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Abstract 11 

The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially 12 

harmful molecules, such as amyloid beta, from the brain. As such, its components may represent 13 

new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent 14 

neurodegenerative conditions.  Currently, however, the absence of any non-invasive measurement 15 

technique prohibits detailed understanding of glymphatic function in the human brain and in turn, 16 

it’s role in pathology.  Here, we present the first non-invasive technique for the assessment of 17 

glymphatic inflow by using an ultra-long echo time, low b-value, multi-direction diffusion weighted 18 

MRI sequence to assess perivascular fluid movement (which represents a critical component of the 19 

glymphatic pathway) in the rat brain.   This novel, quantitative and non-invasive approach may 20 

represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need 21 

for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer’s 22 

disease.  23 
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 30 

Introduction 31 

The recent identification of the glymphatic system and the dural lymphatic network provide exciting 32 

new perspectives on waste clearance mechanisms within the central nervous system (CNS)1,2.  33 

According to the glymphatics hypothesis, cerebrospinal fluid (CSF) crosses from the subarachnoid 34 

space into the periarterial space where it swiftly flows towards the brain tissue. Fluid then passes 35 

into the parenchyma from the perivascular space, a transition mediated by aquaporin-4 (AQP4) 36 

channels that reside on the end feet of astrocytes. This periarterial inflow creates a convective flux 37 

of fluid across the parenchyma that exits via perivenous channels, carrying with it ‘waste products’ 38 

of brain metabolism. As such, the glymphatic pathway has been proposed to function as a ‘cleaning 39 

system’ of the brain. The exchange of CSF with interstitial fluid (ISF) is an established mechanism 40 

underlying the clearance of amyloid beta (Aβ), recognised as a leading molecular candidate to 41 

initiate Alzheimer’s disease (AD) 2-7.   42 

Despite evidence that aspects of the glymphatic pathway are preserved across species8-10, key 43 

questions remain on the anatomy and function in the human brain and to what extent it contributes 44 

to pathology. Currently, however, these questions cannot be answered because there are no non-45 

invasive techniques for assessment.  The development of non-invasive methods to image CSF-46 

mediated brain clearance pathways, such as the glymphatic system, would enable repeated and 47 

practical measurement to investigate this system in the human brain and the intact animal skull.  48 

This, in turn, may help fully characterise impairment of CSF-mediated clearance pathways with age11, 49 

as well as the contribution to Aβ accumulation in AD. Ultimately, such methods could address the 50 

pressing clinical need for reliable and early biomarkers of AD, by identifying patients at risk of Aβ 51 

accumulation due to failing clearance mechanisms.   52 

The perivascular space is a fluid filled compartment that surrounds selected blood vessels in the 53 

brain12.  Perivascular channels form a central component of the glymphatic pathway that is said to 54 

drive rapid CSF-ISF exchange.   Although the precise routes and fluid dynamics that underlie CSF-ISF 55 

exchange remain controversial 13-16, several independent groups have identified perivascular 56 

channels as central to this pathway2,17-19. As such, the perivascular space represents a promising 57 

target for non-invasive imaging biomarkers of CSF-ISF exchange. To date, perivascular function has 58 

been studied using only invasive methods: ex-vivo microscopy17 , two-photon imaging2 and contrast-59 

enhanced MRI following intra-cranial/lumbar injection20,21. In this work we introduce the first non-60 
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invasive method for the assessment of perivascular function using contrast-free MRI, and 61 

demonstrate use of the method in the rodent brain. 62 

Despite recognition that the perivascular space facilitates CSF-ISF exchange, the nature of fluid 63 

movement within this channel is yet to be unambiguously determined. Broadly, the glymphatics 64 

hypothesis describes perivascular fluid movement as possessing coherent, bulk flow2.  However, this 65 

has been questioned by other studies which propose that the fast distribution of CSF-tracers along 66 

the perivascular space can be explained by rapid dispersion of fluid/tracers via mechanical 67 

pulsations, with little bulk flow14,22.  Given the current uncertainty, when considering non-invasive 68 

MRI techniques for assessment, diffusion MRI represents a prime candidate for initial application 69 

owing to its established sensitivity to water dispersion, together with evidence of sensitivity to bulk 70 

flow (non-plug e.g. laminar flow) from prior studies of the cerebral vasculature23. That is, irrespective 71 

of whether perivascular fluid movement is dominated by bulk flow or rapid dispersion with little bulk 72 

flow, diffusion MRI sequences, if appropriately tuned, should yield sensitive and quantitative 73 

correlates of fluid movement, albeit non-specific to flow coherence.  74 

In this study, we apply ultra-long echo time (TE), diffusion weighted MRI sequences to assess fluid 75 

movement within perivascular channels surrounding the middle cerebral artery (MCA) of the healthy 76 

rat brain. In addition, given evidence that cerebral arterial pulsation is a key mechanism that drives 77 

PVS fluid movement19,24, we investigate the dependence of the technique on vascular pulsatility 78 

through cardiac gating and modulation by the adrenoceptor agonist, dobutamine. This technique 79 

represents the first non-invasive biomarker of perivascular action, working towards new 80 

translational techniques to assess CSF mediated brain clearance pathways and their role in disease.     81 

Results  82 

Non-Invasive Imaging of Perivascular Channels  83 

The ultra-long TE MRI sequence presented here is designed to attenuate the measured signal from 84 

the blood and parenchyma that immediately surround the perivascular space in order to minimise 85 

partial volume effects, which represent a potential confounder for assessment by MRI given the 86 

small size of this compartment. Figure 1A shows a b0 image of the axial slice through the ventral 87 

aspect of the rat brain.  The subarachnoid CSF that bathes the Circle of Willis (CoW) can be clearly 88 

observed, with marked contrast between the blood vessels within the CoW and surrounding CSF.  89 

Bright tracts appear either side of both MCA branches (Figure 1A) which, due to the ultra-long echo 90 

time, must derive from fluid filled compartments of similar composition to the CSF in the 91 
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subarachnoid space. This observation, together with the characteristic morphology that runs 92 

alongside and parallel to the MCA, is consistent with the description of the perivascular space as a 93 

fluid filled compartment that surrounds major blood vessels feeding the brain12. Indeed, the location 94 

of this compartment is highly consistent with direct assessment from a previous study (Figure 1B, 95 

adapted from Lochhead et al.,18). 96 

The precise definition of the perivascular (and ‘paravascular’) space is somewhat unclear, as 97 

highlighted in a number of recent articles14,15,25.   Whether the fluid filled tracts around the MCA that 98 

we observe (Figure 1 A) occupy a physically and functionally distinct ‘paravascular’ space as 99 

described by Iliff et al.,2 forms a more continuous pathway with subarachnoid CSF as described by 100 

Bedussi et al.25, or are well described by a perivascular space as proposed by Lochhead et al.,18 101 

remains unknown. Irrespective of the precise anatomical bordering of the fluid filled tracts identified 102 

in this work, and despite these semantic differences, all the aforementioned studies have 103 

highlighted the movement of fluid that surrounds subarachnoid arteries as a key site of CSF-tracer 104 

inflow towards the parenchyma. Hence non-invasive assessment of fluid movement within this 105 

compartment represents a meaningful measure of CSF-ISF exchange pathway function.  106 

Assessment of Fluid Movement using Multi-Direction Diffusion Weighted Imaging  107 

Application of a motion probing gradient (MPG) along the principle direction of the perivascular 108 

tracts located around the MCA was observed to markedly attenuate the signal from these tracts 109 

relative to when the MPG was applied perpendicular to their principle orientation (Figure 2 A). 110 

Accordingly, across the 10 subjects, within the right perivascular space, the pseudo-diffusion 111 

coefficient (D*) parallel to PVS orientation was significantly greater than D* in either perpendicular 112 

direction (p<0.01 respectively). In a similar fashion, D* (parallel to principle direction of left PVS) was 113 

significantly greater than D* in either perpendicular direction [p<0.01]. (Figure 2 B).  These data 114 

demonstrate that the MRI sequence employed here can detect the directional dependence of fluid 115 

movement within the perivascular space (the principal directionality of which is parallel to their 116 

orientation), which verifies that they are sensitised to the movement of fluid within this 117 

compartment.  Within the CSF in the subarachnoid space, it was observed that D* when the MPGs 118 

were applied in the in-plane orientation (i.e. parallel to the left or right branch of the MCA) were 119 

both significantly greater than D* in the through plane orientation [p<0.01]. This is consistent with 120 

the known direction of CSF movement in the rostral-caudal direction within this region from prior 121 

invasive studies20,26.   122 

 123 
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Diffusion Tensor Imaging of CSF/Perivascular Fluid Movement 124 

Having verified the sensitivity of the MRI sequence to fluid movement within the perivascular and 125 

subarachnoid space, MPGs were then applied in six different directions to generate a pseudo 126 

diffusion tensor image that reflects the directionality and magnitude of subarachnoid CSF and 127 

perivascular fluid movement.  128 

Figure 3 illustrates that, for the subarachnoid space ROI, the mean D* tensor ellipsoid (n=6) was well 129 

aligned with the known principle direction of CSF movement (caudal-rostral, observed in several 130 

invasive studies of the rodent brain20,26). Likewise, Figure 3 illustrates that the principle direction of 131 

the mean D* tensor of the left and right perivascular space, respectively, was aligned with the 132 

orientation of the respective branch of the MCA.  The D* tensors for each of the individual animals 133 

are shown in Figure 2- figure supplement 1, which show reasonable consistency with the 134 

directionality of the mean tensors shown in Figure 3. The magnitude of the D* tensors within this 135 

region were markedly reduced post-mortem, which demonstrates that a large component of the D* 136 

measurements reflects fluid movement driven by physiological perturbations such as cardiac and 137 

respiratory pulsation and secretion from the choroid plexus (Figure 3 – figure supplement 1). This 138 

may also partially reflect the reported collapse of the PVS post mortem [1] (indeed visual inspection 139 

of the b0 images indicates a reduction in signal intensity within this region [data not shown]).  140 

Fractional anisotropy (SEM) within the right and left perivascular space and the subarachnoid space 141 

was 0.44 (±0.04), 0.36 (±0.04) and 0.6 (±0.02) respectively with mean diffusivity (SEM) calculated to 142 

be 0.0042 (±0.0003), 0.0052 (±0.0003), 0.0065 (±0.0007) mm2/s. Figure 3E shows a map of pseudo 143 

diffusion tensors for a single subject. The principal direction of the D* tensors in the perivascular 144 

tracts that surround the left and right MCA respectively can be seen to run parallel to the orientation 145 

of the MCA. Likewise, the principal orientation of the individual voxel D* tensors can be seen to run 146 

rostral-caudal in the mid-section of the CoW.  147 

Cerebral Arterial Pulsation Drives Non-invasive Measures of Perivascular Fluid Movement 148 

Previous studies have identified cerebral vascular pulsation to play a prominent role in perivascular 149 

fluid propulsion. To investigate this mechanism, MRI data were captured during both cerebral 150 

arterial pulsation and diastole using ECG gating with variable delays to image capture (36 ms and 151 

116 ms from the r-wave to the centre of ‘diffusion’ weighting respectively). The results are shown in 152 

Figure 4, where a striking and highly directional dependence of D* on cerebral vascular pulsation 153 

was observed in the PVS [Figure 4].  D* in the PVS was ~ 300% greater during arterial pulsation 154 

relative to diastole when motion probing gradients were applied parallel to the principle orientation 155 
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(p<0.01). We recorded a more moderate dependence (p=0.1) on the r-wave delay within the CSF ROI 156 

at the mid-section of the CoW (although visual inspection of the D* maps suggests that other regions 157 

within the subarachnoid CSF appeared to show greater changes with the r-wave delay). Minimal 158 

dependence of the D* measures on the r-wave delay was observed in the 3rd ventricle (p = 0.2).   159 

Administration of the adrenoceptor agonist, dobutamine, increased heart rate from (354 ± 8 to 519 160 

±17 bpm).  A 65% increase in D* along PV channels was recorded (p<0.01) following dobutamine 161 

with comparatively little change after vehicle (Figure 4 C).  No significant changes were observed in 162 

the subarachnoid space ROI at the mid-section of the CoW following dobutamine (p=0.39, although 163 

visual inspection of the data suggests other regions within the subarachnoid CSF did show marked 164 

increases in D*).  Dobutamine had minimal effect on D* within the 3rd ventricle (p=0.30).  165 

Together these data are concordant with previous invasive measures demonstrating that 166 

perivascular fluid movement is driven by cerebral vascular pulsation and that we are now able to 167 

capture this mechanistic dependence non-invasively using the techniques introduced here.  168 

Discussion 169 

In this study, we introduce a novel MRI method to measure a distinct feature of brain physiology 170 

that, to date, has only be assessed using invasive methods – the movement of fluid in the 171 

perivascular space.  The perivascular space serves as a preferential pathway for CSF-ISF exchange, an 172 

important mechanism supporting the clearance of potentially harmful molecules, such as Aβ, from 173 

the CNS.  This non-invasive and translational method may have utility in AD research given evidence 174 

that Aβ accumulation (in late stage, sporadic AD) occurs not because of increased Aβ production but 175 

because of decreased rates of Aβ clearance27.  Thus, this technique may expedite greater 176 

understanding of how Aβ clearance mechanisms become impaired with ageing11 and in turn reveal a 177 

new window in early AD pathogenesis in which to target future diagnostic and treatment strategies. 178 

The technique may have broader utility to a range of neurological conditions given reported 179 

associations between glymphatic function in, for example, stroke28 and traumatic brain injury29.   180 

The precise mechanisms that underlie CSF-ISF exchange are yet to be fully defined and this remains 181 

an active area of research.  Accumulative evidence, however, has established cerebral vascular 182 

pulsation as an important mechanism underlying perivascular fluid movement19,24. Here, we have 183 

captured the action of cerebral arterial pulsation to drive perivascular fluid movement using non-184 

invasive techniques (Figure 4). The measured D* showed a remarkable dependence on vascular 185 

pulsation with a ~300% increase recorded during arterial pulsation relative to diastole (Figure 4). 186 
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Moreover, D* (non-gated) was found to markedly increase following adrenoceptor agonist, 187 

dobutamine.  The non-invasive nature of this technique may enable future studies to investigate the 188 

mechanistic link between vascular pulsatility and PVS fluid movement in the healthy human brain, 189 

and its modulation by pathology as well as novel therapy.  190 

In this study, D* estimates were captured using a b0 image and then with motion probing gradients 191 

applied at a single b-value, in different directions. Future studies may wish to examine the behaviour 192 

of the PVS signal over a greater range of b-values (and different values of δ and Δ) to examine 193 

whether, in combination with more advanced signal modelling, this may reveal more detailed insight 194 

into PVS fluid movement.  Of note,  a previous study aimed to correlate MRI measures of water 195 

diffusivity from the PVS to AD severity30. However, this earlier work presents limited evidence as to 196 

the contribution of the perivascular space to the measured MRI signal and hence that the 197 

parameters extracted from their measurements provide meaningful correlates of PVS fluid 198 

movement. 199 

The expression of AQP4 appears to be mechanistically important in CSF-ISF exchange16,31. However, 200 

although genetic deletion of AQP4 was found to markedly decrease rates of small molecular weight 201 

tracer inflow from the CSF into the brain, it did not appear to affect the movement of tracers along 202 

para-arterial channels2. Thus, by extension, as the technique here is targeted to PVS fluid movement, 203 

it may not be sensitive to AQP4 related modulation of CSF-ISF exchange through genetic deletion of 204 

AQP4 in the rodent brain. Hence, future studies are required to fully elucidate the relationship 205 

between para/perivascular fluid movement, CSF-ISF exchange and AQP4 expression15.  Furthermore, 206 

rates of glymphatic inflow have been linked to changes in extracellular space volume32 and central 207 

noradrenaline activity33 and how these factors may modulate measures of D* captured using the 208 

techniques presented here would be an interesting avenue of further study. Moreover, how the 209 

technique introduced here may be influenced by pathology is an important consideration.  For 210 

example, the composition of the CSF and PV fluid may change in disease, in turn altering the 211 

relaxation times of this compartment (for example the presence of iron could reduce PVS T2). Whilst 212 

this may not confound measures of D*, as relaxation time changes will be accounted for by the 213 

acquisition of a b0 image at identical TR and TE, this may change contrast between the PVS and 214 

surrounding tissue and potentially lessen the SNR of the measurements. MR relaxometry studies 215 

targeted to the normal and enlarged PVS may be an interesting avenue of future investigation 216 

leading to novel biomarkers of PVS composition.   Efforts are ongoing to investigate the sensitivity of 217 

the method to detect dysfunction of perivascular fluid movement associated with ageing and models 218 
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of pathological conditions, with the knowledge that clinical translation of this non-invasive approach 219 

may be practically achievable in the near future. 220 

 221 

Materials and Methods 222 

All experiments were performed in accordance with the UK Home Office’s Animals (Scientific 223 

Procedures) Act (1986). In total, 27 male Sprague Dawley rats were used in these experiments (n=10 224 

for multi-direction diffusion weighted imaging, n=6 for diffusion tensor imaging, n=5 for ECG gating, 225 

n=6 for dobutamine). Anaesthesia was induced using 4% isoflurane in 0.4L/min medical air and 226 

0.1L/min O2 and was maintained at 2% isoflurane whilst the animal was placed on a MRI compatible 227 

plastic probe. The head was secured using ear bars, a bite bar and a nose cone to minimise motion 228 

during the data acquisition. Once the probe was fixed in the scanner, isoflurane concentration was 229 

reduced to 1.75% in 0.4L/min medical air and 0.1L/min O2. Core body temperature was measured 230 

throughout using a rectal thermometer (Small Animal Instruments Inc.) and maintained at 37 ± 0.5oC 231 

using heated water tubing during the preparation and heated water tubing and warm air flow during 232 

the data acquisition period. Breathing rate was monitored throughout the acquisitions using a 233 

respiration pillow sensor (Small Animal Instruments Inc.). A scavenger pump was fixed inside the 234 

magnet bore to prevent build-up of isoflurane.  For the multiple direction diffusion weighting, power 235 

analysis based on pilot data was used to estimate the number of animal required to detect a 236 

significant difference in D* when motion probing gradients are applied parallel to the perivascular 237 

tracts relative to D* when motion probing gradients are applied perpendicular to the perivascular 238 

tracts (assuming a normal distribution). 239 

Magnetic Resonance Imaging 240 

All imaging was performed using a 9.4T VNMRS horizontal bore scanner (Agilent Inc., Palo Alto, CA). 241 

A 72mm inner diameter volume coil was used for RF transmission and signal was received using a 4 242 

channel array head coil (Rapid Biomedical). The imaging gradient hardware was calibrated using a 243 

custom designed structural phantom, as previously described34.  244 

A key aspect of the MRI sequence was the use of a long TE to attenuate the signal from the 245 

surrounding arterial blood and tissue (T2~ 30 and 38ms respectively at 9.4T 35) relative to the MRI 246 

signal from CSF in the subarachnoid space and fluid in perivascular channels (T2~111ms 36).  In order 247 

to achieve this, a fast spin echo (FSE) sequence was employed (180o refocusing pulses) with an echo 248 
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train length of 16 giving an effective echo time of 142ms (thus the ultra-long TE is compatible with a 249 

multiple echo train FSE readout for SNR efficiency). Therefore, at this echo time, the signal from the 250 

grey matter tissue, blood and CSF will have decayed to ~2%, 1% and 28% of the theoretical signal at 251 

TE=0 respectively.  In addition, the use of an ultra-long TE permits a long echo train per excitation 252 

(16 echoes) to increase the SNR efficiency of the acquisition (i.e. SNR per unit time). Finally, the use 253 

of a relatively long TR (5000ms), further weights the measured MRI signal from CSF/interstitial fluid 254 

relative to surrounding blood/tissue.  It should be noted that, as part of the FSE readout, phase 255 

encoding lines will be acquired at a range of different TEs and thus the eventual contrast in the 256 

image may deviate from that predicted by assuming a constant TEeff across all phase-encoding steps. 257 

Simulations (data not shown) indicate that this effect was minimal in the current study but future 258 

applications should consider this aspect of MRI image capture. 259 

In this study, four separate sets of experiments were performed, that can be divided into ‘multiple 260 

direction diffusion weighted imaging’ (n=10), ‘diffusion tensor imaging’ (n=6), ‘ECG-gating (n=5)’ and 261 

’Dobutamine (n=6)’. 262 

Multiple Direction Diffusion Weighted imaging (n=10) 263 

An axial slice was positioned at the ventral aspect of the brain at the level of the Circle of Willis (CoW 264 

- see Figure 1). A series of scout images were acquired with the slice orientation and position 265 

manually altered in an iterative manner in order that the perivascular space around the MCA could 266 

be optimally visualised.  267 

The angular orientation of the image was then changed so that the animals right perivascular tracts 268 

(surrounding the MCA in the axial slice) was aligned with the orientation of the frequency encoding 269 

(FE) imaging gradients. In doing so, the animals left perivascular tracts then become approximately 270 

aligned with the phase encoding (PE) imaging gradients (see Figure 2). This ensured that, when 271 

applying diffusion (or motion probing) gradients along the FE direction, the direction of diffusion 272 

weighting was parallel to the right perivascular tract and perpendicular to the left tract; and vice 273 

versa when applying diffusion gradients along the PE direction. As a result, the sensitivity for 274 

measuring differences in fluid movement along and across both tracts was maximised. 275 

A fast-spin echo imaging sequence was acquired with the following sequence parameters: TR = 5s, 276 

Echo Train Length = 16, effective TE = 142 ms, echo spacing = 10 ms, FOV = 25 x 25 mm, matrix size = 277 

128 x 128, slice thickness =0.8 mm or 1 mm, number of averages =12. A b=0 image was acquired 278 

with minimal diffusion weighting (b0) and then with separate acquisitions with the motion probing 279 
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gradients applied in three principle directions (X, Y, Z) with a b-value of 107 s/mm2  (δ = 5 ms, Δ = 280 

26ms , G = 4.2 G/cm).    281 

Regions of interest were manually drawn around the perivascular tracts surrounding the left and 282 

right MCA, as well as within the CSF of the subarachnoid space in the mid-section of the CoW from 283 

the b0 images. The subarachnoid space ROI was chosen because previous invasive measures have 284 

demonstrated rapid caudal-rostral CSF-tracer movement in this region28,37. As such, data from this 285 

ROI can provide a degree of validation for the technique if the directionality of fluid movement is 286 

found to be consistent with the established caudal-rostral fluid movement. The pseudo-diffusion 287 

coefficient (D*) was then calculated for each direction of the applied motion probing gradients using 288 

the following equation: 289 

S = S0 exp(-bD*) 290 

where S is the measured signal at b=107s/mm2, S0 is the signal taken from the b0 image. In this work 291 

we choose to report the exponential decay coefficient as the pseudo diffusion coefficient (D*) since 292 

this is analogous to the Intra-voxel Incoherent Motion (IVIM) literature where in-vivo D* estimates 293 

reflect an unknown contribution from relatively coherent flow in large and/or directionally ordered 294 

vessels and isotropic fluid motion derived from randomly orientated vessels within a MRI voxel.  295 

A paired t-test was applied to investigate i) if D* was greater when the motion probing gradient was 296 

applied parallel to the principle direction of the perivascular tracts, relative to application in each of 297 

the orthogonal planes for the left and right perivascular channels respectively; ii) if D* in the 298 

subarachnoid space ROI was significantly greater in the FE and PE directions than in the through 299 

plane slice selection direction. 300 

Diffusion Tensor Imaging (n=6) 301 

Images were acquired with no ‘diffusion weighting’ (b0) and then using motion probing gradients 302 

applied in 6 different directions (δ = 7.5 ms, Δ = 52ms, G = 1.5 G/cm, b value ~ 100 s/mm2) 303 

respectively with the following sequence parameters: TR = 5s, Echo Train Length = 16, effective TE = 304 

142 ms, FOV = 30 x 15 mm, matrix size = 128 x 64 , slice thickness = 1 mm, number of averages =24.    305 

Pseudo-Diffusion tensors were generated using a calculated b-matrix that incorporated the 306 

‘diffusion’ weighting introduced by the imaging gradients. As described above, ROIs were drawn 307 

around the perivascular tracts that surround the animal’s left and right MCA, as well as the CSF in 308 

the subarachnoid space that resides in the mid-section of the Circle of Willis. For visualisation 309 
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purposes,  pseudo-diffusion tensor ellipsoids were generated using the fanDTasia routines in Matlab 310 

38. For pseudo-diffusion tensor mapping, images were smoothed using an edge preserving filter and 311 

thresholded based on signal intensity, to remove signals that did not principally derive from fluid 312 

filled compartments and images were generated using the Explore DTI toolbox39. Maps were colour 313 

coded according to their principle orientation. In one animal, the diffusion tensor sequence was 314 

applied to the brain immediately post-mortem.  315 

ECG Gating (n=5) 316 

In these experiments, a three lead electrode was used to measure ECG signals in the bore of the 317 

magnet. The diffusion weighted sequence was acquired with the following parameters: TR = 5s, Echo 318 

Train Length = 16, effective TE = 142 ms, echo spacing = 10 ms, FOV = 25 x 25 mm, matrix size = 128 319 

x 128, slice thickness = 1 mm, number of averages =12, δ = 5 ms, Δ = 26ms , diffusion gradient 320 

amplitude = 2.3 G/cm, b value ~ 45 s/mm2, diffusion gradients applied in two directions (in plane, 321 

parallel to the PVS around the left and right MCA respectively).   322 

Image capture was gated to the ECG signal and image acquisition began either directly after the r-323 

wave or with an 80 ms delay. Given that the diffusion weighting is applied during the first echo time 324 

at 72ms, this results in a delay of 36ms from the r-wave to the centre of diffusion weighting (i.e the 325 

first 180o refocusing pulse) or 116ms with the additional 80ms delay. As Δ was 26ms in these 326 

acquisitions, the ‘diffusion weighting’ was therefore applied between 23 and 49ms from the r-wave 327 

and 103 and 129ms from the r-wave respectively.  Given previous recordings of pulse wave velocity 328 

in the mouse brain of 2.69 m/s 40 and given an approximate distance from the heart to the MCA of 329 

10cm in ~400g rats (together with the separation between adjacent r-waves to be ~150ms) we 330 

define the separate acquisitions to therefore take place during cerebral arterial pulsation or diastole.  331 

It should be noted that due to the ECG gating employed in these experiments, the TR will vary 332 

slightly between successive echo trains, but given the minimum TR was 5s and that the r-r interval in 333 

the rat is ~ 150ms, this should introduce relatively little variation into the measured MRI signal.  ROIs 334 

were drawn around the left and right PVS and within the mid-section of the subarachnoid space as 335 

before. In addition, ROIS were drawn within the 3rd ventricle to examine the r-wave delay 336 

dependence on measures of D* within ventricular CSF.  The average D* in the PVS (MPGs applied 337 

parallel and perpendicular to PVS orientation respectively) was taken for each rat and a paired t-test 338 

was used to investigate if D* (MPGs parallel to PVS orientation) was greater during arterial pulsation 339 

relative to diastole for each region. 340 

 341 



12 
 

Dobutamine (n=6) 342 

Data were acquired in 6 male Sprague Dawley rats using the identical MRI sequence approach 343 

described above (‘ECG gating’) but with no ECG gating. Dobutamine (n=3 subcutaneous bolus, 344 

2mg/kg 41 in saline ~0.6-0.8ml) or saline vehicle (n=3) was then delivered and the same acquisitions 345 

were performed after bolus infusion.  346 

Figure Legends 347 

Figure 1. A. Example b0 MRI image. The position and orientation of the imaging slice is adjusted to 348 

optimally visualize the perivascular space (PVS) around both branches of the MCA. Bright signal can 349 

be observed from fluid filled compartments: CSF in the subarachnoid space around the Circle of 350 

Willis (CoW); fluid in the perivascular space that surrounds the MCA;  the ventral aspect of the third 351 

ventricle.  B. Photograph of the ventral aspect of the rat brain surface illustrating a putative PVS 352 

surrounding the middle cerebral artery (MCA) (reproduced with permission from Lochhead et al., 353 

2015). 354 

Figure 2. A. Example bO and ‘diffusion weighted’ images acquired with the motion probing gradients 355 

applied in 3 orthogonal directions respectively.  B. The mean D* calculated within ROIs [see insert] in 356 

the right perivascular space (red), left perivascular space (blue), subarachnoid space (green) with the 357 

motion probing gradients applied in three orthogonal directions (+/- SEM). 358 

Figure 2 – figure supplement 1. The individual animal D* calculated within ROIs in the right 359 

perivascular space (A), left perivascular space (B), subarachnoid space (C) with the motion probing 360 

gradients applied in three orthogonal directions (x-axis). Each line represents an individual animal 361 

(n=10). 362 

Figure 3. A. bO image with ROIs in the right and left PVS and subarachnoid space highlighted in blue, 363 

red and green respectively. The mean pseudo-diffusion tensor ellipsoid within the subarachnoid 364 

space ROI (B) and right (C) and left (D) PVS respectively across the 6 rats. The pseudo-diffusion 365 

tensors for each individual animal are shown in Figure 3-figure supplement 1.  E. Example map of 366 

pseudo-diffusion tensor ellipsoids with corresponding b0 image (insert). 367 

Figure 3– figure supplement 1. D* tensors within the left and right perivascular space (PVS) and 368 

subarachnoid space ROIs for each of the individual subjects imaged in part ii). The corresponding D* 369 

tensor for the dead brain is also shown. 370 



13 
 

Figure 4. A. b0 image (first column) and D* maps during arterial pulsation (second and third column) 371 

and during diastole (fourth and fifth column) from a single animal [the white arrows represent the 372 

direction of the applied MPGs]. B. The mean D* during arterial pulsation and diastole respectively 373 

within the three ROIs for MPGs applied parallel (black line) and perpendicular to (grey dashed line) 374 

PVS orientation. C. The mean D* at baseline and after dobutamine (black line) or vehicle (grey 375 

dashed line) within the same ROIs (non-gated). 376 

Figure 4 – figure supplement 1. A. The individual animal D* during arterial pulsation and diastole 377 

respectively within the three ROIs for MPGs applied parallel (black line) and perpendicular to (grey 378 

dashed line) PVS orientation. B. The mean D* at baseline and after dobutamine (black line) or vehicle 379 

(grey dashed line) within the same ROIs (non-gated). Each line represents an individual animal. 380 

 381 

 382 

Conflict of Interest: The authors have no conflicts of interest to declare.  383 

Acknowledgements 384 

JW is supported by the Wellcome Trust/Royal Society (204624/Z/16/Z).  DLT is supported by the UCL 385 

Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575). This work is supported by the 386 

EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1) and the 387 

Department of Health’s NIHR-funded Biomedical Research Centre at University College London 388 

Hospitals. ML receives funding from the EPSRC (EP/N034864/1); the King’s College London and UCL 389 

Comprehensive Cancer Imaging Centre CR-UK & EPSRC, in association with the MRC and DoH 390 

(England); UK Regenerative Medicine Platform Safety Hub (MRC: MR/K026739/1). 391 

References 392 

1 Louveau, A. et al. Structural and functional features of central nervous system lymphatic 393 
vessels. Nature 523, 337-341 (2015). 394 

2 Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and 395 
the clearance of interstitial solutes, including amyloid beta. Science translational medicine 4, 396 
147ra111, doi:10.1126/scitranslmed.3003748 (2012). 397 

3 Weller, R. O., Subash, M., Preston, S. D., Mazanti, I. & Carare, R. O. Perivascular drainage of 398 
amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and 399 
Alzheimer's disease. Brain pathology (Zurich, Switzerland) 18, 253-266, doi:10.1111/j.1750-400 
3639.2008.00133.x (2008). 401 



14 
 

4 Bakker, E. N. et al. Lymphatic Clearance of the Brain: Perivascular, Paravascular and 402 
Significance for Neurodegenerative Diseases. Cellular and molecular neurobiology 36, 181-403 
194, doi:10.1007/s10571-015-0273-8 (2016). 404 

5 Xu, Z. et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation 405 
and memory deficits. Mol Neurodegener 10, 015-0056 (2015). 406 

6 Tarasoff-Conway, J. M. et al. Clearance systems in the brain[mdash]implications for 407 
Alzheimer disease. Nat Rev Neurol 11, 457-470, doi:10.1038/nrneurol.2015.119 (2015). 408 

7 Hawkes, C. A., Jayakody, N., Johnston, D. A., Bechmann, I. & Carare, R. O. Failure of 409 
Perivascular Drainage of β-amyloid in Cerebral Amyloid Angiopathy. Brain Pathology 24, 396-410 
403, doi:10.1111/bpa.12159 (2014). 411 

8 Goulay, R. et al. Subarachnoid Hemorrhage Severely Impairs Brain Parenchymal 412 
Cerebrospinal Fluid Circulation in Nonhuman Primate. Stroke 48, 2301-2305, 413 
doi:10.1161/strokeaha.117.017014 (2017). 414 

9 Ringstad, G., Vatnehol, S. A. S. & Eide, P. K. Glymphatic MRI in idiopathic normal pressure 415 
hydrocephalus. Brain : a journal of neurology 140, 2691-2705, doi:10.1093/brain/awx191 416 
(2017). 417 

10 Dobson, H. et al. The perivascular pathways for influx of cerebrospinal fluid are most 418 
efficient in the midbrain. Clinical science (London, England : 1979) 131, 2745-2752, 419 
doi:10.1042/cs20171265 (2017). 420 

11 Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann 421 
Neurol 76, 845-861 (2014). 422 

12 Huffman, J., Phillips, S., Taylor, G. T. & Paul, R. The Emerging Field of Perivascular Flow 423 
Dynamics: Biological Relevance and Clinical Applications. Technology & Innovation 18, 63-74, 424 
doi:10.21300/18.1.2016.63 (2016). 425 

13 Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by 426 
diffusion rather than bulk flow. Proceedings of the National Academy of Sciences 114, 9894-427 
9899, doi:10.1073/pnas.1706942114 (2017). 428 

14 Hladky, S. B. & Barrand, M. A. Mechanisms of fluid movement into, through and out of the 429 
brain: evaluation of the evidence. Fluids and Barriers of the CNS 11, 26, doi:10.1186/2045-430 
8118-11-26 (2014). 431 

15 Brinker, T., Stopa, E., Morrison, J. & Klinge, P. A new look at cerebrospinal fluid circulation. 432 
Fluids Barriers CNS 11, 2045-8118 (2014). 433 

16 Smith, A. J., Yao, X., Dix, J. A., Jin, B. J. & Verkman, A. S. Test of the 'glymphatic' hypothesis 434 
demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain 435 
parenchyma. eLife 6, doi:10.7554/eLife.27679 (2017). 436 

17 Bedussi, B. et al. Clearance from the mouse brain by convection of interstitial fluid towards 437 
the ventricular system. Fluids Barriers CNS 12, 23, doi:10.1186/s12987-015-0019-5 (2015). 438 

18 Lochhead, J. J., Wolak, D. J., Pizzo, M. E. & Thorne, R. G. Rapid transport within cerebral 439 
perivascular spaces underlies widespread tracer distribution in the brain after intranasal 440 
administration. J Cereb Blood Flow Metab 35, 371-381 (2015). 441 

19 Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a 442 
'paravascular' fluid circulation in the mammalian central nervous system, provided by the 443 
rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain 444 
Res 326, 47-63 (1985). 445 

20 Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. 446 
The Journal of clinical investigation 123, 1299-1309, doi:10.1172/jci67677 (2013). 447 

21 Yang, L. et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal 448 
infusion of CSF tracer. Journal of Translational Medicine 11, 107-107, doi:10.1186/1479-449 
5876-11-107 (2013). 450 

22 Asgari, M., de Zélicourt, D. & Kurtcuoglu, V. Glymphatic solute transport does not require 451 
bulk flow.  6, 38635, doi:10.1038/srep38635 (2016). 452 



15 
 

23 Wells, J. A., Thomas, D. L., Saga, T., Kershaw, J. & Aoki, I. MRI of cerebral micro-vascular flow 453 
patterns: A multi-direction diffusion-weighted ASL approach. J Cereb Blood Flow Metab 37, 454 
2076-2083, doi:10.1177/0271678x16660985 (2017). 455 

24 Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in 456 
the murine brain. J Neurosci 33, 18190-18199, doi:10.1523/jneurosci.1592-13.2013 (2013). 457 

25 Bedussi, B. et al. Paravascular channels, cisterns, and the subarachnoid space in the rat 458 
brain: A single compartment with preferential pathways. J Cereb Blood Flow Metab 37, 459 
1374-1385, doi:10.1177/0271678x16655550 (2017). 460 

26 Lee, H. et al. Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D 461 
VFA-SPGR at 9.4T. Magnetic Resonance in Medicine, n/a-n/a, doi:10.1002/mrm.26779. 462 

27 Mawuenyega, K. G. et al. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. 463 
Science 330, doi:10.1126/science.1197623 (2010). 464 

28 Gaberel, T. et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced 465 
MRI: a new target for fibrinolysis? Stroke 45, 3092-3096 (2014). 466 

29 Iliff, J. J. et al. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after 467 
Traumatic Brain Injury. The Journal of Neuroscience 34, 16180-16193, 468 
doi:10.1523/jneurosci.3020-14.2014 (2014). 469 

30 Taoka, T. et al. Evaluation of glymphatic system activity with the diffusion MR technique: 470 
diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's 471 
disease cases. Jpn J Radiol 35, 172-178 (2017). 472 

31 Mestre, H. et al. Aquaporin-4 dependent glymphatic solute transport in rodent brain. 473 
bioRxiv, doi:10.1101/216499 (2017). 474 

32 Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373-377, 475 
doi:10.1126/science.1241224 (2013). 476 

33 Benveniste, H. et al. Anesthesia with Dexmedetomidine and Low-dose Isoflurane Increases 477 
Solute Transport via the Glymphatic Pathway in Rat Brain When Compared with High-dose 478 
Isoflurane. Anesthesiology 127, 976-988, doi:10.1097/aln.0000000000001888 (2017). 479 

34 O'Callaghan, J. et al. Is your system calibrated? MRI gradient system calibration for pre-480 
clinical, high-resolution imaging. PloS one 9, e96568, doi:10.1371/journal.pone.0096568 481 
(2014). 482 

35 Wells, J. A., Siow, B., Lythgoe, M. F. & Thomas, D. L. Measuring biexponential transverse 483 
relaxation of the ASL signal at 9.4 T to estimate arterial oxygen saturation and the time of 484 
exchange of labeled blood water into cortical brain tissue. Journal of Cerebral Blood Flow & 485 
Metabolism 33, 215-224, doi:10.1038/jcbfm.2012.156 (2013). 486 

36 Kuo, Y. T., Herlihy, A. H., So, P. W., Bhakoo, K. K. & Bell, J. D. In vivo measurements of T1 487 
relaxation times in mouse brain associated with different modes of systemic administration 488 
of manganese chloride. J Magn Reson Imaging 21, 334-339, doi:10.1002/jmri.20285 (2005). 489 

37 Mesquita, S. D. et al. The choroid plexus transcriptome reveals changes in type I and II 490 
interferon responses in a mouse model of Alzheimer’s disease. Brain, Behavior, and 491 
Immunity 49, 280-292, doi:https://doi.org/10.1016/j.bbi.2015.06.008 (2015). 492 

38 Barmpoutis, A., Vemuri, B. C., Shepherd, T. M. & Forder, J. R. Tensor splines for interpolation 493 
and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. 494 
IEEE Trans Med Imaging 26, 1537-1546 (2007). 495 

39 Leemans A, J. B., Sijbers J, and Jones DK. in 17th Annual Meeting of Intl Soc Mag Reson Med. 496 
40 Di Lascio, N., Stea, F., Kusmic, C., Sicari, R. & Faita, F. Non-invasive assessment of pulse wave 497 

velocity in mice by means of ultrasound images. Atherosclerosis 237, 31-37, 498 
doi:10.1016/j.atherosclerosis.2014.08.033 (2014). 499 

41 Buttrick, P., Malhotra, A., Factor, S., Geenen, D. & Scheuer, J. Effects of chronic dobutamine 500 
administration on hearts of normal and hypertensive rats. Circulation research 63, 173-181 501 
(1988). 502 

 503 



16 
 

  504 

 505 

 506 

 507 

 508 

 509 



arterial wall

A. Example b0 MRI image. The position and orientation of 
the imaging slice is adjusted to optimally visualize the 
perivascular space (PVS) around both branches of the MCA. 
Bright signal can be observed from fluid filled 
compartments: CSF in the subarachnoid space around the 
Circle of Willis (CoW); fluid in the perivascular space that 
surrounds the MCA;  the ventral aspect of the third 
ventricle. 

B. Photograph of the ventral aspect of the rat brain surface 
illustrating a putative PVS surrounding the middle cerebral 
artery (MCA) (reproduced with permission from Lochhead
et al., 2015). 
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‘diffusion weighted’ 
images acquired with the 
motion probing gradients 
applied in 3 orthogonal 
directions respectively. 

B. The mean D* 
calculated within ROIs 
[see insert] in the right  
perivascular space (red), 
left perivascular space 
(blue), subarachnoid 
space (green) with the 
motion probing gradients 
applied in three 
orthogonal directions (+/-
SEM). 
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A. bO image with ROIs in the right and left PVS and subarachnoid space 
highlighted in blue, red and green respectively. The mean pseudo-diffusion tensor 
ellipsoid within the subarachnoid space ROI (B) and right (C) and left (D) PVS 
respectively across the 6 rats. The pseudo-diffusion tensors for each individual 
animal are shown in Figure 3-figure supplement 1.  E. Example map of pseudo-
diffusion tensor ellipsoids with corresponding b0 image (insert) 
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A. b0 image (first column) and D* maps during arterial pulsation (second and third column) and during diastole (fourth and fifth column) from a 
single animal [the white arrows represent the direction of the applied MPGs]. B. The mean D* during arterial pulsation and diastole respectively 
within the three ROIs for MPGs applied parallel (black line) and perpendicular to (grey dashed line) PVS orientation. C. The mean D* at baseline 
and after dobutamine (black line) or vehicle (grey dashed line) within the same ROIs (non-gated). 
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Figure 2 – figure supplement 1

The  individual animal D* calculated within ROIs in the right perivascular space (A), left perivascular space (B), 
subarachnoid space (C) with the motion probing gradients applied in three orthogonal directions (x-axis). Each 
line represents an individual animal (n=10). 
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Figure 3– figure supplement 1

D* tensors within the left and right perivascular space (PVS) and subarachnoid space ROIs for 
each of the individual subjects imaged in part ii). The corresponding D* tensor for the dead brain 
is also shown. 
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Figure 4 – figure supplement 1

A. The individual animal D* during arterial pulsation and diastole respectively within the three ROIs for MPGs applied parallel (black 
line) and perpendicular to (grey dashed line) PVS orientation. B. The mean D* at baseline and after dobutamine (black line) or vehicle 
(grey dashed line) within the same ROIs (non-gated). Each line represents an individual animal.
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