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Abstract: The development of reliable, affordable and efficient sensors is a key step in providing
tools for efficient monitoring of critical environmental parameters. This review focuses on the use
of tapered optical fibres as an environmental sensing platform. Tapered fibres allow access to the
evanescent wave of the propagating mode, which can be exploited to facilitate chemical sensing
by spectroscopic evaluation of the medium surrounding the optical fibre, by measurement of the
refractive index of the medium, or by coupling to other waveguides formed of chemically sensitive
materials. In addition, the reduced diameter of the tapered section of the optical fibre can offer
benefits when measuring physical parameters such as strain and temperature. A review of the basic
sensing platforms implemented using tapered optical fibres and their application for development of
fibre-optic physical, chemical and bio-sensors is presented.

Keywords: tapered optical fibre sensors; evanescent wave spectroscopy; modal interferometry;
whispering gallery mode; functional nano-thin coatings

1. Introduction

Accurate understanding of the environment is important for proper functioning of various
processes associated with human activities, ranging from the dependence of wellbeing on the quality
of the indoor and outdoor environments [1,2] to complex industrial processes [3]. This requires the
monitoring and control of critical environmental parameters, which can broadly be divided into physical
(temperature, strain, pressure, etc.) and bio-chemical (concentration of contaminants and bio-hazardants).
A recent publication [3] provided a comprehensive review on the use of optical fibre sensors for environmental
monitoring in civil, petroleum and agricultural engineering. This paper focuses on the use of tapered
optical fibre sensors for the measurement of parameters important in environmental monitoring.

Optical sensors detect changes in optical parameters (refractive index (RI), absorbance, reflectance,
fluorescence, etc.) that depend upon the physicochemical parameters (pressure, strain, temperature,
chemical composition, etc.) of the investigated environment. Optical fibres offer a convenient method
for creating optical sensors, directing light to, and collecting light from, the measurement region, so
called extrinsic sensors [4] or using the fibre itself as the transducer, so called intrinsic sensors [5].
Fibre optic sensors possess several advantages over conventional sensor techniques [5–7]. They are
not susceptible to electromagnetic interference, they can survive harsh environments and tolerate
high temperatures. They are biocompatible and are readily multiplexed, allowing the simultaneous
monitoring of a number of measurands. They can be used for remote monitoring of the environment
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because of the low attenuation that is a property of light propagation in telecommunications grade
single mode optical fibres.

Optical fibre-based measurement techniques have attracted a great deal of attention in a variety
of analytical areas such as chemical and biological sensing, environmental and structural health
monitoring and medical diagnosis. The large variety of designs and measurement schemes that may
be implemented using optical fibres provides the potential for the creation of highly sensitive and
selective sensors for deployment in real world environments.

One of the simplest methods for the fabrication of optical fibre sensor elements is based on the
tapering of a relatively short section (of length ranging from sub-millimetre to tens of millimetres) of the
optical fibre. This provides access to the evanescent wave (EW) of the mode propagating through the
tapered region, facilitating interaction with the surrounding medium and allowing the measurement
of parameters such as RI or chemical composition. A tapered optical fibre consists of a region of fibre
with reduced and uniform diameter (the waist) that is bounded by conical sections where the diameter
of the fibre changes to merge the tapered section with the unperturbed surrounding fibre. The optical
properties of the tapered fibre waveguide are influenced by the profile of the conical tapering sections,
by the diameter of the taper waist and by the RI of the surrounding medium. The proportion of the
power in the EW, and thus the interaction with the surrounding medium, increases with decreasing
diameter of the taper waist and with decreasing difference between the RI of the fibre and surrounding
medium [8,9]. Tapered optical fibres offer a number of attractive features for sensor development,
including large evanescent fields, flexibility and compactness. In the case of a tapered optical fibre
that is coated with a functional material, the properties of the waveguide are influenced by the optical
thickness (product of RI, and geometrical thickness) of the coating.

Originally, tapered optical fibres were employed for the development of directional couplers,
where two or more tapers are fused together, as they provide efficient light coupling between fibres [10].
More recently, tapered optical fibres have also found applications in sensor development [11], polarizers,
submicron wire [12], light amplifiers [13] and near and far field microscopy [14].

Fabrication of Tapered Optical Fibres

The fabrication of tapered optical fibres is generally achieved by heating a short section of the
fibre while simultaneously pulling the two ends of the fibre, as illustrated in Figure 1. The heat source
could be the flame of a gas burner [8], high power laser radiation [15,16], or an arc discharge [17].
In single mode optical fibre, the one of the functions of the cladding is to reduce the penetration of the
electric field of the propagating mode into surrounding medium. In the tapering process, the core
and cladding diameters are reduced by the same proportion. This process leads to coupling of light
from the fundamental mode of the untapered fibre to modes of the tapered section that can interact
with the surrounding medium. The other way to facilitate the interaction of the light propagating
within the optical fibre with the surrounding medium is to thin the cladding of the optical fibre,
leaving the dimensions of the core unchanged. This can be achieved by chemical etching, polishing
and focused ion beam etching [18]. The thinning of the cladding increases the interaction of the
EW of the propagating mode with the surrounding medium. In contrast to tapered fibres, there is
no mode coupling between fundamental and higher order modes. The key difference between two
configurations is explained in Section 2.3 and presents the mechanism for coupling of the fundamental
core mode to higher order cladding modes in tapered fibres, while no such phenomenon is observed in
thinned cladding optical fibres. This difference results in the different sensitivities, with tapered optical
fibre more sensitive enabling more information to be extracted about the surrounding medium, as
explained later in this review. In this review, we will focus on tapered optical fibres, i.e., optical fibres
in which the core and cladding diameters are reduced by the same proportion, rather than on optical
fibres with thinned claddings.

Figure 1 shows the “heat and stretch” approach to tapered optical fibre fabrication. The polymer
buffer coating (typically acrylate) is removed from a section in the middle of a length of optical fibre
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using a mechanical stripper or suitable solvent. The optical fibre tails on either side of the section to be
tapered are then fixed on translation stages. The buffer coating-removed section is exposed to the heat
source while the fibre tails are pulled in opposite directions. Using this approach, optical fibre tapers
of different diameters with well-defined taper waists can be fabricated. The optical characteristics
of a tapered optical fibre are determined by the taper diameter and by the geometry of the taper
transition region. If the transition regions satisfies the adiabaticity criteria, which requires that the
taper transition length is longer than the beat length between the fundamental and 2nd order modes
and thus a lower angle taper [19], there is no energy coupling to higher order modes. Such adiabatic
tapers are characterised by low losses and single mode operation. In non-adiabatic tapers, where this
criterion is not satisfied, the coupling of light to higher order modes increases the losses of the taper,
and also introduces features into the transmission spectrum that are caused by interference between
the propagating modes, which can be used for sensing applications.
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Figure 1. Schematic illustration of the flame approach used for the fabrication of tapered optical fibres.

The evanescent field distribution surrounding the tapered region can be measured directly using
a scanning near-field optical microscope, which can produce results that are in good agreement with
finite difference beam propagation analysis [20].

As stated, the geometry of the tapered fibre plays a crucial role in its performance as a sensor,
with smaller diameter taper waists providing the higher sensitivity [21–24]. Typical taper profiles are
shown in Figure 2.
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Figure 2. Geometry of a (a) parabolic (b) linear and (c) exponential–linear taper profiles [23]. Reprinted
with permission. Copyright 2003 Elsevier.

It has been shown that, for a given heating profile, the shape of a tapered fibre is independent of
the material properties and the stretching conditions applied at the fibre ends [25]. Thus, control of
a taper’s shape can be achieved simply by using different heating profiles, achieved for example by
scanning the heat source along the section of the fibre to be tapered.

Birks and Li [24] introduced the procedure for analysing the hotzone length variation required to
produce a given shape of taper. They have demonstrated that an optimal adiabatic taper can be made
using a traveling burner tapering system.

Control of the heating of the fibre within the heating zone is of critical importance for producing
tapers with uniform waists. In this regard, a CO2 laser offers a number of advantages over the use of a
flame such as the heated-zone properties can be controlled in a repeatable fashion, the production of
air turbulence and combustion contaminants can be avoided [16,26].
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In addition to tapered fibres with reduced diameter, that creates two cones (biconical tapers), there
has been interest in waist enlarged tapers (WET) where the diameter of core and cladding are increased
at the overlap during the fusion splicing of two optical fibres (Figure 3). One of the advantages of WET
over down-stretched tapers is the increased mechanical stability of the device [21].
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Bending of the tapered optical fibres into a U-shape or an S-shape allows to increase the interaction
of the evanescent wave with the surrounding medium thus increasing sensitivity [27–30].

2. Tapered Optical Fibre Sensors

Tapered optical fibre sensors were used in different applications such as environmental monitoring,
healthcare and structural health monitoring [31–36]. Typically, two methods can be employed to
measure the change associated with the interaction between the EW and the medium of interest [37].
The first approach exploits detection of the light losses within the tapered region, which can be caused
by both the change in spectral properties of the analyte and RI of the surrounding medium [38].
The second method utilises interferometric method in which the change of the effective refractive
indices of the modes propagating through the taper, is measured by using mode coupling devices such
as in-fibre gratings, surface plasmon resonances [39] and lossy mode resonances [40].

2.1. Evanescent Wave Spectroscopy

Chemical composition of the environment surrounding the optical fibre can be measured
quantitatively and qualitatively using evanescent wave spectroscopy which is a highly sensitive
and powerful technique [37]. The penetration depth (dp) of the EW decays exponentially with the
distance from the interface between the waveguide and the surrounding environment and is described
by [4]:

dp =
λ

2π(n2
e f f − ns2)

1/2
, (1)

where λ is the wavelength of light in free space, ns is the RI of the surrounding environment and neff is
the effective RI of the mode guided by the optical fibre.

The chemical composition of the surrounding medium influences the propagation of the EW, and
thus of the propagating mode, according to the Lambert–Beer law

log
I
I0

= c× α× L, (2)

where α is the molar extinction coefficient, c is the concentration of the chemical compound, L is the
optical path-length, and I and I0 are the light intensities before and after interaction with chemical
compound, respectively.

The spectroscopy and hence chemical composition of the surrounding medium can be analysed
simply by detecting the transmitted light by coupling the output from the distal end of the optical
fibre into a spectrometer. It is important to match the parameters of the light source and spectrometer
such as emission wavelength and sensitivity range with the absorption properties of the particular
compound that needs to be detected. Typically, the absorption features of environmental pollutants
are located in the infrared and mid-infrared spectral range (2.5–10 µm) which limits the application
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of silica optical fibres since they are not transparent in this spectral window. The low attenuation of
chalcogenide glasses in the infrared region, where specific absorption features of organic molecules are
located, makes the use of the low losses of tapered chalcogenide optical fibre attractive for evanescent
wave spectroscopy [41].

Figure 4 shows a typical example of the evanescent wave spectroscopy that measured absorption
features of the conducted a porphyrin dye compound using a hard-clad multimode silica optical
fibre (core diameter, 200 ± 5 µm; cladding diameter 225 ± 5 µm, coating diameter 500 ± 30 µm,
Pure Silica/TECS Hard Cladding Tefzel, FT200UMT, Thorlab) with a section of the plastic cladding
removed [37]. Figure 4b demonstrates the absorption features of the porphyrin dye compounds located
at ca. 420, 494 and 710 nm.
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2.2. Radiation Losses and Scattering

For some of the modes in an optical fibre, the guidance conditions are not satisfied owing to
the reduction of the size of the cladding and the core diameters caused by the tapering of the optical
fibre, resulting in radiation losses, i.e., leakage of these modes from the fibre into the surrounding
medium. The magnitude of the radiation losses depends strongly on the RI of the surrounding
medium. This mechanism has been employed for the development of an RI sensor with a resolution of
7 × 10−4 RIU [43].

2.3. Modal Interferometry

Modal interferometry (MI) is a sensitive and powerful approach in sensor development that
exploits the interaction between lower and higher order modes in the fibre region. Those modes
propagate with different effective refractive indices and respond to the analyte differently resulting in
the change in phase that is measured on the mode recombination.

Approaches based on, for example, in-fibre gratings, non-adiabatic tapers, regions of core
mismatch and directional couplers may be employed to create regions where two modes are excited
and subsequently recombined to interfere [44,45]. Interference between modes results in the channelled
spectrum measured by spectrometer and the phase of the channelled spectrum dependents on the
difference in the optical path lengths of the interfering modes, according to [37,46]:

ϕ =
2π
λ

(
δne f f

)
L, (3)

http://creativecommons.org/licenses/by/4.0/
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where λ is the free-space wavelength, L is the centre-to-centre distance between two coupling elements
and δneff is the difference in effective refractive indices between higher order and fundamental modes.

Depending on the taper geometry, optical fibre tapers can be divided into adiabatic and
non-adiabatic types: if the angle of the taper transition region is small and the cylindrical symmetry of
the optical fibre is retained, resulting in most of the optical power remaining in the fundamental mode
the tapers are considered adiabatic; if the optical power is coupled into higher order modes the tapers
are non-adiabatic tapers. For non-adiabatic tapers of diameter less than 10 µm, the linearly polarised,
LP01, mode of the single mode fibre generally couples to the HE11 and HE12 modes of the tapered
waist [35,47], which propagate with different effective indices along the taper waist and interfere when
recombine at the second taper transition (Figure 5a). The corresponding channelled spectrum is shown
in Figure 5b.
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fabricated in an optical fibre with a cut-off wavelength of 670 nm (Fibrecore SM670). Reprinted from [37]
under creative common free licence (http://creativecommons.org/licenses/by/4.0/).

In general, two interrogation approaches can be employed for tapered optical fibre sensors:
(i) measurement of the dependence of the amplitude of the signal on the particular measurand [8]
and (ii) dependence of the wavelengths of the features in the channelled spectrum on the particular
measurand [48]. It should be noted that first approach requires a reference measurement to compensate
for any drift in the light source intensity and for any losses induced by the bending of the optical fibre.

2.4. Gratings in Tapered Optical Fibres

Introduction of the periodic modulation of the refractive index inside the core of the optical fibre
by exposure to a spatially modulated intensity pattern from a UV or femtosecond laser creates a
diffraction grating, which can be used for sensor development. Generally, optical fibre grating sensors
are classified as fibre Bragg grating (FBG) (reflection type gratings; Figure 6a) and a long period grating
(LPG) (transmission type gratings; Figure 6b) with the grating periods of 100 s of nm and 100 µm to
1 mm, respectively [37,49].

Optical fibre grating sensors are sensitive to parameters that can influence the period of the grating
or RI of the fibre. Fibre Bragg grating sensors are typically sensitive to strain and temperature [50,51].
Since in FBG all optical power remains in the core they are generally not sensitive to RI. To sensitise
FBGs to the surrounding RI, an access to the EW needs to be obtained and this can be achieved
by polishing, etching or tapering optical fibre. Changes in the surrounding RI induces the Bragg
wavelength shifts and modulates the reflected power [37].

In an LPG the position of the resonance bands in the transmission spectrum is dependent upon
product of the period of the LPG and the difference between the core and cladding mode indices,
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which makes them inherently sensitive to the surrounding RI, and to the optical thickness of nanoscale
coatings deposited onto the cladding [37,49].
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While LPGs are predominantly sensitive to strain temperature, curvature and surrounding
RI [52], the combination of tapers with LPGs can offer an increase in sensitivity and functionality
via enhancement of the interaction of the EW with the surrounding medium. Periodic tapering of
an optical fibre using CO2 laser as a heating source can be used as an alternative to UV laser based
inscription methods for LPG fabrication, as shown in Figure 7 [53,54] with ultra-short (<400 micron
length) tapered LPGs recently demonstrated using CO2 laser fabrication [55].
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Figure 7. Micrograph of a tapered long period grating TLPG with three micro-tapers. Taper 1 has a
distorted profile. The fibre at position A is offset from the fibre axis compared to position B. The centre
axis of the fibre is shown as a dashed red line. SM750 fibre was used (magnification × 10); Reprinted
with permission from [55]. Copyright 2018 Elsevier.

A further approach to LPG fabrication, in which the tapered section of an optical fibre is embedded
into a polymeric periodic structure using soft mold-replica lithography has been demonstrated [56]
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or side-contacted with metal grating [57]. It was observed that the best performance (−1.328 nm/◦C
and 21 nm/RIU) obtained for polymeric structures is when a 10 mm long grating with the period of
400 µm, and a waist diameter of 20 µm is used. An advantage of the polymeric grating over metallic
is the flexibility of fabrication, which allows for the optical fibre to be embedded in the grating and
eliminates needs of further adjustments [56].

The wavelength-encoded nature of the grating based sensors offers a number of advantages; not
least, the ability to multiplex a serial array of FBG or LPG sensors in a single optical fibre by ensuring
that each has a different period, and thus a different resonance wavelength.

2.5. Surface Plasmon Resonance

Surface plasmon resonance (SPR) is a powerful tool, used extensively for chemical, biological and
medical applications, that belongs to the group of refractometric sensing devices that measure changes
in the RI in the field of an EW [58] (Figure 8).
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The analyte-induced change in optical parameters at the interface between the gold coating and
the surrounding medium modulates the resonant coupling of incident light to the propagating
surface plasmon wave [59]. The existence of the surface plasmon wave is dictated by the
electromagnetic properties of the metal (typically gold or silver)–dielectric (sample medium)
interface [59]. The characteristics of the resonant coupling provide information about compounds
bound to the metal layer. This information is tracked by monitoring either the wavelength at which
coupling occurs at a fixed angle of incidence, the angle of incidence at which coupling occurs at a
particular wavelength or the intensity of the light at a fixed angle and wavelength.

In the typical SPR configuration, the so-called Kretchmann arrangement, a prism coated with a
metal layer is employed, creating a sensor that requires bulk optics and expensive mechanical parts.
Optical tapered fibre based SPR, in which a tapered fibre optic is coated with a thin metal film, offers
advantages over the standard SPR configuration owing to its small size, light weight and automatic
alignment, with no compromise in terms of sensitivity and overall sensor performance [39].

3. Applications of Tapered Optical Fibre Sensors

3.1. Refractometry—Single Taper Devices

Refractive index is a fundamental property of any material, which depends on environment
parameters such as temperature, pressure, humidity and concentration of any chemicals present.
The measurement of RI can provide valuable information about these important environmental



Sensors 2019, 19, 2294 9 of 39

parameters. It should be noted, that measurements of the RI does not allow to discriminate what
chemicals are present in the medium.

As was mentioned above, generally, two parameters of the transmission spectrum can be measured
to reveal information on changes of the external RI; the wavelength shift of the interference features in
the transmission spectrum of a non-adiabatic taper, or the attenuation (radiation losses) of the light
transmitted through the tapered waist. Typically, the performance of optical fibre refractometers is
tested in the 1.333–1.360 range, corresponding to the typical refractive indices of biological fluids.
Villatoro reported a sensor based on surrounding-refractive-index-induced radiation losses in a tapered
multimode optical fibre with a waist diameter of 60 µm, which was capable of measuring RI in the
range 1.36–1.46, with a limit of detection below 10−4 RIU [60].

Modal interferometers based on non-adiabatic tapered optical fibre (NATOF) sensors can be used
to measure changes in the RI of a solution, and thus the concentration of an analyte, without specificity,
by monitoring changes in the phase of the channelled spectrum. For instance, a taper of diameter
7 µm was used to measure the concentration of D-glucose in deionized water. The limit of detection of
the NATOF was 55 ppm for D-glucose concentrations ranging from 0 to 80 mg/mL, and the limit of
detection of the RI measurement corresponding to these concentrations, which lay in the range from
1.3330 to 1.3447, was 8.2 × 10−6 RIU [61].

NATOF sensors can also be used to monitor RI changes induced by bio-molecular interactions
in biological systems. The response of an NATOF was used to show that the interactions of various
groups of amino acids (AA), such as L-alanine, L-leucine and L-cysteine with D-glucose, sucrose and
water molecules, depend on functional groups such as OH, H, CH2, NH3+ and COO−. Such studies can
improve the understanding of the interactions between AA molecules and entities present in biological
matrices, without the requirement to monitor their spectroscopy [61].

The RI change caused by the presence of the Escherichia coli (JM101 strain) in solution at
concentrations of 100, 1000, 7000 and 7 million cells/mL in water were measured using a 5.5 µm
diameter taper [22,34]. The measurement principle was based on the detection of the RI change induced
by the presence of the bacteria at relatively high concentrations [22,34]. The study showed that the
sensitivity increased with reducing taper diameter, which was attributed to the associated increase of
the penetration of evanescent field into the surrounding medium [22].

Tapered optical fibres can be used for the quasi-distributed sensing of RI, using optical frequency
domain reflectometry (OFDR) to interrogate an array of tapered sections created in series in a single
optical fibre. Changes in the attenuation of the Rayleigh backscattered signal from the tapered regions
were used to monitor the RI of the surrounding medium. An analysis of the performance of the system
showed that, for tapers of diameter 50 µm, up to nine tapers could be multiplexed using commercial
OFDR instrumentation [62].

The sensitivity of tapered optical fibre refractometers can be improved by deposition of a
mesoporous coating of silica nanospheres onto the surface of the taper via covalent immobilization [63].
The sensitivity enhancement was attributed to the coupled effects of Mie scattering and multimode
propagation. The presence of the scattering centres increases the power fraction of the evanescent
wave and thus the interaction of the light with the surrounding medium, providing higher sensitivity
as compared with non-scattering tapers [63]. The effect of the taper dimensions on sensor performance
was studied and the sensitivity was improved by two orders of magnitude when a taper (thickness
2.8 µm and length 14 mm) was coated with a 400-nm thick film of silica nanospheres as compared with
unmodified taper [63].

3.2. Grating Assisted Taper Devices

The combination of gratings with tapered fibres offers the prospect for the flexible design of
devices with enhanced capabilities. The resonance bands in the transmission spectra of LPGs are
inherently sensitive to the surrounding RI by virtue of the dependence of the resonance wavelength
on the effective index of the cladding mode to which coupling occurs. The sensitivity of the LPG’s
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transmission spectrum to changes in surrounding RI can be increased by fabricating the LPG in the
tapered region of an optical fibre [64]. The refractive index resolution achieved with this configuration
was ±8.5 × 10−5 as compared to about 1 × 10−4 of the standard LPG optical fibre sensors [65].

It is also possible to create modal interferometers by combining LPGs with tapers. For example,
an LPG fabricated in a section of tapered optical fibre can be used to excite selectively cladding modes
that subsequently interfere at the second transition region with the light that propagates through the
core. This produces a channelled spectrum within the envelope of the resonance bands of the LPG,
such as that shown in Figure 9. Rather than relying upon the fabrication of small diameter NATOFs,
such modal interferometers can be created in tapers of larger diameter, which can be easier to fabricate
and be more robust. An LPG with a grating period of 400 µm and of length 5 cm was fabricated in a
biconical fibre taper with 34 µm diameter and 3.2 cm length made from standard step-index optical
fibre, producing the channelled spectrum illustrated in Figure 9. A resolution of 1 × 10−4 RIU for
refractive indices in the range of 1.30–1.34 was reported [66].
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Mach–Zehnder-like interference effects have been observed when LPGs with period larger than
300 µm were inscribed in a tapered fibre with a waist diameter of 25 µm. The devices exhibited a RI
resolution of ±8.5 × 10−5 RIU for solutions with indices in the range of 1.330–1.335 [64]. The fabrication
of a pair of identical, cascaded LPGs separated by a section of optical fibre to create an in-fibre
Mach–Zehnder interferometer (MZI) has been investigated for sensing applications. The light coupled
into the cladding by the 1st LPG is recoupled into the core by the 2nd LPG to interfere with the core
mode, creating the interferometer. The sensitivity of such devices to changes in the surrounding RI can
be increased if the section of fibre separating the LPGs is tapered, as illustrated in Figure 10, as the RI
sensitivity of the cladding modes’ effective indices is enhanced [67]. A resolution of 5.8 × 10−6 RIU
was achieved, assuming the measurement system has a spectral resolution of 1 pm.
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Figure 10. Schematic illustration of the fibre-taper cascaded LPG; arrows indicate coupling of the
fundamental core mode (green arrow) to the cladding modes at LPG-1, their interaction with the
surrounding medium at tapered region and recombination of higher order modes with the fundamental
core mode at LPG-2 [67] (adapted from [67]).
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FBGs are generally insensitive to the RI of the medium surrounding the fibre cladding, unless
fabricated in tapered optical fibres or in sections of fibre in which the cladding is thinned. FBG based
refractometers can be interrogated by monitoring changes in the reflected wavelength or changes in
the reflectivity. The intensity of the Bragg reflection from an FBG fabricated in a taper of diameter
30 µm was used to measure changes in the RI of the ambient environment as low as 2.5 × 10−5 RIU
over a range of 1.450–1.456 RIU. A 150 pm shift of the Bragg wavelength was observed in response to
an increase of the RI from 1.450 to 1.456, providing measurements with a resolution of 5 × 10−6 RIU
when a spectral detection system with 1 pm resolution is used [68].

One of the significant advantages offered by FBGs is the ability to wavelength-division-multiplex
a serial array of FBGs in a single length of optical fibre. This was exploited to measure RI by splicing
a tapered multimode fibre between two lengths of single mode fibre (SMF, Corning SMF28), each
of which contained an FBG, as illustrated in Figure 11. Two FBGs (FBG1 and FBG2, Figure 11) with
different Bragg wavelengths were used for signal demodulation. Changes in the RI influenced the
attenuation of the tapered section of the fibre, which modified the intensity received from FBG2.
The intensity difference between the two FBG signals was used to determine the change of RI of the
medium surrounding the multimode fibre taper (MFT). Monitoring the Bragg wavelengths allowed
the temperature to be measured. Experimental results showed that the sensor possessed a tailorable
sensitivity to the change of the external RI by controlling the taper waist diameter [69].
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3.3. Refractometry—Multi-Taper Devices

More complex tapered optical fibre configurations, employing multiple tapers, novel fibres and
novel taper geometries, have also been investigated. For example, a double-pass in-line fibre taper
MZI was formed in a single mode (Corning SMF28) optical fibre by creating two abrupt tapers using a
fusion splicer (arc discharge). The tapers excited cladding modes of the length of fibre separating the
two tapers, creating different optical path lengths for higher order modes traveling in the cladding and
fundamental core mode travelling in the core (Figure 12) [70]. This is similar to the cascaded LPGs
described earlier, but in this configuration, there is no control over the modes excited and the channelled
spectrum is visible across the entire spectrum. The sensor can be interrogated by monitoring the light
transmitted by the gold coating, where the light has traversed the sensing region once, or light reflected
by the gold coating, which traverses the sensor twice. The resulting channelled spectrum was analysed
to facilitate the measurement of surrounding RI and temperature. The temperature sensitivity arose
from the thermo-optic effect and the thermal expansion of the MZI during the temperature change.
The double-pass configuration increased the sensitivity compared to the single pass case because of
the doubled interaction length between the propagating light and the measurands. The RI sensitivities
of the single (measured in transmission without gold film) and double-pass MZIs were found to be
1.63 ± 0.01 × 105 and 3.05 ± 0.01 × 105 dBm/RIU, respectively, while the temperature sensitivities of
single- and double-pass MZI were found to be 201.9 ± 2.7 and 382.7 ± 5.3 dBm/◦C, respectively [70].
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Figure 12. A schematic illustration of the inline double-pass Mach–Zehnder interferometer (MZI);
arrows indicate excited cladding modes of the length of fibre separating the two tapers, creating
different optical path lengths for higher order modes traveling in the cladding and fundamental
core mode travelling in the core. Reprinted from [37] under creative common free licence
(http://creativecommons.org/licenses/by/4.0/).

A similar configuration was used to implement an in-fibre Michelson interferometer (MchI) for RI
measurements [71]. In the proposed MchI design, a single taper and a mirror at the tip of the optical
fibre are employed. The modes excited in the cladding by the taper and the propagating core mode are
reflected by the mirror and then recombine at the taper section. The experimental results show that a
change in the RI of 10−4 caused a phase shift of ∼1.35◦ in the demodulated signal, given the use of an
abrupt taper MchI with a sensing length of 20 cm.

Microanalysis systems for early diagnosis and treatment of diseases, or for the detection of a single
physiological cell or small specimens such as human embryonic stem cells, require a cellular-dimension
sensing technique. Fibre sensors capable of detecting index variations of picoliter (pL) volume
specimens therefore offer a promising platform [72]. A micro MZI RI sensor, shown in Figure 13,
with a device length of 179.5 µm and consisting of two micro-abrupt-tapers in a cladding-reduced
strongly-guiding fibre, was proposed for extremely low volume RI measurements. The cladding of
the fibre was etched chemically before being irradiation by a focused CO2 laser beam that heated
and softened the section of the optical fibre to create a periodic structure. The RI sensitivity was
4000 nm/RIU measured at a wavelength of 1.61 µm over a RI range in the region of 1.45 with a liquid
volume of 65.5 pL. Immersion of the sensor in a 72 pL volume of a glucose solution of concentration
of 200 mg/mL was shown to cause a red-shift of the channelled spectrum of 0.8 nm and 8 nm with
sensitivities of 600 and 4000 nm/RIU at wavelengths of 1.3 and 1.6 µm, respectively [72].
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Figure 13. Photographs of (a) MZI with two micro-abrupt-tapers in a cladding-reduced Er/Yb codoped
fibre; LP, length of the spanning fibre (between the centres of the adjacent abrupt tapers); and LD,
lengths of the interferometer; L1, length of the first taper, L2 length of the second taper and d1 and
d2 diameters of the taper one and two respectively; (b) cross-sectional views of the cladding-reduced
Er/Yb co-doped fibre; and (c) 6.3-pL liquid drop is approaching the micro-abrupt-taper [72]. (© 2012
IEEE. Reprinted, with permission from [72]).
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A similar approach, using multi-tapered single mode–multimode–single mode fibre structure,
was reported by Zhao, which achieved a sensitivity of 261.9 nm/RIU in the range of 1.3333–1.3737 [73].
In another report, a sensitivity of 500.6 nm/RIU was achieved when the RI varied from 1.333 to 1.411 [74],
while Miao reported an RI sensitivity of ∼490.9 nm/RIU over an RI range of 1.3642–1.4015 [75].

An interferometric refractometer with variable sensitivity was constructed by placing a single-mode
non-adiabatic tapered optical fibre sensor into a fibre loop mirror [76]. The adjustment of the polarization
state of the light input to the tapered region, via polarization state controllers (PSCs) inserted in the
loop, allowed the excitation of different cladding modes in the taper, resulting in different optical paths
for the clockwise and the counter clockwise beams. By variation of the PSCs’ settings, the RI sensitivity
of the sensor over the range 1.3380–1.3510 RIU could be tuned from 876 to 1233 nm/RIU.

A modal interferometer consisting of a small core fibre sandwiched between two standard
single-mode fibres, with tapers periodically fabricated along the small core fibre using a focused CO2

laser beam, has been demonstrated [77]. Measurement of the wavelength shifts of the channelled
spectrum features led to a sensitivity of 226.6 nm/RIU in the range from 1.33 to 1.38 RIU.

An MZI sensor composed of a waist-enlarged taper-pair (WEBT) (Figure 14) and an embedded
down-stretching-bitaper (DSBT), where the waist enlarged tapers excited high-order cladding modes
and the DSBT enhanced the evanescent field, was proposed by [21]. By employing the interaction
between the strong evanescent field of the high-order cladding mode and the ambient environment, an
RI sensitivity of 86.565 nm/cm/RIU was achieved over the RI range from 1.3332 to 1.4140. This sensitivity
is about an order of magnitude higher than that of waist-reduced taper-based in-fibre MZIs [21].
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Figure 14. Schematic illustration of the WEBT-DSBT MZI; WEBT, waist-enlarged taper-pair; and DSBT,
embedded down-stretching-bitaper (adapted from [21]).

In another example of the use of a waist-enlarged taper, a multimode interferometer was created
by splicing multimode fibre to single mode fibre (CorningSMF28). The sensor showed a linear response
to RI with a sensitivity of −178.424 dB/RIU in the range of 1.351–1.4027 RIU [78].

Abrupt tapers and connector-offset attenuators have been proposed as mode-coupling devices
to transfer optical power between core and cladding modes in an optical fibre and to create modal
interferometers. The devices were assessed as RI sensors by monitoring the wavelength shifts of
features in their channelled spectra [79]. Given a wavelength resolution of 10 pm, an RI resolution of
10−4 RIU was reported, similar to that of a cascaded LPG-based MZI.

A temperature-independent refractometer based on an MZI fabricated by sandwiching a tapered
photonic crystal fibre (PCF) of length 29 mm between two standard telecommunications SMFs, with
the air holes of the PCF fully collapsed in the fusion spliced regions (Figure 15), was investigated [80].
It was found that tapering the PCF greatly enhanced the sensitivity of the refractometer. A maximum
sensitivity of 1529 nm/RIU was achieved over an RI range from 1.3355 to 1.4130. The refractometer was
found to be nearly temperature-insensitive due to the ultra-low temperature sensitivity of the PCF. In a
similar configuration, a sensitivity of 1600 nm/RIU was reported, which is nearly eight times as high as
that of an un-tapered PCF interferometer [81] and 20 times higher than that reported for an S-tapered
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PCF interferometer [82]. A recently reported MZI based on PCF for RI sensing achieved a sensitivity of
1426.70 nm/RIU in the range of 1.3917–1.4204 [83] and 281.6 nm/RIU in the range of 1.3333–1.3737 [84].
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Figure 15. Schematic illustration of the temperature-independent refractometer based on an in-fibre MZI,
fabricated by sandwiching a tapered PCF between two standard single mode fibres (CorningSMF28) [80],
Reprinted with permission. Copyright 2013 Elsevier.

A gas sensor based on a photonic crystal nanobeam cavity coupled to a tapered optical fibre was
proposed [85]. The nanobeam cavity has seven pairs of tapered air holes and ten pairs of mirror holes
(Figure 16) and has a Q factor of 2.2 × 106. A change of the RI of the gas leads to a linear change of
resonance wavelength, with a sensitivity of ca. 0.19 nm /10−3 RIU which could be related to the gas
concentration change.
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An S-tapered PCF interferometer (Figure 17), fabricated using a fusion splicer (arc discharge), was
shown to have an RI sensitivity of 80 nm/RIU in the range 1.34–1.44, and resolution of 8.5 × 10−5 RIU,
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assuming that a 10 pm wavelength shift can be resolved, with a temperature sensitivity of 4.2 pm/◦C [82].
The principle of operation is based on the interference of the fundamental mode with the higher order
modes excited by the tapered region of the PCF, where the air holes are collapsed. Since the circularly
symmetric character is changed by the imposition of the S-shape, more high-order modes may be
excited within the S-tapered section as compared to the straight tapered PCF. On the other hand, the
collapsed section is so short that the fundamental mode retains a great part of the total optical power.
The S-taper also increases ∆neff, the difference between the effective refractive indices of the interference
modes, which allows the excitation of modes of higher order than can be excited by a straight taper.

Sensors 2019, 19, x 15 of 41 

 

An S-tapered PCF interferometer (Figure 17), fabricated using a fusion splicer (arc discharge), 
was shown to have an RI sensitivity of 80 nm/RIU in the range 1.34–1.44, and resolution of 8.5 × 10−5 

RIU, assuming that a 10 pm wavelength shift can be resolved, with a temperature sensitivity of  
4.2 pm/°C [82]. The principle of operation is based on the interference of the fundamental mode with 
the higher order modes excited by the tapered region of the PCF, where the air holes are collapsed. 
Since the circularly symmetric character is changed by the imposition of the S-shape, more high-order 
modes may be excited within the S-tapered section as compared to the straight tapered PCF. On the 
other hand, the collapsed section is so short that the fundamental mode retains a great part of the 
total optical power. The S-taper also increases Δneff, the difference between the effective refractive 
indices of the interference modes, which allows the excitation of modes of higher order than can be 
excited by a straight taper. 

 
Figure 17. (a,b) Image of S-tapered PCF; (c) sketch of the S-tapered PCF; and (d) cross sections of the 
S-tapered PCF [82]. 

In a similar configuration [86] reported a device with a RI sensitivity of 268.8 nm/RIU in the 
range of 1.332–1.387. 

The combination of tapered optical fibres with fibre loop ring down technology was reported by 
Wu [87]. The sensing principle is based on the dependence on the external RI of the ring-down time, 
referred to as the time when the light intensity I decreases to 1/e of its initial value. Results showed 
that the sensitivity of this simple scheme could reach −388.581 μs/RIU with the detection limit below 
2.57 × 10−5 RIU [87]. In another configuration, a Sagnac loop, in combination with a reflective tapered 
fibre coupler, was used to measure RI [88]. The sensor showed a sensitivity of 3617 nm/RIU for 
measuring RI in the range 1.33–1.41. 

The practical application of a tapered RI sensor was explored recently by Ghahrizjani [89], who 
demonstrated the measurement of engine oil quality and the time of oil expiration. The oil acts as the 
external medium for this sensor, and any changes in quality, particle size, and pollution of the oil will 
influence the optical properties such as the optical power output. By comparing the optical powers 
between fresh and used oil, the quality of the oil was predicted. Bending of an optical fibre containing 
two identical tapers at different angles increased the sensitivity to the RI change [90]. It was shown 
that sensitivities of 106.4 and 126.15 nm/RIU were observed at 45° and 90° bending angles, 
respectively, for RIs in the range 1.333–1.359. 

Table 1 summarizes the performance parameters of the tapered optical fibre based 
refractometers discussed here. Due to a lack of consistency in the characteristics that are reported in 
the literature, it is difficult to compare directly different sensors configurations in terms of their 
performance parameters such as sensitivity, resolution and response time. For example, only one 
paper [60] reports on the response time. In general, modal interferometers have a higher sensitivity 

Figure 17. (a,b) Image of S-tapered PCF; (c) sketch of the S-tapered PCF; and (d) cross sections of the
S-tapered PCF [82].

In a similar configuration [86] reported a device with a RI sensitivity of 268.8 nm/RIU in the range
of 1.332–1.387.

The combination of tapered optical fibres with fibre loop ring down technology was reported by
Wu [87]. The sensing principle is based on the dependence on the external RI of the ring-down time,
referred to as the time when the light intensity I decreases to 1/e of its initial value. Results showed
that the sensitivity of this simple scheme could reach −388.581 µs/RIU with the detection limit below
2.57 × 10−5 RIU [87]. In another configuration, a Sagnac loop, in combination with a reflective tapered
fibre coupler, was used to measure RI [88]. The sensor showed a sensitivity of 3617 nm/RIU for
measuring RI in the range 1.33–1.41.

The practical application of a tapered RI sensor was explored recently by Ghahrizjani [89], who
demonstrated the measurement of engine oil quality and the time of oil expiration. The oil acts as the
external medium for this sensor, and any changes in quality, particle size, and pollution of the oil will
influence the optical properties such as the optical power output. By comparing the optical powers
between fresh and used oil, the quality of the oil was predicted. Bending of an optical fibre containing
two identical tapers at different angles increased the sensitivity to the RI change [90]. It was shown that
sensitivities of 106.4 and 126.15 nm/RIU were observed at 45◦ and 90◦ bending angles, respectively, for
RIs in the range 1.333–1.359.

Table 1 summarizes the performance parameters of the tapered optical fibre based refractometers
discussed here. Due to a lack of consistency in the characteristics that are reported in the literature, it is
difficult to compare directly different sensors configurations in terms of their performance parameters
such as sensitivity, resolution and response time. For example, only one paper [60] reports on the
response time. In general, modal interferometers have a higher sensitivity than grating based taper
devices and single taper devices. The highest reported sensitivity was 7041.21 nm/RIU [91], but this
value was achieved for RIs close to the RI of the cladding. The best RI reported resolution in the
biologically relevant RI range was 8.2 × 10−6 measured [61].
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Table 1. Summary of the parameters of the tapered based RI sensors.

Type of the Sensor Taper Geometry Sensitivity/RIU
Resolution RIU RI Range Reference

Single taper devices
Waist 60 µm 10−4 RIU 1.36–1.46 [43]

Waist 7 µm 8.2 × 10−6 1.3330–1.3447 [61]

Mie scattering
(silica nanoparticles) Waist 2.8 µm 1.8 × 10−5 RIU 1.32–1.46 [63]

LPG

Waist 34 µm
LPG 400 µm 1 × 10−4 RIU 1.30–1.34 [65]

Waist 20 µm
LPG ca. 400 µm 650 nm/RIU 1.00–1.36 [57]

Waist 120 µm
LPG 380 µm

6 periods
372 nm/RIU 1.33–1.46 [55]

Waist 55 µm
Length 3 mm 490.9 nm/RIU 1.3642–1.4015 [75]

MZI

Waist 25 µm
LPG 300 µm 8.5 × 10−5 1.330–1.335 [64]

Waist 63.75 µm
LPG 414 µm 5.8 × 10−6 RIU 1.332–1.362 [67]

Waist 54.6 µm
LPG 564 µm 2066 nm/RIU 1.407–1.421 [30]

Bi-taper length and waist 165 and 278 µm
LPG period 550 µm and length 30 mm −108.16 nm/RI 1.338–1.363 [92]

Waist 66.5 µm
Length 309 µm 7041.21 nm/RIU 1.4406–1.4458 [91]

FBG

Waist 30 µm 2.5−5
× 10−5 1.450–1.456 [68]

- 1.63 ± 0.0 × 105 3.05 ±
0.01 × 105 dB/RIU

- [70]

6–8 µm 876–1233 nm/RIU 1.3380–1.3510 [76]

Waist 90 µm
LPG 500 µm 226.6 nm/RIU 1.33–1.38 [77]

UFBT 167 µm
DSB 82 µm 86.565 nm/cm/RIU 1.3332–1.4140 [21]

Waist 40 µm 10−4 RIU 1.315–1.3618 [46,79]

Photonic crystals

Waist 71.7 µm 1529 nm/RIU 1.3355–1.413 [80]

Waist 30 µm 1600 nm/RIU 1.3333–1.3577 [81]

Waist 2 µm 190 nm/RIU 1.000–1.009 [85]

Waist 60 µm 8.5 × 10−5 1.34–1.44 [82]

Waist 70 µm 1426.70 nm/RIU 1.3917–1.4204 [83]

Length 440 µm
Waist 284 µm 281.6 nm/RIU 1.3333–1.3737 [84]

SPR

Waist 48 µm 3.2 × 10−5 RIU 1.33–1.40 [93]

- 2 × 103 nm/RIU 1.335–1.380 [94]

Waist 300 µm 15 × 103 nm/RIU - [95]

Multi-taper devices

Waist 52 µm
Length 552 µm 261.9 nm/RIU 1.3333–1.3737 [73]

Waist 76.5 µm and 13.2 µm 4000 nm/RIU around 1.45 [39]

Waist 17 µm
Length 3 mm 500.6 nm/RIU 1.333–1.411 [74]

Bending at 45◦ and 90◦ Waist 40 to 50 µm 126.15 nm/RIU at 90o 1.333–1.359 [90]

Fibre Loop Ring Down
Technology Waist 28.2 µm Length 728 µm −388.581 µs/RIU 1.3333–1.3737 [87]

Sagnac loop Waist 18, 13 and 9 µm
Length: 16, 17 and 18 mm 3617 nm/RIU 1.33–1.41 [88]

Michelson
interferometer

Length 20cm 1.35 × 104/RIU 1.3330–13470 [71]

Waist 165–185 µm
Bi-taper length is 375–490 µm

Device length 20 mm
−178.424 dB/RIU 1.351–1.4027 [78]
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3.4. Bio-Chemical Sensors

3.4.1. Evanescent Wave Spectroscopy

Spectral analysis of chemical compounds is an important tool in analytical chemistry that allows
selective detection of target compounds in the complex samples consisting of a mixture of the
compounds [96]. The simplest implementation of EW spectroscopy using tapered optical fibre could
be achieved using a tapering of the multimode optical fibre, which can enhance the performance
of evanescent wave spectroscopy-based sensing approaches [97], as it facilitates an increase in the
interaction of the evanescent wave with the absorbing compound.

The use of single mode tapered optical fibres allows the simultaneous probing of the spectroscopy
and RI of the medium surrounding the fibre, as shown in Figure 18 [42]. As discussed in Section 2.1, in
contrast to the transmission spectrum of a cladding removed multimode optical fibre (Figure 4), the
transmission spectrum of a non-adiabatic tapered single mode optical fibre consists of a channelled
spectrum, arising from the interference of modes excited in the taper, as well as the absorption spectrum
of the surrounding medium. Figure 18 shows changes in the central wavelengths of the channelled
spectral features of the taper’s transmission spectrum (taper diameter 10 µm, length 25 mm) in response
to the change of the RI of a solution of Tetrasodium Pyrophosphate Porhine (TSPP), arising from
an increase in concentration, as well as the decrease of the intensity at 700 nm corresponds to the
concentration induced changes in the absorption of the TSPP compound. The absorption spectrum of
TSPP solution measured using a conventional dual pass spectrometer is also shown in Figure 18.
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Figure 18. Transmission spectra of a tapered single mode optical fibre (cut-off wavelength 670 nm) 
with a taper waist of diameter 10 μm and of length 25 mm, measured in: H2O, black line, an aqueous 
solution of Tetrasodium Pyrophosphate Porhine (TSPP) of concentration 10 μM, red line. The 
absorption spectra of TSPP measured using a conventional UV-vis spectrometer is shown by the blue 
line [42]. 

Figure 18. Transmission spectra of a tapered single mode optical fibre (cut-off wavelength 670 nm) with
a taper waist of diameter 10 µm and of length 25 mm, measured in: H2O, black line, an aqueous solution
of Tetrasodium Pyrophosphate Porhine (TSPP) of concentration 10 µM, red line. The absorption spectra
of TSPP measured using a conventional UV-vis spectrometer is shown by the blue line [42].

3.4.2. Fluorescent Sensors

The first example of the use of a tapered optical fibre sensor for fluorescence spectroscopy was
reported in 1996 [98]. The output from an argon ion laser was coupled into the proximal end of a
single mode optical fibre with the cut-off wavelength of 450 nm (SM450), which was tapered at the
distal end to a diameter of 1 µm. The fabricated probe was modified with the fluorophore compounds
(affinity-purified goat anti-human IgG-(H+L) fluorescein isothiocyanate conjugate or affinity-purified
goat anti-human IgA (alphachain specific)-tetramethyl rhodamine isothiocyanate (TRITC) conjugate).
The fluorescence was excited by the 488 or 514 nm lines of the output from an argon-ion laser that
passed through a mechanical chopper. The fluorescence from the bound fluorophores was coupled
into the guided mode of the taper. The device offered high sensitivity, 75 pg/mL, and a simple
immobilization protocol.
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3.4.3. Particle Detection

The detection of airborne particles and aerosols is important in environmental monitoring as it is
known that they can be hazardous for the environment and health [99].

Tapered optical fibres can be used to facilitate Raman spectroscopy of micro-particles adhered
to the surface of the fibre for label-free sensing [31]. The approach is illustrated in Figure 19a, where
a particle is in contact with the waist of a fibre taper. The light scattered by the particle from the
evanescent wave of the light propagating through the taper is collected in a direction transverse to the
optical fibre and the Raman spectrum is analysed. Figure 19b shows an image of a typical experimental
configuration, where a 2 µm diameter polymer microsphere is adhered to a fibre taper of 1 µm diameter.
The particle was delivered to the taper by another fibre mounted to a three-dimensional stage and was
held in place on the surface of the taper by van der Waals forces. Figure 19c shows a comparison of
the Raman spectra measured from 1 µm poly styrene (PS) and Poly-methyl methacrylate (PMMA)
microspheres individually adhered to the fibre taper (pump laser power ~4–6 mW at 1064 nm, 30 s
integration times) [31,100].Sensors 2019, 19, x 19 of 41 
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Figure 19. (a) Schematic illustration of the experimental set-up; (b) image of a 2µm polymer microsphere
delivered and adhered to a 1 µm diameter taper; and (c) Raman spectra of 1 µm diameter poly styrene
(PS) and Poly-methyl methacrylate (PMMA) microspheres attached to a fibre taper using ca. 760 nm
pumping wavelength [31],© 2012 IEEE. Reprinted, with permission).
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Rayleigh scattering can be used for nanoparticle detection with single particle resolution [101] as
shown in Figure 20a. The sensor consists of a taper of diameter 8 µm and length 3 mm. The sensing
method is based on monitoring the transmitted light power, which shows abrupt jumps as single
particles bind to the taper surface. The operation of the sensor was demonstrated with polystyrene
nanoparticles of radii 120 and 175 nm, as show in Figure 20b.
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Figure 20. (a) Experimental configuration for nanoparticle detection using Rayleigh scattering, (b) the
changes in the transmission of the tapered fibre as polystyrene nanoparticles bound to a taper of
diameter 800 nm and length 33 mm (adapted from [101]. © 2012 IEEE. Reprinted, with permission
from [101]).

It was also shown that single atoms can be detected using a taper of sub-wavelength diameter
by detecting single photons spontaneously emitted from the atoms when they were coupled into a
single-mode optical fibre with a taper of diameter 400 nm [102].

3.5. Coated Tapered Devices

It should be noted that the refractometers reported in Section 3.3 were not selectively sensitive.
To create a chemically or bio-selective sensor, a thin film that can change its optical properties in
response to the presence of the particular analyte has to be deposited onto the surface of the optical fibre.

3.5.1. Surface Plasmon Resonance (SPR)

Tapered optical fibres facilitate a strong interaction between the propagating modes and the
surface plasmon wave generated when the taper is coated with a layer of gold. A number of tapered
fibre SPR sensors have been demonstrated. Dı´az-Herrera et al. [103] studied SPR sensors based on
doubly deposited uniform-waist tapered fibres (DLUWTs) in which the coating deposited onto the
tapered fibres consisted of a metal layer and a dielectric layer. The sensitivity of the DLUWT was
shown to be enhanced by increasing the roughness of the optical fibres prior to deposition of the double
coating, providing a larger surface area to which to attach the ligands [104].

Verma et al. [95], simulated the behaviour of a tapered fibre sensor in which two identical tapered
fibre regions are formed around the metal-coated uniform section of the multimode core sensing region.
The study showed that a probe geometry where the ratio of the radii of the fibre core at the input and
output ends of the taper lies between 1.5 and 2.0 provided the best performance, with a predicted
sensitivity of 15 × 103 nm/RIU for a ratio of 2.0.

Lin et al. [93] employed a tapered fibre coated with noble metal nanoparticles for RI sensing
and label-free biochemical detection. The principle of operation of the sensor was based on the
evanescent wave excitation of the localized surface plasmon resonance (LSPR), the collective oscillation
of conduction electrons confined to metal nanoparticles, whose resonance frequency has been shown
to be dependent strongly on the particle’s size, shape, composition, and on the dielectric properties
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of surrounding medium. The sensing strategy relies on the measurement of the transmission
intensity change due to the evanescent field absorption of the gold nanoparticles immobilized
on the tapered fibre surface. The RI resolution was 3.2 × 10−5 RIU. The feasibility of using an
N-(2,4-dinitrophenyl)-6-aminohexanoic acid DNP-functionalized tapered fibre LSPR sensor to monitor
anti-DNP antibody was undertaken by spiking a buffer solution with concentrations of antibody
ranging from 5 × 10−9 to 1 × 10−6 g/mL. Results suggested that the compact sensor can perform
qualitative and quantitative biochemical detection in real-time [93].

Srivastava et al. [94] proposed a more complex approach with a multi-tapered fibre optic SPR
sensor, illustrated in Figure 21. The sensitivity was found to increase with increasing number of tapers
(from one to eight) and with decrease in taper period from 2.15 to 1.15 mm. An RI sensitivity of
2 × 103 nm/RIU was achieved.
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3.5.2. Functional Coatings

Coating optical waveguides with nanomaterials that exhibit changes in their optical properties
upon exposure to targeted chemical species offers the prospect for the development of chemical
sensors with high specificity [105,106]. For example, materials such as bromocresol purple [107],
oxazine 170 perchlorate [108–110] have been used for the development of optical fibre based ammonia
gas sensors.

Generally, the functional materials should have the following properties: transparent in the
appropriate spectral range, exhibit changes to their optical properties under the influence of the specific
chemical species, have a fast response and have wide dynamic range; be reversible, selective, easy to
immobilize onto glass/quartz/plastic fibre and be easily and cheaply manufactured.

A wide range of coating deposition techniques, such as dip- and spin-coating, layer-by-layer
deposition (LbL), electrostatic self-assembly, Langmuir–Blodgett deposition and chemical and physical
vapour deposition, have been employed for the functional coating of optical fibres [9].

The LbL method was used to deposit a multi-layered porphyrin film onto the tapered region of
a single mode (Corning SMF28) optical fibre with the aim of demonstrating an ammonia sensor [9].
The coating was composed of alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) and
poly(allylamine hydrochloride) (PAH). Exposure of the PAH/TSPP coated non-adiabatic tapered optical
fibre with a waist diameter of 10 µm to ammonia induced significant changes in the transmission
spectrum of the optical fibre. The changes in the coating RI modified differentially the effective indices
of the two dominant modes excited in the taper, resulting in a change in phase of the channelled
transmission spectrum. The sensor showed a linear sensitivity to the concentration of ammonia in the
range of 10–100 ppm, with response and recovery times of order 100 s. The 3σ limit of detection (LoD)
was estimated to be ca. 2 ppm. Tiwari et al. [111] demonstrated ammonia sensing with an LoD of
0.1 ppm with a response time of less than 30 s using a nanoscale coating of titanium dioxide, containing
a porphyrin as a functional material deposited onto a tapered optical fibre.
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In a similar design rabbit anti-goat IgG was immobilised onto an optical fibre taper to provide
selectivity towards (tetramethyl rhodamineJisothiocyanate)-labelled goat IgG. The design of the taper
proposed by the authors provided a uniform fluorescent signal return along the fibre’s length [112].
Another example of a fluorescence fibre taper sensor used free-base porphyrin self-assembled
monolayers (SAMs) that were covalently bonded to the surfaces of a fibre taper and reference
glass plates [113]. From fluorescence measurements, the optimum diameter of the coned part of the
taper was found to be 35–48 µm for multimode fibres. The mono- and di-protonated forms of free-base
porphyrin have distinct fluorescence spectra. This phenomenon was employed to demonstrate a pH
sensor operating in the pH range 0.6–3.8.

Tapered optical fibres coated with a ferrocenylenesilylene polymer, [(’5-C5H4)Fe(’5-C5H4)MePhSi]m,
have been used to sense NH3 and CO2 [114]. The principle of operation of the device is based upon
changes in the RI of the polymer layer deposited onto the non-adiabatic taper region of a single mode
fibre (Corning SMF28) (tapered region radius is 5.0 µm and a taper elongation of 2.5 mm and an
assumed coating thickness of 3.75 µm), which cause a change in power transmitted. An increase in the
transmitted intensity was observed when sensor was exposed to CO2 gas, while the opposite effect
was observed for exposure to NH3. The sensitivity of the device increased with the increment of the
taper beat length, which is determined by the difference in propagation constants of fundamental and
higher order modes, with the response times measured to be in the range of seconds.

A humidity sensor was demonstrated by coating a tapered single-mode fibre (taper waist of 11 µm
and length of 1 mm) with a humidity sensitive nanofilm composed of Poly(Diallylmethilammonium
chloride) (PDDA) and the polymeric Dye R-478 (Poly-R), deposited using the electrostatic self-assembly
(ESA) technique [115–119]. The sensitivity of the device was shown to depend on the optical thickness
of the coating, allowing the sensitivity to be optimised by ensuring that it corresponded to the highest
slope of the transmitted optical power [115]. The sensing mechanism was based on the measurement of
the intensity change induced by the RI change of the humidity sensitive coating. The authors showed
that tapers coated with films of higher RI exhibited higher humidity sensitivity [115], as did tapers
with thinner waists. The response time of the device was shorter than 300 ms, making this device a
candidate for use for the monitoring of human breathing [115].

An optical fibre humidity sensor working in reflection mode was demonstrated with a multimode
fibre taper spliced between an FBG and the input single mode fibre (Corning SMF28). The taper region
was coated with a layer of polyvinyl alcohol that was sensitive to water vapour, while the FBG acted as
a reflective filter, reflecting the optical signal back into the taper [120]. Exposure to humidity caused
changes in the RI of the coating, with a concomitant change in the transmission of the light signal.
The measurement sensitivity was enhanced by passing the light through the taper twice. A maximum
sensitivity of 1.994 µW/%RH was demonstrated within the measurement range of 30–95% RH, with a
taper waist diameter of 50.2 µm. The average response time was ∼2 s and the measurement was nearly
insensitive to temperature with negligible 8 nW change of optical power when temperature changed
from 20 to 100 ◦C.

The coating of a multimode fibre taper interferometer with a polyvinyl alcohol thin film allowed
the measurement of relative humidity with a sensitivity of 0.223 nm/%RH in the range of 35–85%
RH [121]. By coating an S-shaped tapered optical fibre with SiO2 NPs, the measurement of RH
with sensitivities of 1.1718 nm/%RH and 0.441 dB/%RH was demonstrated for a humidity range of
83.8–95.2% RH [122]. An optical fibre based MZI coated with ZnO nanowires was used to measure RH
in the range of 35–60% RH with a sensitivity of 0.020 nm/% RH [123].

The detection of volatile organic compounds using an [Au(PPh2C(CSSAuC6F5)PPh2Me)2][ClO4]
vapochromic material incorporated into a sol-gel matrix deposited onto a tapered optical fibre with
a waist diameter of 19 µm and of length 1 mm was reported [124]. Changes of up to 13.5 dB in
the transmitted optical power were detected on exposure to different concentrations of acetone and
dichloromethane vapours. The sensing mechanism relied on the measurement of the decrease of the
transmitted power through the tapered fibre caused by a vapour-induced RI change of the coating.
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A hydrogen sensor based on the change in absorption of the evanescent field in a 12 nm thick
Pd-coated single mode tapered fibre was reported [125,126]. The sensor’s sensitivity was adjustable by
means of the taper diameter, interaction length, and/or the wavelength of the light coupled into the
fibre. The sensor was capable of detecting hydrogen concentrations below 4% and had a response time
of less than 100 s.

A multimode tapered optical fibre modified with a 15 nm-thick Pd thin film was used to detect
H2. The power transmitted thought the Pd-coated taper (50 µm diameter and 10 mm length) increased
when the sensor was exposed to a 2% concentration of H2 [125]. Pd films are susceptible to cracking on
repeated exposure to hydrogen, which degrades the performance of the sensor. It has been shown
that this can be overcome by using Pd–Ag alloy thin films [127]. Another hydrogen sensor was
demonstrated by depositing a 150-nm-thick Pd coating over an FBG written in a 50-µm-diameter
tapered optical fibre. The sensing head was able to detect H2 concentrations in the range 0–1% (v/v) H2

at room temperature. A maximum sensitivity of 81.8 pm/% (v/v) H2 was attained, with temperature
compensation that was achieved by employing a second FBG inscribed in the un-tapered section [128].
An MZI hydrogen sensor with a sensitivity of −1.99 nm/5% of H2 was created by the deposition of a
4 nm thick Pd coating onto a tapered optical fibre with a waist diameter of 3 µm [128].

A pH sensor was demonstrated by depositing a nanoscale coating of a quinolinium dye onto a
tapered optical fibre using the Langmuir–Blodgett technique [8]. It was shown that sensor performance
depended on the diameter of the tapered region, with the sensitivity to pH found to be ∆pH = 5 × 10−2

and ∆pH = 4 × 10−2 for 4.7 and 37.4 µm diameter fibre tapers, respectively in the pH range of 5–9.
The response time was less than 0.5 s, the measurement of which was limited by the integration time of
the CCD spectrometer used.

Tapered optical fibres can also be used as optical probes to measure parameters of interest
with spatial resolution on micrometre scales, allowing the direct probing of biological specimens
at the cellular level [129]. In a typical fabrication procedure, the end of the optical fibre is tapered
to produce a tip with submicron dimensions onto which a thin metal film is deposited, yielding
a submicron-sized transmissive aperture at the apex of the probe tip [129]. Such optical fibre tips
are used in photon scanning tunnelling microscopes or, when modified with functional materials,
to measure chemical and biochemical reactions in microscopic environments [130]. pH sensors of
micron and submicron dimensions were developed by immobilising a fluorescent pH sensitive reagent,
fluorescein, within a glass film which was deposited on the surface of the fibre tip using a sol-gel process.
The probe was used to measure the pH of the intracellular environment of mouse embryonic fibroblast
cells [130]. A similar approach was used to develop a pH optrode, using a pH sensitive reagent,
2’,7’-Bis(2-carbonylethyl)-5(6)-carboxyfluorescein, immobilized onto the end-face of taper in a thin
xerogel layer [131]. The sensor was employed for local detection of pH in samples simulating native
conditions of plant cells, with the measurement based on pH induced changes of fluorescence-intensity
spectra. Indium-tin oxide or aluminium coated fibre probes were successfully tested over a pH range
from 5.0 to 7.0.

The functionalization of optical fibre modal interferometers based on MZI and MI configurations
have been investigated [132]. To endow the sensor with chemical functionality, the surfaces of the fibres
were modified with self-assembled polyelectrolyte layers (chitosan (CS)/polysodium styrene sulfonate
(PSS)), as shown in Figure 22. Immunoglobulin G (IgG) was immobilized on the polyelectrolyte
layer and anti-immunoglobulin G (anti-IgG) molecular binding events were monitored through
measurement of wavelength shifts of the channelled spectra of the interferometers. The proposed
immunosensors exhibited anti-IgG detection sensitivities of 27.37 nm/(ng/mm2) and 5.91 nm/(ng/mm2)
with concentration detection limits of 0.181 and 4.941 nM for the MZI and MI sensors, respectively.
The specificities of the sensors were investigated using correlated/non-correlated anti-IgG–IgG pairs.



Sensors 2019, 19, 2294 23 of 39

Sensors 2019, 19, x 24 of 41 

 

 
Figure 22. Schematic illustration of the layer-by-layer (LBL) deposition process. Each bilayer 
deposition constitutes a full cycle of (a–c). (d) The SEM image of multilayer film [CS/PSS] at 1080× 
magnification [132]. Reprinted with permission. Copyright 2013 Elsevier). 

In another example, a tapered optical fibre with waist diameter 10 μm and of length 15 mm was 
modified with antibodies and embedded into a microchannel chip device using micro-electro-
mechanical systems (MEMS) fabrication techniques [133]. The sensor was assessed for label-free 
detection of biomolecules using Immune globulin G (IgG) antibody-antigen pair.  

The deposition of aptamers onto the surface of an optical fibre allows the creation of highly 
sensitive and selective bio-sensors [134]. For instance, the detection of dopamine with an LoD of  
37 nM was achieved using 57-mer dopamine-binding aptamer as the recognition element and a non-
adiabatic tapered optical fibre as the probe [134]. 

Tapered optical fibres modified with nanoscale coatings can also be used for temperature 
measurements by using thermo-chromic functional materials such as lophine (2,4,5-
triphenylimidazole) [135]. A coated fibre taper exhibited a thermal sensitivity of about 0.05 dB °C−1. 
It was shown that a narrower taper waist increased significantly the slope of the response curve, and, 
consequently, the sensitivity of the system.  

The deposition of graphene onto the surface of a tapered POF allowed the measurement of uric 
acid concentration with a sensitivity of 0.0021 mV/ppm in a range of concentrations between 0 and 
500 ppm [136]. However, it should be noted that the device operated as a refractometer, based on the 
RI change of the solution at the change of the uric acid and the authors did not conduct any selectivity 
tests.  

In another example [137] reported the use of a tapered fibre coated with metal layers for the 
detection of pollutants in sea water. Three tapered silica optical fibres, uncoated and coated with 
metallic (Al or Cu) and dielectric layers (TiO2), were used to determine the presence of oil and 
hazardous and noxious substances (HNS) in water. The principle of operation was based on the 
measurement of the RI change induced by the presence of the HNSs. The three tapers with their 
different coatings were used to cover the wide range (1.329–1.501) of the RI change associated with 
the pollutants. Several uniform-waist tapers were manufactured with the following geometrical 
values: total length: 18.3 mm; transition length: 10.98 mm; waist length: 6.34 mm; diameter waist:  
40 μm. These tapered devices were coated then with the different coatings to cover the wide RI range 
(1.329–1.501). Although sensors lacked selectivity toward specific pollutants, the work demonstrated 
the ability to detect oil and HNS spills in seawater.  

Table 2 summarizes the sensor parameters for the bio-chemical tapered optical fibres reviewed 
in this section.  
  

Figure 22. Schematic illustration of the layer-by-layer (LBL) deposition process. Each bilayer
deposition constitutes a full cycle of (a–c). (d) The SEM image of multilayer film [CS/PSS] at 1080×
magnification [132]. Reprinted with permission. Copyright 2013 Elsevier.

In another example, a tapered optical fibre with waist diameter 10 µm and of length
15 mm was modified with antibodies and embedded into a microchannel chip device using
micro-electro-mechanical systems (MEMS) fabrication techniques [133]. The sensor was assessed for
label-free detection of biomolecules using Immune globulin G (IgG) antibody-antigen pair.

The deposition of aptamers onto the surface of an optical fibre allows the creation of highly
sensitive and selective bio-sensors [134]. For instance, the detection of dopamine with an LoD of 37 nM
was achieved using 57-mer dopamine-binding aptamer as the recognition element and a non-adiabatic
tapered optical fibre as the probe [134].

Tapered optical fibres modified with nanoscale coatings can also be used for
temperature measurements by using thermo-chromic functional materials such as lophine
(2,4,5-triphenylimidazole) [135]. A coated fibre taper exhibited a thermal sensitivity of about
0.05 dB ◦C−1. It was shown that a narrower taper waist increased significantly the slope of the
response curve, and, consequently, the sensitivity of the system.

The deposition of graphene onto the surface of a tapered POF allowed the measurement of uric
acid concentration with a sensitivity of 0.0021 mV/ppm in a range of concentrations between 0 and
500 ppm [136]. However, it should be noted that the device operated as a refractometer, based on
the RI change of the solution at the change of the uric acid and the authors did not conduct any
selectivity tests.

In another example [137] reported the use of a tapered fibre coated with metal layers for the
detection of pollutants in sea water. Three tapered silica optical fibres, uncoated and coated with
metallic (Al or Cu) and dielectric layers (TiO2), were used to determine the presence of oil and
hazardous and noxious substances (HNS) in water. The principle of operation was based on the
measurement of the RI change induced by the presence of the HNSs. The three tapers with their
different coatings were used to cover the wide range (1.329–1.501) of the RI change associated with
the pollutants. Several uniform-waist tapers were manufactured with the following geometrical
values: total length: 18.3 mm; transition length: 10.98 mm; waist length: 6.34 mm; diameter waist:
40 µm. These tapered devices were coated then with the different coatings to cover the wide RI range
(1.329–1.501). Although sensors lacked selectivity toward specific pollutants, the work demonstrated
the ability to detect oil and HNS spills in seawater.

Table 2 summarizes the sensor parameters for the bio-chemical tapered optical fibres reviewed in
this section.



Sensors 2019, 19, 2294 24 of 39

Table 2. Summary of the parameters for bio-chemical tapered optical fibre sensors.

Analyte Taper Geometry/
Waist Diameter

Sensitivity Limit of
Detection Coating Material

Response/
Recovery

Times
Dynamic Range Reference

Ammonia gas

detection limit of
10 ppm bromocresol purple

Response
time 5 min
Recovery

time 20 min

10–1000 ppm [107]

LoD 15 ppm Oxazine 170 - 0–3000 ppm [108]

Waist 10 µm LoD 2 ppm Porphyrin TSPP

Response
100 s

recovery
240 s

10–100 ppm [110]

Waist 41 µm 0.05%/Torr
ferrocenylenesilylene

polymer, [(’5-C5H4)Fe(’5-
C5H4)MePhSi]m

ca. 5 min 6–350 Torr [114]

Waist 17 and 40 µm
Length 4.5 mm LoD 0.1 ppm Porphyrin TMPyP

incorporated into TiO2

Response 30
s 0.1–10,000 ppm [111]

pH

Waist 35 µm - porphyrin - 0.6–3.8 [113]

5 µm
37.4 µm

∆pH = 5 × 10−2

∆pH = 4 × 10−2 quinolinium dye 0.5 s 2–10 [8]

30 µm 0.05 units of pH
poly (allylamine

hydrochloride) and
poly(acrylic acid)

60 s 4.0–6.0 [119]

4 µm
60 µm -

2’,7’-Bis(2-
carbonylethyl)-5(6)-
carboxyfluorescein

- 5.0–7.0 [131]

CO2 Waist 41 µm 0.06%/Torr
ferrocenylenesilylene

polymer, [(’5-C5H4)Fe(’5-
C5H4)MePhSi]m

ca. 5 min 6–350 Torr [114]

RH

Poly(Diallylmethilammonium
chloride) (PDDA) and the

polymeric Dye R-478
(Poly-R)

[115–118]

Waist 50.2 µm 1.994 µW/% RH polyvinyl alcohol ca. 2 s 30–95% RH [120]

Waist 150 µm 0.223 nm/% RH polyvinyl alcohol
(5 µm) - 35% to 85% [121]

Waist 74 µm
Length 468 µm

1.1718 nm/% RH
and 0.441 dB/% RH

SiO2 NPs
(7 µm) - 83.8% RH to

95.2% RH [122]

Waist 95 µm
Length: 1 mm 0.020 nm/% RH ZnO - 35–60% RH [123]

acetone 19 µm 0.04 dBm/mm Hg

[Au(PPh2C
(CSSAuC6F5)

PPh2Me)2][ClO4]
vapochromic material

32 min 231–277 mm Hg [124]

dichloromethane 19 µm 0.03 dBm/mm Hg

[Au(PPh2C
(CSSAuC6F5)

PPh2Me)2][ClO4]
vapochromic material

31 min 436 mm Hg [124]

H2

20 µm 0.05 %/% H2 Pd-coated <100 s 0–10.5% [125,126]

50 µm 0.02 %/% H2 Pd-coated <100 s 0–2% [60]

36 µm 0.01 625 mW/% H2 Pd–Ag alloy - 0–4% [127]

50 µm 81.8 pm/% (v/v) H2 Pd coating - 0–1% (v/v) H2 [128]

5 µm –1.9 nm/5% H2 Pd coating 10 s 0–5% (v/v) H2 [138]

Biosensor 146 µm 0.181 nM
Immunoglobulin on

chitosan (CS)/polysodium
styrene sulfonate (PSS))

100 s 2–11 nM [132]

Uric acid POF (waist
0.45 mm) 0.0021 mV/ppm Graphene in PVA - 0–500 ppm [136]

dopamine Length 15–20 mm;
waist 6–9 µm LoD 37 nM Dopamine-specific DNA

aptamer - 0–1 µM [134]

3.6. Physical Sensors

In addition to exploiting the access to the EW for chemical and RI sensing, the dependence of the
properties of the propagating modes on the mechanical properties of the optical fibre can be used for
the measurement of physical parameters such as strain, stress and pressure.
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3.6.1. Strain, Stress and Pressure

Tapers with different taper angles were formed in multimode fibres that were subsequently
embedded into glass fibre reinforced epoxy composites. The light transmission characteristics were
measured as a function of applied stress. The stress sensitivity of a tapered optical fibre with a 5◦ taper
angle was found to be 0.04 V/GPa. The light intensity transmitted by optical fibre had a linear response
as a function of applied stress for different taper angles and the stress sensitivity was shown to increase
exponentially with the increase of the taper angle [139].

FBGs inscribed in the waist of tapered fibres offer specific attractive properties for force-sensing
applications. A small-diameter fibre reduces its influence on the mechanical properties of the
structure for embedded measurements. For tensile forces, the sensitivity scales inversely with the fibre
cross-sectional area and it is possible to increase the force sensitivity by several orders of magnitude as
compared to FBG sensors in conventionally sized fibres [140]. For tapers with a diameter of 3.5 µm,
a force sensitivity of 1900 nm N−1 can be achieved, which is about three orders of magnitude higher
than that of FBGs in conventional 125 µm diameter optical fibres. Due to the small axial stiffness of
such tapers, tapered FBGs would be suitable for measurements within thin substrates or in materials
of small Young’s modulus, or for the measurements of small forces.

A fibre optic sensor composed of identical FBGs written on the either side of a tapered cavity
was used for temperature independent strain measurement. The sensor possesses two spectral peaks
within its main Bragg reflection band acting as an interferometer due to a phase difference between the
light reflected by the two gratings. The normalized power difference between the two peaks changes
linearly with applied strain but is independent of temperature variation. The accuracy of this particular
sensor in measuring strain was estimated to be ±29 µε in a range of 1200 µε [141]. Bock et al. [53]
demonstrated a pressure sensor based on an LPG fabricated using arc discharge to create periodic
tapers in a standard single mode fibre, which had a sensitivity of 5.1 pm/bar, an order of magnitude
greater than that of a standard FBG.

A fibre taper Michelson modal interferometer consisting of an adiabatic taper of diameter 80 µm
located 30 mm from cleaved end of the fibre, as shown in Figure 23, was investigated as a bend
sensor in [142]. The bending angle was determined by passive interrogation of the interferometer by
generating two quadrature phase-shifted signals from two FBGs with appropriately selected resonant
wavelengths (Figure 23). Optical phase-to-bending sensitivity of 0.3 rad/degree and a bend angle
resolution of 0.014 degree/

√
Hz were achieved.Sensors 2019, 19, x 27 of 41 
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In another configuration, a temperature-insensitive micro-displacement sensor was demonstrated
with a locally bent microfibre taper interferometer (Figure 24) [143]. A change in the bending radius
induces a change in the path length of the higher order mode and hence a phase shift between the
fundamental and higher order modes. It is possible to control the parameters of the MI, such as its
sensitivity and mode coupling conditions, by adjusting the bend- radius. A microfibre taper with a
1.92 µm-waist diameter was optimized by changing the bending radius to minimize the spectral shift
of the sensor arising from temperature changes. Through modelling it was shown that the temperature
dependence of a locally bent microfibre taper relates strongly to the microfibre taper waist diameter
and that it is possible to minimize the temperature dependence over a diameter range from 1.84 to
2.06 µm. The transmission spectrum exhibited a sensitivity of 102 pm/µm.
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Figure 24. Experimental set-up and configuration of the micro-displacement sensor [143];
IEEE copyright material, Reprinted under creative common free licence (http://creativecommons.
org/licenses/by/4.0/).

A similar approach was used to develop an optical fibre inclinometer [144] based on an FBG
inscribed in a tapered region of an optical fibre with a measurement range of 0◦–90◦ tilt and an accuracy
of ca. 1◦. A sensitivity of −4.49 nm/◦ was achieved using an abrupt taper cascaded with a waist
enlarged taper [145].

A noncontact displacement microfibre sensor using a U-shaped adiabatic tapered fibre was
proposed with the sensitivity of 0.2 dB/mm operating over the range from 0.6 mm up to 12 mm
at a minimum tapered diameter of 8 µm [28]. The use of a fibre modal interferometer for local
lateral compression distance detection was described in [146]. The transmission spectrum of the
interferometer was measured under different transverse pressures and with the loading at different
locations along the interferometer. The spectra were analysed using a fast Fourier transform with the
amplitude and spatial frequency of different peaks in the spatial frequency spectrum corresponding to
different cladding modes can be utilized to evaluate local fibre geometry deformation. The sensitivity
to lateral compression distance was found to be determined by the fibre taper structure (such as waist
diameter and its length) with values of 9.996 × 10−6 dBm/µm in the range from 7.5 to 27.5 µm. An MZI
constructed by connecting a LPG with an up-taper was used to measure strain in the range of 0–590 µε,
with a sensitivity of 0.026 dB/µε, was reported in [147].

Interferometric measurement configurations can also be implemented using PCF. A tapered PCF
interferometer and a microhole-collapsed PCF interferometer have been used for the detection of
interaction forces generated in surgical devices, the key feature is that they use of PCF means that they
are inherently immune to the influence of ambient temperature variation [148]. The devices were used
for force characterization in laparoscopic scissor and standard surgical scissor blades. It was found that
PCF-instrumented surgical blades outperformed blades fitted with the FBG sensors during static load
measurement, with the strain sensitivity of 1.68 pm/µε for PCF sensor and 1.2 pm/µε for the FBGs.

3.6.2. Temperature

An LPG induced in a tapered optical fibre attached to a heated metal grating, as shown in Figure 25,
was studied [57]. The temperature and RI sensitivities were enhanced compared with LPGs of the

http://creativecommons.org/licenses/by/4.0/
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same period fabricated in standard optical fibres, and the unusual spectral response of decreasing
phase-matching wavelength with respect to increasing grating period and temperature was observed.
The temperature and RI sensitivities were measured to be 0.24 nm/◦C and 650 nm/RIU, respectively.
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Figure 25. Schematic illustration of an LPG composed of a tapered optical fibre with a uniform waist
and a side-contacted metal grating (adapted from [57]).

An optical fibre MZI consisting of two waist enlarged tapers with a temperature sensitivity of
0.070 nm/◦C for a 7.5 mm long interferometer was reported by [149]. A strain sensor was demonstrated
using a MZI composed of two abrupt single-mode fibre tapers exhibiting a sensitivity of 2000 nm/ε

similar to that of LPG sensors, but simpler to manufacture [150]. An MI can be built with tapered
large mode-area microstructured optical fibre (MOF). Such a fibre had the following parameters: core
diameter of 11 m, average hole diameter of 2.7 µm, average hole spacing (pitch) of 5.45 µm, and outside
diameter of 125 µm. The tapering was used to collapse the air holes such that, in the taper waist, the
fibre was transformed into a solid unclad multimode fibre. This allows the coupling between the
fundamental HE11 MOF mode and the HE1 modes of the solid fibre. The interferometer was used to
demonstrate a wavelength-encoded temperature sensor, showing a linear response over a temperature
range from 200 to 1000 ◦C [151]. An S-tapered fibre MZI created in an all-solid photonic bandgap fibre
was used to measure temperature in the range of 20–80◦C with a sensitivity of 49.52 pm/◦C and low
sensitivity to strain of 0.455 pm/µε [152]. Measurement of temperatures up to 800 ◦C was demonstrated
by splicing a thin core optical fibre to a length of SMF and fabricating an up-taper at the splicing point,
forming an MI sensor. A sensitivity of 0.140 nm/◦C was achieved in the range of 30–800 ◦C.

3.6.3. Simultaneous Measurements of Two or More Parameters

As mentioned previously, the inscription of a grating within a taper section of optical fibre, or the
tapering of a region already containing a fibre grating, can facilitate multi-parameter measurements,
where two or more parameters are measured using the same device. Generally, the principle of
simultaneous measurement of two or more parameters utilises the difference in sensitivity of the sensor
to these parameters. A simple matrix operation allows determination of the desired parameters.

Simultaneous measurement of strain and temperature was demonstrated using a periodically
micro-tapered fibre grating (period of 1.3 mm and the diameter of the tapered region was 76 mm),
where the resonance wavelength was blue-shifted and the transmission decreased with increasing
strain, while the opposite was observed for increasing temperature. Consequently, it was possible to
discriminate the influences of strain and temperature with the sensitives of –0.55 nm/µε and 49.6 pm/◦C
by measuring the resonant wavelength and the transmission with the sensitives of −0.32 dB/ µε and
−0.01 dB/◦C [153].

FBGs have been combined with tapers to facilitate the measurement of temperature and strain by
writing the FBG in a linearly etched fibre that provided information encoded in the peak wavelength
and in the spectral width of the FBG. The spectral width of the grating depended uniquely on the
applied strain and was temperature independent. An uncertainty of ±15.26 and µε ±1.92 ◦C was
achieved [154]. In a more complex configuration, the FBGs were written in different sections of the
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taper, as illustrated in Figure 26. In the first configuration, FBGs of uniform period were fabricated in
the untapered and tapering sections, as shown in Figure 26a. The effective index of the propagating
mode changes along the tapering section, introducing a chirp to the grating and broadening the Bragg
spectrum, while the change in diameter offers a variation in strain sensitivity along the grating length,
allowing an applied strain to influence the chirp. The second sensing head consists of FBGs written the
two tapering regions, where these regions have different taper angles, providing a larger difference in
the strain sensitivity of the structure. The second structure offers a higher sensitivity compared to the
first sensing head with strain and temperature sensitivities determined to be 1.81 ± 0.03 pm/µε and
9.67 ± 0.09 pm/◦C, respectively [155].

Figure 26. (a) Sensing head geometry with FBG/chirped tapered FBG (CTFBG) structure; and (b) sensing
head geometry using two CTFBGs in biconical taper structure [155]. © IOP Publishing. Reproduced by
permission of IOP Publishing. All rights reserved).

An asymmetric fibre MZI consisting of a fibre taper and a lateral-shifted junction (Figure 27)
was shown to allow the simultaneous measurement of axial strain and temperature in [156].
The interferometer exhibited different environmental sensitivities for different device architectures.
If the taper and the lateral-shifted junction (P+J in Figure 27a,b) were located in close proximity
(<15 mm), then the device exhibited temperature sensitivities of 60.4 and 63.9 pm/◦C (red shift) and
axial strain sensitivities of –1.47 and –2.71 pm/µε (blue shift) for the higher and lower interference orders
m1 (49) and m2 (48), respectively (Figure 27c). The junction–taper interferometer (J+P in Figure 27a)
has temperature sensitivities of 60.1 and 63.3 pm/◦C (red shifts) and axial strain sensitivities of −1.51
and −2.75 pm/µε (blue shifts) for the interference orders m1 and m2, respectively.
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Figure 27. (a) Schematic illustration of the a device consisting of tapered fibre with a lateral-shifted
junction; (b) experimental setup with the left and right insets showing the optical micrographs of the
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spectra of asymmetric interferometer at different temperatures (adapted from [156]).
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By cascading two waist enlarged structures that facilitate coupling and recoupling between the fibre
core mode and the cladding modes, a simple and low-cost MZI was demonstrated (Figure 28a,b) [157].
The first waist enlarged structure coupled the core mode to cladding modes, while the second recouples
the light from the cladding modes into the core mode, producing a high visibility channelled spectrum.
For an interferometer of length 22 mm, the temperature sensitivity of the device was 46.8 pm/◦C and
the strain sensitivity was 14 pm/µε. Using a similar configuration, sensitivities of 57.5 pm/◦C and
1.02 pm/µε for temperature and strain, respectively, were achieved [158].
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section; R, radius of the ellipsoidal-structure section; (c) schematic diagram of the cascading two waist
enlarged structures-MZI (adapted from [157]).

In another example of the use of MI, the simultaneous measurement of axial strain and temperature
was demonstrated by introducing a 20 × 4 µm spindle-shaped spot produced by a femtosecond laser
and located 30 mm away from the fibre taper (with the diameter and length of 60 and 600 µm
respectively) in a standard single-mode optical fibre. The spot in the optical fibre can be regarded as a
Mie scattering centre where the fundamental core mode will be scattered into higher order cladding
modes. This results on the interference between the light coupled by taper and light coupled to higher
order modes by a spindle-shaped spot. The experimental results indicate axial strain sensitivities
of −1.0 and −1.2 pm/µε (blueshift) and temperature sensitivities of 81.3 and 98.8 pm/◦C (redshift) at
1513.4 and 581.2 nm, respectively, corresponding to two interference orders [159].

The simultaneous measurement of strain and temperature with resolutions of ±5.6 µε and ±1.6 ◦C
and sensitivities as high as −23.69 pm/µε for a 15-µm diameter taper, respectively, was achieved using
tapering single-mode–multimode–single-mode structures [160].

The use of an MZI realized in a tapered single-mode optical fibre was proposed for the
measurement of RI and temperature [161]. The features of the channelled spectrum shift with
changes in the surrounding RI and temperature. Simultaneous measurement of RI and temperature
with corresponding sensitivities of up to 26.087 nm/RIU (blueshift) and 0.077 nm/◦C (redshift) was
achieved. In other work, the RI and temperature sensitivities for a device comprising two bi-tapers
and an LPG were 108.16 nm/RI and 0.12 nm/◦C, respectively [92].
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It was shown that it is possible to measure simultaneously three parameters, such as RI, force
and temperature, by monitoring different interference peaks of the transmission spectrum of an MZI
based on a tapered hollow core optical fibre [91]. The sensor demonstrated an RI sensitivity of about
7041.21 nm/RIU in the range of 1.4406∼1.4458, a stress sensitivity of −6.26 nm/N in the range of 0∼1 N
and a temperature sensitivity of 9.8 pm/◦C in the range of 30∼100 ◦C.

An MZI with a length of hundreds of microns was demonstrated based on an S-tapered fibre (SFT),
shown in Figure 29 [162]. The dependence of the spectral characteristics of the SFTs on the axial offsets
and diameters has been studied. An SFT with an axial offset of 114 µm and a taper waist diameter
of 54.6 µm was found to exhibit the best sensitivity to RI, with a sensitivity of 2066 nm/RIU in the
1.407–1.421. The strain sensitivity was –183.4 pm/µεwhen the axial offset of the SFT was 138 µm and the
taper waist diameter was 65.0 µm. By embedding S-tapered optical fibres into a polydimethylsiloxane
patch, such that the patch transduced a transverse load into an axial strain, measurement of load and
temperature with sensitivities of −29.03 nm/N and −2.17 nm/◦C were reported.Sensors 2019, 19, x 32 of 41 

 

 
Figure 29. (a) Side view of the S-tapered fibre (SFT) in optical microscopy. (b) Top view of the SFT. 
(c) Transmission spectrum of the single SFT MZI in air. Reprinted with permission from [162]). 

Temperature-independent strain and angle measurements are achieved using a taper fabricated 
on a Bragg fibre using a CO2 laser [163]. Bragg fibres are cylindrical waveguides consisting of a low-
index core surrounded by concentric rings of material with alternating high and low RI, acting as a 
cylindrical Bragg mirror. The sensitivity was 22.68 pm/με and 185.10 pm/deg to strain and angle, 
respectively. Another interesting approach to the measurement of several parameters simultaneously 
employed a heterogeneous multicore optical fibre, where in one fibre there are several cores, each 
having different propagation properties [164]. Tapering such a fibre allowed the demonstration of a 
temperature sensitivity of 47.37 pm/°C for the central core and 53.20 pm/°C for the outer core, with a 
strain sensitivity of 1.10 pm/με for the central core and 0.84 pm/με for the outer core. Different spatial 
channels (cores) in heterogeneous multicore fibre have dissimilar responses to the outer environment 
allowing multiparameter measurements. Using temperature-strain matrix, the measured relative 
errors were estimated to be less than 5%. Table 3 summarizes parameters of the tapered sensors for 
physical measurands. 

Table 3. Summary of the parameters of the tapered sensors for physical measurands. 

Measurand Taper Geometry 
Sensitivity  

Limit of Detection 
Dynamic Range Reference 

Temperature 

Waist 20 μm 
LPG ca. 400 μm 

–0.24 nm/°C 25–75 °C [57] 

170 μm 
280 μm 

0.070 nm/°C 0–450 °C [149] 

- 46.8 pm/°C - [157] 
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(c) Transmission spectrum of the single SFT MZI in air. (Reprinted with permission from [162]).

Temperature-independent strain and angle measurements are achieved using a taper fabricated
on a Bragg fibre using a CO2 laser [163]. Bragg fibres are cylindrical waveguides consisting of a
low-index core surrounded by concentric rings of material with alternating high and low RI, acting as
a cylindrical Bragg mirror. The sensitivity was 22.68 pm/µε and 185.10 pm/deg to strain and angle,
respectively. Another interesting approach to the measurement of several parameters simultaneously
employed a heterogeneous multicore optical fibre, where in one fibre there are several cores, each
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having different propagation properties [164]. Tapering such a fibre allowed the demonstration of a
temperature sensitivity of 47.37 pm/◦C for the central core and 53.20 pm/◦C for the outer core, with a
strain sensitivity of 1.10 pm/µε for the central core and 0.84 pm/µε for the outer core. Different spatial
channels (cores) in heterogeneous multicore fibre have dissimilar responses to the outer environment
allowing multiparameter measurements. Using temperature-strain matrix, the measured relative
errors were estimated to be less than 5%. Table 3 summarizes parameters of the tapered sensors for
physical measurands.

Table 3. Summary of the parameters of the tapered sensors for physical measurands.

Measurand Taper Geometry Sensitivity Limit
of Detection Dynamic Range Reference

Temperature

Waist 20 µm
LPG ca. 400 µm –0.24 nm/◦C 25–75 ◦C [57]

170 µm
280 µm 0.070 nm/◦C 0–450 ◦C [149]

- 46.8 pm/◦C - [157]

Waist 66.5 µm
Length 309 µm 9.8 pm/◦C 30∼100 ◦C [91]

Waist 97 µm
Length 491 µm 49.52 pm/◦C 20–80 ◦C [147]

Waist 42 µm
Length 2.4 mm 47.37 pm/◦C 20–80 ◦C [164]

Waist 168 µm
Length µm 57.5 pm/ ◦C 25–70 ◦C [158]

Waist 165 µm
Length 340 µm, 0.140 nm/◦C 30–800 ◦C [152]

Stress
Taper angle 5o 0.04 V/GPa 0–0.5 GPa [139]

Waist 66.5 µm
Length 309 µm −6.26 nm/N 0∼1 N [91]

- 1.2 pm/µε 1200 µε [141]

Strain

40 µm 2000 nm/ε 100–900 µε [150]

- 14 pm/µε - [157]

65 µm –183.4 pm/µε - [162]

Length 5 mm
waist 35 µm 22.68 pm/µε 0–400 µε [163]

Waist 168 µm
Length 245 µm 1.02 pm/µε 81.3–1626 µε [158]

Waist 161 µm 0.026 dB/µε 0–590 µε [147]

Force 4 µm 1900 nm N−1 0–0.15 N [140]

Pressure 115–120 µm 5.1 pm/bar 0–450 bar [53]

Angle

50 µm
Length 44 mm 1◦ 0◦–90◦ [144]

Length 5 mm
waist 35 µm 185.10 pm/deg 0◦–10◦ [163]

Length 1.37 mm
waist 50 µm −4.49 nm/◦ 3◦–6.66◦ [145]
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4. Conclusions

A review of the uses of tapered optical fibres as sensors has been presented. The theory of
light propagation in the tapered optical fibres and methods for their fabrication was discussed
briefly. The measurement of physical and chemical parameters using a variety of optical fibre tapers
configurations has been outlined. Despite clear advantages, such as high sensitivities and simplicity
of fabrication, the wide variety of configurations and their versatility, there are limited reports of
practical application of the tapered optical fibres. The majority of the work that has been conducted is
laboratory-based in well-controlled environments. One of the major challenges for future applications
of tapered optical fibre sensors lies in the reliable and reproducible fabrication of the devices. It should
be also noted that in simplest form tapered devices are not selectively sensitive and require coating
that provide specificity. In addition, addressing issues around packaging, handling and mechanical
strength is essential.
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