17 research outputs found

    Generalized Wishart processes for interpolation over diffusion tensor fields

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive tool for watching the microstructure of fibrous nerve and muscle tissue. From dMRI, it is possible to estimate 2-rank diffusion tensors imaging (DTI) fields, that are widely used in clinical applications: tissue segmentation, fiber tractography, brain atlas construction, brain conductivity models, among others. Due to hardware limitations of MRI scanners, DTI has the difficult compromise between spatial resolution and signal noise ratio (SNR) during acquisition. For this reason, the data are often acquired with very low resolution. To enhance DTI data resolution, interpolation provides an interesting software solution. The aim of this work is to develop a methodology for DTI interpolation that enhance the spatial resolution of DTI fields. We assume that a DTI field follows a recently introduced stochastic process known as a generalized Wishart process (GWP), which we use as a prior over the diffusion tensor field. For posterior inference, we use Markov Chain Monte Carlo methods. We perform experiments in toy and real data. Results of GWP outperform other methods in the literature, when compared in different validation protocols

    Application of a Tensor Interpolation Method on the Determination of Fiber Orientation Tensors From Computed Tomography Images

    Get PDF
    When investigating the mechanical behavior of fiber-reinforced polymers, fiber orientation plays a decisive role concerning anisotropy. Fiber orientation distributions are typically measured in the form of fiber orientation tensors. In order to measure orientation tensors, computed tomography scans and consecutive image processing methods have become one of the leading non-destructive testing methods. The conflict between scan resolution and sample size limits the volume that can be scanned. To obtain the fiber orientation behavior across an entire plate, a direct interpolation of orientation tensors computed from CT scans of smaller volumes at selected coordinates of the plate is implemented. Rather than a component-based interpolation, the authors chose a decomposition and reassembly method interpolating shape and orientation of the tensors separately. While this approach has been implemented and used for e.g. diffusion tensors in medical imaging, the authors consider the application to sparse but measured CT-based data to be a novelty

    Tensor decomposition processes for interpolation of diffusion magnetic resonance imaging

    Get PDF
    Diffusion magnetic resonance imaging (dMRI) is an established medical technique used for describing water diffusion in an organic tissue. Typically, rank-2 or 2nd-order tensors quantify this diffusion. From this quantification, it is possible to calculate relevant scalar measures (i.e. fractional anisotropy) employed in the clinical diagnosis of neurological diseases. Nonetheless, 2nd-order tensors fail to represent complex tissue structures like crossing fibers. To overcome this limitation, several researchers proposed a diffusion representation with higher order tensors (HOT), specifically 4th and 6th orders. However, the current acquisition protocols of dMRI data allow images with a spatial resolution between 1 mm3 and 2 mm3, and this voxel size is much bigger than tissue structures. Therefore, several clinical procedures derived from dMRI may be inaccurate. Concerning this, interpolation has been used to enhance the resolution of dMRI in a tensorial space. Most interpolation methods are valid only for rank-2 tensors and a generalization for HOT data is missing. In this work, we propose a probabilistic framework for performing HOT data interpolation. In particular, we introduce two novel probabilistic models based on the Tucker and the canonical decompositions. We call our approaches: Tucker decomposition process (TDP) and canonical decomposition process (CDP). We test the TDP and CDP in rank-2, 4 and 6 HOT fields. For rank-2 tensors, we compare against direct interpolation, log-Euclidean approach, and Generalized Wishart processes. For rank-4 and 6 tensors, we compare against direct interpolation and raw dMRI interpolation. Results obtained show that TDP and CDP interpolate accurately the HOT fields in terms of Frobenius distance, anisotropy measurements, and fiber tracts. Besides, CDP and TDP can be generalized to any rank. Also, the proposed framework keeps the mandatory constraint of positive definite tensors, and preserves morphological properties such as fractional anisotropy (FA), generalized anisotropy (GA) and tractography

    Local white matter geometry from diffusion tensor gradients

    Get PDF
    We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia

    Proceedings of the First International Workshop on Mathematical Foundations of Computational Anatomy (MFCA'06) - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceNon-linear registration and shape analysis are well developed research topic in the medical image analysis community. There is nowadays a growing number of methods that can faithfully deal with the underlying biomechanical behaviour of intra-subject shape deformations. However, it is more difficult to relate the anatomical shape of different subjects. The goal of computational anatomy is to analyse and to statistically model this specific type of geometrical information. In the absence of any justified physical model, a natural attitude is to explore very general mathematical methods, for instance diffeomorphisms. However, working with such infinite dimensional space raises some deep computational and mathematical problems. In particular, one of the key problem is to do statistics. Likewise, modelling the variability of surfaces leads to rely on shape spaces that are much more complex than for curves. To cope with these, different methodological and computational frameworks have been proposed. The goal of the workshop was to foster interactions between researchers investigating the combination of geometry and statistics for modelling biological shape variability from image and surfaces. A special emphasis was put on theoretical developments, applications and results being welcomed as illustrations. Contributions were solicited in the following areas: * Riemannian and group theoretical methods on non-linear transformation spaces * Advanced statistics on deformations and shapes * Metrics for computational anatomy * Geometry and statistics of surfaces 26 submissions of very high quality were recieved and were reviewed by two members of the programm committee. 12 papers were finally selected for oral presentations and 8 for poster presentations. 16 of these papers are published in these proceedings, and 4 papers are published in the proceedings of MICCAI'06 (for copyright reasons, only extended abstracts are provided here)

    Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with DTI MRI

    Get PDF
    The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially harmful molecules, such as amyloid beta, from the brain. As such, its components may represent new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent neurodegenerative conditions. Currently, however, the absence of any non-invasive measurement technique prohibits detailed understanding of glymphatic function in the human brain and in turn, it's role in pathology. Here, we present the first non-invasive technique for the assessment of glymphatic inflow by using an ultra-long echo time, low b-value, multi-direction diffusion weighted MRI sequence to assess perivascular fluid movement (which represents a critical component of the glymphatic pathway) in the rat brain. This novel, quantitative and non-invasive approach may represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer's disease

    Local polynomial regression for symmetric positive definite matrices: Local Polynomial Regression

    Get PDF
    Local polynomial regression has received extensive attention for the nonparametric estimation of regression functions when both the response and the covariate are in Euclidean space. However, little has been done when the response is in a Riemannian manifold. We develop an intrinsic local polynomial regression estimate for the analysis of symmetric positive definite (SPD) matrices as responses that lie in a Riemannian manifold with covariate in Euclidean space. The primary motivation and application of the proposed methodology is in computer vision and medical imaging. We examine two commonly used metrics, including the trace metric and the Log-Euclidean metric on the space of SPD matrices. For each metric, we develop a cross-validation bandwidth selection method, derive the asymptotic bias, variance, and normality of the intrinsic local constant and local linear estimators, and compare their asymptotic mean square errors. Simulation studies are further used to compare the estimators under the two metrics and to examine their finite sample performance. We use our method to detect diagnostic differences between diffusion tensors along fiber tracts in a study of human immunodeficiency virus
    corecore