
Local Polynomial Regression for Symmetric Positive Definite
Matrices

Ying Yuan, Hongtu Zhu†, Weili Lin, and J. S. Marron
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Summary
Local polynomial regression has received extensive attention for the nonparametric estimation of
regression functions when both the response and the covariate are in Euclidean space. However,
little has been done when the response is in a Riemannian manifold. We develop an intrinsic local
polynomial regression estimate for the analysis of symmetric positive definite (SPD) matrices as
responses that lie in a Riemannian manifold with covariate in Euclidean space. The primary
motivation and application of the proposed methodology is in computer vision and medical
imaging. We examine two commonly used metrics, including the trace metric and the Log-
Euclidean metric on the space of SPD matrices. For each metric, we develop a cross-validation
bandwidth selection method, derive the asymptotic bias, variance, and normality of the intrinsic
local constant and local linear estimators, and compare their asymptotic mean square errors.
Simulation studies are further used to compare the estimators under the two metrics and to
examine their finite sample performance. We use our method to detect diagnostic differences
between diffusion tensors along fiber tracts in a study of human immunodeficiency virus.

1. Introduction
Symmetric positive-definite (SPD) matrix-valued data occur in a wide variety of important
applications. For instance, in computational anatomy, a SPD deformation vector (JJT)1/2 is
computed to capture the directional information of shape change decoded in the Jacobian
matrices J at each location in an image (Grenander and Miller, 2007). In diffusion tensor
imaging (Basser et al., 1994), a 3 × 3 SPD diffusion tensor, which tracks the effective
diffusion of water molecules, is estimated at each voxel (a 3 dimensional (3D) pixel) of an
imaging space. In functional magnetic resonance imaging, a SPD covariance matrix is
calculated to delineate functional connectivity between different neural assemblies involved
in achieving a complex cognitive task or perceptual process (Fingelkurts et al., 2005). In
classical multivariate statistics, a common research focus is to model and estimate SPD
covariance matrices for multivariate measurements, longitudinal data, and time series data
among many others (Pourahmadi, 2000; Anderson, 2003).

Despite the popularity of SPD matrix-valued data, only a handful of methods have been
developed for the statistical analysis of SPD matrices as response variables in a Riemannian
manifold. In the medical imaging literature (Fletcher and Joshi, 2007; Batchelor et al., 2005;
Pennec et al., 2006), various image processing methods have recently been developed to
segment, deform, interpolate, extrapolate and regularize diffusion tensor images (DTIs).
Schwartzman (2006) proposed several parametric models for analyzing SPD matrices and
derived the distributions of several test statistics for comparing differences between the
means of the two (or multiple) groups of SPD matrices. Kim and Richards (2010) developed
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a nonparametric estimator for the common density function of a random sample of positive
definite matrices. Zhu et al. (2009) developed a semi-parametric regression model with SPD
matrices as responses in a Riemannian manifold and the covariates in a Euclidean space.
Barmpoutis et al. (2007) and Davis et al. (2010) proposed tensor splines and local constant
regressions for interpolating DTI tensor fields, but they did not address several important
issues of analyzing random SPD matrices including the asymptotic properties of the
nonparametric estimate proposed. All these methods for SPD matrices discussed above are
based on the trace metric (or affine invariant metric) in the SPD space (Lang, 1999; Terras,
1988). Recently, Arsigny et al. (2007) proposed a Log-Euclidean metric and showed its
excellent theoretical and computational properties. Dryden et al. (2009) compared various
metrics of the space of SPD matrices and their properties.

To the best of our knowledge, this is the first paper to develop an intrinsic local polynomial
regression (ILPR) model for estimating an intrinsic conditional expectation of a SPD matrix
response, S, given a covariate vector x from a set of observations (x1, S1), ···, (xn, Sn), where
the xi can be either univariate or multivariate. In practice, x can be the arc-length of a
specific fiber tract (e.g., right internal capsule tract), the coordinates in the 3D imaging
space, or demographic variables such as age. Important applications of ILPR include
smoothing diffusion tensors along fiber tracts and smoothing diffusion and deformation
tensor fields. Another application is quantifying the change of diffusion and deformation
tensors as well as the inter-regional functional connectivity matrix across groups and over
time.

Relative to the existing literature on the analysis of SPD matrices, we make several
important contributions in this paper.

• To account for the curved nature of the SPD space, we propose the ILPR method
for estimating the intrinsic conditional expectation of random SPD responses given
the covariate. We also derive an approximation of a cross-validation method for
bandwidth selection.

• Theoretically, we compare the trace metric and the Log-Euclidean metric and
establish the asymptotic properties of the ILPR estimators corresponding to each
metric.

• Theoretically and numerically, we examine the effect that the use of different
metrics has on statistical inference in the SPD space.

The rest of the paper is organized as follows. In Section 2, we develop the ILPR method and
a cross-validated bandwidth method for nonparametric analysis of random SPD matrix-
valued data. In Section 3, we compare the trace metric and the Log-Euclidean metric and
derive their ILPR estimators. We investigate the asymptotic properties of the estimators
proposed under the Log-Euclidean metric and the estimators under the trace metric in
Sections 4.1 and 4.2, respectively. We examine the finite sample performance of the ILPR
estimators via simulation studies in Section 5. We analyze a real data set to illustrate a real-
world application of the proposed ILPR method in Section 6 before offering some
concluding remarks in Section 7.

2. Intrinsic Local Polynomial Regression for SPD Matrices
In this section, we develop a general framework for using intrinsic local polynomial
regression in the analysis of SPD matrices and will examine two examples in Section 3. Let
Sym+(m) and Sym(m) be, respectively, the set of m × m SPD matrices and the set of m × m
symmetric matrices with real entries. The space Sym(m) is a Euclidean space with the
Frobenius metric (or Euclidean inner product) given by tr(A1A2) for any A1, A2 ∈ Sym(m),
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whereas Sym+(m) is a Riemannian manifold, which will be detailed below. There is a one-
to-one correspondence between Sym(m) and Sym+(m) through matrix exponential and
logarithm. For any matrix A ∈ Sym(m), its matrix exponential is given by

. Conversely, for any matrix S ∈ Sym+(m), there is a log(S)
= A ∈ Sym(m) such that exp(A) = S.

Standard nonparametric regression models for responses in the Euclidean space estimate
E(S|X = x). However, for a random S in a curved space, one cannot directly define the
conditional expectation of S given X = x with the usual expectation in Euclidean space. We
are interested in answering the following question.

(Q1) How do we define an intrinsic conditional expectation of S at each x, denoted by D(x),
in Sym+(m)?

To appropriately define D(x), we review some basic facts about the geometrical structure of
Sym+(m) near D(x) (Lang, 1999; Terras, 1988). See Figure 1 for a graphical illustration. We
first introduce the tangent vector and tangent space at D(x) in Sym+(m). For a small scalar δ
> 0, let C(t) be a differentiable map from (−δ, δ) to Sym+(m) passing through C(0) = D(x).
A tangent vector at D(x) is defined as the derivative of the smooth curve C(t) with respect to
t evaluated at t = 0. The set of all tangent vectors at D(x) forms the tangent space of
Sym+(m) at D(x), denoted as TD(x)Sym+(m), which can be identified with Sym(m). The
TD(x)Sym+(m) is equipped with an inner product 〈·, ·〉, called a Riemannian metric, which
varies smoothly from point to point. For instance, one may use the Frobenuis metric as a
Riemannian metric. Two additional Riemannian metrics for Sym+(m) will be given in
Section 3. For a given Riemannian metric, we can calculate 〈U, V 〉 for any U and V on
TD(x)Sym+(m) and then we can calculate the length of a smooth curve C(t): [t0, t1] →

Sym+(m), which equals , where Ċ(t) is the derivative of C(t) with respect
to t. A geodesic is a smooth curve on Sym+(m) whose tangent vector does not change in
length or direction as one moves along the curve. For a U ∈ TD(x)Sym+(m), there is a unique
geodesic, denoted by γD(x)(t; U), whose domain contains [0, 1], such that γD(x)(0; U) = D(x)
and γ̇D(x)(0; U) = U. The Riemannian exponential mapping ExpD(x): TD(x)Sym+(m) →
Sym+(m) of the tangent vector U is defined as ExpD(x)(U) = γD(x)(1; U). The inverse of the

Riemannian exponential map  is called the Riemannian logarithmic map
from Sym+(m) to a vector in TD(x)Sym+(m). Finally, the shortest distance between two
points D1(x) and D2(x) in Sym+(m) is called the geodesic distance between D1(x) and D2(x),
denoted as g(D1(x), D2(x)), which satisfies

(1)

We define (X) to be LogD(X)(S) in TD(X)Sym+(m). Statistically, (X) can be regarded as
the residual of S relative to D(X). Let vecs(C) = (c11, c21, c22, ···, cm1, ···, cmm)T be an m(m
+1)=2×1 vector for any m×m symmetric matrix C = (cij). Thus, the intrinsic conditional
expectation of S at X = x is defined as D(x) ∈ Sym+(m) such that

(2)

where Om is the m × m matrix with all elements zeros and the expectation is taken
componentwise with respect to the multivariate random vector vecs(LogD(x)(S)). In fact, (2)
characterizes intrinsic means (Bhattacharya and Patrangenaru, 2005).
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Suppose that (xi, Si), i = 1, ···, n is an independent and identically distributed random
sample, where Si ∈ Sym+(m). For notational simplicity, we focus on a univariate covariate
throughout the paper. We are interested in using the observed data {(xi, Si), i = 1, ···, n} to
estimate D(X) defined in (2) at each X = x0. By ignoring the Riemannian metric introduced
in TD(X)Sym+(m), we can directly minimize a weighted least square criterion based on the
metric related to the regular Frobenius inner product, which is given by

(3)

In (3), Kh(u) = K(u/h)h−1, in which h is a positive scalar, and K(·) is a kernel function such
as the Epanechnikov kernel (Fan and Gijbels, 1996; Wand and Jones, 1995). However, it is
unclear whether the estimate, which minimizes Ln(D(x0)), is truly consistent or not.
Therefore, we are interested in solving the second question below.

(Q2) How do we use the observed data to consistently estimate D(X) in (2) at each X = x0?

For a specific Riemannian metric, we consider estimating D(X) at X = x0 by minimizing a
weighted intrinsic least square criterion, denoted by Gn(D(x0)) given by

(4)

Directly minimizing Gn(D(x0)) with respect to D(x0) leads to a weighted intrinsic mean of
S1, ···, Sn ∈ Sym+(m) at x0, denoted by D ̂I(x0) (Bhattacharya and Patrangenaru, 2005). It
will be shown below that D̂I(x0) is truly a consistent estimate of D(x0).

Local polynomial regression has received extensive attention for the nonparametric
estimation of regression functions when both response and covariate are in Euclidean space
Fan and Gijbels (1996); Wand and Jones (1995). However, little has been done on
developing local polynomial regression when the response is in a Riemannian manifold and
the covariates are in Euclidean space. Therefore, we are interested in solving a third question
below.

(Q3) How do we define the intrinsic local polynomial regression for estimating D(X) in (2)
at each X = x0?

We propose the intrinsic local polynomial regression for estimating D(X) at X = x0 as
follows. Since D(x) is in the curved space, we cannot directly expand D(x) at x0 by using a
Taylor’s series expansion. Instead, we consider the Riemannian logarithmic map of D(x) at
D(x0) in TD(x0)Sym+(m). Let Im be an m × m identity matrix. Since LogD(x0)(D(x)) for
different x0 are in different tangent spaces, we may transport them from TD(x0)Sym+(m) to
the same tangent space TImSym+(m) through a parallel transport given by

That is, we have
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(5)

where  is the inverse map of φD(x0)(·). Moreover, since Y (x0) = φD(x0)(Om) = Om and
Y (x) are in the same space TImSym+(m), we expand Y (x) at x0 by using the Taylor’s series
expansion as follows:

(6)

where k0 is an integer and Y (k)(x) is the k–th derivative of Y (x) with respect to x divided
by k!. Equivalently, D(x) can be approximated by

(7)

where α(x0) contains all unknown parameters in {D(x0), Y (1)(x0), ···, Y (k0)(x0)}.

To estimate α(x0), we substitute the approximation of D(x) in (7) into (4) to obtain
Gn(α(x0)), which is given by

(8)

Subsequently, we calculate an intrinsic weighted least square estimator of α(x0) defined by

(9)

Then we can calculate D(x, α̂I(x0; h), k0), denoted by D̂I(x, h), as an intrinsic local
polynomial regression estimator (ILPRE) of D(x). When k0 = 0, D(x, α̂I(x0; h), 0) is exactly
the intrinsic local constant estimator of D(x0) considered in Davis et al. (2010).

We propose using a leave-one-out cross validation method for bandwidth selection due to its

conceptual simplicity. Let  be the estimate of D(xi) obtained by minimizing
Gn(α(xi)) with (xi, Si) deleted for a given bandwidth h and all i. The cross-validation score is
defined as follows:

(10)

The optimal h, denoted by ĥ, can be obtained by minimizing CV(h). However, since

computing  for all i can be computationally prohibitive, we suggest to use the first-
order approximation of CV(h), whose details will be given below under each specific metric.
Although it is possible to develop other bandwidth selection methods, such as plug-in and
bootstrap methods (Rice, 1984; Park and Marron, 1990; Hall et al., 1992; Hardle et al.,
1992), we must deal with additional computational and theoretical challenges, which will be
left for future research.
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3. ILPR under Log-Euclidean Metric and Trace Metric
As discussed in Dryden et al. (2009), various metrics can be defined for tangent vectors on
TD(x)Sym+(m). To assess the effect of different metrics on ILPREs, we develop ILPR under
two commonly used metrics, including the Log-Euclidean metric and the trace metric.

3.1. Log-Euclidean Metric
In this section, we review some basic facts about the theory of the Log-Euclidean metric,
details of which have been given in Arsigny et al. (2007). We introduce the notation ‘L’ into
some necessary quantities under the Log-Euclidean metric. We use exp(.) and log(.) to
represent the matrix exponential and the matrix logarithm, respectively, whereas we use Exp
and Log to represent the Riemannian exponential and logarithm maps, respectively. Let
∂D(x) log.(U) be the differential of the matrix logarithm at D(x) ∈ Sym+(m) acting on an
infinitesimal displacement U ∈ TD(x)Sym+(m) (Arsigny et al., 2007). The Log-Euclidean
metric on Sym+(m) is defined as

(11)

where U and V are in TD(x)Sym+(m). The geodesic γD(x),L(t, U) is given by exp(log(D(x)) +
t∂D(x) log.(U)) for any t ∈ R. Let ∂log(D(x)) exp. (A) be the differential of the matrix
exponential at log(D(x)) ∈ Sym(m) acting on an infinitesimal displacement A ∈
Tlog(D(x))Sym(m) (Arsigny et al., 2007). The Riemannian exponential and logarithm maps
are, respectively, given by

(12)

The geodesic distance between D(x) and S is uniquely given by

(13)

We consider two SPD matrices D(x) and D(x0). For any UD(x0)∈ TD(x0)Sym+(m), the
parallel transport φD(x0),L: TD(x0)Sym+(m) → TImSym+(m) is defined by

(14)

Combining (12) and (14) yields

(15)

In this case, (X) = log(S) − log(D(X)) and E{log(S)|X = x} = log(D(x)).

Let vec(A) = (a11, …, a1m, a21, …, a2m, ···, am1, ···, amm)T be the vectorization of an m×m
matrix A = (aij). Under the Log-Euclidean metric, Gn(D(x0)) in (4) can be written as
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(16)

To compute the ILPR estimator, we use the Taylor’s series expansion to expand log(D(x)) at
x0 as follows:

(17)

where αL(x0) contains all unknown parameters in log(D(x0))(k) for k = 0, ···, k0. We
compute α̂IL(x0; h) by minimizing Gn(DL(x, αL(x0), k0)). It can be shown that α̂IL(x0; h)
has the explicit expression as

(18)

where (x) = (1, (xi − x), ···, (xi − x)k0)T. By substituting α̂IL(x0; h) into DL(x, αL(x0), k0),
we have D̂IL(x; h, k0) = DL(x, α̂IL(x0; h), k0).

Let ek0+1,i be the (k0 + 1) unit vector having 1 in the i-th entry and 0 elsewhere. Let

. The cross-validation score CV(h)
can be simplified as follows:

(19)

Replacing ai(xi) in (19) by the average of a1(x1), ···, an(xn), we can get the generalized cross-
validation (GCV) score as follows:

(20)

Without special saying, for the Log-Euclidean metric, we use GCV(h) to select the
bandwidth throughout this paper.

3.2. Trace Metric
We review some basic facts about the theory of trace metric (Schwartzman, 2006; Lang,
1999; Terras, 1988; Fletcher et al., 2004; Batchelor et al., 2005; Pennec et al., 2006). We
add the notation of ‘T’ into some necessary geometric quantities under the trace metric.
Under the trace metric, an inner product of U and V in TD(x)Sym+(m) is defined as

(21)

The geodesic γD(x),T (t; U) is given by G(x) exp(tG(x)−1UG(x)−T)G(x)T for any t, where
G(x) is any square root of D(x) such that D(x) = G(x)G(x)T. The Riemannian exponential
and logarithm maps are, respectively, given by
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(22)

The geodesic distance between D(x) and S, denoted by gT (D(x), S), is given by

(23)

where S1/2 is any square root of S.

We consider two SPD matrices D(x) and D(x0) = G(x0)G(x0)T. For any UD(x0)∈
TD(x0)Sym+(m), the parallel transport φD(x0),T is defined by

(24)

Thus, combining (22) and (24) yields

(25)

In this case, (X) = log(G(X)−1SG(X)−T).

To compute the ILPR estimator, we use the Taylor’s series expansion to expand Y (x) at x0
as follows:

(26)

where αT (x0) contains all unknown parameters in G(x0) and Y (k)(x0) for k = 1, ···, k0.
Thus, we can compute α̂IT (x0; h) by minimizing Gn(αT (x0)). Under the trace metric,
minimizing Gn(αT (x0)) is computationally challenging when k0 > 0, since Gn(αT (x0)) is
not convex and may have multiple local minimizers. Thus, standard gradient methods,
which strongly depend on the starting value of αT (x0), do not perform well for optimizing
Gn(αT (x0)) when k0 > 0. Hence, we develop an annealing evolutionary stochastic
approximation Monte Carlo algorithm (see Liang (2010) for good discussion) for computing
α̂IT (x0; h). Details can be found in the supplementary document.

To simplify the computation of CVT (h), we suggest the first-order approximation to CVT
(h) as follows:

(27)

where D̂IT (x; h, k0) = DT (x, α̂IT (x0; h), k0). The CVT (h) is close to Akaike’s information
criterion (AIC) (Sakamoto et al., 1999) and pn(h) can be regarded as the number of degrees
of freedom. The explicit form of pn(h) is presented in the supplementary document.
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4. Asymptotic Properties
We derive the asymptotic properties of ILPREs, such as asymptotic normality, under the
Log-Euclidean and trace metrics. Furthermore, we systematically compare the intrinsic local
constant and linear estimators under each metric and between the two metrics.

4.1. Log-Euclidean Metric
Under the Log-Euclidean metric, ILPRE is almost equivalent to the LPR estimator for
multivariate response in Euclidean space. Thus, we can generalize the existing theory of the
local polynomial regression estimator (Fan and Gijbels, 1996; Wand and Jones, 1995).
Moreover, we only present the consistency and asymptotic normality of ILPRE for interior
points, since the asymptotic properties of ILPRE for boundary points are similar to those for
interior points in Euclidean space (Fan and Gijbels, 1996).

To proceed, we need some additional notation. Let a⊗2 = aaT for any vector or matrix a and
Iq be an identity matrix of size q = m(m + 1)/2. Let  = diag(1, h, ···, hk0) ⊗ Iq. Let u = (u1,
···, uk0)T and v = (v1, ···, vk0)T be k0 × 1 vectors, where uk = ∫xkK(x)dx and vk =
∫xkK(x)2dx for k ≥ 0. Let  = (ui+j) and  = (vi+j) for 0 ≤ i, j ≤ k0 be two (k0 + 1) × (k0 + 1)

matrices for 0 ≤ i, j ≤ k0. Let fX(x) and  be the marginal density function of X and its
first-order derivative with respect to x, respectively. We define (x0; h) = ( (x0; h)T, ···,

(x0; h)T)T, in which we have

We have the following results, whose proof is similar to that of Theorem 2 in the
supplementary document.

Theorem 1—Suppose that x0 is an interior point of fX(.). Under the Log-Euclidean metric
and conditions (C1)-(C4) in the appendix, we have the following results.

i. {α̂IL(x0; h) – αL(x0)} converges to 0 in probability as n → ∞.

ii. For k0 = 0, under an additional condition (C10) in the appendix and that  is
continuous in a neighborhood of x0, we have

(28)

where  with (x) = Cov(vecs[log(S) − log{D(x)}]|X=
x) and →L denotes convergence in distribution.

iii. For k0 > 0, under the conditions of Theorem 1 (ii), we have

(29)
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where .

Theorem 1 delineates the asymptotic properties of α̂IL(x0; h) for k0 ≥ 0, which covers the
asymptotic properties of the intrinsic local constant and linear estimators of D(x0) as k0 = 0,
1. In particular, the asymptotic bias and variance of D̂IL(x0; h, 0) are closely related to those
of the Nadaraya-Watson estimator when both response and covariate are in Euclidean space
(Fan, 1992). Since vecs(log{D̂IL(x0; h, k0)}) is a subvector of α̂IL(x0; h), we calculate the
asymptotic average mean squared error (AMSE) conditional on x = {x1, …, xn} as

Furthermore, for a given weight function w(x), we may consider a constant bandwidth that
minimizes the asymptotic average mean integrated squared error (AMISE) as

Finally, we can calculate the asymptotically optimal local bandwidth, denoted by hopt,L(x0;
k0), for minimizing AMSE(log{D̂IL(x0; h, k0)}) and the optimal bandwidth, denoted by
hopt,L(k0), for minimizing AMISE(log{D̂IL(.; h, k0)}).

By Theorem 1 (iii), AMSE(log{D̂IL(x0; h, 0)}) equals

.
For the intrinsic local linear estimator, AMSE(log{D̂IL(x0; h, 1)}) is given by

. Intrinsic local constant and
linear estimators have the same asymptotic covariance and their differences are concerned
only with their biases. The local constant estimator has one more term

, which depends on the marginal density fX(.).
Subsequently, we can get the optimal bandwidths, whose detailed expression can be found
in the supplementary document.

4.2. Trace Metric
Under the trace metric, since ILPRE is different from the LPR estimator for multivariate
response in Euclidean space, we study the consistency and asymptotic normality of ILPRE
for both interior and boundary points.

We need to introduce some notation for discussion. Consider a function

(30)

where G is an m×m lower triangle matrix, S ∈ Sym+(m), and Y ∈ Sym(m). Let α = (αG,

αY), in which αG = vecs(G) and αY = vecs(Y). Let ∂αψ(S, G, Y) and  be the
first and second order derivatives of ψ(S, G, Y) with respect to α, respectively. By

substituting Y (X) into ∂αψ(S, G, Y) and  and using the decomposition of α =
(αG, αY), we define
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where the expectation is taken with respect to S given X = x. Let 1k0 be a k0 × 1 column
vector with all elements ones. Let  = (ui+j) and  = (vi+j) for 1 ≤ i, j ≤ k0 be two k0 × k0
matrices. We define

and w(x0; h) = (w2(x0; h)T, ···, wk0+1(x0; h)T), in which

Finally, let αT (x) = (vecs{G(x)}T, vecs{Y (1)(x)}T, ···, vecs{Y (k0)(x)}T)T.

Theorem 2—Suppose that x0 is an interior point of fX(·). Under the trace metric and
conditions (C1)–(C8) in the appendix, we have the following results.

i. There exist solutions α̂IT (x0; h) to equation ∂Gn(αT (x0))/∂ αT (x0) = 0 such that 
{α̂IT (x0; h) – αT (x0)} converges to 0 in probability as n → ∞.

ii. For k0 = 0, if  is continuous in a neighborhood of x0, then we have

(31)

where .

iii. For k0 > 0, if condition (C9) in the appendix is also true, we have

(32)

where  and (x) and (x) are,
respectively, given by

Theorem 2 delineates the asymptotic bias, covariance, and asymptotic normality of α̂IT (x0;
h) for k0 ≥ 0. Based on Theorem 2, it is straightforward to derive the asymptotic bias,
covariance, and asymptotic normality of D ̂IT (x0; h, k0) for k0 ≥ 0. Moreover, to have a
direct comparison between the trace and Log-Euclidean metrics, we calculate the asymptotic

Yuan et al. Page 11

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biases and covariances of log{D ̂IT (x0; h, k0)} under these two metrics. Subsequently, we
calculate AMSE(log{D̂IT (x0; h, k0)}) and AMISE(log{D ̂IT (.; h, k0)}) for a given weight
function w(x). Minimizing AMSE(log(D̂IT (x0; h, k0))) and AMISE(log(D̂IT (x0; h, k0))),
respectively, leads to the optimal bandwidths, whose detailed expressions can be found in
the supplementary document.

We are interested in comparing the asymptotic properties of the intrinsic local constant D̂IT
(x0; h, 0) and the local linear estimator D̂IT (x0; h, 1). It follows from the delta method that
AMSE(log{D̂IT (x0; h, 0)}) can be approximated as

(33)

where GD(x0) = {∂vec(log(G(x0)⊗2))/∂vecs(G(x0))T}T. The asymptotic bias and variance of
D̂IT (x0; h, 0) are similar to those of the Nadaraya-Watson estimator when response is in
Euclidean space (Fan, 1992). For the intrinsic local linear estimator,

.

We consider ILPRE near the edge of the support of fX(x). Without loss of generality, we
assume that the design density fX(.) has a bounded support [0, 1] and consider the left-
boundary point x0 = dh for some positive constant d. The asymptotic consistency and
normality of IL-PRE are valid for the boundary points after slight modifications on the

definitions of uk and vk. Denote  and .
Correspondingly, u, , ,  and  are replaced by ud, , ,  and , respectively. Let
ck0+2,d = (uk0+2,d, ···, u2k0+1,d)T and (0+) = (uk0+1,dΨ2(0+), ck0+2,d ⊗
Ψ3(0+))Tvecs(Y (k0+1)(0+)). For the boundary points, we have the following asymptotic
results under the trace metric.

Theorem 3—Suppose that x0 = dh is a left boundary point of fX(.). Under the trace metric
and conditions (C1)–(C8) in the appendix, we have the following results.

i. There exist solutions, denoted by α̂IT (x0; h), to the equation ∂Gn(αT (x0))/∂αT (x0)
= 0 such that {α̂IT (x0, h) – αT (x0)} converges to 0 in probability as n → ∞.

ii. For k0 = 0, conditioning on x = {x1, ···, xn}, we have

(34)

where .

iii. For k0 > 0, if condition (C9) in the appendix is also true, conditioning on x = {x1,
···, xn}, we have

(35)

where  (0+) and  are,
respectively, given by
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It follows from Theorem 3 (ii) and (iii) that when x0 is at the boundary, the asymptotic
average mean squared errors of intrinsic local constant and linear estimators are,
respectively, AMSE(log{D̂IT (0+; h, 0)}) = Op(h2 + n−1h−1) and AMSE(log{D̂IT (0+; h, 1)})
= Op(h4 + n−1h−1). The rate of convergence for the intrinsic local constant estimator at
boundary points is slower than that at interior points, and thus the intrinsic local constant
estimator suffers from the well-known boundary effects. However, the intrinsic local linear
estimator adapts automatically at the boundary points and its rate of convergence is not
influenced by the location of points. Thus, the intrinsic local linear (or polynomial)
estimators share the same property of automatic adaptation to the boundary points as the
local polynomial estimators in Euclidean space (Fan and Gijbels, 1996).

5. Simulation
We conducted four sets of Monte Carlo simulations to examine the finite sample
performance of ILPREs for SPD matrices under different metrics and noise distributions. It
should be emphasized that these simulation studies are intended to have wide applications of
SPDs, and thus they are deliberately not limited to DTI.

We set m = 3 and assumed that the true SPD matrix function has the following form:

We considered three noise distributions including a Riemannian log-normal distribution, a
log-normal distribution, and the Rician distribution. We used the Rician noise to simulate
the ideal noise in diffusion tensor imaging. The three noise models are given as follows:

• (a) Riemannian log normal model: Si = G(xi) exp(εi)G(xi)T follows the Riemannian
log normal distribution, where D(xi) = G(xi)⊗2 and εi ∈ Sym(3) follows a
symmetric matrix variate normal distribution N(0, Σ), in which Σ is a covariance
matrix (Schwartzman, 2006).

• (b) Log normal model: log(Si) follows a symmetric matrix variate normal
distribution N[log{D(xi)}, Σ].

• (c) Rician noise model: this noise model is commonly used to simulate ideal noise
in diffusion weighted images (Zhu et al., 2007). The diffusion-weighted signal was
simulated for 31 gradient directions rk, k = 1, ···, 31 with b-factor bk = 1000s/mm
and four baselines with bk = 0s/mm for k = 32, ···, 35. The baseline signal intensity
W0 was set at 1500. For a given diffusion tensor D(xi), εR,k and εI,k were
independently simulated from a Gaussian random generator with mean zero and
standard deviation 60. The diffusion-weighted signal was calculated as

 for k = 1, ···, 35. Subsequently, the
weighted least squares estimate was used to estimate Si (Zhu et al., 2007).
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For each simulated data set, we considered three metrics including the trace metric, the Log-
Euclidean metric, and the Euclidean metric. For the trace and Log-Euclidean metrics, we
calculated the intrinsic local constant and linear estimators developed above for each data
set. By following the arguments in Pasternak et al. (2010), we employed the Euclidean
metric for estimated diffusion tensors. Under the Euclidean metric, we applied the standard
local constant and linear regression methods to estimate the SPD matrix function for each
simulated data set, while the bandwidth was selected by using its corresponding generalized
cross-validation method. For comparison, we also included a tensor spline method
(Barmpoutis et al., 2007) based on the trace metric.

We first generated n = 50 design points xi, i = 1, ···, 50 independently from a N (0, 0. 25)
distribution. Then we calculated D(xi) and used it to simulate Si according to one of the
three noise distributions (a)–(c). Unless stated otherwise, the covariance matrix 3 for the
noise models (a) and (b) was set as follows:

(36)

Figure 2(a)–(d) presents the true SPD matrix data and a set of simulated data {(xi, Si): i = 1,
···, 50} under the three noise models. Each SPD matrix Si at the point xi is geometrically
represented by an ellipsoid. In this representation, the lengths of the semiaxes of the
ellipsoid equal the square root of the eigenvalues of a SPD matrix, while the eigenvectors
define the direction of the three axes. In DTI, the ellipsoidal representation is used to
represent the local brownian motion of water molecules in the brain. Isotropic diffusion is
represented by a sphere, while anisotropic diffusion is represented by an anisotropic
ellipsoid. We simulated 100 data sets for each scenario. Note that the Rician noise level is
visually less variable than the relatively high levels of the other two.

To compare different smoothing methods for SPD matrices under different scenarios, we
calculated two summary statistics including an Average Geodesic Distance (AGD) over all
design points and a Local Average Geodesic Distance (LAGD) at each design point.

Specifically, AGD is defined as , where x̂i) is an estimated
D(xi) based on a specific smoothing method. At each sample point xi, LAGD is given by

, where D̂(j)(xi) is the estimated SPD matrix at xi
based on the j-th simulated replication. Although we chose all the three metrics for
calculating AGD and LAGD, we only present those based on the Euclidean metric for the
sake of space. The results of AGD and LAGD for the other two metrics are included in the
supplementary document.

5.1. Simulation 1
The first set of simulations compared the finite sample performance of the intrinsic local
linear estimators under different metrics and noise distributions. Figure 2(e)–(m) displays a
set of the estimated SPD functions using local linear regression estimators under the three
metrics for the three different noise models. Inspecting Figure 2(k)–(m) reveals that under
the Rician noise model, all three metrics perform well in recovering the true SPD function.
This is not surprising given the relatively low noise level shown in Figure 2(d). However,
for the other two noise models, our intrinsic local linear regression methods visually
outperform the local linear regression based on the Euclidean metric. In particular, a clear
swelling effect is observed for the Euclidean metric (Figure 2(g) and (j)). This indicates the
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importance of appropriate metric selection according to the distribution of a specific SPD
data set, which is partially in agreement with the suggestion given in Pasternak et al. (2010).
However, our findings also suggest that both the trace and Log-Euclidean metrics are
appropriate for the nonparametric analysis of SPD matrices for all three noise distributions.
This also agrees with the findings in the medical imaging literature (Fletcher and Joshi,
2007; Batchelor et al., 2005; Pennec et al., 2006) on the interpolation and extrapolation of
diffusion tensor fields. It should be noted that the simulation studies in Pasternak et al.
(2010) solely focus on the effect of metric on the estimated diffusion tensors and their
associated scalar measures, such as the apparent diffusion coefficient. Thus, the
recommendation in Pasternak et al. (2010) may not apply to the nonparametric analysis of
SPD matrices.

5.2. Simulation 2
The second set of simulations compared local constant estimators with local linear
estimators under the three metrics and the three noise distributions. In addition, we also
compared all local regression methods with the tensor spline estimators in Barmpoutis et al.
(2007). Inspecting Figures 3 reveals the following findings. As expected, under all metrics,
the local linear estimator is superior to the local constant estimator. Also, our ILPREs
outperform the corresponding estimators under the Euclidean metric and the tensor spline
estimators under the noise models (a) and (b). For the Rician noise model, our ILPREs under
the Log-Euclidean metric slightly outperform those under the trace and Euclidean metrics.
Moreover, the local constant and linear estimators outperform the tensor spline estimators
under all noise distributions. The variations of AGDs for ILPREs under the trace metric are
larger than those under the Log-Euclidean metric under all three noise distributions. The U
shape of the LAGD curves indicates that interior points have smaller LAGDs than those
near the boundaries since there are more design points in the interior than at the boundaries.

5.3. Simulation 3
The third set of simulation studies compared the finite sample performance of the intrinsic
local linear estimators under the trace, Log-Euclidean and Euclidean metrics and also tensor
spline method in Barmpoutis et al. (2007) at a higher noise level. Specifically, we assumed Σ
= 4Σ1 for the covariance matrix of N(0, Σ) in the noise models (a) and (b). At high noise
levels, most local linear estimators cannot retain the positive definiteness under the
Euclidean metric, while the tensor spline method does not converge. Thus, Figure 4 only
presents the results under the trace and Log-Euclidean metrics. Inspecting this figure reveals
that when the noise level is high, the intrinsic local linear estimators under the trace metric
slightly outperform those under the Log-Euclidean metric under the noise models (a) and
(b).

5.4. Simulation 4
The fourth set of simulation studies examined the importance and effect of directly
smoothing SPDs on some SPD-derived scalar summary measures under the three noise
models. We considered a well-known scalar measure derived from a 3 × 3 SPD matrix,
called fractional anisotropy (FA), which describes the variation of the three eigenvalues of a
3 × 3 SPD matrix. FA is a scalar value between zero (all eigenvalues are the same) and one
(two eigenvlues equal 0) and given by

(37)

Yuan et al. Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with eigenvalues λ1, λ2, λ3 and their average λ̄. We compared two different methods for
smoothing FA’s, here referred to as method A and method B, respectively. The method A
first calculates the FA’s from all SPD matrices and then uses the classic local linear
regression in Euclidean space to smooth the FA’s. The method B first applies the intrinsic
local linear estimator to smooth SPD matrices and then calculates smoothed FA curves
based on the smoothed SPD matrices. We further divided method B into three methods
according to smoothing methods for SPD matrices under three metrics: trace (method 2),
Log-Euclidean (method 3) and Euclidean (method 4) metrics. We assessed each method’s
performance via the Mean Absolute Deviation Error (MADE) defined by

, where FA(xi) and  are, respectively, the true and
estimated FA values across all design points.

Figure 5 reveals that method B outperforms method A under the noise models (a) and (b).
For the Rician noise model, methods A and B are fairly comparable, but method B based on
the Log-Euclidean metric is slightly better. This may indicate the potential improvement
gained by directly smoothing DT data over the post smoothing method A. Based on the
medians of MADEs (see Figure 5(d)–(f)), method A cannot faithfully reconstruct the trend
of the FA curve for the noise models (a) and (b), whereas method B can accurately estimate
the FA curve and reveal its critical features such as the valley. It should be noted that the
true FA value at the valley does not equal zero.

6. HIV Imaging Data
The aim of this analysis is to assess the integrity of white matter in human
immunodeficiency virus (HIV) by using DTI and our IPLRE. This clinical study was
approved by the Institutional Review Board of the University of North Carolina at Chapel
Hill. A sample data set and the code for ILPRE along with its documentation will be
accessible from the website http://www.bios.unc.edu/research/bias. We considered 46
subjects with 28 HIV+ subjects (20 males and 8 females whose mean age is 40.0 with SD
5.6 years) and 18 healthy controls (9 males and 9 females whose mean age is 41.2 with SD
7.4 years). Diffusion-weighted images and T1 weighted images were acquired for each
subject. The diffusion tensor acquisition scheme includes 18 repeated measures of six non-
collinear directions, (1,0,1), (−1,0,1), (0,1,1), (0,1,−1), (1,1,0), and (−1,1,0) at a b-value of
1000 s/mm2 and a b = 0 reference scan. Forty-six contiguous slices with a slice thickness of
2 mm covered a field of view (FOV) of 256 mm2 with an isotropic voxel size of 2 × 2 × 2
mm3. High resolution T1 weighted (T1W) images were acquired using a 3D MP-RAGE
sequence. A weighted least square estimation method was used to construct the diffusion
tensors (Zhu et al., 2007). Since in the previous DTI findings, the diffusion tensors in the
splenium of the corpus callosum were found significantly different between the HIV+ and
control groups, we examine the finite sample performance of our method by using this fiber
tract. The tensors along the tract were extracted using methodology described in Zhu et al.
(2010). Figure 6 displays the splenium of the corpus callosum and the ellipsoidal
representation of the full tensors on that tract from one selected subject. This involves three
steps: (i) registration and atlas construction, (ii) fiber tracking on the atlas and (iii) collection
of tensor data on the atlas fiber tracts.

We calculated the intrinsic local linear estimator of the SPD matrices along this selected
tract for each subject under the trace and Log-Euclidean metrics and also calculated the local
linear estimator under the Euclidean metric. See Figure 7 for the raw and estimated tensors
along the fiber tracts from one subject. It is observed from the ellipsoidal representation of
diffusion tensor data (Figure 7(a)) that the data are noisy. Figure 7(b)–(e) show that the
tensors are more spherical at the beginning with low FA values and more anisotropic in the
middle part with high FA values. The methods under the three metrics reveal very similar
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trend of diffusion tensors changing along the fiber tract, especially in the first row and the
last row. This agrees with our simulation results that for diffusion tensor data, all three
metrics are comparable. However, some differences appear on the right side of the middle
row. The estimated tensors in the middle row are very anisotropic when using the method
under the Euclidean metric compared to the other two metrics.

In many applications, it is common to calculate some tensor-derived diffusion measures,
including FA, the trace of a diffusion tensor, called MD, and the largest eigenvalue of a
diffusion tensor, called PE, based on noisy diffusion tensor data and then apply standard
statistical methods to directly carry out statistical inference on these diffusion measures.
Since these scalar measures do not capture all information in the full diffusion tensor, they
can decrease the sensitivity of detecting subtle changes of the white matter structure. Similar
to the simulation of Section 5.4, we applied method A to directly smooth FA, MD and PE
values along the selected tract and then we compared them with method B based on the
trace, Log-Euclidean, and Euclidean metrics. Figure 7(e)–(g) shows that there is no large
difference for methods B under the three metrics. Both methods A and B perform the same
for smoothing MD data, whereas they perform differently for smoothing PE and FA curves,
especially in the middle part from 10 to 25. This seems to be caused by that fact that FA and
PE values are biased due to the well known ‘sorting’ bias in estimating the eigenvalues of
DT (Zhu et al., 2007), whereas the estimated MD value is unbiased.

Finally, we estimated the mean diffusion tensor curve for each of the two groups: HIV and
control groups. In order to detect meaningful group differences, registration is crucial. The
46 HIV DTI data used in our studies, including the splenium tracts and diffusion tensors on
them, were registered in the same atlas space. Figure 8(a)–(f) displays the estimated mean
diffusion tensors along the fiber tract for the two groups using the intrinsic local linear
regression for SPD matrices under both the Log-Euclidean and trace metrics and also using
the local linear regression for SPD matrices under the Euclidean metric. We can observe
some obvious changes of diffusion tensors of HIV subjects along the splenium corpus
callosum compared with those in the control group. We also calculated the differences of FA
values derived from the estimated mean diffusion tensors, which corresponds to the color
differences in Figure 8(g), and the geodesic distances between estimated mean tensors at
each point along the tract in Figure 8(h). This result agrees with previous DTI findings that
the spleninum of the corpus callosum has been detected as abnormal for the HIV group
(Filippi et al. (2001) and Chen et al. (2009)).

7. Conclusion and Discussion
We have systematically investigated the intrinsic local polynomial regression methods under
the trace and Log-Euclidean metrics on the space of SPD matrices. Many issues still merit
further research. The proposed cross validation bandwidth selector is straightforward and
relatively simple to derive and implement for SPD matrix variate data. However, the
relatively high variance of the cross validation bandwidth selector is regarded widely as an
impediment to its good performance (Jones et al., 1996; Hardle et al., 1992). It would be
great interest to develop variable bandwidth selection methods to capture complicated
variations of SPD matrices in the covariate space and better bandwidth selection methods to
reduce the variability of cross validation (Fan et al., 1996). From the average diffusion
tensor curves for the HIV and control groups in Section 6, we can observe some obvious
changes in diffusion tensors of HIV subjects along the spleninium corpus callosum
compared with the control group. A topic of future interest should propose tests for
comparing the differences across multiple groups of SPD curves by considering varying-
coefficient models and additive models among others. The real applicability of the log
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normal and Riemannian log normal noise models remains unclear. It is of great interest to
explore the fit of those noise models to real data in different applications.

Finally, the ILPR method proposed here and theory may be extended to other nonparametric
methods (e.g., tensor splines) and manifold-valued data, such as directional data and rotation
matrices. For instance, although we have compared our ILPR with Barmpoutis et al.
(2007)’s tensor splines, it would be interesting to develop free-knot regression splines for
SPD matrices and compare them with our ILPR both theoretically and numerically (Sangalli
et al., 2009). Moreover, a smooth spline method based on unrolling and unwrapping
procedures in Riemannian manifolds has been developed for fitting smooth curves to
spherical data, rotation matrices, and planar landmark data (Jupp and Kent, 1987; Prentice,
1987; Kume et al., 2007). Development of other nonparametric methods, such as ILPR, for
the analysis of manifold-valued data and examination of the asymptotic properties of
nonparametric estimates under different metrics should be pursued in future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix. Assumptions
The following assumptions are needed to facilitate development of our methods, although
they are not the weakest possible conditions. We need some notation. Recall that ψ(S, G, Y)
= gT (S, G exp(Y)GT)2 and α = (αG, αY), where G is an m × m lower triangle matrix, S ∈
Sym+(m), Y ∈ Sym(m), αG = vecs(G), and αY = vecs(Y). We define

(C1) The kernel function K(.) is a continuous symmetric probability density function
with bounded support, say [−1, 1].

(C2) The regression function D(x) ∈ Sym+(m) has a continuous (k0 + 1)-th order
derivative in a neighborhood of x0.

(C3) The bandwidth h tends to zero and nh → ∞.

(C4) The design density fX(.) is continuous in a neighborhood of x0 and fX(x0) > 0.

(C5) The conditional density f(S|X = x) is continuous in a neighborhood of x0.

(C6)  and E[{∂αψS; G; Y (X))}⊗2|X = x] are continuous in a
neighborhood of x0.

(C7)

The matrix  is positive definite in a
neighborhood of x0.

(C8) Let ||. || be the L2 norm of a matrix, η0 be a lower triangle matrix, η1 ∈ Sym(m),
and Uδ= {(η0, η1): ||η0||2 + ||η1||2 ≤ δ2}. As δ → 0,

are uniformly in x in a neighborhood of x0.

(C9) There exists a b > 0 such that E{||∂αψ(S, G(x0), Y (X))||b+2|X = x}
is bounded in a neighborhood of x0.

(C10) The (x) = Cov{ (X)|X = x} is continuous in a neighborhood of
x0 and there exists a b > 0 such that E{|| (X)||b+2|X = x} is
bounded in a neighborhood of x0.

Remark
Assumptions (C1)–(C10) are standard conditions for ensuring the asymptotic properties of
local polynomial estimators when x0 is an interior point of fX(·) (Fan and Gijbels, 1996;
Wand and Jones, 1995). Some conditions can be released with additional technicalities of
proofs. For instance, the bounded support restriction on K(·) in (C1) is not essential and can
be removed if we put restriction on the tail of K(·). Condition (C2) ensures that Y (x) =
log(G(x0) −1D(x)G(x0)−T), G(x), and log(D(x)) have a continuous (k0 + 1)-th order
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derivative in a neighborhood of x0. Moreover, assume that fX(.) has a bounded support [0,
1]. All assumptions can be easily modified when x0 is a boundary point, say left boundary
point x0 = dh or right boundary point x0 = 1 − dh for some d > 0. For instance, we require
that conditions (C2)–(C10) hold in the left neighborhood of 0 or the right neighborhood of 1.
For condition (C2), we also need to introduce fX(0+) as x0 is the left boundary point and
fX(1−) as x0 is the right boundary point. For condition (C7), (x) is also needed to make
some modifications. For simplicity, we omit these details.
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Fig. 1.
Graphical illustration of the geometrical structure of Sym+(m) near D(x).
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Fig. 2.
Ellipsoidal representations of (a) the true SPD matrix data along the design points; simulated
SPD matrix data along the design points under the three different noise models: (b)
Riemannian log normal, (c) log normal and (d) Rician noise models; and estimated SPD
matrix data along the design points using three smoothing methods: (e), (h) and (k): ILPR
under the trace metric; (f), (i) and (l): ILPR under the Log-Euclidean metric; and (g), (j) and
(m): LPR under the Euclidean metric; and under the three different noise models: (e)–(g):
Riemannian log normal model; (h)–(j): log normal model; and (k)–(m): Rician noise model,
colored with FA values defined in (37).
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Fig. 3.
Comparisons of the local constant and linear estimators under the three metrics and the
tensor spline estimators under the three noise models. Panels (a)–(c) the boxplots of
1000×AGDs obtained from seven different estimators, where LCL, LCT, and LCE,
respectively, represent the local constant estimators under the Log-Euclidean, trace and
Euclidean metrics, where LLL, LLT, and LLE, respectively, represent the corresponding
local constant and linear estimators under the metrics, and where SP represents the tensor
spline estimator. Panels (d)–(f) of the second row show the log10(LAGD) curves based on
LCL (dash-dotted line), LCT (dashed line), LCE (dotted line), and SP (solid line). Panels
(g)–(i) of the third row show the log10(LAGD) curves based on LLL (dash-dotted line), LLT
(dashed line), LLE (dotted line), and SP (solid line). The columns correspond to the three
noise models: column 1: Riemannian log normal; column 2: log normal; and column 3:
Rician.
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Fig. 4.
Comparison of the intrinsic local linear estimators under the Log-Euclidean and trace
metrics for the first two noise models at a higher noise level: Panels (a) and (c): Riemannian
log normal; Panels (b) and (d): log normal; Panels (a) and (b): the boxplots of AGDs for
LLL and LLT; Panels (c) and (d): the log10(LAGD) curves of LLL and LLT. It shows that at
a high noise level, the intrinsic local linear estimators under the trace metric slightly
outperform those under the Log-Euclidean metric for the first two noise models.
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Fig. 5.
Boxplot of the MADE’s using the four smoothing methods 1–4 representing the first-fourth
methods based on 100 replications for three noise models: (a) Riemannian log normal
model; (b) log normal model; and (c) Rician model. Smoothed FA curves for the realizations
with median MADE for three noise models: (d) Riemannian log normal model; (e) log
normal model; and (f) Rician model. In panels (d)–(f), the raw FA curve is the dotted line
with circle, true FA curve is the solid line, the estimated FA curve for the first method is the
dash-dotted line with circle, the estimated FA curve for the second method is the dotted line,
the estimated FA curve for the third method is dash-dotted line and the estimated FA curve
for the fourth method is dashed line.
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Fig. 6.
(a)The splenium of the corpus callosum in the analysis of HIV DTI data. (b)The ellipsoidal
representation of full tensors colored with FA values on the fiber tract from a selected
subject.
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Fig. 7.
(a) The ellipsoidal representations of the diffusion tensor data and estimated tensors using
the intrinsic local linear regression under the (b) Log-Euclidean, (c) trace and (d) Euclidean
metrics along the splenium of the corpus callosum, colored with FA values. The estimated
tensors in the middle right part are more anisotropic using the method under the Euclidean
metric. Each set of 3 rows in (a)–(d) represents one tract of tensors and the three rows are
read from left to right in the top row, right to left in the middle row and then left to right in
the bottom row. (e) FA’s, (f) MD’s and (g) PE’s derived from the raw tensor data (dot line)
and estimated tensors using the intrinsic local linear regression under the trace (dash-dot
line), Log-Euclidean (solid line) and Euclidean (dashed line) metrics as the function of arc-
length along the splenium of the corpus callosum. Estimated FA, MD and PE function along
the splenium of the corpus callosum by using the standard local linear regression for scalars
(dotted line with circles).
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Fig. 8.
Ellipsoidal representations of estimated mean tensors along the splenium of the corpus
callosum for the control and HIV groups using the intrinsic local linear regression under the
Log-Euclidean ((a) and (b)), trace ((c) and (d)) and Euclidean ((e) and (f)) metrics colored
with FA values. Each set of 3 rows in (a)–(d) represents one tract of tensors and the three
rows are read from left to right in the top row, right to left in the middle row and then left to
right in the bottom row. (g) FA differences and (h) geodesic distances (GD) between the
mean diffusion tensors of HIV and control groups along the splenium of the corpus callosum
under the Log-Euclidean (the solid line), trace (the dashed line) and Euclidean (dash-dot
line) metrics.
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