13,621 research outputs found

    Monometallic cerium layered double hydroxide supported Pd-Ni nanoparticles as high performance catalysts for lignin hydrogenolysis

    Get PDF
    Monometallic cerium layered double hydroxides (Ce-LDH) supports were successfully synthesized by a homogeneous alkalization route driven by hexamethylenetetramine (HMT). The formation of the Ce-LDH was confirmed and its structural and compositional properties studied by XRD, SEM, XPS, iodometric analyses and TGA. HT-XRD, N-2-sorption and XRF analyses revealed that by increasing the calcination temperature from 200 to 800 degrees C, the Ce-LDH material transforms to ceria (CeO2) in four distinct phases, i.e., the loss of intramolecular water, dehydroxylation, removal of nitrate groups and removal of sulfate groups. When loaded with 2.5 wt% palladium (Pd) and 2.5 wt% nickel (Ni) and calcined at 500 degrees C, the PdNi-Ce-LDH-derived catalysts strongly outperform the PdNi-CeO2 benchmark catalyst in terms of conversion as well as selectivity for the hydrogenolysis of benzyl phenyl ether (BPE), a model compound for the alpha-O-4 ether linkage in lignin. The PdNi-Ce-LDH catalysts showed full selectivity towards phenol and toluene while the PdNi-CeO2 catalysts showed additional oxidation of toluene to benzoic acid. The highest BPE conversion was observed with the PdNi-Ce-LDH catalyst calcined at 600 degrees C, which could be related to an optimum in morphological and compositional characteristics of the support

    Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer

    Get PDF
    Three decades into the research seeking to derive the urban energy budget, the dynamics of the thermal exchange between the densely built infrastructure and the environment are still not well understood. We present a novel hybrid experimental-numerical approach for the analysis of the radiative heat transfer in New York City. The aim of this work is to contribute to the calculation of the urban energy budget, in particular the stored energy. Improved understanding of urban thermodynamics incorporating the interaction of the various bodies will have implications on energy conservation at the building scale, as well as human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, and a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. The close comparison of temperature values derived from measurements and the computed surface temperatures (including streets and roads) implies that this geospatial, thermodynamic numerical model applied to urban structures, is promising for accurate and high resolution analysis of urban surface temperatures.Comment: 11 pages, 5 figure

    Applications of advanced spectroscopic imaging to biological tissues

    Get PDF
    The objectives of this research were to develop experimental approaches that can be applied to classify different stages of malignancy in routine formalin-fixed and paraffin-embedded tissues and to optimise the imaging approaches using novel implementations. It is hoped that the approach developed in this research may be applied for early cancer diagnostics in clinical settings in the future in order to increase cancer survival rates. Infrared spectroscopic imaging has recently shown to have great potential as a powerful method for the spatial visualization of biological tissues. This spectroscopic technique does not require sample labelling because its chemical specificity allows the differentiation of biocomponents to be achieved based on their chemical structures. Experiments were performed on 3-µm thick prostate and colon tissues that were deposited on 2 mm-calcium fluoride (CaF2) which were subsequently deparaffinised. The samples were measured under IR microscopes, in both transmission and attenuated total reflection (ATR) mode. In transmission, thermo-spectroscopic imaging of the prostate samples was first carried out to investigate the potential of thermography to complement the information obtained from IR spectral. Spectroscopic imaging has made the acquisition of chemical map of a sample possible within a short time span since this approach facilitates the simultaneous acquisition of thousands of spatially resolved infrared spectra. Spectral differences in the lipid region (3000 -2800 cm-1) were identified between cancer and benign regions within prostate tissues. The governing spectral band for classification was anti-symmetric stretching of CH2 (2921 cm-1) from PCA analysis. Nonetheless, the difference in tissue emissivity at room temperature was minimal, thus the contrast in the thermal image is low for intra-tissue classification. Besides, the thermal camera could only capture IR light between 3333-2000 cm-1. To record spectral data between 3900 - 900 cm-1 (mid-IR), Fourier transform infrared (FTIR) spectroscopic imaging was used to classify the different stages of colon disease. An automated processing framework was developed, that could achieve an overall classification accuracy of 92.7%. The processing steps included unsupervised k-means clustering of lipid bands, followed by Random Forest (RF) classification using the ‘fingerprint’ region of the data. The implementation of a correcting lens and the effect of the RMieS-EMSC correction on the tissue spectra were also investigated, which showed that computational RMieS-EMSC correction was more effective at removing spectral artefacts than the correcting lens. Furthermore, the effect of the fluctuations of surrounding humidity where the experiments were carried out was studied by using various supersaturated salt solutions. Significant peak changes of the phosphate band were observed, most notably the peak shift of the anti-symmetric stretching of phosphate bands from 1230 cm-1 to 1238 cm-1 was observed. By regulating and controlling humidity at its lowest, the classification accuracy of the colon specimens was improved without having to resort to alteration on the RF machine learning algorithm. In the ATR mode, additional apertures were introduced to the FTIR microscope, as a novel means of depth profiling the prostate tissue samples by changing the angle of incidence of IR light beam. Despite the successful attempts in capturing the qualitative information on the change of tissue morphology with the depth of penetration (dp), the spectral data were not suitable for further processing with machine learning as dp changes with wavelengths. Apart from the apertures, a ‘large-area’ germanium (Ge) crystal was introduced to enable simultaneous mapping and imaging of the colon tissue samples. Many advantages of this new implementation were observed, which included improvement in signal-to-noise ratio, uniform distribution, and no impression left on the sample. The research done in this thesis set a groundwork for clinical diagnosis and the novel implementations were transferable to studies of other samples.Open Acces

    Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review

    Get PDF
    In less than two decades, UASs (unmanned aerial systems) have revolutionized the field of hydrology, bridging the gap between traditional satellite observations and ground-based measurements and allowing the limitations of manned aircraft to be overcome. With unparalleled spatial and temporal resolutions and product-tailoring possibilities, UAS are contributing to the acquisition of large volumes of data on water bodies, submerged parameters and their interactions in different hydrological contexts and in inaccessible or hazardous locations. This paper provides a comprehensive review of 122 works on the applications of UASs in surface water and groundwater research with a purpose-oriented approach. Concretely, the review addresses: (i) the current applications of UAS in surface and groundwater studies, (ii) the type of platforms and sensors mainly used in these tasks, (iii) types of products generated from UAS-borne data, (iv) the associated advantages and limitations, and (v) knowledge gaps and future prospects of UASs application in hydrology. The first aim of this review is to serve as a reference or introductory document for all researchers and water managers who are interested in embracing this novel technology. The second aim is to unify in a single document all the possibilities, potential approaches and results obtained by different authors through the implementation of UASs

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications
    corecore