitat Miinchen, 1994.
Aart Middeldorp. Modular aspects of properties of term rewriting systems related
to normal forms. In Rewriting Techniques and Applications, pages 263-277, 1989.
LNCS 355.

Tobias Nipkow. Higher order critical pairs. In Proceedings of the 6th Symposium
on Logic in Computer Science, pages 342-349, 1991.

Vincent Padovani. On equivalence classes of interpolation equations. In Typed
Lambda Calculi and Applications, pages 335-249, 1995. LNCS 902.

Jaco van de Pol. Termination proofs for higher-order rewrite systems. In Higher-
Order Algebra, Logic, and Term Rewriting, pages 305-325, 1993. LNCS 816.

Jaco van de Pol and Helmut Schwichtenberg. Strict functionals for termina-
tion proofs. In Typed Lambda Calculi and Applications, pages 350-364, 1995.
LNCS 902.

Kurt Sieber. Reasoning about sequential functions via logical relations. In M.P.
Fourman, P.T. Johnstone, and A.M. Pitts, editors, Applications of Categories in
Computer Science, pages 258-269. Cambridge University Press, 1992.

Marek Zaionc. Lambda definability is decidable for second order types and for
regular third order types. Unpublished Manuscript, University of New York at
Buffalo, 1995.

This article was processed using the ETEX macro package with LLNCS style

