201 research outputs found

    Tapered optical fibre sensors: current trends and future perspectives

    Get PDF
    The development of reliable, affordable and efficient sensors is a key step in providing tools for efficient monitoring of critical environmental parameters. This review focuses on the use of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer benefits when measuring physical parameters such as strain and temperature. A review of the basic sensing platforms implemented using tapered optical fibres and their application for development of fibre-optic physical, chemical and bio-sensors is presented

    Hybrid fiber grating cavity for multi-parametric sensing.

    Get PDF
    We propose an all-fiber hybrid cavity involving two unbalanced uniform fiber Bragg gratings (FBGs) written at both sides of a tilted FBG (TFBG) to form an all-fiber interferometer. This configuration provides a wavelength gated reflection signal with interference fringes depending on the cavity features modulated by spectral dips associated to the wavelength dependent optical losses due to cladding mode coupling occurring along the TFBG. Such a robust structure preserves the advantages of uniform FBGs in terms of interrogation methods and allows the possibility of simultaneous physical and chemical sensing

    Femtosecond Laser Micromachining of Advanced Fiber Optic Sensors and Devices

    Get PDF
    Research and development in photonic micro/nano structures functioned as sensors and devices have experienced significant growth in recent years, fueled by their broad applications in the fields of physical, chemical and biological quantities. Compared with conventional sensors with bulky assemblies, recent process in femtosecond (fs) laser three-dimensional (3D) micro- and even nano-scale micromachining technique has been proven an effective and flexible way for one-step fabrication of assembly-free micro devices and structures in various transparent materials, such as fused silica and single crystal sapphire materials. When used for fabrication, fs laser has many unique characteristics, such as negligible cracks, minimal heat-affected-zone, low recast, high precision, and the capability of embedded 3D fabrication, compared with conventional long pulse lasers. The merits of this advanced manufacturing technique enable the unique opportunity to fabricate integrated sensors with improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance. Recently, fiber optic sensors have been widely used for energy, defense, environmental, biomedical and industry sensing applications. In addition to the well-known advantages of miniaturized in size, high sensitivity, simple to fabricate, immunity to electromagnetic interference (EMI) and resistance to corrosion, all-optical fiber sensors are becoming more and more desirable when designed with characteristics of assembly free and operation in the reflection configuration. In particular, all-optical fiber sensor is a good candidate to address the monitoring needs within extreme environment conditions, such as high temperature, high pressure, toxic/corrosive/erosive atmosphere, and large strain/stress. In addition, assembly-free, advanced fiber optic sensors and devices are also needed in optofluidic systems for chemical/biomedical sensing applications and polarization manipulation in optical systems. Different fs laser micromachining techniques were investigated for different purposes, such as fs laser direct ablating, fs laser irradiation with chemical etching (FLICE) and laser induced stresses. A series of high performance assembly-free, all-optical fiber sensor probes operated in a reflection configuration were proposed and fabricated. Meanwhile, several significant sensing measurements (e.g., high temperature, high pressure, refractive index variation, and molecule identification) of the proposed sensors were demonstrated in this dissertation as well. In addition to the probe based fiber optic sensors, stress induced birefringence was also created in the commercial optical fibers using fs laser induced stresses technique, resulting in several advanced polarization dependent devices, including a fiber inline quarter waveplate and a fiber inline polarizer based on the long period fiber grating (LPFG) structure

    Hybrid sensor based on a hollow square core fiber for temperature independent refractive index detection

    Get PDF
    In this work, a hybrid sensor based on a section of hollow square core fiber (HSCF) spliced between two single mode fibers is proposed for the measurement of refractive index of liquids. The sensor, with a length of a few millimeters, operates in a transmission configuration. Due to the HSCF inner geometry, two different interferometers are generated. The first, a Mach-Zehnder interferometer, is insensitive to the external refractive index, and presents a sensitivity to temperature of (29.2 ± 1.1) pm/°C. The second one, a cladding modal interferometer, is highly sensitive to the external refractive index. An experimental resolution of 1.0 × 10-4 was achieved for this component. Due to the different responses of each interferometer to the parameters under study, a compensation method was developed to attain refractive index measurements that are temperature independent. The proposed sensor can find applications in areas where refractive index measurements are required and the control of room temperature is a challenge, such as in the food and beverage industry, as well as in biochemical or biomedical industries.publishe

    Advanced UV inscribed fibre grating structures and applications in optical sensing and laser systems

    Get PDF
    This thesis presents detailed investigation of UV inscribed fibre grating based devices and novel developments in the applications of such devices in optical sensing and fibre laser systems. The major contribution of this PhD programme includes the systematic study on fabrication, spectral characteristics and applications of different types of UV written in-fibre gratings such as Type I and IA Fibre Bragg Gratings (FBGs), Chirped Fibre Bragg Gratings (CFBGs) and Tilted Fibre Gratings (TFGs) with small, large and 45º tilted structures inscribed in normal silica fibre. Three fabrication techniques including holographic, phase-mask and blank beam exposure scanning, which were employed to fabricate a range of gratings in standard single mode fibre, are fully discussed. The thesis reports the creation of smart structures with self-sensing capability by embedding FBG-array sensors in Al matrix composite. In another part of this study, we have demonstrated the particular significant improvements made in sensitising standard FBGs to the chemical surrounding medium by inducing microstructure to the grating by femtosecond (fs) patterning assisted chemical etching technique. Also, a major work is presented for the investigation on the structures, inscription methods and spectral Polarisation Dependent Loss (PDL) and thermal characteristics of different angle TFGs. Finally, a very novel application in realising stable single polarisation and multiwavelength switchable Erbium Doped Fibre Lasers (EDFLs) using intracavity polarisation selective filters based on TFG devices with tilted structures at small, large and exact 45° angles forms another important contribution of this thesis

    Fiber inline pressure and acoustic sensor fabricated with femtosecond laser

    Get PDF
    Pressure and acoustic measurements are required in many industrial applications such as down-hole oil well monitoring, structural heath monitoring, engine monitoring, study of aerodynamics, etc. Conventional sensors are difficult to apply due to the high temperature, electromagnetic-interference noise and limited space in such environments. Fiber optic sensors have been developed since the last century and have proved themselves good candidates in such harsh environment. This dissertation aims to design, develop and demonstrate miniaturized fiber pressure/acoustic sensors for harsh environment applications through femtosecond laser fabrication. Working towards this objective, the dissertation explored two types of fiber inline microsensors fabricated by femtosecond laser: an extrinsic Fabry-Perot interferometric (EFPI) sensor with silica diaphragm for pressure/acoustic sensing, and an intrinisic Fabry-Perot interferometer (IFPI) for temperature sensing. The scope of the dissertation work consists of device design, device modeling/simulation, laser fabrication system setups, signal processing method development and sensor performance evaluation and demonstration. This research work provides theoretical and experimental evidences that the femtosecond laser fabrication technique is a valid tool to fabricate miniaturized fiber optic pressure and temperature sensors which possess advantages over currently developed sensors --Abstract, page iii

    In-line tapered fiber Mach-Zehnder interferometer for biosensing applications

    Get PDF
    Due to the advantages of compact size, light weight, immunity to electromagnetic interference and remote sensing, optical fiber sensors have been studied extensively since the 60s. In particular, interferometric Mach-Zehnder fiber sensors are favourable for their flexibility and high sensitivity. The principle of operation for these sensors bases upon the interference between the light propagation in the core mode and the excited cladding modes. The work presented in this thesis focuses on the fabrication of tapered Mach- Zehnder interferometer in a single-mode fiber and its applications in biosensing. In this study, two kinds of tapered fiber Mach-Zehnder interferometer, either symmetric or asymmetric, have been fabricated using fusion splicing technique. In both cases, the effects of varying the waist diameter, separation distance between tapers, and propagation direction are studied. The symmetrical tapered fiber Mach-Zehnder interferometer has been explored for biosensing applications. Using the dipping layer-bylayer method, multiple thin films have been deposited on the fiber structure for the detection of streptavidin which is a common target material used to test the effectiveness of a biosensor. The sensing mechanism here relies on the electrostatic attraction between cationic and anionic materials, in which the cationic material used in this study is poly (allylamin hidrocloride) (PAH). While, the anionic material adopted here is either SiOâ‚‚ core/Au shell nanoparticles or poly (sodium 4-styrenesulfonate) (PSS). For the best of our knowledge, this is the first time the tapered fiber Mach-Zehnder interferometer is used for streptavidin sensing by applying the layer-by-layer technique. Two types of multilayered structure are fabricated on the tapered region of the fiber interferometer. The first multilayered structure consists of SiOâ‚‚:Au nanoparticles, in which the deposition of a monolayer of the PAH polymer and a monolayer of the negatively charged SiOâ‚‚:Au NPs represents a single bilayer of (PAH/SiOâ‚‚:Au NPs). The second multilayered structure bases on the deposition of PAH and PSS polymer. Following the fabrication of the multilayered structures is the functionalization with biotin which is a vitamin that possesses a strong binding ability with streptavidin so it functions as an adhesive material to streptavidin. The sensing response of the sensors on detecting aqueous solutions of streptavidin has been observed by measuring the shift in the wavelength of the transmission spectrum of the tapered fiber interferometer. The effects of depositing (PAH/SiOâ‚‚:Au NPs) and (PAH/PSS) films in multilayered structures, as well as the influences of different device specifications are investigated
    • …
    corecore