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Abstract 

Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent 

developments in sensor design and computer technology allow the acquisition and processing of high 

spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray 

fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in 

the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and 

safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional 

changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging 

can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or 

sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to 

obtain spatially continuous compositional information of samples, outcrops, or regions that might be 

otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at 

reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can 

provide information about the distribution of rock-forming and alteration minerals, specific chemical 

compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale 

measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular 

the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a 

large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an 

intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, 

usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the 

imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment 

of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data 

created by large imaging campaigns. Accurate geometric and radiometric data corrections using established 

methods is often not possible. Another important challenge results from the overall variety of spatial scales, 

sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D 

geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected 

data that is not able to set the results in a meaningful spatial context.  

These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation 

for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by 

providing full image processing workflows from the acquisition of raw data in the field or lab, to fully 

corrected, validated and spatially registered at-target reflectance datasets, which are valuable for 

subsequent spectral analysis, image classification, or fusion in different operational environments at 

multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS 

platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) 

multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination 

of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the 

characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored 

workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on 

prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows 

aim to be versatile in regard to utilized sensors and desired applications.  
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 Motivation and Outline of the Thesis  

Hyperspectral (HS) sensors currently undergo a rapid development in terms of size, performance, spectral 

range, and overall data quality. Innovative operational technologies open up new scales, viewing angles, 

and application fields. Simultaneously, recent image processing developments led to the optimization of 

machine learning algorithms for big data and real-time processing.  

In the application sector, however, conventional or even outdated approaches remain the methods of choice. 

The reasons mainly originate from a general lack of awareness as well as the perceived impracticability of 

novel methods for the end user. The establishment of novel workflows is complicated by challenges not yet 

tackled in terms of adequate data pre-processing or the integration of multi-source image data in a common 

spatial context.  

The emphasis of this work is to develop and provide tools and workflows that are able to address these 

challenges. The methods should provide versatile solutions for different sensors types, wavelength ranges, 

and sensor-target-distances, while still being robust and independent of the application sector. The 

developed tools were tested and validated on mineral exploration targets at different spatial scales such as 

natural outcrops, mines, drill-cores, and single mineral specimen. These targets feature a complexity in 

morphology, composition, and spectral properties. Simultaneously, the data acquisition is affected by a 

variety of geometric and radiometric effects in real field conditions. This makes mineral exploration 

objectives well-suited to demonstrate the performance of the developed workflows on demanding data sets.  

I address particular challenges of currently emerging HS operational principles and show the potential and 

importance of carefully corrected data sets for complex tasks in mineral exploration. Due to the diversity of 

subjects, each contribution is addressed in a separate chapter accompanied by a detailed introduction and 

method description. Chapters 2, 3, and 5 are formed by already published research articles that were 

reformatted to fit the style of the thesis. Chapter 4 forms the basis of another manuscript that is in 

preparation for publication. 

Chapter 1 is an introduction on the physical processes important for the acquisition, correction, and 

interpretation of hyperspectral data. Additionally, it elaborates on the state of the art of sensors, workflows, 

and applications of hyperspectral imaging and reveals remaining challenges for different acquisition 

approaches.  

Chapter 2 is devoted to UAS- or drone-borne hyperspectral imagery. As a new and promising technique 

for fast and precise data acquisition it delivers high-resolution hyperspectral data to a large variety of end-

users. Drones can overcome the scale gap between field and air-borne remote sensing, thus providing high-

resolution and multi-temporal data for a wide range of applications. However, complex geometric and 

radiometric effects impede their use for applications that require accurate and reliable spectral information 

such as in mineral mapping. A workflow for a proper and careful data pre-processing had to be developed 

and tested to enable the use of drone-borne HSI for advanced spectral analysis and mapping. 

Chapter 3 addresses the various challenges of terrestrial or ground-based hyperspectral imaging. 

Despite its potential for the spectral analysis of any vertical or inaccessible target, adequate radiometric 

and geometric correction tools were missing. In particular, the extreme influence of atmospheric effects 

and relief-induced illumination differences remained an unmet challenge. Due to the small-angle view, 

these effects cannot be corrected by means of common correction tools for (near-)nadir satellite or airborne 
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data. New solutions for the georeferencing, visualization, and contextualization of hyperspectral image 

scans from different sensors, positions, angles, and distances were required. 

Chapter 4 deals with the integration of multi-sensor hyperspectral imagery for near-field sample 

scanning. Despite the required sensor-specific geometric and radiometric corrections, this setup demands 

a fast and reliable technique for the co-registration and integration of large datasets with unique 

acquisition principles, spectral ranges, and spatial sampling distances. A successful fusion of high-

resolution RGB (Red-Green-Blue), visible and near infrared (VNIR), shortwave infrared (SWIR), and 

longwave infrared (LWIR) image data multiplies the amount of materials detectable with a better accuracy 

and allows simultaneous queries of high-resolution spatial and spectral information over an extended 

spectral range.  

Chapter 5 elaborates on the potential of hyperspectral image sensors for near-field spectroscopy and 

the integration with photoluminescence spectroscopy on the example of Rare Earth Element (REE) 

detection in natural minerals. Until now, both approaches have been proven to be capable of REE detection, 

but have never been compared or integrated in a combined characterization approach. A combination of 

the strengths of both methods has the potential to complement and cross-validate the individual findings 

and to be used in a broad range of applications along the entire value chain of raw materials, such as in 

exploration, mining, and recycling.  

 

Chapter 6 is a conclusion on the outcomes of this work with a critical evaluation of their impact in a larger 

framework.  
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CHAPTER 1   INTRODUCTION TO HYPERSPECTRAL IMAGING 

In the following, a summary of the most important processes for hyperspectral imaging is given, introducing 

crucial terms and relations important for data acquisition, correction, and interpretation.  

This encompasses important physical spectroscopic processes within the observed material and wavelength 

range as well as sensor-specific and external influence factors during the acquisition. The state of the art on 

sensors, acquisition scales, and correction workflows are given to outline remaining challenges, of which 

several will be tackled in this thesis. This introduction is meant to serve as a general preface to the following 

chapters, which will then provide a deeper insight into the handling of each of the specific challenges. 

1.1 The Spectrum: Physical Background on the Absorption and Emission of Light 

Optical spectral analysis in general is the measurement of matter-light interactions as a function of their 

energy. More specifically, this encompasses any radiation that is emitted, reflected, or transmitted from the 

investigated target (Clark et al. 1999). The typical wavelength ranges analyzed in spectral imaging comprise 

Visible and Near-Infrared (VIS and NIR or VNIR), Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), 

and Long-Wave Infrared (LWIR), as depicted in Figure 1-1.  

 

Figure 1-1. The electromagnetic spectrum: Important properties and relations for spectral imaging. (UV: 

Ultra-violet, FIR: Far Infrared). 

The concept of quantized molecular energy is key to the understanding of any absorption and emission 

processes observed in spectral imaging. It states that the possible quantum states of individual atomic 
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species (atoms, ions, or molecules) are well-defined at a characteristic energy level. These states are 

characteristic for the particles’ physical nature and the dynamic and energetic processes affecting them. An 

atomic species possesses different sets of energy levels, associated to electronic, vibrational, rotational, and 

translational processes as well as electron spins. Besides a low energy or ground state, each set can feature 

several high energy or excited states (Figure 1-2). An excited state is reached, when the center absorbs an 

amount of energy matching the state’s energetic difference. Once excited, the transition back to a lower 

energy state usually happens spontaneously through the emission of energy with a frequency resembling 

the energy of the transition.  

 

Figure 1-2. Energy diagram showing typical transitions between electronic states of a molecule. Illustrated 

are the main processes of absorption, fluorescence, and phosphorescence. S - single state, T - triplet state 

(based on Rhys-Williams 1981). 

As the energy level differences vary depending on the type of the associated process, absorption and 

emission occur in different spectral ranges. Changes in rotational energy are observed in microwave down 

to UV, vibrational processes are mainly expressed in infrared to UV, and electronic energy transitions are 

characteristic to the visible and UV range (Figure 1-1). An optically active center is usually affected by 

several processes, resulting in characteristic absorption and emission features over the entire 

electromagnetic spectrum. In visible and infrared spectroscopy, observed absorption and emission effects 

mostly originate from atom or molecule vibrations and electronic transitions (Clark 1999).  

Infrared-range photon energies are too small to excite electrons, instead atoms and groups in covalent bonds 

are excited to a range of vibration motions such as stretching and bending. Fundamental features at shorter 

wavelengths (4000–1450 cm-1 or 2.5–6.9 µm) are mostly broad and related to stretching vibrations of 

diatomic regions (group frequency region), while signatures in the so-called fingerprint region (1450–600 

cm-1 or 6.9–16.7 µm) are a usually highly complex mixture of stretching and bending vibration effects. 

Weaker features occur at multiples of one fundamental absorption frequency and additions of several 
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fundamental absorption frequencies, referred to as overtones and combinations. Depending on the dominant 

scattering process, strong fundamental molecular vibrations are expressed not as absorption-related 

reflectance minima, but as strong and broad reflectance maxima (Figure 1-3). The manifestation of this so-

called Reststrahlen effect is highly dependent on the dominance of surface over volume scattering. Important 

influencing parameters on the scattering type are grain size, porosity, and crystal order of the observed 

surface (Salisbury et al. 1987). When surface scattering is dominant, the Reststrahlen effect can be 

explained by taking the complex refractive index, n, into account, consisting of a real part, n, and an 

imaginary part, k, whereby n and k represent the refractive index (or phase velocity) and the extinction (or 

attenuation) coefficient, respectively. After Fresnel’s equations (Fresnel 1866), the reflectivity, R, of a plane 

at a normal incidence is defined by  

An exemplary schematic illustration of the optical indices n and k, calculated reflectivity R, and an 

experimentally obtained reflectance spectrum of quartz is shown in Figure 1-3.  

 

Figure 1-3. Optical parameters of α-quartz in the LWIR (data derived from Spitzer and Kleinman (1960), 

results for the ordinary ray and with plane polarized light) and position of respective Reststrahlen and 

Christiansen frequencies (top); resulting theoretical reflectivity for normal incidence and comparison to a 

real quartz reflectance spectrum (bottom). 

𝑅 =	
(𝑛 − 1)? + 𝑘?

(𝑛 + 1)? + 𝑘?	 
(1-1) 
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It can be seen that a very strong absorption (equivalent to a high extinction coefficient, k, with k >> n) causes 

a high, specular reflectivity, R, i.e. most of the incoming radiation is hindered on entering the material. 

Instead, the radiation is reflected on the material’s surface. These maxima in reflectance are also referred 

to as Fresnel peaks. At a slightly lower wavelength than the absorption, the Christiansen wavelength is 

situated. At this wavelength, the refractive index, n, of the material changes rapidly due to the nearby 

absorption wavelength and comes close to those of the surrounding medium (n = 1 for air), theoretically 

resulting in minimal scattering of incoming radiation. However, at the exact position of the Christiansen 

wavelength, the extinction coefficient is still significant. Slightly out of the Christiansen wavelength and 

therefore off from the absorption wavelength (k << 1), the photons can pass the material relatively 

unhindered, which is then observed as extremely low reflectance values (Christiansen features). The 

wavelength position of the Christiansen features has been proven to be highly characteristic for mineral 

composition (e.g., Logan et al. 1973, Salisbury & Walter 1989). 

The excitation of electronic transitions requires higher excitation energies than thermal vibrations and 

can therefore be observed mainly in the visible, but also UV and SWIR range of the electromagnetic 

spectrum. The processes electronic transitions are related to are manifold: 

Crystal field effects are associated to unfilled or partially filled shells of transition elements (such as Fe, 

Ni, Cr, and Co) located in a crystal field. The influence of the field causes a splitting of the transition elements 

electronic states, and thus a shift of the transition energy. The splitting and resulting absorbed or emitted 

energies are highly dependent on the crystal structure and therefore characteristic for the host mineral. 

Charge transfer absorptions occur when electrons are transferred between two metal ions (intervalence 

charge transfer, e.g. Fe2+-Fe3+, Fe2+-Ti4+) or between a cation and oxygen (oxygen-metal charge transfer, e.g. 

Fe-O, Cr-O). Charge transfer absorptions are usually located in the UV and lower VIS and are much stronger 

than crystal field effects.  

Band gap electronic transitions occur in materials featuring an energetic gap between conduction and 

valence band. Only electrons with energies exceeding the energetic gap between are absorbed, causing an 

absorption edge. At wavelengths above the edge and within the band gap, the material is theoretically 

transparent, whereas at lower wavelengths all incident radiation is absorbed. For silicates, the absorption 

edge is situated in the UV and the spectral signal in the VNIR remains unaffected. In sulfide minerals, the 

absorptions edge is located at much higher wavelengths, l, from 350 nm for Sphalerite (ZnS) up to 3350 

nm for Galena (PbS). 

Color centers are caused by the incidence of ionizing radiation or an imperfect crystal (Hunt 1977). These 

imperfections may be lattice defects due to the presence of impurities (replaced ions), vacancies (missing 

ions), and interstitials (additional ions forced in between the lattice). Resulting modified ions and trapped 

electrons possess their own electronic states. Related absorptions appear as broad spectral features visible 

in the VNIR as a variety of distinct colors (e.g. the colors of irradiated apatite, topaz, or zircon).  

Similar to vibrational processes, the energy absorbed by electronic processes in every case causes an excited 

energy state, from which the electron can relax. The respective spontaneous, discrete emission of light 

unrelated to thermal radiation is referred to as luminescence. Depending on the process triggering the 

excitation, multiple types of luminescence are distinguished, such as chemi-, electro-, and 

photoluminescence, which often can be further subdivided. Photoluminescence is referred to as 

fluorescence, if after photon absorption re-emitted photons are released rapidly (in the order of 10 to 1000 

nanoseconds). Commonly, some of the initial excitation energy is dissipated before re-emission to internal 

energy transitions and relaxation processes. This leads to the emission of a photon with lower energy or 

longer wavelength than the exciting photon (Figure 1-2). The respective energy difference is defined as 
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“Stokes Shift” (Stokes 1852). The specific case of rapid re-emission at an equivalent wavelength is called 

resonance fluorescence. A slow emission, from milliseconds up to minutes or even hours, is known as 

phosphorescence (see Figure 1-2).  

The returned luminescence intensity depends on a range of factors comprising the absorption cross-section 

of photons at the excitation wavelength as well as the concentration of the respective luminescence centers. 

Additional common influences are luminescence anisotropy, i.e. direction-specific response to the 

crystallographic structure of the material, or processes such as nonradiative return, in which the absorbed 

energy is used to heat the host lattice by the excitation of vibrations. Due to its resulting significantly lower 

intensity compared to absorption signatures, the contribution of luminescence is mostly neglected in 

spectral imaging analysis. However, as the intensity of luminescence is also directly proportional to the 

intensity of the incident radiation, respective experimental setups can be used to optimize the excitation of 

luminescence centers characteristic for many ions and minerals (Rhys-Williams 1981). A common approach 

to measure meaningful luminescence spectra is the excitation with a strong, monochromatic excitation 

source such as a laser or LED (Light-Emitting Diode) under dark lab conditions. A straight-forward 

realization is steady-state continuous-wave-laser spectroscopy, i.e. luminescence measurements under a 

constant excitation of the sample during the whole experiment duration. A short excitation pulse combined 

with time-resolved spectroscopy offers a more sophisticated, but complex approach, where materials with 

differing luminescence life-times and decay spectra can be distinguished. A pulsed light source offers the 

possibility of on-/off-measurements to retrieve a luminescence signal under ambient light. For all 

approaches, the target-specific choice of the used excitation wavelength is crucial and variations can be 

used to excite or avoid a response of specific luminescence centers. Under ideal conditions, luminescence 

analysis can reach sensitivities down to a detection limit of 10-12 moles, which highly exceeds the 

capabilities of absorption spectrometry that is barely able to reach 10-8 moles (Rhys-Williams 1981).  

Thermal radiation and grey body emission are common effects to every object or surface with a 

temperature above 0 K, resulting in a constant emission of infrared radiation due to the thermal motions of 

its charged particles. At an assumed thermodynamic equilibrium, the emitted radiation behaves according 

to Planck’s law (Planck 1914). Idealizing the emitter to a blackbody, which absorbs every incident radiation 

at all wavelengths and emits solely thermal radiation, the emitted wavelength- and temperature-specific 

radiation are simplifiable by Planck’s function (see Figure 1-1). As a blackbody emits the highest possible 

radiation intensity at a given temperature, the emissivity, e, of any real object can be defined as the ratio 

between its radiation observed to that of an assumed blackbody at the same temperature. According to 

Kirchhoff’s law, the corresponding reflectance, R, spectrum can be calculated by R = 1 – e, provided that the 

transmittance of radiation through the investigated material is negligible (Kirchhoff 1860).  

With increasing temperature, the intensity of the emitted radiation of any matter rises, while the 

wavelength, at which the maximum radiation intensity is observed, decreases. The radiance spectra of 

incandescent light sources, such as the sun or lightbulbs, often have their intensity maximum in the VIS, 

where radiation is visible to the human eye. For matter at temperatures commonly experienced on the 

earth’s surface, the maximum radiation intensity is situated within the invisible infrared range of the 

electromagnetic spectrum (Figure 1-1). This results in the interference of the matter’s thermal radiation 

with additional polychromatic light and complicates the interpretation of the observed radiance signature. 

In the SWIR range, thermal radiation has only a minor influence and is therefore mostly neglected. The 

MWIR range is equally influenced by both sources, making its interpretation extremely complicated and 

often limiting its usage in spectral imaging. The LWIR range is largely dominated by thermal radiation, 

making it the common range for thermal radiation analysis in remote sensing. 



 

 30 

 

 

 

  



 

 31 

1.2 The Image: From Spectral to Hyperspectral 

Independent of the observed wavelength range, investigated material, and the underlying spectroscopic 

processes, the format and visualization of any spectral dataset remains similar. All spectral datasets 

acquired by imaging spectroscopy in principle feature three dimensions with at least one, even indistinct, 

value defining the measured signal intensity along at least two spatial and one spectral axis. Depending on 

the type of data this basic model can be reduced or extended to different levels of spectral and spatial 

complexity (Figure 1-4).  

 

Figure 1-4. Schematic examples on different levels of dimensionality of spectral data with x, y, z being the 

spatial, l the spectral, and t the temporal axes. 

Within this framework, a hyperspectral image is defined as a three-dimensional data-cube with a large 

number of spectrally narrow, quasi-contiguous entries along the spectral axis. This provides the possibility 

to query a plottable spectral signature for each spatial position on a surface. The accompanying amount of 

information results in much larger data sizes compared to polychromatic or multispectral imagery. The 

acquisition of a hyperspectral dataset in a reasonable time is correspondingly more complicated. In theory, 

snapshot sensors enable the contemporaneous acquisition of one dataset at a time, but are still rarely used 

as this is often achieved by a decrease of either spectral or spatial resolution or signal-to-noise-ratio (SNR). 

Common sensors reduce the amount of simultaneously acquired data by sequential scanning of, e.g., one 

spatial pixel at a time (whisk broom or across track scanning), one spatial pixel line at a time (push broom 

or line scanning), or one spectral channel at a time (frame-based imaging). These approaches require either 

moving parts within the device or a movement of the whole sensor to acquire a complete data-cube. Due to 

the time offset between the individual recordings, additional movements of the sensor platform lead to image 

distortions and trigger the need for additional data pre-processing steps. According to their acquisition 

principles, whisk and push broom scans are dominantly in need for spatial alignments between the acquired 
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pixels or lines, while frame-based images may feature spatial offsets between spectral channels. Examples 

on current commercial hyperspectral sensors for each acquisition type are given in Table 1-1. Fast sensors 

that are less prone to generate distortion effects, such as snapshot or frame-based sensors, are deployed 

predominantly at smaller and less stable platforms such as unmanned aerial systems (UAS). Whisk and 

push broom scanners often provide spectrally higher quality data, but in general need more stable platforms 

with a higher payload to carry additional equipment for geometrical calibration, such as a global positioning 

system (GPS) and inertial measurement unit (IMU).  

Table 1-1. Examples on current hyperspectral sensors and their specifications.  

  

Sensor name 

 

Platform 

Spectral channels (ch) / 

FWHM (Full Width at Half 

Maximum) 

Spatial image size / pixel 

size at typical operation 

distance 

Whisk 

broom 

AVIRIS Airborne 224 ch / 10 nm  

(VNIR/SWIR) 

677 px / 1–20 m 

 HyMap Airborne 126 ch / 15-20 nm 

(VNIR/SWIR) 

512 px / 2.5–5 m 

Push  Hyperion EO-1 Satellite 220 ch / 10 nm (VNIR/SWIR) 250 px / 30 m 

broom Specim AisaFENIX Airborne / Terrestrial 624 ch / 3.5 nm (VNIR), 

12 nm (SWIR) 

384 px / m–cm 

 Specim FX10 UAS / Terrestrial 224 ch / 5.5 nm (VNIR) 1024 px / cm–mm 

Frame-

based 

Senop (Rikola) 

Hyperspectral Imager 

UAS / Terrestrial 50 ch (flight mode) / 10 nm 

(VNIR) 

1010x648 px (flight mode) 

/ cm–mm 

Snapshot Cubert FireflEYE PLUS UAS / Terrestrial 125 ch / 8 nm (VNIR)  50x50 px /m–dm 

 imec XIMEA SNt32 UAS / Terrestrial 32 ch / 10 nm (NIR) 256x256 px / cm 

 

An overview on general data corrections required and sensor platforms available will be given in Sections 

1.3 and 1.4, respectively. Sensor- and platform-specific details in terms of acquisition, correction and 

processing parameters will be discussed separately in the following chapters.  
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1.3 The Processing: Origin and Correction of Geometric and Radiometric Disturbances 

1.3.1 Geometric Disturbances 

Geometric disturbances encompass any effects that influence the spatial rightness of an image or dataset. 

Spatial rightness in this case is achieved if the spatial projection of any information delivered by the 

image/dataset matches its real location within a reference surface/space. The definition of the reference 

system is artificial, but allows to set different datasets into a spatial context and to describe the location of 

any image feature with unequivocal and universal coordinates. The compensation of any geometric 

distortion in conjunction with the geolocation of the dataset into a reference system is called 

orthorectification.  

The origins of geometric disturbances in HS image data are manifold:  

Sensor-specific, internal, or optical distortions occur due to the technical design and mechanical 

imperfections of the sensor itself. Common examples are one- and two-dimensional barrel (fish-eye) 

distortions or curvature effects at the slit of line-scanners due to diffraction. By careful determination of the 

individual device-specific distortion coefficients (radial and tangential) and internal camera parameters 

(focal length, skew and center coordinates), the distortions can be mapped and removed from the dataset.  

 

Figure 1-5. Schematic illustration of common geometric distortions due to sensor or platform movement, 

left: air-borne push broom scanning, right: drone-borne frame-based imaging. (a) characteristic movements 

of an unstabilized travelling aerial platform, (b) resulting line-wise distorted image of a push broom HSI, (c) 

characteristic movements of a hovering drone-borne gyro-stabilized platform, (d) resulting band-wise 

distorted image of a frame-based HSI. 
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The main external distortions originate from the viewing angle of the sensor, may it be stable during the 

acquisition of one or all datasets in a survey, or variable due to random and systematic movements of the 

platform. Stable off-nadir viewing angles can usually be corrected by perspective un-distortion of the image. 

Stable velocity of the sensor or platform can be used to calculate the appropriate aspect ratio of the resulting 

pixels. However, changing velocities are much harder to correct and require a logging during the acquisition 

for a satisfactory correction. The required parameters comprise any variability in sensor or platform 

movement, such as pitch, roll, yaw, skew, and changes in position and altitude (Figure 1-5). For whisk 

broom, push broom, and frame-based sensors this results in distortions between each acquired pixel, line, 

or spectral band, respectively (Figure 1-5). For snapshot sensors or at extreme movements, an additional 

blurring of the image may occur. The most common correction approach is the logging of the three-

dimensional location, time, and angular position using an inertial measurement unit (IMU) and a geo-

positioning system (GPS) attached or near to the sensor during the entire survey. After a careful boresight 

alignment, i.e. the correction of angular misalignment between the measurement axes of the single sensors, 

the recorded information can be used to separately orthorectify each distorted part of the image. For fast 

movements, such as for very small platforms, the approach does not apply, either because additional devices 

are not allowed by the limited payload of the platform or due to the limited accuracy and synchronicity of 

position, orientation, and HSI measurements. The cost factor also plays an important role for small surveys. 

For these reasons, alternative strategies need to be developed.  

An additional effect specific for satellite data is the influence of the rotation and curvature of the earth. 

While negligible for lower-altitude data, it causes a common skew distortion effect in space-borne data, 

which can be easily corrected based on its systematic and predictable nature.  

Topography can have a strong negative influence on the spatial correctness of a dataset. The amount of 

distortion is highly dependent on the topographical height differences within the scene as well as the 

altitude of the sensor. Especially with strong topographic effects, the number of required control points for 

an accurate orthorectification is manually not or hardly achievable. Alternative correction approaches 

encompass (1) automatic keypoint detection, matching, and respective warping of the dataset to an 

orthophoto with similar or higher spatial resolution, or (2) projection of the image on a high-resolution 

digital elevation model (DEM) using sensor position, angles, and altitude, as well as image specific 

parameters such as field-of-view (FOV). While approach (1) is independent from the exact knowledge of all 

acquisition parameters, approach (2) is robust to low information content or quality of the dataset (e.g., off-

shore imaging, extremely noisy or cloud-covered images).  

A combination of several external distortions - such as expressive topography in conjunction with low 

acquisition altitudes, strong sensor movements or high platform velocity - can complicate the distortion 

correction distinctly. For this reason, the use of a gyro-stabilized sensor or gimbal is highly advised for low-

altitude airborne or drone-borne data, as they can help to reduce pitch and roll angular movement of the 

sensor during the acquisition, which eases the correction of the remaining effects.  

1.3.2 Radiometric Disturbances 

Radiometric effects disturb the spectroscopic information within the dataset, and comprise global, spatially-

local, and/or spectrally-local deviations in the pixel values. Similar to geometric effects, their origin may be 

internal (sensor-related) or external (environment-related). A dataset corrected for any internal radiometric 

effects is usually referred to as at-sensor radiance. Correction for any external illumination effects results 

in TOA (top of atmosphere) reflectance, an additional atmospheric correction finally retrieves surface 

reflectance.  
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While irradiance, 𝐸, defines how much radiometric flux is received by a surface per unit area and is given 

in W·m−2 (or W·m−3 at wavelength dependency), the radiance, 𝐿, indicates how much radiometric flux is 

received or released from a surface per unit area and unit solid viewing angle. It is given in W·sr−1·m−2 (or 

W·sr−1·m−3 at wavelength dependency), and is in contrast to irradiance independent from the distance to the 

illumination source. Reflectance, 𝑅, as a ratio between the incident and reflected radiation, is unitless and 

usually given either in percent or as a factor between 0 and 1. 

Important examples on internal radiometric disturbances comprise dark current, bad pixels, vignetting, 

smile, and keystone effects.  

Dark current refers to the signal received by a photodetector in the absence of any incident external light. 

The measured electrons are generated due to the non-zero temperature of the sensor, leading to defects in 

the semiconductor band structure and a random noise pattern especially in low-signal images. This noise 

consists of a hardly correctable random or shot noise part and a rather fixed temperature- and pixel-specific 

pattern, which can be corrected by subtraction from the dataset. As dark current is a thermal effect, sensor 

cooling is highly advised to achieve stable and low-noise imagery. 

Dead, stuck, and hot pixels (often summarized as “bad pixels”) are sensor pixels that fail to return a 

meaningful signal, instead they provide permanently minimal (dead) or maximal (stuck) intensity or show 

anomalous values after sensor heating (hot). In the acquired image data, these pixels appear as definite one-

dimensional lines along a spatial or spectral axis with zero, infinite, or anomalous values. Even if their 

information content is irrevocably lost, they can be eliminated by interpolation - for example from the 

spectrally and spatially closest image values (Kieffer 1996) - to avoid a further disturbance of the dataset in 

subsequent processing. 

Similar to commercial RGB cameras, hyperspectral sensors utilizing a lens may be subject to vignetting, 

i.e. a radial loss in intensity towards the image edges. A correction requires knowledge on the optical 

pathway, and can be achieved by data-driven cross-track illumination correction or the application of a pixel- 

and wavelength-specific gain and offset matrix. The latter is used to correct for device-specific deviations in 

sensitivity between the pixels of the sensor array in general.  

In push broom imagers, optical aberrations and misalignments of the sensor can lead to a concurrent 

spatially and spectrally curved distortion, known as smile (or frown) and keystone effects. In this context, 

smile refers to a shift of the center wavelength, keystone to a band-to-band-misregistration (e.g., Yokoya et 

al. 2010). Both effects are usually corrected using sensor-specific calibration values.  

Depending on the acquisition circumstances, numerous external radiometric effects can influence the 

measured signal (Figure 1-6). The radiance of the illumination source defines the maximal achievable 

radiance (full reflection). For airborne, drone-borne, or outdoor terrestrial measurements, illuminating 

irradiance is usually a mixture between direct solar irradiance and diffuse sky irradiance resulting from 

the scattering of sunlight in the atmosphere. Changes in irradiance intensity or spectral shape during one 

or between several surveys result in global differences of measured at-sensor radiance, either within one or 

between several datasets. Depending on the sensor-target distance, different compensation approaches 

exist. For terrestrial and low altitude drone- and air-borne data, reference targets with known reflectance 

spectra and an orientation similar to the observed surface can be used to determine the current downwelling 

irradiance. The targets should be ideally featureless and of constant diffuse reflectance within the measured 

wavelength range. This may be white or grey polyvinyl chloride (PVC) plates in VNIR, high-purity 

polytetrafluoroethylene (PTFE) in the SWIR and brushed aluminum or coarse high-purity gold in the LWIR. 

If the reference targets are not visible within each acquired image or scan line, an on-board irradiance sensor 

can log any variances in irradiance intensity for later compensation. If no such sensor is available, a data-
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driven bundle-block adjustment can be used to correct for overall illumination differences between 

overlapping images (Honkavaara et al. 2012). For space-borne and higher-altitude air-borne data the 

downwelling irradiance within one acquisition should be rather constant and can be estimated according to 

the current date and time, sensor-target distance, and assumed atmospheric composition. 

 

 

Figure 1-6. Paths of radiance and external radiometric disturbances in a hyperspectral field acquisition 

(based on the concept of Jensen 2007). 

The reflected signal on a specific surface is dependent on a range of parameters and its behavior can be 

described by the Bidirectional Reflectance Distribution Function (BRDF, Nicodemus et al. 1977). It is 

defined as the ratio 𝑓B between the differential scattered radiance, 𝑑𝐿B, in direction of the observing sensor 

and the differential incident irradiance, 𝑑𝐸D, with:  

Here, 𝜆 shows the dependency of BRDF on the wavelength in spectral measurements. The terms (𝜃D, 𝜙D) 
and (𝜃B, 𝜙B) describe the azimuth and declination of irradiance and reflection, respectively. It can be seen 

that the incident irradiance, 𝑑𝐸D, is represented by the radiance, 𝐿D, which is incident under the solid angle, 

𝑑𝜔D , onto a surface. Hereby an incidence angle, 𝜃D, off the surface normal leads to a radiated surface area 

which is by 1 cos𝜃D⁄  larger than at a normal angle incidence. By that the radiation intensity is reduced by 

the factor cos 𝜃D. In result, surfaces illuminated at an angle far from the surface normal appear darker than 

such with a near-normal illumination. Materials with an BRDF dependent from both 𝜙D and 𝜙B show an 

additional variation in radiance when the azimuth of the illumination is changed (the material is rotated). 

Such surfaces are referred to as anisotropic, in contrast to isotropic materials. Additionally, the BRDF is 

dividable in two main components, i.e. specular and diffuse reflection, and can be influenced not only by 

direct, but also concurrent ambient illumination.  

𝑓B(λ, θD, ϕD, θB, ϕB) =
𝑑𝐿B(λ, θB, ϕB)
𝑑𝐸D(λ, θD, ϕD)

=
𝑑𝐿B(λ, θB, ϕB)

𝐿D(λ, θD, ϕD) cos θD	𝑑𝜔D
	. (1-2) 
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An exhaustive experimental determination of BRDF is seldomly reasonable due to its high dimensionality 

as well as material and texture dependency. Instead, empirical and theoretical models can be used to 

approximate the material-specific effect of BRDF (e.g., Lambert 1760, Cook and Torrance 1981, Schlick 

1994). In remote sensing, the assumption of a Lambertian behavior is common, which represents isotropic 

diffuse reflection (Teillet et al. 1982, Civco 1989). At image acquisition with large pixels, such as air- or 

spaceborne data, and areas with low topography this approach usually retrieves satisfactory results. Such, 

across-track brightness gradients in imagery of sensors with wide view angle can be corrected (Cross-Track 

Illumination Correction, Kennedy et al. 1997). However, in rugged terrain as well as over anisotropic 

surfaces such as forest or meadows, the Lambertian assumption can lead to strong overcorrection, especially 

at off-nadir viewing angles or at illumination at an angle far from the surface normal. A range of empirical 

non-Lambertian illumination/topographic correction methods has been developed, such as c-factor (Teillet 

et al. 1982), Sun-Canopy-Sensor (SCS, Gu and Gillespie 1998), or Minnaert (Minnaert 1941). The determined 

wavelength-specific empirical coefficients are retrieved by regression of pixel brightness and illumination 

angle. Despite the distinctly improved result for rugged terrain, these approaches lack performance in areas 

with high material variability, as in theory each material with different BRDF would require the calculation 

of a separate empirical coefficient. Data pre-classification and separate correction would be required to 

achieve a sufficient regression error.  

None of the approaches are able to sufficiently correct for shadows yet. Usually, the affected pixels are 

determined using illumination angle (core shadow) and surrounding topography (cast shadow) and are 

masked out after. A compensation for shadows is practically almost impossible. Firstly, the signal intensity 

from shadowed areas commonly falls within the background noise level of the sensor and fails to contain 

any valuable information. Secondly, the retrieved signal is a specific mixture of reflection from different 

sources of diffuse irradiance (sky, trees, and neighboring topography). In illuminated pixels the contribution 

of these sources is mostly low enough to barely interfere the received signal. In shadowed pixels, they are 

the only light source and their single proportions of contribution are very specific and in no way estimable 

for each pixel.  

Despite interactions on the surface of the target, every radiation path in the system is influenced by the 

atmosphere. Despite reflection and scattering at atmospheric particles that weaken the signal and produce 

diffuse sky irradiance, all travelling photons are subject to absorption by atmospheric gases and dust. 

Depending on the crossed thickness and composition of atmosphere the intensity and spectral shape of the 

atmospheric disturbances varies. For low flight altitudes, such as below a hundred meters, the influence of 

the atmosphere on the downwelling and reflected light is usually corrected using several reference ground 

targets (Empirical Line Calibration – ELC, Smith and Milton 1999). For higher altitudes, physics-based 

atmospheric compensation by modeling is common. Several tools exist to estimate the atmosphere’s spectral 

contribution, usually combined with topographic illumination correction (e.g., ATCOR – Richter and 

Schläpfer 2018, FLAASH – Cooley et al. 2002). Such tools usually utilize lookup tables based on calculated 

radiative transfer models such as MODTRAN (Berk et al. 2014) or 6SV (Vermote et al. 1997). Several input 

parameters are required such as time, date, altitude, and location of the measurement, weather conditions 

and a high-resolution digital elevation model. It has been shown that these tools are also applicable for low-

altitude UAS acquisitions (Schläpfer et al. 2018). For horizontal or small-angle measurements over long 

ranges, no appropriate methods existed at the beginning of this study.  

The signal finally arriving at the sensor is composed not only of the radiance of the target (including all 

described disturbances), but also the path radiance of light scattered in the atmosphere without reaching 

the ground as well as light from surrounding surfaces scattered into the field of observation (adjacency 
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radiance). Every surface with a temperature above 0 K additionally emits thermal radiation, which 

interferes with the reflected signal. At common temperatures, this affects mainly the LWIR part of the 

electromagnetic spectrum. Only very hot surfaces (over several hundred degrees Celsius) such as lava flows 

can influence VNIR and SWIR measurements (see also Section 1.1). At substantial interference, a 

temperature-emissivity-separation (TES) is essential to retrieve the emissivity of the target, 𝜀, and by that, 

its reflectance. The main step is the solution of the following equation, which describes at-sensor radiance,	𝐿, 

as: 

Required variables are the targets’ thermal self-emission,	𝐿P , the downwelling radiance onto the target, 𝐷𝑤, 

the atmospheric transmittance, tRPS, and the thermal self-emission of all atmospheric components, 𝐿RPS 

(Gagnon et al. 2015). According to Planck’s equation (Planck 1914), the self-emissions of target and 

atmosphere are a function of their thermodynamic temperatures. In a controlled environment, the equation 

can be simplified by controlling or neglecting specific contributions, for example defining the characteristics 

of the downwelling radiance by artificial illumination, adjusting the targets’ self-emission by heating or 

cooling of the samples, or assuming tRPS = 1 in a lab environment.  

At outdoor acquisitions, such simplifications can usually not be taken. A sensible approach utilizes two 

reference plates to retrieve the unknown variables. A diffuse reflector with low emissivity (usually a diffuse 

aluminum or gold surface) mirrors the atmospheric downwelling radiance. The second plate approximates 

a perfect absorber (black body), such that its at-sensor radiance is a nearly pure composition of its 

temperature-specific Planck function and the atmospheric transmittance between sensor and target. Both 

reference plates need to be set up in a similar orientation and sensor-distance to the observed target. Their 

emissivities and temperatures as well as the atmospheric temperature need to be known (e.g., Boubanga-

Tombet et al. 2018). 

 

 

  

𝐿 = [𝐿P𝜀 + 𝐷𝑤(1 − 𝜀)]tRPS + 𝐿RPS(1 − tRPS) (1-3) 
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1.4 The Scale: State of the Art on Multi-scale Hyperspectral Imaging 

Hyperspectral imaging, regardless of the covered wavelength range or target, is currently deployed at a 

wide range of spatial dimensions (“scales”), ranging from satellites observing the Earth and other planets 

down to lab-scale sensing for small sample mineralogical analysis. New techniques such as UAS-borne 

imaging or terrestrial scanning of vertical targets allow to observe any target at a wide and contiguous range 

of scales (Figure 1-7). Despite basic similarities, each scale requires an adapted data processing scheme. 

While at some scales processing workflows are already advanced and well-deployed, others are still novel 

in industry and/or scientific community. Despite the possibilities, different scales are rarely integrated. The 

following section sheds light on the state of the art and the remaining challenges connected to each scale.  

 

 

Figure 1-7. Schematic illustration of different spectral imaging platforms, scales, and acquisition principles. 

Common sensor-target distances are given for each.  
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1.4.1 Satellite (space-borne) 

Spaceborne spectral imaging is a highly investigated and widely employed technique. A wide range of 

datasets is available online for free or at low cost, covering large parts of the Earth’s surface and in addition 

often providing temporal resolution. This gives good prerequisites for numerous applications in geology, 

hydrology, ecology, and urban sciences, such as land cover, deforestation, and desertification analysis, 

lithological mapping and monitoring of glaciers and water systems (Transon et al. 2018).  

On the one hand, the high costs and the effort to transport a sensor into space result in a sensor design that 

cannot be changed for several years and does not allow any subsequent customization by the individual 

user. On the other hand, it enables the establishment of fixed and mature data correction and processing 

routines. Whereas geometric correction parameters are usually retrievable from the data provider, the 

influence of topography and atmosphere is compensated with available digital elevation models and 

established atmospheric correction tools based on atmospheric models and user-defined parameters (see 

Section 1.3.2). A main part of recent developments focuses on the development of advanced classification 

and spectral unmixing algorithms as well as the handling of big data (Ghamisi et al 2017). Still, most users 

of space-borne spectral data need to restrict themselves to multispectral sensors. Till today, hyperspectral 

data is underrepresented in the space-borne scale not least because of a lack of available and appropriate 

sensors. To achieve contiguous spectra at acceptable data volumes, developers usually need to make 

sacrifices regarding spatial sampling to achieve sufficient spectral resolution, resulting in high ground 

sampling distances of most space-borne hyperspectral sensors (e.g., 250 m for NASA’s MODIS sensor). 

Higher spatial resolutions were only achieved by few sensors such as the HS sensor aboard the Chinese 

space module Tiangong-1 (VNIR: 10 m, SWIR: 20 m) and the EO-1 Hyperion sensor (30 m). However, both 

platforms are out of operation today. Developers of new space-borne HSI need to face crucial challenges 

such as low SNR values due to the extreme influence of the atmosphere, high sensor costs and time-

consuming processing of the retrieved large datasets. Nevertheless, a variety of hyperspectral space 

missions is in planning for the coming years, such as PRISMA (Italy) and HISUI (Japan) in 2019, or EnMAP 

(Germany) in 2020. In parallel, a range of tools is under development that aim to overcome the difficult 

correction and processing of the soon to be acquired data (e.g., van der Linden et al. 2015). 

1.4.2 Manned Aircraft (airborne) 

In the last decades, airborne surveys have been the most common way to acquire high-quality HSI, which 

has led to a strong development in acquisition workflows and correction tools. The variety of deployable HSI 

sensors is nearly unlimited, however, mostly confined to push broom scanners to utilize the fast and directed 

movement of the platform and to avoid blurring of the data. Common VNIR/SWIR sensors (among others) 

are HyMap (Integrated Spectronics, Sydney), AVIRIS (Jet Propulsion Laboratory, Pasadena), AisaFENIX 

(Spectral Imaging Ltd., Oulu), or HySpex ODIN-1024 (Norsk Elektro Optikk AS, Skedsmokorset). The most 

important LWIR sensors are the Hyper-Cam (Telops, Quebec) and AisaOWL (Spectral Imaging Ltd., Oulu).  

Their spatial resolution and coverage are reasonable for a wide range of applications and can be adjusted 

by changing the flight altitude to fit the individual objective. However, extensive flight campaigns are 

usually costly, highly weather dependent, and require a not negligible amount of infrastructure and 

logistics. Multi-temporal measurements are accordingly time- and cost-consuming and sources for failures 

are manifold. In contrast to satellite surveys, prior knowledge of the approximate position of the target is 

crucial. At common flight altitudes (several hundred meters to kilometers), a radiometric correction with 

ground reference targets is not applicable and the geometric correction is complex due to the movements of 
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the platform. Therefore, data acquisition and respective corrections are often carried out by external 

companies. Properly corrected airborne HSI datasets can feature a high spatial and spectral resolution and 

coverage with significantly reduced noise in comparison to HS spaceborne data, not at least due to the 

possibility to fly any sensor regardless its weight. However, the costliness often denies small-budget 

stakeholders from targeted airborne surveys. 

1.4.3 Unmanned Aircraft (drone-based) 

One of the most promising application fields in the last decade arose from the deploying of hyperspectral 

imaging on unmanned aerial platforms or drones. Light-weight, cheap, customizable and usable by anyone 

and nearly anywhere, unmanned aerial systems (UAS) close the scale gap between air-borne and ground-

based sampling and offer individual solutions for the respective application. Quick turnaround times and 

the high variability and customizability of platforms and sensors enable an aimed image surveying of 

inaccessible or complex targets. Depending on flight altitude and deployed HSI sensor, spatial sampling 

distances in the range of few centimeters can be reached while still offering a single image footprint of over 

one thousand square meters. With multi-image or push broom HSI surveys a sufficiently large area can be 

covered within 15 minutes. Current developments in UAS technology look to increase flight times, payload, 

and ease of operation. Concurrently, the market for small and light-weight HSI sensors is growing quickly. 

While sensors in the VNIR are well-represented and distributed by a variety of companies (e.g., Senop 

Rikola, Specim FX10, Cubert Firefly, imec XIMEA), the development of full-SWIR-sensors (up to 2500 nm) 

is just beginning. Today, only a few companies are able to offer SWIR push broom sensors with a mass below 

3 kg (Headwall Inc., NEO HySpex, Corning).  

Parallel to the technical development, the number of prospective users and application fields for drone-

borne HSI rises fast. One of the main fields of interest encompasses the wide range of vegetation analysis, 

such as precision farming, forestry, plant species detection and health monitoring. Important, but less 

applied fields are hydrology, geology, and environmental monitoring. However, in recent publications 

containing drone-borne HS data corrections are applied rarely and the data interpretation is often not 

exploiting the potential of the dataset. Whereas many basic applications such as the calculation of vegetation 

indices on flat terrain are still possible with poorly corrected data, more advanced problems, such as spectral 

endmember analysis or lithological mapping in hilly terrain, rely crucially on the scientific rigor of the 

corrected dataset. Geometric and radiometric disturbances are often not trivial to handle and differ greatly 

from the effects known from satellite or air-borne data (compare Section 1.3). The influence of the 

atmospheric spectral component at low flight altitudes is usually small, while the differences in illumination 

caused by microtopography need to be strongly considered. So far, the novelty and diversity of UAS 

platforms and HS sensors has hindered the establishment of universal data processing routines as they exist 

for satellite and air-borne spectral data. Respective future development of universal open source workflows 

will be needed to ensure that not only developers, but all users of UAS imagery are able to obtain well-

corrected data.  

1.4.4 Terrestrial/Small-angle Scans 

Especially geological targets, such as cliffs, vertical outcrops, or mine faces, tend to be hardly observable by 

common nadir or near-nadir imagery. This raised the need for a new approach of hyperspectral data 

acquisition at small angles. Usually this is achieved by horizontal or slightly tilted sensor mounting on a 

tripod or rotary stage (in case of a push broom sensor). Alternatively, any other sensor-bearing platform 

such as a car, boat, or low altitude UAS. Even if the acquisition is straight-forward and requires no additional 
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platform, the radiometric and geometric correction of the data is extremely complex. The main disturbances 

originate from strong topography-induced illumination differences, shadows and, in case of high-distance 

measurements, atmospheric effects. Due to the unusual viewing angle, none of the usual correction 

algorithms applies. So far, a few research groups have successfully used small-angle HSI, but neither of 

them applied a complete correction workflow (e.g., Greenberger et al. 2016, Sun et al. 2017, Boubanga-

Tombet et al. 2018). Orthorectification, visualization and integration involve a lot of intricate processing 

steps. The common 2D Latitude/Longitude (Lat/Lon) image plot used for nadir data does not apply as vertical 

walls would lead to ambiguous 2D coordinates. The best solution so far was presented by Kurz et al. (2011) 

with the successful integration of HSI and LiDAR (Light Detection and Ranging) data by determining the 

external camera parameters using fixed control points. The method was applied for example by Denk et al. 

(2015) for visualization and contextualization of HS mapping results. 

1.4.5 Lab-scale 

Hyperspectral imaging at lab-scale or near-field (spatial sampling distances in the mm to sub-mm range) is 

a highly demanded topic in exploration, mining and processing industry, but also in the framework of most 

remote sensing studies regarding validation and detailed sample analysis. In geology and mining, samples 

of interest may encompass drill cores, hand specimen, rock chips, thick and thin sections or single mineral 

grains. The samples can show a number of possible surface appearances, from altered or fresh natural 

cleavages, over rough cuts, up to different stages of grinding and polishing. The required speed and accuracy 

of analysis can vary greatly depending on the application’s desired outcome. Spectral imaging of rock 

material in mining and processing is usually highly automatized and simplified to produce only few 

classification criteria, for example to decide between waste rock and ore or between different ore grades. 

Since the focus lies on high throughput, the employed sensors need to be adequately highly specialized, 

robust and reduced to the essential task.  

In exploration and lithological mapping, the amount and complexity of mineral phases to be distinguished 

is usually much higher and simple indices are no longer sufficient. Instead, the acquisition and careful 

analysis of full spectra is required. However, depending on the size of the project, large quantities of samples 

still have to be analyzed. A compromise between achieved detail and speed needs to be found, which is 

usually tackled using one or several fast push broom HS imagers with different spectral coverage in a fixed 

setup. To achieve a high spectral quality at a sufficient throughput, the spatial resolution is usually average 

(around 1–2 mm). The acquisition and processing of the data is often provided by external companies 

specialized in HS drill core scanning (e.g., TerraCore Geospectral Imaging, Corescan Pty Ltd). As a result, 

new developments on technical implementation and data evaluation are often not published. Integrated 

sensors covering more than one spectral range of an individual detector (e.g., VNIR for Si-based charge-

coupled devices) are, as far as known, limited to the same manufacturer, FOV, and spatial resolution. The 

processed results of the acquired data are usually detailed mineral maps of case-relevant rock forming or 

alteration minerals. The maps may be based on spectral libraries, data-derived endmembers or on the 

analysis of depth and position of specific indicative absorption features.  

A more detailed analysis is required for complex samples, for endmember validation of larger scanning 

surveys and whenever acquisition parameters need to be fulfilled that are not yet implemented in 

commercial scanning systems, such as sub-mm spatial resolution. Such experiments are commonly done in 

customized lab setups, with small sample numbers and a highly specialized processing. A modular approach 

that allows the integration of datasets of any source and specification at a speed that is sufficient for larger 

sample batches is currently not published.  
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CHAPTER 2   THE NEED FOR ACCURATE GEOMETRIC AND RADIOMETRIC 

CORRECTIONS OF DRONE-BORNE HYPERSPECTRAL DATA FOR MINERAL 

EXPLORATION: MEPHYSTO—A TOOLBOX FOR PRE-PROCESSING DRONE-BORNE 

HYPERSPECTRAL DATA 

Preface 

The following chapter presents a new pre-processing toolbox that was developed for the difficult geometric 

and radiometric correction of hyperspectral drone-borne data. At the time of the study, hyperspectral drone-

borne data was nearly exclusively used for environmental studies, precision agriculture, and vegetation 

mapping. Established preprocessing workflows were not existent, which impeded the analysis of spectrally 

complex targets such as in geological applications. Particular challenges are platform-induced geometric 

distortions and topography–induced illumination differences. The presented toolbox overcomes these 

effects and is shown to provide image data highly accurate in geometry, location, and spectral information. 

The chapter further demonstrates the advantages and possibilities of derived corrected drone-borne 

hyperspectral image data for geological applications such as mineral exploration and lithological mapping.  

A prior version of the workflow was presented at the 2016 Workshop on Hyperspectral Images and Signal 

Processing: Evolution in Remote Sensing (WHISPERS)1 in Los Angeles, where it won a Best Paper Award. The 

full paper shown here was published in Remote Sensing2, became the journals’ cover story for January 2017 

and its most downloaded paper in the year 2017. These achievements reflect both the recently increased 

popularity of light-weight Unmanned Aerial Systems and applicable hyperspectral sensors as well as the 

high demand in efficient and accurate solutions to overcome the challenges of drone-borne hyperspectral 

data.  

The tools of the presented workflow were combined in the open-source Python toolbox MEPHySTo (Mineral 

Exploration Python Hyperspectral Toolbox), which has been continuously extended and improved since its 

creation. For example, the performance and speed of the used point matching workflows could be increased 

distinctly by the replacement of the keypoint detection algorithm SIFT (Scale-invariant feature transform) 

by ORB (Oriented FAST and Rotated Brief3). Today the toolbox comprises correction, processing and 

visualization tools for a wide range of HSI sensor types, platforms and applications.  

The tools for drone-borne HSI correction established as in-house pre-processing routine and have been 

shared with scientists all over the world. A co-authored paper4 showed the applicability of the corrected data 

for environmental studies, in this case by monitoring the influence of Acid Mine Drainage over time using 

drone-based iron mineral mapping.  
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The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne 

Hyperspectral Data for Mineral Exploration: MEPHySTo – A Toolbox for Pre-Processing 

Drone-Borne Hyperspectral Data5 

 

Sandra Jakob, Robert Zimmermann, and Richard Gloaguen  

Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Division 

“Exploration Technology”, Chemnitzer Str. 40, 09599 Freiberg, Germany;  

s.jakob@hzdr.de (S.J.); r.zimmermann@hzdr.de (R.Z.); r.gloaguen@hzdr.de (R.G.) 

2.1 Abstract:  

Drone-borne hyperspectral imaging is a new and promising technique for fast and precise acquisition, as 

well as delivery of high-resolution hyperspectral data to a large variety of end-users. Drones can overcome 

the scale gap between field and air-borne remote sensing, thus providing high-resolution and multi-

temporal data. They are easy to use, flexible and deliver data within cm-scale resolution. So far, however, 

drone-borne imagery has prominently and successfully been almost solely used in precision agriculture 

and photogrammetry. Drone technology currently mainly relies on structure-from-motion 

photogrammetry, aerial photography and agricultural monitoring. Recently, a few hyperspectral sensors 

became available for drones, but complex geometric and radiometric effects complicate their use for 

geology-related studies. Using two examples, we first show that precise corrections are required for any 

geological mapping. We then present a processing toolbox for frame-based hyperspectral imaging systems 

adapted for the complex correction of drone-borne hyperspectral imagery. The toolbox performs sensor- 

and platform-specific geometric distortion corrections. Furthermore, a topographic correction step is 

implemented to correct for rough terrain surfaces. We recommend the c-factor-algorithm for geological 

applications. To our knowledge, we demonstrate for the first time the applicability of the corrected dataset 

for lithological mapping and mineral exploration.  

Keywords: UAS; drone; hyperspectral; exploration; processing; structure-from-motion; point matching; 

Minas de Riotinto  

2.2 Introduction  

Hyperspectral sensors have become a key tool for a large range of applications in remote sensing and are 

now widely used in geology, mineral mapping and exploration (e.g., van der Meer et al. 2012, Laakso et al. 

2015, Jakob et al. 2016, Zimmermann et al. 2016). During the last few years, lightweight hyperspectral 

imaging (HSI) sensors have been increasingly developed for use on unmanned aerial systems (UAS) (i.e., 

Cubert GmbH or Rikola Ltd.). These drone-borne sensors are able to close the gap between field- and air- or 

space-borne data and provide small-scale high-resolution hyperspectral imagery (Watts et al. 2012). The 

acquisition of image data with UAS is fast, easy, targeted, and without the need of extensive time- and cost-

consuming planning. It is mostly independent of cloud cover conditions and is even applicable in barely 

accessible areas. The heavily decreased influence of the atmosphere obviates the need for the often difficult 

and complex atmospheric correction. Nevertheless, geometric and radiometric correction of drone-borne 

data is challenging mainly due to small, unpredictable platform shifts and the influence of the micro-

topography. Thus, high resolution digital elevation models are required for correction. Common and 

                                                        

5 Published: Jakob, S., Zimmermann, R., Gloaguen, R. Remote Sensing 2017, 9, 88. DOI: 10.3390/rs9010088 
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established workflows for the pre-processing of aerial hyperspectral scanner data (e.g., Schläpfer and 

Richter 2002, Richter and Schläpfer 2002) are not or only partly applicable.  

Sensors in the visible and near-infrared spectral range (VNIR) of the electromagnetic spectrum have been 

preferably used on UAS due to their low weight and size. In contrast, short wave infrared (SWIR) sensors 

exceed the payload capacity of most lightweight aerial platforms. Larger UAS with higher payload 

complicate the handling in remote areas and increase the difficulty to obtain flight permission by the local 

authorities in most countries.  

The most prominent material absorption features in the VNIR spectral range originate from green 

vegetation, while only a few mineral groups, mainly iron oxides and some rare earth elements, show typical 

absorption features. Those mineralogical features can be quite shallow, and their truthful determination 

depends mainly on an accurate data correction. By contrast, the occurrence and health analysis of vegetation 

is easily determinable in the VNIR range even with a low spectral resolution (e.g., Hunt et al. 2010). This is 

a main reason why the development in drone-borne HSI has been mainly applied in and for agricultural and 

environmental monitoring (Aasen et al. 2015, Honkavaara et al. 2012, Laliberte et al. 2011, Lelong et al. 

2008). Thus, the easy, fast, and reliable acquisition and in-time interpretation of drone-borne data increased 

the accuracy and abilities of precision agriculture. Numerous publications describe the assessment and 

processing of multispectral and hyperspectral drone-borne data in modern agriculture. They focus mainly 

on sensor calibration, photogrammetry, and illumination correction between single mosaic images (Aasen 

et al. 2015, Honkavaara et al. 2012, Johnson et al. 2003, Berni et al. 2009, Turner et al. 2012, Honkavaara 

et al. 2013). Georeferencing is commonly performed using ground control points (GCPs). However, Laliberte 

et al. (2011) presented a promising approach for an automated batch processing chain for multispectral 

drone-borne data including band alignment, orthorectification, and simple radiometric correction for the 

mapping of rangeland environments. Topographic correction, which is essential for geological targets, is not 

applied for the mostly flat, uniform, and smooth agricultural areas. An additional correction to reflectance 

and a high signal to noise ratio (SNR) are not necessary for most applications in precision agriculture and 

environmental research, as the commonly-used vegetation indexes can be determined even with low 

spectral resolution or high noise. Thus, correction algorithms used for vegetation monitoring are not 

applicable for geological targets. The great diversity of targets in terms of terrain, size, and spectral 

signatures demands a finer spectral resolution, a precise topographic correction and a higher SNR. As most 

of the minerals show no or weak absorption features in VNIR range, even subtle spectral differences can be 

important for interpretation and raise the need for a careful data processing.  

The application of drone-borne data for geological issues therefore is extremely rare and mainly limited to 

UAS-based photogrammetry and 3D photogrammetry using RGB-sensors for structural geology (e.g., 

Micklethwaite et al. 2012, Westoby et al. 2012, Bemis et al. 2014) or landslide mapping (e.g., Niethammer 

et al. 2012). Beside RGB sensors, drone-borne thermal cameras have been used in a first attempt to observe 

the temperature of mud volcanoes (Amici et al. 2013). In 2014, Wu et al. presented a VNIR and SWIR drone-

borne sensor for mineral mapping, but did not provide any drone-borne geological application yet. Until 

now, no published work known to us exists where hyperspectral drone-borne sensors have been 

successfully and provably used for geological applications.  

In the following, we present an image pre-processing chain fitted for the challenging geometric and 

radiometric correction of drone-borne HSI data. It also contains automatic mosaicking and georeferencing 

algorithms enabling a fast and easy surveying of inaccessible areas, where the acquisition of GCPs would 

be impossible or time consuming. We further demonstrate the applicability of the resulting high resolution 

hyperspectral orthomosaics on real geological issues. This includes differentiation of spectral end-members 



 

 49 

relating to different lithologies and the determination of the relative abundance of a certain mineralogical 

absorption feature.  

2.3 Test Site  

We first present a drone-borne example dataset originating from parts of the mining area of Minas de 

Riotinto in southern Spain (Figure 2-1a). This region hosts one of the giant massive sulfide deposits of the 

Iberian Pyrite Belt and has been extensively mined for copper and lower amounts of manganese, iron, and 

gold since the Bronze Age. The test site covers one of the gossanous ridges overlying a massive sulfide lens 

next to Riotinto River. 

 

 

Figure 2-1. (a) Location of the first test site within Spain and the Riotinto mining area, with the open pit 
mines Corta Atalaya (1) and Cerro Colorado (2); (b) location of the second test site within the Czech Republic 
and the Sokolov area. 

Within the test site, different iron-bearing facies occur, such as the gossan itself, massive sulfide, altered 

shale, and river sediments under the influence of acidic mine drainage (AMD) (Riaza et al. 2012). 

The Iberian pyrite belt is hosted in a north-vergent fold and thrust belt of late Variscan age (Soriano and 

Casas 2002, Donaire et al. 2008) extending from east of Setubal/Portugal to north of Seville/Spain. A typical 

succession starts with a series of phyllites/quartzites, followed by slates, basalt sills, felsic volcanics 

(rhyolites and dacites) and Culm series (greywackes and slates) (Donaire et al. 2008). The stratabound, 

volcanogenic massive sulfide (VMS) lenses are hosted in felsic volcanics of Upper Devonian to Lower 

Carboniferous ages (Soriano and Casas 2002). Zones of chloritic and argillitic alteration (Saez and Donaire 

2008) are associated with those lenses. Stockwork zones occur underneath the lenses in the vicinity of faults 

(Saez and Donaire 2008). A gossan usually forms in the cap-rock above. The deposit of Riotinto itself is 

located in a hinge of an E-W trending fold with the fold axis plunging towards E. The studied area of the 

gossan close to Nerva cemetery expresses the easternmost surface outcrop of the mineralized core zone. 

There, the highly folded, partly altered lower Culm series rock (slates) is overlain by gossan. Within the 
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Culm, a lens of pyrite-rich massive sulfide with associated argillitic alteration is exposed. Our primary 

geological target is to differentiate several geological endmembers that cannot be distinguished on an RGB 

orthophoto and to compare the image spectra to validation spectra measured in situ. We attempt to 

demonstrate that specific variations in the spectral information acquired by the HSI devices on UAS can be 

used to distinguish specific mineralogical associations. The proposed test site at Riotinto features a medium 

relief and was surveyed under nearly ideal illumination conditions.  

We provide results from a second test site, the abandoned lignite mine of Sylvestr, which is located in the 

Eger Graben of the Czech Republic near the city of Sokolov (Figure 2-1b). It features a complex and steep 

relief to test the data processing algorithms under more extreme conditions. The area is surveyed under 

suboptimal illumination conditions, such as a low Sun-horizon angle. Within the mine, tertiary sediments 

of the Eger Graben and layers of lignite and petrified wood are exposed. The main lithostratigraphic units 

occurring in Sylvestr are the Nové Sedlo Formation and the Habartov member of the Sokolov Formation, 

both characterized by volcanic rocks and lignite-bearing sediments, comprising mainly tuffs, sands, and 

silty clays (Rojik 2004). Similar to surrounding active and closed mine and dump sites, the study area is 

largely affected by AMD, indicated by low to intermediate pH values and the presence of pyrite, lignite, 

jarosite, and goethite. This originates mainly in the presence of sulfur within the abundant lignite layers, as 

well as in hydrothermal deposits along the fault system bordering the basin (Kopackova 2014). After the 

stop of the mining activities, the pit was left open, and stream erosion incised deep canyon-like channels 

into the occurring sediments. This topographic variety combined with a sparse vegetation cover proposed 

Sylvester mine as the ideal test site for the topographic correction of drone-borne HSl data.  

2.4  Data Acquisition  

2.4.1 Aerial Platforms  

The areas were studied by means of HSI techniques and structure-from-motion (SfM) photogrammetry. Each 

method requires specific preconditions for the aerial platform. While the frame-based HSI requires a stable 

platform at the time of image acquisition to allow a sufficient integration time, SfM requires a rapid platform 

in order to acquire numerous RGB pictures having sufficient overlap to compute a digital surface model 

(DSM).  

In general, two types of aerial platforms or UAS are available: (1) fixed-wing systems with the advantage of 

long flight endurance and fast cruising speeds. So, large areas can be captured within one flight, but their 

disadvantage is a limited payload capacity. The greater the payload, the bigger is the wingspan. In this 

context, especially take-off and landing become thrilling with expensive and/or sensitive equipment on-

board. Furthermore, a fast shutter speed is needed to get high quality image data. (2) Multi-copters have the 

disadvantage of limited range and flight time; however, they can carry heavier payloads. Due to their 

hovering capacities, they are more stable at the point of image acquisition, and also, landing is more 

controlled (especially important with expensive or sensitive payloads).  

Based on the above listed arguments, two different platforms had been applied: (1) a sensefly ebee fixed-

wing system with a Canon Powershot S110 RGB camera and maximum flight time of 50 min; (2) an Aibotix 

Aibot X6v2 hexacopter either equipped with a Rikola Hyperspectral Imager or a Nikon Coolpix A RGB 

camera. The Aibot has a maximum flight endurance of 15 min and a maximum payload of 2 kg.  

Separate pre-defined flight plans were applied for each UAS to meet the requirements in terms of ground 

resolution, image acquisition time, and image overlap. Both systems store their flight logs internally (flight 

path and points of image acquisition), so a geo-location of the image data is possible afterwards.  



 

 51 

2.4.2 Sensors  

A frame-based hyperspectral camera (Rikola Hyperspectral Imager Rikola Ltd.) was used for data 

acquisition. Its low weight of just 720 g makes it perfectly suited for drone-borne surveys. The sensor 

provides snapshot images covering the VIS-NIR spectral range between 504 and 900 nm. In autonomous 

mode, up to 50 bands with a spectral resolution of >10 nm and spectral sampling of 1 nm can be acquired 

within one flight. The maximum image dimensions account for 1024x1011 px. However, the spatial 

resolution for flight images is 1011x648 px to enable the maximum number of spectral bands. The raw data 

are stored on a Compact Flash card in autonomous mode and later converted to radiance using the Rikola 

Hyperspectral Imager software provided by the manufacturer (Rikola Ltd. 2016).  

SfM photogrammetry was flown with either a Canon Powershot S110 digital camera having a resolution of 

12 MP (Megapixel, Spain) or a Nikon Coolpix A with 16-MP resolution (Czech Republic). They provide 

standard red, green, and blue band data that can be complemented by visual real color renderings. A 

correction for lens distortion was applied within the SfM process.  

2.4.3 Flight-Site Setup 

Local setup of the base station and final flight plan is always adjusted on-site due to local and meteorological 

conditions. Ensuring the maximum safety of the operation and a visual line of sight to the aerial system is 

the highest premise. The flight parameters of the presented study areas are listed in Table 2-1.  

A total of six parallel flight lines were planned for photogrammetry in Test Site 1. Line spacing was set to 

have high overlap of the aerial photographs (85% horizontal and 70% vertical). The hyperspectral survey 

was performed as a single line profile perpendicular to the gossanous ridge.  

Table 2-1. Flight setup for the surveys performed at Riotinto area / Spain (ES) and Sylvestr mine / Czech 

Republic (CZ). Flight altitude is given in meters above take-off location. Furthermore, note that the ground 

sampling distance is given for the respective flight altitude, but is varying due to topography.  

  Hyperspectral Imaging Photogrammetry 

Riotinto / ES 

UAS system Aibotix Aibot X6v2 sensefly ebee 

Camera system Rikola Hyperspectral Imager Canon Powershot S110 RGB 

Flight altitude (above take-off)  

Ground sampling distance 

50 m 

3.25 cm/px 

118 m 

3.29 cm/px 

Flight time 3:42 min 6:50 min 

Number of pictures 10 50 

Area covered 0.3 ha 14.4 ha 

Sylvestr / CZ 

UAS system Aibotix Aibot X6v2 Aibotix Aibot X6v2 

Camera system Rikola Hyperspectral Imager Nikon Coolpix A 

Flight altitude (above take-off)  

Ground sampling distance 

50 m 

3.25 cm/px 

60 m 

2.07 cm/px 

Flight time 8:20 min 10:58 min 

Number of pictures 20 190 

Area covered 0.7 ha 9.0 ha 

 

Camera positions were set to have about 40% horizontal overlap. In total, 10 hyperspectral scenes were 

acquired. Three flexible PVC panels colored black, grey, and white with known spectra were put down 

underneath the flight line. These panels are used for calibration purposes in the later processing.  

In Test Site 2, the photogrammetric survey was performed in seven parallel flight lines parallel to the 

direction of the main gully. Line spacing was set to 80% horizontal and 60% vertical overlap at a flight 
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altitude of 60 m. The hyperspectral survey was performed along a single line and follows the channel. The 

setup of hyperspectral data acquisition is similar to Test Site 1.  

2.5 SfM Photogrammetry  

The digital surface model was computed by using a standard structure-from-motion (SfM) algorithm 

implemented in the available commercial software Agisoft Photoscan. SfM (Turner et al. 2012, Westoby et 

al. 2012, Eltner et al. 2016) is a low-cost, user-friendly photogrammetric technique solving the equations for 

camera parameters and scene geometry using a highly redundant bundle adjustment. The SfM approach 

was pushed in the 1990s by the upcoming computer vision and the development of automatic feature-

extraction and matching algorithms. A typical SfM workflow towards a final surface model consists of five 

steps (Westoby et al. 2012, Eltner et al. 2016, Snavely et al. 2006): (1) detection of characteristic image 

points (e.g., using SIFT) followed by automatic point matching using a homologous transformation (e.g., 

using Random Sample Consensus, RANSAC); (2) reconstruction of the image acquisition geometry and 

referencing of the intrinsic coordinate system to available reference points (either GPS or known camera 

locations) using a iterative bundle adjustment; (3) a dense point matching of the sparse cloud from image 

network geometry; (4) meshing of the dense point cloud; a digital surface model (DSM) can be obtained from 

this or the previous step; (5) calculating the textures from the images to compute the rectified orthomosaic.  

2.6 Correction Steps for Drone-Based HSI  

Drone-borne HSI data need a different and more complicated pre-processing chain as air- or space-borne 

HSI data due to the low acquisition height, difficult calculation and inconstant movement of the platform 

and, more importantly, the high influence of the micro-relief on illumination and viewing angle. Existing 

software for processing drone-borne data is often not applicable for hyperspectral images or does not address 

corrections needed for geological application. Many approaches are related to the use of RGB-images only 

and are not able to handle the size and especially the data format of hyperspectral imagery. Published 

approaches for the correction of drone-borne multi- or hyperspectral data are mainly limited to agricultural 

or environmental applications, assuming a flat topography. However, for geological application, surface 

geometry is a prominent and crucial factor to consider. Illumination angle changes caused by micro- and 

macro-relief can distort the spectral appearance of rocks and soils distinctly. This can lead to problematic 

misinterpretations, as the discrimination of rock or mineral phases is mainly based on subtle changes in 

the reflectance spectrum. Another important factor concerns the geolocation and orthorectification of the 

single images. Most available software assumes the use of an IMU, which records the exact position and 

orientation of the sensor during the acquisition for later correction. Unfortunately, the use of an IMU exceeds 

the payload of most light-weight UAS and is therefore not feasible. Another possibility is the manual 

georeferencing using GCPs, which, however, can be very time-consuming for larger UAS surveys. We 

therefore suggest to automate the geolocation and orthorectification process without the use of an IMU or 

GCPs. To meet the mentioned challenges, we combined new and known methods in a Python toolbox in a 

way to process drone-borne HSI data accurately, automatically and as lossless as possible. The processing 

steps are illustrated in Figure 2-2 and are more precisely elaborated afterwards.  

2.6.1 Dark Current Subtraction and Conversion to Radiance  

A dark calibration is needed to determine the dark current (DC) of the camera’s sensor. DC equals the noise 

the camera sensor adds to the signal when translating incoming radiation to digital numbers (DN). If the 

camera is triggered under completely light-free conditions, this noise becomes visible within the resulting 
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image and can be subtracted from the acquired raw image DN. As the shutter of the camera cannot be closed 

manually, we use a completely light-blocking plastic foil that is normally used for the transport of OSL 

(optically-stimulated luminescence) dating samples to prevent incidence light during the DC recording. The 

image DC subtraction is done with the Hyperspectral Imager software provided by Rikola Ltd. This software 

is also used to calibrate the image data for vignetting, as well as some camera specific values and to convert 

the raw DN to radiance. 

 

 

Figure 2-2. Flowchart of the processing steps. 

2.6.2 Camera Distortion  

Distortions caused by internal camera features relate mainly to radial and tangential distortions. Radial 

distortions are related to the shape of the lens and mostly become visible as a “barrel” or “fish-eye” effect. 

Tangential distortions can be caused by a non-parallel assembly of the lens in regard to the image plane. 

The lens distortion parameters of the Rikola hyperspectral camera were determined using Agisoft Lens, 

which uses a checkerboard pattern that is projected on a flat screen or printed out. The parameters are listed 

in Table 2-2. At least ten images need to be acquired from different angles and orientations. Using these 

images, the internal camera parameters, as well as the distortion coefficients can be calculated. The internal 

parameters can be expressed by the characteristic camera matrix, which includes focal length (fx and fy), 

skew, and center coordinates (cx and cy).  

Table 2-2. Internal camera parameters and distortion coefficients of the Rikola hyperspectral camera for full 

and half image resolution.  

Resolution  fx fy cx cy skew k1 k2 k3 p1 p2 

1011x1024 1587.36  1586.50  532.14  552.88  −0.3774  −0.3402  0.1560  0.0513  0.0003  0.0002  

1011x648 1580.98 1580.41 537.10 369.76 −0.0535 −0.3141 −0.2665 2.4100 0.0003 0.0003  

 

The distortion coefficient matrix comprises the radial distortion coefficients k1, k2, k3 and the tangential 

distortion coefficients p1 and p2. The Rikola Hyperspectral Imager shows a strong radial distortion, but a 

nearly negligible tangential distortion. The determined parameters are used to correct the lens distortion 
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using the OpenCV undistort function. Hereby, camera matrix and distortion coefficients are used to calculate 

the relation between the original and distorted camera pixel position. The resulting destination map is used 

in an inverse mapping algorithm to undistort the raw image (Bradski 2000).  

2.6.3 Co-Registration 

Single spectral bands of one image are acquired with a small temporal difference. Depending on the speed, 

movement, and vibrations of the aerial platform, this results in a spatial shift between the single bands of 

the HSI data cube. The correction of this mismatch is performed using an image-matching algorithm. We 

use the SIFT algorithm (Lowe 1999) for the detection of similar features within the several bands followed 

by the FLANN algorithm (Fast Library for Approximate Nearest Neighbors, Muja and Lowe 2009) for 

matching the detected points. The SIFT algorithm of Lowe (1999) aims to detect local feature vectors within 

an image, each invariant to image translation, rotation, and scaling and partially invariant to affine or 3D 

projection and illumination changes. The identification is conducted by a staged filtering approach, 

including extrema detection, keypoint localization, orientation assignment, and keypoint descriptor 

extraction. Due to its robustness to difficult geometric and radiometric conditions, SIFT is a popular tool, 

e.g., for image registration in photogrammetry, panorama stitching, and motion tracking (Lowe 1999). The 

FLANN matching algorithm library was presented by Muja and Lowe (2009). It contains a range of fast 

nearest neighbor matching algorithms for high dimensional features and large datasets and provides a 

routine, which automatically chooses the best method and parameters according to the input dataset.  

From the point pairs detected with SIFT and FLANN, an affine transformation matrix, which considers 

translation, rotation, shift, and shear, is calculated and used to correct the mismatch between the single 

image bands with high precision. Additionally, a subsequent automatic cutting was implemented in order 

to remove the residual image borders, which originate from the relocation of single bands by the co-

registration process.  

2.6.4 Automatic Orthorectification and Georeferencing to the Orthophoto  

Similar to the previous step, automatic orthorectification and georeferencing are based on point matching. 

The SIFT and FLANN algorithms are used to extract matching points between the dataset and a high 

resolution orthophoto created beforehand using SfM photogrammetry. The quality of the orthophoto 

regarding spatial resolution and location accuracy is hereby a crucial point to guarantee a successful 

matching. The matched points are now used to warp and orthorectify the original dataset to the right 

position. Depending on the level of distortion in the dataset, a polynomial or locally-adaptive transformation 

can be applied. Hereby, no additional information, such as rational polynomial coefficients or GCPs, is 

needed.  

2.6.5 Topographic Correction  

Topography can have a high influence on the local illumination within an image. The radiance of the same 

material varies if it is located on a slope oriented towards or away from the sunlight incidence. Thus, it is 

essential to correct for these effects to retrieve reliable data. We implemented and tested the most common 

topographic correction methods to aim for an optimal correction result. The methods comprise Lambertian, 

as well as non-Lambertian methods. For all methods, a digital surface model (DSM) is required, as well as 

the solar zenith and azimuth angle present at the acquisition time.  

These parameters are needed to model the illumination, IL, conditions by:  
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with incidence angle i, terrain slope angle s, solar zenith angle SZ, solar azimuth angle AZ and terrain aspect 

angle o.  

The calculated IL model is the basis for all implemented topographic correction methods. The cosine method 

is the most common Lambertian approach, which assumes that lower IL is related to higher corrected 

reflectance and regards the Sun zenith angle. It was introduced by Teillet et al. (1982) and is calculated as:  

with 𝑅V being corrected reflectance and 𝑅W being original reflectance before topographic correction. As this 

approach has been seen to over-correct the image in areas with very low IL, Civco (1989) introduced the 

improved cosine method also considering average IL conditions with:  

with 𝐼𝐿SXRY being the mean IL value of the whole study area. Another attempt to reduce the over-correction 

is the gamma method (Richter et al. 2009), which adds parameters for sensor view angle v on flat and 

inclined terrain with:  

The percent-method is a simple approach for topographic correction proposed in Tizado (2011). The amount 

of correction is calculated according to the percent of solar incidence on the Earth’s surface, varying between 

no correction for direct Sun exhibition to infinite correction for a location in opposition to the solar incidence. 

Thus, the corrected reflectance is calculated by:  

The non-Lambertian Minnaert method is based on Minnaert (1941) and calculated by:  

where the Minnaert constant k is obtained by linear regression of ln(RW) 	= 	ln(RV) − k · ln(IL/cos(SZ)) 
for each wavelength band. The method was later supplemented for the inclusion of slope by Colby (1991) 

with:  

An empirical-statistical approach named c -factor was published by Teillet et al. (1982). It is determined by:  

where c is a/m from the linear regression of Rd = a +m · IL.  

IL = cos(i) = cos(s) · cos(SZ)+ sin(s) · sin(SZ) · cos(AZ − o) (2-1) 

𝑅i = 𝑅d · 	
cos	(SZ)
IL  (2-2) 

𝑅i = 𝑅d · 	
𝑅d · (ILjklm − IL)

ILjklm
 (2-3) 

𝑅i = 𝑅d · 	
cos(SZ) + cos	(𝑣)

IL + cos	(90 − (𝑣 + 𝑠) (2-4) 

𝑅i =
𝑅d · 	2
cosD + 1

 (2-5) 

𝑅i = 𝑅d · 	r
cos	(SZ)
𝐼𝐿

s
t

 (2-6) 

𝑅i = 𝑅d · cos	(s) · r
cos	(SZ)
IL · cos	(s)

s
t

 (2-7) 

𝑅i = 𝑅d ·
cos(𝑆𝑍) + c
IL + c  (2-8) 
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2.6.6 Mosaicking 

The georeferenced and topographically-corrected images can now be easily combined into a hyperspectral 

image mosaic without further transformation. Alternatively, we also provide a tool for the automatic 

stitching of un-georeferenced images. The overlapping images of a survey are automatically mosaicked 

without the need of ground control points or any image position information. Again, we use an image 

matching algorithm based on SIFT and FLANN. This time, a homographic transformation matrix is 

calculated. In addition to the affine parameters, it also considers perspective distortions. Optional 

illumination correction between the several images can be applied. It uses matching points within the 

overlap of the images to calculate a regression function, which is afterwards applied to correct brightness 

differences caused by slightly changing illumination conditions during the acquisition of different images.  

2.6.7 Radiometric Correction  

After all geometric and illumination corrections are performed, the hyperspectral radiance image can be 

converted to reflectance. The influence of the atmosphere is nearly negligible due to the low acquisition 

altitude. Thus, no common atmospheric correction needs to be applied, as is done for space- or air-borne 

data. Instead, the empirical line method is recommended. It is a more direct approach using spectrally well-

characterized ground reference targets. For that, we use 50x50 cm PVC panels in black, grey, and white. 

They feature relatively consistent and flat reflectance spectra in the VNIR spectral range, which were 

determined using a Spectral Evolution Portable Spectroradiometer PSR-3500 portable field spectrometer. 

Other targets, such as characteristic materials within the observed area, can be added by field spectrometer 

sampling as long as they can be individually resolved in the hyperspectral image. Within the empirical line 

correction, the reference spectra are compared to extracted image spectra of ground targets to estimate the 

correction factors for each band. The hyperspectral mosaic is converted to surface reflectance by applying 

those correction factors. After the conversion to reflectance, an optional spectral smoothing can be applied 

to remove remaining noise; for this, the Savitzky–Golay filter is recommended (Savitzky and Golay 1964).  

2.7 Results  

The toolbox presented above is able to perform a fast and reliable correction of the raw data. Every correction 

step is necessary and improves the dataset towards a useable solution. A reliable hypercube of a single 

image or a seamless mosaic is the result. Camera distortions were successfully eliminated using a simple 

lens correction algorithm. The result compared to the distorted image is shown in Figure 2-3 with red lines 

added for better visibility. While a significant barrel distortion is obvious in the uncorrected image, it is 

completely removed after correction.  

The lens corrected image is co-registered to remove the influence of platform shift afterwards. Co-

registration is able to correct even high shifts with great accuracy even for bands within different 

wavelength ranges (Figure 2-4a and b). The subsequent residual edge cutting (Figure 2-4c) worked well 

and prepared the single images for subsequent seamless mosaicking. The preprocessed images were 

georeferenced and orthorectified before mosaicking. The automatic processing happens with high accuracy 

despite the differing imaging distances caused by overflying the gossanous ridge. For very low topography, 

a polynomial transformation is reasonable, for more difficult terrain, a finer adaption to the topography is 

achieved using a locally-adaptive linear interpolation grid. The automatic georeferencing tool worked well 

for the orthorectification of single images using polynomial, as well as locally-adaptive transformation. 
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However, the registration of images with the adaptive transformation method shows a distinctly increased 

fit accuracy compared to the polynomial fitting at the cost of a higher processing time.  

 

 

Figure 2-3. Rikola image of checkerboard pattern before (left) and after (right) lens distortion correction 

(Section 2.5.2). Red lines added for clarity.  

 

Figure 2-4. Rikola image before (a) and after (b) band co-registration and after subsequent residual edge 

cutting (c). Displayed bands are: red: Band 42 (832 nm); green: Band 23 (680 nm); blue: Band 1 (504 nm).  

Rough terrain surfaces require an appropriate correction for the surface irregular geometry. Thus, all 

algorithms presented in Section 2.6.5 were tested on the georeferenced images. As the illumination 

conditions at the Spanish test site were very good with a high Sun angle of 54°, the correction effect is low, 

and all methods show only slightly different results. Therefore, c-factor, Minnaert, and Minnaert with slope 

are giving the smoothest results, while cosine tends to over-correct values at edges. The improved cosine 

shows this effect to a much lower extent, while the percent only has a very low to no correction effect at all. 

To compare the performance of the distinct algorithms under sub-optimal conditions, they were additionally 

tested on a drone-borne hyperspectral image with extreme illumination differences. In addition to high 

relief, the images were acquired in the late afternoon, resulting in a Sun horizon angle of 23°. The resulting 

corrected image for each tested method at Sylvestr mine is displayed in Figure 2-5. The gamma and percent 

algorithms show only a negligible correction effect. The methods cosine, Minnaert, and Minnaert with slope 

deliver very good results for illuminated parts of the image. However, they fail to correct for the shadowed 
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steep cliffs. Moreover, in the case of the latter two, the algorithms are not able to handle incidence angles 

over 90 degrees. The improved cosine and c-factor are the only algorithms to correct for the shadowed parts 

in the image. Nevertheless, improved cosine struggles with immense artifacts especially in the highly 

illuminated parts, where the incidence angle is around 90 degrees. The only method to correct for both 

highly illuminated, as well as highly shadowed parts in the image is the c-factor algorithm. Thus, it was 

therefore used to correct the test site mosaic.  

After the successful completion of the previous correction steps, the images can be easily merged to a 

mosaic. If necessary, a feathering can be applied for a smoother image overlap. The additionally 

implemented automatic mosaicking algorithm can be used for the stitching of un-georeferenced images 

without the need for further orientation or geolocation information. It returned precisely-merged mosaics 

and was able to stitch even images with high topographic influences. Still, the accuracy lies behind the 

stitching of already orthorectified images.  

After mosaicking, the image spectra are converted to reflectance. Within most surveys, the white calibration 

panel was neglected due to over-saturation. However, the empirical line calibration using only the black and 

the grey calibration panel delivers excellent results, as the image spectra show a very high resemblance to 

the validation field spectra (see Figure 2-6) regarding both shape and intensity. For a subsequent spectral 

smoothing, we applied a Savitzky–Golay filter with a window size of five and a polynomial degree of two.  

 

Figure 2-5. Comparison of topographic correction algorithms for drone-borne data under extreme 

illumination conditions (Sylvester mine test site, solar elevation angle: 23°).  

Vegetation can be easily distinguished in the spectral data by the so-called red edge around 700 nm. 

Therefore, it can be easily masked out using the Normalized Difference Vegetation Index (NDVI). In contrast, 

the main lithological components of the test site show only very low differences and nearly no highly 

distinctive absorption features in the VNIR spectral range. This accounts both for the field validation spectra, 
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as well as the image spectra. Nevertheless, small differences in intensity, convexity, and slope of the spectral 

curve are present. They can be used to distinguish several lithological endmembers. Therefore, gossan, 

nearby occurring massive sulfide and altered shale, as well as artificial concrete structures and river 

sediments can be clearly distinguished from each other (see Figure 2-6) using the principal components of 

the hyperspectral image. This differentiation is impossible from the RGB orthophoto.  

2.8 Discussion  

The presented processing chain for drone-borne HSI data works robustly and is able to correct raw data to 

reflectance with the least loss of spectral information. Lens correction, band registration, and residual edge 

cutting are eligible to remove distortions caused by both the camera system and movement of the aerial 

platform.  

 

 
Figure 2-6. (a) Corrected and geolocated hyperspectral mosaic with the location of spectral validation 

sampling points. Displayed bands are: red: Band 19 (651 nm); green: Band 45 (856 nm); blue: Band 7 (552 

nm). (b) Comparison of field and image spectra taken from the points of interest displayed in (a). (c) 

Vegetation masked Principal Components 2, 3, and 5, draped on a 3D orthophoto model of the test site (view 

from south-southeast).  

Automatic georeferencing, orthorectification, and mosaicking are time saving compared to the manual 

approach or using GCPs. The implemented algorithms work reliable even for complex geometries and with 
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high accuracy. Slightly distorted data, such as images over a low-relief landscape, can be treated quickly 

using homographic or polynomial transformations. Even data with high local distortions caused by the 

underlying topography, typical for drone-borne geological imagery, can be processed. A subsequent 

topographic correction is highly recommended for sites with high relief or sub-optimal illumination 

conditions during data acquisition. The best results were derived from c-factor, Minnaert, and Minnaert with 

slope. However, only c-factor can be applied to images with highly shadowed parts and is therefore 

recommended for the topographic correction of drone-borne HSI data.  

Figure 2-7 shows the progress of data pre-processing at two exemplary pixel spectra. The correction of the 

lens parameters and the band registration achieve a distinct improvement of the spectral shape, which is 

mainly explainable by the now aligned corresponding pixel values along the spectral dimension axis. 

Orthorectification and topographic correction do not influence the shape of the spectral curve. While 

orthorectification only influences the spatial pixel positioning, topographic correction corrects for the 

relative spectral intensity between pixels without changing the spectral shape itself. The conversion to 

reflectance finally achieves a reliable and completely corrected spectrum. An optional spectral smoothing 

reduces remaining noise. After correction, the absorption features of ferrous and ferric iron (around 650 

and 900 nm) within the spectrum of the iron-rich gossanous sample become clearly visible, as well as the 

characteristic vegetation spectrum with the red edge around 700 nm for the pine tree sample pixel. The 

comparison of the different correction steps distinctly reveals the importance of all correction steps. Further, 

it highly recommends their use to achieve reliable and highly accurate image spectra, which are crucial for 

the discrimination of geological targets.  

The calculation of reflectance by empirical line conversion yields smooth spectra with a high resemblance 

to measured validation spectra (see Figure 2-6). Interestingly, the white calibration panel turned out to be 

unsuitable for the conversion to reflectance due to over-saturation in most of the surveys. This originates 

from the integration time used during the image acquisition. Integration time is always adjusted for an 

optimal exposure of the complete survey area having a much lower reflectance than the white panel. Adding 

additional panels in different shades of grey would be a possible straight-forward solution. Resulting 

reflectance spectra of the corrected image data feature low noise and show a high resemblance to the 

validation field spectra. Figure 2-8 shows a comparison of the spectral reflectance of field and drone-borne 

spectra for six sample materials. Results stress a linear correlation between both sensors. The spectral 

responses are similar for most of the targets.  

However, differences in overall reflectance intensity occur due to non-identical measurement conditions 

and the spatial coverages of the sensors. Another issue to be considered is that, although the position error 

of the measurement spots seems negligible, it can highly affect the spectral response in heterogeneous 

materials. The detected VNIR range of the spectrum features only a low amount of characteristic mineral-

related absorption features, such as for iron oxides. However, different iron-bearing facies occurring at the 

test site could be distinguished. Therefore, massive sulfides and gossan show a slight absorption feature 

around 650 nm (Figure 2-6), which is not abundant in the spectrum of sediment from Riotinto River. This 

feature is characteristic for the charge transfer of Fe3+ and Fe2+ and can be related to Fe3+-bearing minerals, 

such as goethite (Hunt et al. 1971). In addition, most materials in the scene feature a Fe2+ absorption 

indicated by a broad and shallow absorption around 900 nm. Depending on the actual mineralogical 

composition, the position of the absorption can be shifted or show differing intensities. This can be used to 

differentiate between the different lithologies. These small spectral differences enable one to distinguish 

even between spectrally quite similar iron-bearing materials.  
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Figure 2-7. Comparison of spectra of image pixel after several correction steps: (a) iron-rich gossanous rock; 

(b) pine tree. 

 

Figure 2-8. Correlation of the reflectance values of field spectra and drone-borne HSI data for six sample 

target materials.  
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The results stress the use of drone-borne HSI data as valuable support for mapping alteration and 

enrichment zones. It further indicates the abilities to map different iron minerals, e.g., for acid mine 

drainage. The automated workflow enables an easy processing of large flight surveys and a much faster 

provision of hyperspectral imagery compared to a manual approach. Due to the precise orthorectification 

and georeferencing, as well as the high spatial resolution of HSI data, orthophoto, and DSM, hyperspectral 

3D models can be created to visualize the mapping results. Hereby, the HSI results can be set into spatial 

relation with topographical and structural features.  

The presented toolbox is not especially designed for Rikola hyperspectral data, but can be easily adapted for 

any frame-based hyper- or multi-spectral sensor on the market. Additionally, the application of the corrected 

drone-borne hyperspectral mosaics is not limited to lithological or mineral mapping.  

2.9 Conclusions  

For the first time, we proved that drone-borne HSI data can be used in geological studies. We further 

presented a toolbox including all crucial steps for the pre-processing of drone-borne HSI data for geological 

applications. Results have the advantage of both high spectral similarity to validation field spectrometer 

measurements and high spatial resolution. The presented workflow ensures a proper and careful pre-

processing, which is important to obtain reliable hyperspectral reflectance data. It shows excellent 

performance for frame-based hyperspectral images and was tested on data acquired with a common Rikola 

hyperspectral drone-borne sensor. In addition to sensor- and platform-specific geometric distortion 

corrections, a topographic correction step is implemented for rough terrain surfaces. We recommend the 

use of the c-factor-algorithm here. Further, panels in different shades of grey should be preferred over using 

a white panel to convert radiance to reflectance due to the generally low reflectance of geologic materials.  

Despite the low number of mineralogy-related characteristic absorption features in the VNIR spectral range, 

a differentiation of lithological endmembers is possible due to small differences in the slope, convexity, and 

intensity of reflectance. We proved, e.g., that the corrected HSI data are sensitive enough to distinguish 

different iron-bearing facies. Thus, we highly recommend the use of the presented correction steps for drone-

borne HSI data to ensure an image result highly accurate in geometry, location, and spectral information.  

Additionally, we highly endorse the increased use of drone-borne HSI data for geological aims, as they show 

a high potential for fast and accurate mapping of small-scale alteration and enrichment zones. However, 

their applicability is not limited to mineral exploration, but can comprise and support any other geological 

and environmental studies.  
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Chapter Discussion  

The presented paper constitutes an important step towards the way hyperspectral UAS-borne data is utilized 

today. At the point of its publication, drones were emerging rapidly as novel remote sensing platform in 

research and industry, filling the gap between ground-based and airborne surveys in a cheap and easily 

deployable manner. Due to the restrictions in weight, deployed sensors were usually either RGB, multi- or 

hyperspectral cameras bount to the VNIR range of the electromagnetic spectrum. The most common 

applications were, and still are, high-resolution photogrammetric surveying of natural and anthropogenic 

targets and spectral analysis of vegetation for agriculture, forestry, and environmental studies. Numerous 

studies and reviews on suitable sensors and applicational approaches were published, however, most of 

them remained at an immature stage or underutilized the data’s potential. UAS-based data require specific 

steps of pre-processing and correction which differ from aircraft and satellite platforms. The novelty of the 

approach, but also the diversity and customizability of UAS platforms and deployable sensors impeded the 

establishment of correction workflows available for any user. As a result, most published UAS-borne 

datasets were only partly or not corrected for platform-specific radiometric and geometric effects. First 

promising correction workflows comprised sensor calibration, image-to-image illumination correction and 

reflectance calculation using reference targets. The influence of topography-induced variation of 

illumination angles on spectral intensity and shape was, however, neglected. In particular for targets with 

highly variably morphology this can cause distinct distortions within the dataset. While it is still possible 

to retrieve meaningful information from poorly corrected data using simple two-band-ratios, detailed 

spectral analysis of usually narrow aborption features is not possible. Geological applications in particular 

rely on reliable spectral information, as the spectral differences between mineralogical domains are usually 

subtle. This was probably the main reason that before the publishing of the presented manuscript no 

successful application of UAS-borne hyperspectral data for geological applications was known. This 

motivated us to carefully analyze the steps required to retrieve a meaningful, spatially and spectrally 

sufficiently corrected dataset even under non-ideal conditions as they are common in geological campaigns. 

The presented workflow represents a selection of methods that proved successful under comparable 

circumstances and were now adapted to the current demands. Due to the vast amount of datacubes created 

during an average UAS-based survey, I attempted largly automized approaches, able to process large 

amounts of data on a reliable and routinized basis. Such, the utilization of automatic keypoint extraction 

and matching is a central part of the presented workflow. The selection of features invariant to scale, 

orientation, perspective, and wavelength range is of paramount importance for both band-to-band alignment 

as well as image-to-image co-registration (HSI-to-HSI as well as HSI-to-RGB). This accurate spatial alignment 

is as crucial prerequisite for the success of other pre-processing steps such as the correction of topography-

induced illumination differences.  

To meet the diversity of sensors and platforms in UAS-HSI, the proposed workflow is designed to be versatile 

and straight-forward. It emphasizes the key role of a careful pre-processing of UAS-HSI, and suggests a 

possible solution. The used methodologies for each processing steps are state-of-the-art, however, are also 

meant to be developed further or can also be easily substituted by alterantive algorithms. In particular, 

further work is required to optimize the current methodology for better performance, e.g. to enhance speed 

and reliability of the matching process. Current in-house improvements comprise the substitution of the 

keypoint detection algorithm, SIFT, by a distinctly faster alternative, ORB (Rublee et al. 2011), and the 

inclusion of drone- or sensor-tracked GPS information for a more targeted automatic geolocation, crucially 

increasing speed and reliability of the orthorectification process. Recent developments in the research 
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community propose promising approaches that could be included in the workflow in the future, e.g. 

radiometric block adjustment for an automated radiometric correction of overlapping HSI data (Honkavaara 

et al. 2018). A comprehensive review of current measurement procedures and data correction workflows 

has been given recently by Aasen et al. (2018) and indicates a strong development trend towards more 

adapted algorithms. 

Application-wise, the presented work showed the successful usage of UAS-HSI for the characterization of a 

geological target for the first time and is still one of few. Dering et al. (2019) gave a comprehensive review 

on the usage of drone-technology for the mapping of dykes and veins, indicating a current focus of the 

research community on photogrammetric methods and an underrepresentation of UAS-based spectral 

sensors in geological research. Most available light-weight HSI sensors operate in the VNIR part of the 

electromagnetic spectrum, make them useful for the detection of iron-bearing minerals and Rare Earth 

Elements. Current publications focus on these materials and show the applicability of UAS-HSI for the 

mapping of gossans and other alteration zones (presented paper, Kirsch et al. 2018), the discrimination of 

different acid-mine-drainage-induced iron minerals occurrences (Jackisch et al. 2018) or the detection of 

Rare Earth Elements in carbonatite deposits (Booysen et al. 2018). The current rapid positive development 

of light-weight sensor technology gives hope for the availability of high SNR sensors with an extended 

spectral range any time soon. Light and easily deployable HS or narrowband multi-spectral sensors with a 

spectral coverage of the upper SWIR (~1.7–2.5 µm) and LWIR (~7–12 µm) would be particularly beneficial 

for the detection of many important rock-forming and alteration minerals. Few full-SWIR (up to 2.5 µm) 

sensors are currently available for UAS-based use, however, both the initial CAPEX (capital expenditures) 

and take-off weight are rather high, setting barriers for a broad use in the remote sensing community. 
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CHAPTER 3   RADIOMETRIC CORRECTION AND 3D INTEGRATION OF LONG-

RANGE GROUND-BASED HYPERSPECTRAL IMAGERY FOR MINERAL EXPLORATION 

OF VERTICAL OUTCROPS 

Preface  

At the time of the study, terrestrial HSI has been nearly exclusively used for close-range applications, which 

comprise sensor-target distances of up to a few hundred meters. The imaging of more distant targets as well 

as a correction for the influence of atmospheric effects and topography-induced illumination differences 

remained an unmet challenge. In addition, the unusual and diverse viewing angles of terrestrial data 

complicate the georeferencing of the datasets and by that, their integrability with data from other viewing 

angles, acquisition times, locations, and sensors.  

The following chapter presents a new processing workflow that was developed to meet these challenges. It 

successfully attempts to overcome the mentioned effects and offers reliable spectral mapping results of 

vertical and completely inaccessible outcrops. The achieved spectral mapping products are integrated with 

3D photogrammetric data to create large-scale now-called “hyperclouds”, i.e. geometrically correct 

representations of the hyperspectral datacube. The approach enables the integration of hyperspectral scenes 

from different acquisition locations and dates as well as the integration with other data-sources. The 

presented workflow can be of benefit for any geological or environmental study using comparable datasets, 

as it is capable to provide image data highly accurate in geometry, location, and spectral information.  

The contents of this chapter were published as research paper in Remote Sensing6 and additionally presented 

at the 2018 Workshop on Hyperspectral Images and Signal Processing: Evolution in Remote Sensing 

(WHISPERS)7. The presented workflow was added to MEPHySTo (see Chapter 2), established as in-house 

pre-processing routine and has been in constant development since its publication. It was used in two 

parallel, co-authored publications. The first showed the applicability of the corrected data for HSI geological 

mapping of steep cliffs in the artic from a boat8, the second the successful 2.5D-integration of several VNIR-

SWIR datasets with terrestrial LWIR and drone-borne VNIR imagery for lithological mapping in a quarry9.  
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3.1 Abstract  

Recently, ground-based hyperspectral imaging has come to the fore, supporting the arduous task of 

mapping near-vertical, difficult-to-access geological outcrops. The application of outcrop sensing within a 

range of one to several hundred meters, including geometric corrections and integration with accurate 

terrestrial laser scanning models, is already developing rapidly. However, there are few studies dealing 

with ground-based imaging of distant targets (i.e., in the range of several kilometers) such as mountain 

ridges, cliffs, and pit walls. In particular, the extreme influence of atmospheric effects and topography-

induced illumination differences have remained an unmet challenge on the spectral data. These effects 

cannot be corrected by means of common correction tools for nadir satellite or airborne data. Thus, this 

article presents an adapted workflow to overcome the challenges of long-range outcrop sensing, including 

straightforward atmospheric and topographic corrections. Using two datasets with different 

characteristics, we demonstrate the application of the workflow and highlight the importance of the 

presented corrections for a reliable geological interpretation. The achieved spectral mapping products are 

integrated with 3D photogrammetric data to create large-scale now-called “hyperclouds”, i.e., geometrically 

correct representations of the hyperspectral data cube. The presented workflow opens up a new range of 

application possibilities of hyperspectral imagery by significantly enlarging the scale of ground-based 

measurements. 

Keywords: hyperspectral; topographic correction; atmospheric correction; radiometric correction; long-

range; long-distance; Structure from Motion (SfM); photogrammetry; mineral mapping; minimum 

wavelength mapping; Maarmorilik; Riotinto 

3.2 Introduction 

Hyperspectral imaging has been increasingly used to support mineral exploration and geological mapping 

campaigns. The obtained spectral signatures provide detailed information about the composition of rocks 

and the occurrence of economic minerals. The hyperspectral instruments are conventionally operated with 

a nadir viewing angle, comprising different scales of area coverage and spatial resolution by operation on 

satellite (Hubbard et al. 2003, Kruse 2003), airplane (Bedini 2009, Laukamp et al. 2011, Zimmermann et al. 

2016, Jakob et al. 2016) or drone (Jakob et al. 2017). Depending on the acquisition altitude, a varying 

influence of the atmosphere between sensor and target, as well as illumination differences due to 

topography, can be observed in the acquired spectral imagery. Numerous approaches have been introduced 
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Sensing 2018, 10, 176. DOI: 10.3390/rs10020176 (Author’s post-print version) 
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in an attempt to overcome these effects: Atmospheric influences are either corrected by atmospheric 

modelling using radiative transfer models (e.g., Gao et al. 1993, Adler-Golden et al. 1999, Richter & Schläpfer 

2002), the use of ground targets with known or assumed spectra (empirical line calibration, Smith & Milton 

1999, flat field correction, Roberts et al. 1986, dark object subtraction, Chavez 1988), or a combination of 

both (Clark et al. 2002). Whereas radiative transfer models rely on the correct input of a set of external 

parameters and are mainly used for satellite and airborne data, the use of ground targets, dark objects, or 

flat fields provides a much more straightforward approach. However, these methods require a spatial 

resolution high enough to resolve spectrally uniform reference target(s) and/or a reasonable knowledge on 

the spectra of those materials present, and are therefore mainly used for drone- or airborne data with low 

acquisition altitudes (e.g., Jakob et al. 2017, Laliberte et al. 2011).  

In the last few years, a ground-based approach of using hyperspectral sensors for geological applications 

has emerged. A tripod-mounted device can be used to rapidly acquire spectrally and spatially highly 

resolved data of near-vertical geological outcrops, i.e., spatial orientations that are not (or hardly) observable 

by nadir-faced instruments. Near-vertical outcrops may comprise steep mountain slopes, water-faced cliffs, 

open pit mine walls, and road cuts. Particularly in arctic or humid regions, where snow and ice, lichens, or 

dense vegetation cover the Earth’s surface, the investigation of such natural or artificial cuts through the 

strata might be the only possibility to obtain spectral information of the local geology. Currently, ground-

based hyperspectral sensors for geological applications are nearly exclusively used for targets at distances 

between one to several hundred meters (e.g., Kurz et al. 2013, Kurz & Buckley 2016, Murphy et al. 2015). 

Within this range, the spatial resolution varies between centimeter and decimeter scale, enough to resolve 

even small-scale mineral compounds and fault systems. Another significant benefit of close-distance 

measurements is the negligible influence of the atmosphere, which potentially voids the need for an 

elaborate radiometric correction. Instead, an empirical line approach using reference targets with the same 

orientation, distance, and illumination conditions as the geological target is sufficient for the conversion to 

reflectance. However, observing a geological target at close range is not always feasible or reasonable. In 

particular, larger and vertically oriented targets such as steep mountain slopes, sea- or lake-faced cliffs, and 

walls of large open pit mines are often only fully visible from an opposing location such as a neighboring 

mountain (Rosa et al. 2017), pit level, shore, or even a boat (Salehi et al. 2018). The distance between the 

sensor and the target of interest can then easily exceed the close-range and extend to several kilometers. 

These distances not only lead to major atmospheric distortions, but also prevent the logistical setup of visible 

reference targets for radiometric correction as well as ground control points for image georeferencing. 

Additionally, owing to the much larger scale of the observed surface and the ground-based viewing 

perspective, pixels within one scene can represent a range of different distances and orientations, leading 

to highly variable radiometric distortions. For those reasons, correction methods established for nadir 

acquisitions are not applicable or need to be intensely modified to account for the special conditions of long-

range ground-based sensing.  

In this paper, we meet these additional challenges and present a novel workflow that allows the creation of 

fully corrected long-range ground-based hyperspectral image data for geological applications. In addition to 

sensor-induced geometric distortion corrections, the workflow now includes a new approach for the 

radiometric correction of long-range ground-based data as well as a topographic correction algorithm based 

on integration with 3D surface data using automatic matching algorithms. We also describe a detailed 

methodology for producing 3D hyperclouds, i.e., geometrically correct representations of the hyperspectral 

datacube, for the display of generated spectral mapping products. The methods presented will be included 

in the open source Mineral Exploration Python Hyperspectral Toolbox MEPHySTo (Jakob et al. 2017). We 
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demonstrate the methodology in two areas that differ in geology, climate, and scientific objectives. The first 

area is located in an arctic environment, where two hyperspectral scans acquired from different points of 

view are used to detect and map mineralogical variations in the composition of the Mârmorilik Formation 

marbles in West Greenland. The single result map is integrated with photogrammetry data to provide spatial 

context and a 3D view that can be integrated into 3D modelling. The second dataset was acquired at the 

now-abandoned open pit mine Corta Atalaya near Minas de Riotinto, Spain. The Spanish dataset 

demonstrates the applicability of the corrected dataset for alteration zone mapping of a massive sulfide 

deposit under hot and dusty conditions as well as the integrability of datasets acquired at different times.  

3.3 Areas of Investigation 

3.3.1 Nunngarut Peninsula, Maarmorilik, Greenland 

The first study area is located in central West Greenland, within the regions of Uummannaq Fjord and Karrat 

Isfjord (Figure 3-1). The investigated area covers large parts of the Nunngarut Peninsula at the Qaamarujuk 

fjord, where the former mining town of Maarmorilik is located. The nearby Black Angle Pb–Zn deposit is 

separated from the Nunngarut Peninsula by the smaller Affarlikassaa fjord. The study area belongs to the 

Mârmorilik Formation, a 1600 m thick carbonate-dominated rock sequence representing the southernmost 

stratigraphy of the Paleoproterozoic Karrat Group (Kolb et al. 2016). It was deposited between 2.1 and 1.9 

Ga in an epicontinental marginal basin as platform carbonates (Kolb et al. 2016), nonconformably overlies 

a suite of strong deformed Archean orthogneisses, and is overlain by flysch-type metasedimentary rocks of 

the Nûkavsak Formation (Sørensen et al. 2013). 

The Mârmorilik Formation is dominated by dolomite-rich marbles in the lower part and calcite-rich marbles 

in the upper part. Locally, interbedded horizons of quartzites, tremolite-rich marbles, and possible 

metamorphosed evaporites in the form of anhydrite occur (Kolb et al. 2016, Grocott & McCaffrey 2017). The 

Black Angel Mississippi Valley-Type (MVT) Pb–Zn deposit is emplaced within the Mârmorilik Formation 

(Pedersen 1980, Sørensen et al. 2013), causing an overprint of the marbles by basal brines. The whole 

succession of Archean basement and the Karrat Group was strongly folded and thrusted by the 

Nagssugtoqidian–Rinkian orogenesis. During this orogenesis, the Mârmorilik Formation underwent at least 

three phases of deformation (Rosa et al. 2017), leading to recrystallisation and metamorphism under high 

greenschist to amphibolite facies conditions (Henderson & Pulvertaft 1987). The Mârmorilik Formation is 

interpreted to be the lateral equivalent to the Qaarsukassak Formation (Guarnieri et al. 2016), and together 

they form a several hundred square kilometer large prospective region for zinc mineralization (Rosa et al. 

2016, Rosa et al. 2017).  

3.3.2 Corta Atalaya, Riotinto, Spain 

Corta Atalaya, near Minas de Riotinto in the province of Huelva (southern Spain), is, with a size of 

1200x900 m and a maximal depth of 365 m, one of the most famous open pits of the Riotinto mining district 

(Figure 3-1). The Volcanogenic Massive Sulfide (VMS) mineralization of Riotinto is associated with the 

Iberian Pyrite Belt (IPB), which is considered to host the largest concentration of massive sulfides in the 

Earth’s crust (Sáez & Donaire 2008). The IPB is located in a north-vergent fold and thrust belt of late Variscan 

age (Soriano & Casas 2002) extending from east of Setubal, Portugal, to north of Seville, Spain, and has been 

extensively mined for copper, manganese, iron, and gold since the Bronze Age. At Riotinto, the 

lithostratigraphic succession can be divided into three units (from bottom to top): (i) phyllites and quartzites; 

(ii) slates, basalt sills, felsic volcanics (rhyolites and dacites); and (iii) the so-called Culm series (greywackes 
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and slates). The stratabound, VMS lenses are located within felsic volcanics of Upper Devonian to Lower 

Carboniferous ages (Sáez & Donaire 2008). Zones of chloritic and argillitic alteration are associated with the 

massive sulfide mineralization. Stockwork zones occur underneath the lenses in the vicinity of faults (Sáez 

& Donaire 2008). A gossan usually forms in the cap-rock above. The deposit of Riotinto itself is situated in 

the hinge of an E–W-trending anticline with an east-plunging fold axis. Corta Atalaya is located on the 

southern flank of this so-called Riotinto anticline.  

 

 

Figure 3-1. Location of the two investigated sites and schematic coverage of the acquired AisaFENIX 

hyperspectral imagery at: (a) Nunngarut Peninsula, Maarmorilik, Greenland; and (b) Corta Atalaya open pit, 

Minas de Rio Tinto, Spain. 

Stockwork and massive ore bodies are associated with E–W-striking thrusts. A set of later NW–SE-oriented 

transverse faults offsets the Riotinto anticline. The most prominent of these faults, the Falla Eduardo, 

displaces the massive sulfide body San Dionisio about 150 m to the south and finds its continuation in the 
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Filón Sur ore body east of Corta Atalaya (Sáez & Donaire 2008). The massive sulfide body San Dionisio, 

which was exploited in Corta Atalaya, originally had reserves of 100 million tons. Originally, the mine was 

dedicated to the extraction of iron and copper sulfides (mainly pyrite with smaller amounts of chalcopyrite). 

The initial objective was to extract copper from copper sulfides, but, subsequently, the sulfur contained in 

pyrite was used for the manufacturing of sulfuric acid until final closure of the open pit in 1991 (Sáez & 

Donaire 2008). 

3.4 Data Acquisition 

3.4.1 Hyperspectral Imagery 

The hyperspectral image (HSI) data was acquired using a SPECIM AisaFENIX push-broom scanner. The 

scanner has 384 swath pixels with 624 spectral bands each, covering the visible and near-infrared (VNIR) 

to short-wave infrared (SWIR) range between 380 and 2500 nm. The spectral resolution (Full Width at Half 

Maximum—FWHM) varies between 3.5 nm for the VNIR and 12 nm in the SWIR at a spectral sampling 

distance of about 1.5 nm (VNIR) and 5 nm (SWIR), respectively. By mounting the instrument on a rotary 

stage, a continuous hyperspectral image with a vertical field of view (FOV) of 32.3° and a maximum 

scanning angle of 130° could be acquired in one measurement. During the measurements, the GPS position 

of the camera, acquisition time, and general viewing direction (from here on referred to as ‘camera angle’) 

of the scan were recorded. A Spectralon SRS-99 white panel was set up near the camera within the FOV and 

with a similar general orientation as the imaged outcrop. 

3.4.2 Photogrammetry Data/3D Data 

Images for reconstruction of surface geometry were recorded using precalibrated RGB and hyperspectral 

cameras. In the case of Maarmorilik, a Nikon D800E with a 35 mm 1.4 Zeiss lens was used from a helicopter. 

The 3D pointcloud of Corta Atalaya was based on fusion of drone-borne images from a Rikola Hyperspectral 

Imager (red band) and a Canon EOS M with EF-M 22 mm f/2 STM lens (as grey-scale image). Camera 

positions were obtained from an attached GPS device, whereas the imaging geometry was reconstructed 

using a Structure from Motion (SfM) and MultiView Stereo (MVS) workflow. Prior to the photogrammetry 

workflow, image distortions were removed. 

3.4.3 Validation Sampling 

Samples of the main lithologies were taken for a validation of the correction workflow and of the mineral 

mapping results. Sample locations were recorded using a handheld GPS device. Spectra of representative 

fresh and altered rock surfaces were acquired in situ using a portable Spectral Evolution PSR-3500 

spectroradiometer using a contact probe (8 mm spot size) with an internal, artificial light source. Its spectral 

resolution is 3.5 nm (1.5 nm sampling interval) in VNIR and 7 nm (2.5 nm sampling interval) in the SWIR, 

resulting in 1024 channels in the spectral range from 350 to 2500 nm. Radiance values were converted to 

reflectance using a calibrated PTFE panel with >99% reflectance in VNIR and >95% in SWIR (either 

Spectralon SRS-99 or Zenith Polymer). Each spectral record consisted of 10 individual measurements, which 

were taken consecutively and then averaged.  
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3.5 Processing Workflow 

3.5.1 Preprocessing of Hyperspectral Raw Data 

The acquired raw hyperspectral datasets are first converted to At-Sensor-Radiance using dark-current 

subtraction followed by image normalization and multiplication of sensor- and band-specific radiometric 

calibration data (Figure 3-2).  

 
Figure 3-2. Schematic workflow for the correction, processing, and 3D integration of long-range ground-

based hyperspectral imagery. 

In a second step, two geometric corrections of sensor-specific optical distortions need to be applied. The first 

effect is a distortion along the FOV comparable to the distortion of fish-eye lenses. This leads to an increasing 

shortening of the image from the center to the upper and lower image boundaries. The second effect can be 

described as slit bending and refers to a curved recording of the currently scanned (straight) line. Both 

effects can be removed by applying correction values for each pixel in the FOV. The required parameters 

are included in a lookup table provided by the manufacturer of the sensor. In the case that several scans of 



 

 77 

the same scene have been acquired with the same settings, a stacking and averaging of those scenes can be 

performed at this point. By image stacking, the signal-to-noise ratio can be increased, reducing possible 

temporal illumination variations due to changing cloud cover. 

3.5.2 Radiometric Correction of Hyperspectral Radiance Data 

Subsequent to the transformation of the raw hyperspectral data into radiance, a conversion to at-sensor 

reflectance needs to be applied, which can be achieved using a white reference panel placed near the sensor. 

This Spectralon (SRS-99) reference target is close to an ideal Lambertian reflector with >99% reflectance in 

the VNIR and >95% in the SWIR. Its exact reflectance spectrum is known and can be used for an empirical 

line correction of the radiance data. Hereby, a linear regression between the image radiance values and the 

reference reflectance values is calculated and applied for each band.  

Depending on the imaging distance and the climatic conditions, the resulting at-sensor reflectance image 

may still feature atmospheric distortions (see Figure 3-3). In contrast to air- or spaceborne data, the scene-

specific intermediate atmospheric layer can be assumed to have a uniform composition with only negligible 

variations. Nevertheless, the amount of atmospheric influence varies for each pixel and depends mainly on 

the distance between sensor and target, but can be also influenced by local variations, e.g., differing 

intensities of upwelling water vapor. Given these circumstances, we attempt to perform a radiometric 

correction to remove atmospheric distortions using a single atmospheric correction spectrum for each scene. 

The intensity of correction needs to be varied according to the amount of atmospheric distortion. For the 

correction approach to be robust and independent from additional parameters or knowledge about the 

composition of the influencing atmospheric layer, the atmospheric correction spectrum is derived directly 

and automatically from the hyperspectral image itself. Hereby, the correction spectrum is a comprehensive 

representation of all scene-abundant spectrally influencing atmospheric components, which may 

encompass atmospheric dust, water vapor, and other atmospheric gases. The correction spectrum is neither 

selective nor restricted to defined components and is thus applicable for any atmospheric setting. Owing to 

the assumed constant composition of the atmosphere over the scene, the depths of all atmosphere-related 

features should change equally if the atmospheric influence is altered. This approach allows us to evaluate 

the amount of atmospheric influence for each pixel by the depth of only one atmospheric absorption feature 

and eliminates the need for atmospheric models, additional calibration targets, and distance measurements. 

The now-called control feature must necessarily be both common in all possibly occurring atmospheric 

compositions and strong enough to be detectable even for low atmospheric influence. Additionally, it should 

not overlap with any characteristic mineralogy-related features to avoid interference and miscorrections. 

The absorption band we found to fulfill these conditions best is situated at 1126 nm (Figure 3-3d) and is 

related to atmospheric water vapor (Clark et al. 2002).  

The atmospheric correction workflow consists of several steps, which can also be retraced in Figure 3-3: 

 

1. Masking of sky-related pixels: All image pixels representing sky and sky reflected by mirroring surfaces 

such as water are masked out automatically from the reflectance image using a ratio between the image 

bands located at 410 and 890 nm. These wavelength positions are set to encompass two ends of the 

extreme decline in VNIR reflectance that is specific for sky-related spectra. This characteristic shape 

leads to a usually very distinct ratio difference between sky and non-sky pixels. In our examples, the 

masking threshold was most successful in a ratio range between 1.0 and 2.0.  
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Figure 3-3. Atmospheric correction workflow on the example of the Maarmorilik marble cliffs (Nunngarut, 

Scan 2). Hyperspectral images are displayed using spectral true color representative bands (R: 640 nm G: 

550 nm B: 470 nm). See text for a detailed description. (a) Control spectra set; (b) continuum removal; (c) 

adjusted control spectra set; (d) final control spectrum and selection of the control feature. 

2. Determination and processing of possible correction spectra: The depth of the control feature at 1126 

nm is calculated for all remaining pixels. All pixel spectra with a control feature depth within 80–100% 

of the maximum are extracted as a control spectrum set (Figure 3-3a), which will be used to determine 

the final atmospheric correction spectrum. A continuum removal and an equalization of the control 
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feature depth are applied on each spectrum of the control set separately. The respective continuum hull 

is calculated using a linear interpolation of stepwise acquired maxima all over the respective spectrum 

(Figure 3-3b). The moving window for the continuum hull calculation can either be set to a fixed step 

size or restricted to specific stored wavelength ranges that are located outside or at the edge of known 

atmospheric absorption windows.  

3. Exclusion of non-atmospheric features: Some spectra of the resulting equalized control spectra set may 

still contain additional non-atmospheric absorptions. These features should be excluded from the 

correction spectrum to avoid a weakening or deletion of important mineralogical features during the 

atmospheric correction process. In contrast to atmospheric features, non-atmospheric absorptions occur 

with differing intensities and only in a spectral subset of the control spectra (Figure 3-3c and d). They 

can be excluded from the control spectrum set by maintaining only the highest of all spectral values for 

each wavelength. The used threshold can be varied manually if needed.  

4. Calculation and application of the final control spectrum: The remaining spectral information is averaged 

for each wavelength to reduce possible noise. The outcome of the whole procedure provides a single 

continuum-removed correction spectrum containing solely the characteristic atmospheric contribution 

of the analyzed hyperspectral image (Figure 3-3d). The atmospheric correction itself is performed 

pixelwise. For each pixel, the intensity of the correction spectrum needs to be adjusted to both depth 

and reflectance value of the control feature in the pixel spectrum. The correction itself is then achieved 

by a simple division of the pixel spectrum by the adjusted correction spectrum. The original reflectance 

intensities are maintained in the corrected image spectra during that process. 

 

The processing time for the automatic correction of a hyperspectral scan with the spatial and spectral 

dimensions as in our examples is less than one minute. Thus, the method is extremely time- and effort-

saving and can be easily integrated into a batch-processing workflow.  

Depending on the Signal-to-Noise ratio (SNR) of the processed dataset, a subsequent Minimum Noise 

Fraction (MNF) smoothing can be advantageous. MNF smoothing entails a transformation of the image into 

MNF space, a rejection of bands with low SNR, and a subsequent back-transformation into the original image 

space (Green et al. 1988). The number of MNF bands to be rejected can be determined by looking at the 

eigenvalue function of the calculated MNF bands, which reaches a plateau after a sharp increase and 

suggests a rejection if the asymptotic eigenvalue function approaches a linear function (Phillips et al. 2009). 

3.5.3 SfM-MVS Photogrammetry 

The Digital Surface Model is derived from aerial and ground-based images using the Structure-from-Motion 

MultiView Stereo (SfM-MVS) algorithms in Agisoft Photoscan Professional 1.2.5. SfM-MVS is a low-cost, 

user-friendly workflow combining photogrammetric techniques, 3D computer vision, and conventional 

surveying techniques. It solves the equations for camera pose and scene geometry automatically using a 

highly redundant bundle adjustment (Westoby et al. 2012, Eltner et al. 2016). A typical SfM-MVS workflow 

towards a final surface model consists of the following eight steps (Eltner et al. 2016, Carrivick et al. 2016):  

 

1. Detection of characteristic image points; 

2. Automatic point matching using a homologous transformation; 

3. Keypoint filtering—this step is crucial for model accuracy and validation of later results (James et al. 

2017); 
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4. Iterative bundle adjustment to reconstruct the image acquisition geometry and internal camera 

parameters; 

5. Scaling and georeferencing of the intrinsic coordinate system to available reference points (GCPs) or 

camera coordinates and optimization of the resulting sparse cloud; 

6. Applying MultiView Stereo algorithms (dense matching) to compute the dense cloud—the resulting dense 

cloud is the basis for the geometric correction of the hyperspectral data; 

7. Interpolation of the dense cloud by, e.g., Meshing or Inverse Distance Weighting (IDW), to retrieve a 

Digital Surface Model (DSM); 

8. Texturizing of the 3D model. 

3.5.4 Calculation of Sun Incidence Angles for Topographic Correction 

Knowledge of the sun incidence angle for each pixel of the hyperspectral image is crucial for its topographic 

correction. In contrast to nadir data, vertical outcrop scans can have multiple pixels located at any given 

latitude/longitude coordinate position, which can be only spatially differentiated by their elevation values. 

Therefore, common tools for the calculation of slope, aspect, and sun incidence angle of Digital Elevation 

Models (DEM) cannot be applied here. Instead, we calculate the sun incidence angle for each individual 

point of the point cloud generated in Section 3.5.3 as the angle between the point normal and the sun vector 

(Figure 3-4a). The point normals were either calculated during the point cloud construction or can be 

computed retroactively using a triangulation of neighboring points. The sun vector is characterized by 

with  being the sun zenith angle and  the sun azimuth at the given date, time, and position of the 

acquisition. The calculated sun incidence angles are stored as additional point properties in the point cloud 

file and retained in all following processing steps. 

3.5.5 Projection of Pointcloud and HSI Matching 

An integration of 2D hyperspectral data and 3D point cloud data is needed for topographic correction and 

final creation of the 3D hypercloud. In order to facilitate automatic matching and reduce distortion in the 

subsequent wrapping process, the point cloud is projected onto a 2D surface in a way that resembles the 

view of the hyperspectral camera during image acquisition. It is crucial here that through the entire process 

of ensuing transformations the original coordinates of each point of the cloud are stored as additional 

parameters. Due to the push-broom character of the sensor, a simple orthographic projection of the point 

cloud onto a plane is not suitable.  

 

Instead, the point cloud is first transformed so that the camera position is set as the new origin and the 

camera viewing angle is set along the y-axis of the coordinate system by 

The spatial relation between point cloud, camera angle, and camera position in the transformed coordinate 

system is displayed in Figure 3-5. 

 (3-1) 

 (3-2) 
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Figure 3-4. Topographic correction of vertical HSI (Nunngarut, Scan 1). (a) Schematic illustration of the 

calculation of sun incidence angles i and required parameters; (b) cosine of the calculated incidence angles 

for each point of the dense point cloud projected on respective HSI view plane; (c) correction of overlying 

hyperspectral image scan for topography-induced illumination changes: 1) before, 2) after topographic 

correction (method: c-factor). 

Each point coordinate of the transformed point cloud now corresponds to the vector �⃗� between the 

transformed camera position at (0,0,0) and the point at (𝑥��, 𝑦��, 𝑧��). If we assume that the camera FOV 

is a subset of a virtual surrounding view sphere with the center at the camera position, the point cloud can 

be projected onto that sphere by normalizing each point vector by 

see also Figure 3-5b.  

(𝑥Y, 𝑦Y, 𝑧Y) = 	
�⃗�
|�⃗�| 

with �⃗� = �
𝑥��
𝑦��
𝑧��

� ; 
(3-3) 
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Figure 3-5. Schematic workflow of the point cloud transformation and projection to create a 2D image 

resembling the panoramic view of a push-broom hyperspectral imager (Nunngarut, Scan 2). 

The projected point cloud is now unfolded onto a 2D plane using a cylindrical projection with 

with 𝑥?� and 𝑦?� being the Cartesian coordinates of the created 2D image, and with 𝑥Y, 𝑦Y, and 𝑧Y or 𝜌 and 

𝜑 being the Cartesian or spherical coordinates of the normalised 3D point cloud, respectively (Figure 3-5c). 

The angle at which the cylinder is cut for the projection can be set by an additional parameter. 

The projection into 2D space considers all of the points in the true line of sight of the hyperspectral camera, 

which includes points hidden behind points in the foreground (front points), such as the backside of a 

mountain (back points). This leads to artefacts within the created 2D image (see Figure 3-6a) and would 

adversely affect subsequent processing steps. Using a maximum threshold for the original spatial distance 

between neighboring points, the adverse back points can be removed. To ensure a fast processing even for 

huge point clouds, a moving window is used to process several points at once. For each applied window, the 

contained point with the closest distance to the camera position is found. This distance can be calculated 

from the original coordination of the point cloud, which is still saved as additional point parameters. Hereby, 

it is advantageous to use only the original coordination axis that was closest to the original camera angle. 

While neighboring front points show a similar location with generally from decimeters to a few meters 

difference (depending on the spatial accuracy of the data), back points mostly feature locations far off, with 

distances of several tens to hundreds of meters from the camera-closest front point. According to this, the 

threshold is set and all resulting back points are deleted (Figure 3-6b). Due to the nature of this workflow, 

a smaller window size guarantees a higher accuracy, but also a higher computation time. 

𝑥?� = 	𝜌 with 𝜌 = 	 tan��(𝑦Y 𝑥Y⁄ )	, 

𝑦?� = 	1, 

𝑧?� = 	 tan𝜑 with 𝜑 = 𝜋 2⁄ −	tan����𝑥Y? + 𝑦Y? 𝑧Y� �, 

(3-4) 
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Figure 3-6. Effect of the overlapping point removal on the quality of the 2D point cloud projection image on 

the example of Nunngarut, Scan 2. The original x-coordination of the points is illustrated by a color gradient. 

(a) Point cloud projection without overlapping point removal; (b) point cloud projection with overlapping 

point removal. 

After the deletion of the interfering back points, the remaining front points are interpolated into a raster 

with a spatial resolution similar to or slightly higher than the spatial resolution of the hyperspectral data. 

Apart from RGB color information, this ortho-image has four additional bands containing the original point 

cloud coordinates and the calculated sun incidence angles. The created RGB raster can now be used for an 

automatic co-registration of the hyperspectral image. The matching workflow used for the co-registration 

will be part of the MEPHySTo toolbox presented in Jakob et al. (2017) and is also successfully adapted and 

used for the integration of vessel-based hyperspectral data and 3D point clouds in an accompanying paper 

(Salehi et al. 2018). The workflow is based on the SIFT (Scale-invariant feature transform) algorithm (Lowe 

1999), which, from both images, extracts local features or keypoints that are invariant to translation, 

rotation, and scale and partly invariant to affine or 3D projection and illumination changes. Using the 

FLANN (Fast Library for Approximate Nearest Neighbors) matching algorithm library (Muja & Lowe 2009), 

correlating point pairs between both keypoint sets are found. The best-matching point pairs are used as 

control points for a polynomial warping of the hyperspectral image to fit on the RGB raster. After the co-

registration, each overlapping point of both datasets features high-resolution spectral data, geographic 

position, and elevation, as well as the sun incidence angle at the time of the acquisition. 

3.5.6  Topographic Correction of Referenced HSI 

The topographic correction is similar to the approach described in Jakob et al. (2017). The main difference 

is the calculation of pixel-specific sun incidence angles, which is described above in Section 3.5.4. The 

calculated angles can now be used to apply a topographic correction algorithm. The c-factor method returned 

the best correction results of all the methods implemented in the toolbox and achieved a very smooth and 
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accurate correction even for high illumination differences (see Figure 3-4c). The topographically corrected 

image is calculated by 

where 𝑐 is 𝑎 𝑚⁄  from the linear regression of 𝑅W 	= 	𝑎 + 	𝑚 ∗ 	𝐼𝐿	and 𝐼𝐿	 = 	𝑐𝑜𝑠(𝑖) (Teillet et al. 1982, 

compare Section 2.6.5). The c-factor approach is applied separately for each spectral band. The correction of 

a common hyperspectral scan usually takes less than a minute. For very dark and deeply shaded regions of 

the image, pixels can be heavily overcorrected. These pixels are characterized by extreme, up to infinite 

values, which exceed the common value range of reflectance data distinctly. The affected pixels are detected 

and masked using appropriate thresholds, which are set according to the spectral reflectance minimum and 

maximum of the topographically uncorrected image (e.g., 0 and 1). 

3.5.7 Minimum Wavelength Mapping 

The finally corrected HSI can now be used for subsequent mapping and interpretation. In the present paper, 

a Minimum Wavelength (MWL) mapping approach is exemplarily used to test the quality and applicability 

of the data for mineral mapping. MWL mapping using the Wavelength Mapper (Bakker et al. 2011, van der 

Meer et al. 2018) aims to estimate the position of the deepest absorption feature in a given wavelength 

range. The position of the absorption minimum is a key to link surface mineralogy to subtle variations in 

mineral composition (e.g., shift of the Al–OH feature depending on the coordination of the Al). First, a hull 

curve is calculated and divided from the spectra. Second, position and depth of the most prominent 

absorption are computed using a second-order polynomial function. These two parameters can be used to 

create MWL position maps, where the position of the investigated feature is displayed by a color change, 

while the color intensity is controlled by the absorption depth. The success of the MWL mapping approach 

depends crucially on the analysis of subtle changes of position and depth of mostly small mineralogical 

absorption features. Therefore, it is an excellent possibility to evaluate image correction methods, which 

affect both the intensity ratio between single pixels of the image (topographic correction) and the shape of 

the spectrum itself (radiometric and atmospheric correction). In this context, the successful removal of 

distortions is as important as maintaining existing and real intensity relations and spectral features.  

3.5.8 Generation of Hyperclouds 

At the end of the workflow described above, each pixel of the HSI (and any HSI mapping product) has an 

assigned geographic position and elevation through the corresponding pixel in the projected and rasterized 

2D point cloud. By deriving this information for each pixel of the spectral raster, we can create a so-called 

“hypercloud”, which visualizes the spectral data as a 3D point cloud. The displayed data can comprise any 

spectral data or result, such as simple reflectance data, results from decorrelation, and endmember mapping 

methods, or MWL mapping results as presented here. The hypercloud can be displayed and processed 

further with respective 3D software such as CloudCompare (open-source software under General Public 

License, retrievable from http://www.cloudcompare.org/) or SKUA-GOCAD (Emerson/Paradigm, Houston, 

United States). If the hyperspectral survey consisted of several scans covering different parts of the observed 

area, the creation of hyperclouds can be an excellent option to set the single mapping results into a spatial 

context by simultaneously displaying or merging multiple hyperclouds. The 3D hypercloud also allows for 

integration with other spatial datasets such as boreholes or structural observations. 

𝑅V = 𝑅W ∗
cos(𝑆𝑍) + 𝑐
𝐼𝐿 + 𝑐  (3-5) 
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3.6 Results 

3.6.1 Nunngarut Peninsula, Maarmorilik, Greenland 

Two hyperspectral scans were acquired from two different scanning locations, covering the largest part of 

the south and east coast of the Nunngarut Peninsula (Figure 3-1a). The approximate distance between 

sensor and observed target ranged between 2 and 5 km for the majority of all outcrop-related image pixels. 

Despite overall dry and sunny conditions during acquisition, numerous sharp atmospheric absorption 

features within the spectral data (see Figure 3-3 and Figure 3-7) suggested a high influence of the 

atmospheric layer between the sensor and the target. Figure 3-7 displays the known major atmospheric 

contributions (in this case water vapor, CO2, O2, and O3) to the overall observed atmospheric perturbances 

and the resulting calculated spectrum used for the corrections. We showcase that the radiometric correction 

approach presented here allows us to remove the influence of the atmosphere almost completely, whereas 

typical mineral-related spectral features of the Mârmorilik Formation remain. In the resulting 

atmospherically corrected target spectrum, the remaining absorption features are indubitably attributable 

to characteristic mineral features. Besides the distinct carbonate feature of the Mârmorilik marbles, the 

characteristic AlOH and OH/H2O features are clearly represented. These characteristic absorptions are 

related either to abundant evaporitic gypsum and/or clay minerals originating from inclusions or nearby 

pelite horizons known to be present in this lithological unit. 

 

Figure 3-7. Contribution of geological target and atmosphere to an exemplaric observed reflectance 

spectrum (Nunngarut study area, Mârmorilik Formation). At this, the target contribution equals the 

reflectance spectrum after atmospheric correction. 
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Scan 1, imaging the south facing cliff of the Nunngarut Peninsula, was directly opposed to the sun during 

the measurements and is therefore evenly illuminated. In contrast, Scan 2, acquired in the morning and 

facing the eastern coast of the peninsula, featured high illumination differences, which made a topographic 

correction crucial for the subsequent mapping process (Figure 3-4c). 

With atmospheric and topographic corrections successfully applied to the hyperspectral datacubes, the 

datacubes provide the basis for a characterization of the mineralogical composition of the Mârmorilik 

Formation carbonates, with relevance for exploration mapping. The identification of different carbonates 

from hyperspectral data is possible using the position and depth of the carbonate-related vibrational 

overtone absorption band between 2310 and 2340 nm (Gaffey 1985). Whereas pure calcite features an 

absorption around 2340 nm, the absorption band of pure dolomite occurs at 2320 nm.  

Carbonate-related absorptions at even shorter wavelengths can indicate an occurrence of tremolite together 

with dolomite. This relationship is confirmed by spectroscopic analysis of representative rock samples from 

the Mârmorilik Formation (Figure 3-8a). Elemental and mineralogical composition of the samples are 

further validated by pXRF (portable X-ray fluorescence) and thin section analysis, respectively (see Rosa et 

al. 2017; pers. commun. C.A. Partin). From the pXRF results, the respective Ca/Mg ratios of four to six 

measurement spots on each sample were calculated and compared to the classification of limestones and 

dolomites of Chilingar (1957). Sample #SLA15 featured high Ca/Mg ratios between 31.2 ± 0.7 and 619.3 ± 

13.7 and would be therefore classified as calcitic limestone. The ratio of sample #562032 ranged between 

2.0 ± 0.5 and 5.9 ± 0.9, indicating a highly dolomitic limestone or calcareous dolomite. Sample #562048 

ranges between a dolomite and magnesian dolomite with a low Ca/Mg ratio between 1.0 ± 0.1 and 2.0 ± 0.1 

(Chilingar 1957).  

 
Figure 3-8. Spectral validation of the Minimum-Wavelength-Position-based mapping of the carbonate 

composition at Nunngarut test site. (a) Lab point spectra of three carbonate samples of the Maarmorilik 

formation, representing typical calcitic, dolomitic, and tremolite-rich dolomitic end members; (b) HSI 

spectral plot of the sampling positions marked in Figure 3-9, representing calcite-, dolomite-, and tremolite-

rich dolomitic end members of the scene. A continuum removal was applied on all spectra. Elemental and 

mineralogical composition is further validated by portable XRF (pXRF) and thin section analysis, 

respectively (see Rosa et al. 2017). 
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A simple MWL mapping approach hence provides a good means of distinguishing these different carbonate 

phases in the outcrop (Figure 3-9). Pelite horizons and noncarbonatitic rocks, which are spectrally 

characterized by a very weak or nonexistent carbonate feature, were masked out using a threshold based 

on the MWL depth of the mapped carbonate feature. The contact between the upper and lower Mârmorilik 

Formation is clearly visible on the east-facing slope of Nunngarut, as the lower Mârmorilik Formation is 

dominated by dolomite interbedded with tremolite-rich horizons (Garde 1978), whereas the upper 

Mârmorilik Formation is calcite-dominated. Also, a dolomitization along faults can be traced. 

 

 
Figure 3-9. 3D hypercloud of two individual HSI image scenes overlain on photogrammetric RGB point cloud 

of the Maarmorilik marble cliffs. Minimum Wavelength Position Mapping was applied to both HSI datacubes 

to highlight variations in carbonate composition. HSI 1, 2 and 3 mark the sampling points of Figure 3-8. 

3.6.2 Corta Atalaya, Riotinto, Spain 

For the Corta Atalaya, three overlapping hyperspectral scans are used to demonstrate the described 

workflow (Figure 3-1b). The scans were acquired from the same panorama viewpoint of Corta Atalaya, but 

at different times: Scan 1 was acquired in March 2016, and Scans 2 and 3 were acquired in October 2016. 

The distance between sensor and target ranges broadly between 400 and 1100 m. The conditions on both 

acquisition days were dry and sunny, with a very good and constant illumination of the imaged pit wall. 

Despite the shorter distance to the target compared with that at Nunngarut test site and the Mediterranean 

climate conditions, i.e., with hot and dry summers, distinct atmospheric absorption features were observed 

in the image data. All scans were atmospherically corrected and geometrically rectified using the 

photogrammetric pointcloud. A topographic correction was attempted but deemed unnecessary in the end, 

because the geologically most interesting northern and eastern part of the outcrop are evenly illuminated, 

and the shaded southern wall of the pit does not contain sufficient spectral information. After preprocessing 

and correction of the scenes, a Minimum Wavelength Position Mapping of the AlOH feature between 2190 

and 2215 nm was conducted on all three scenes, to exemplarily show the capability of the corrected datasets 

for alteration mapping. The subsequently created hyperclouds show a great coincidence in the mapped 

alteration zones and could be easily merged into one final Hypercloud AlOH map (Figure 3-10).  
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Figure 3-10. 3D hypercloud display of three individual HSI image scenes overlain on photogrammetric RGB 

point cloud of the Corta Atalaya open pit. All three scenes were used for MWL position mapping to highlight 

lithological variations associated with differences in the abundance of AlOH-bearing minerals. The white 

rectangle marks the area shown in Figure 3-11. The color differences in the MWL hypercloud show excellent 

correlation with the known main lithologies and alteration zones (Sáez & Donaire 2008). Zones not described 

in Sáez & Donaire 2008 are indicated with question marks. Sample locations for Figure 3-11b are marked 

with white circles and numbers. 

The spectral validation of the mapping result was conducted using a set of field spectrometer data acquired 

in situ. Due to the restricted accessibility of the mine pit, the spectral readings are limited to a few pit levels. 

However, a wide range of lithologies could be covered and compared to the respective HSI pixel spectrum. 

A selection is shown in Figure 3-11a and proves the similarity of spectral shape and the occurrence of 

spectral features between image and field spectra. The given field sample density allows also us to validate 

the AlOH MWL position distribution. In Figure 3-11b the AlOH feature position of each field spectrometer 

measurement within the main region of interest is displayed as colored squares using the same color scale 

as the underlying HSI mapping result. 
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Figure 3-11. Validation of HSI data of the Corta Atalaya open pit. (a) Left: Spectral signature improvement 

of Sample Point 1 within different processing stages. Right: Comparison of spectral shape between field 

spectra and image spectra of the approximate same location. Sample locations are marked with white circles 

and numbers in Figure 3-10 and Figure 3-11b; (b) Comparison of feature position: minimum wavelength 

map for AlOH (see map extent in Figure 3-10) and feature position of field spectra (colored squares; same 

coloring scheme). 

3.7 Discussion 

3.7.1 Radiometric and Atmospheric Correction  

Both test scenarios contain spectral distortions due to atmospheric absorption features. At Corta 

Atalaya/Spain, most of the observed atmospheric absorption features could originate both from upwelling 

water vapor of the pit lake and from dust and particles caused by the nearby mining activities in the adjacent 
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Cerro Colorado open pit. This assumption is supported by the distribution of the atmospherically disturbed 

image pixels, which are not directly related to the distance of target and sensor, but mainly occur in areas 

where the signal needed to pass over the water surface in the mining pit. In contrast, for the Greenland site, 

the intensity of the atmospheric absorptions was roughly proportional to the distance between sensor and 

target. Here, contributions both from general air humidity and from upwelling water vapor from the fjords 

separating Nunngarut Peninsula and the respective observation positions on adjacent cliffs can be assumed. 

The overall atmospheric influence on the signal was much higher than that at Corta Atalaya, which may be 

related to both the distinctly increased distance to the target and the generally higher air humidity of the 

arctic climate. The described novel atmospheric correction workflow considers this variability in the 

composition of the atmospheric layer between sensor and target by extracting the shape of the correction 

curve directly from the scene and determining the correction intensity according to the pixel-specific 

atmospheric absorption depth and not the distance to the target.  

For all five processed datasets, the atmospheric correction approach was fast and robust. Atmospheric 

absorptions were removed, whereas the general spectral shape and smaller mineral-related features were 

maintained. It was shown that the correction approach respects all abundant atmospheric components that 

contribute to the extracted pervasive signal and which we attribute to atmospheric perturbations. Besides 

water vapor, this may comprise any abundant atmospheric gases (such as CO2 or O3) and minor or pervasive 

amounts of atmospheric dust that show significant spectral absorption features in the VNIR and SWIR. Only 

in the rare case of an extreme amount of locally concentrated atmospheric dust or gas, e.g., due to blasting 

or the exhaust of waste gases within a mine, may the atmospheric correction fail for the affected image 

region. In this case, the local atmospheric perturbations will deviate distinctly from the used correction 

spectrum and cause an unsatisfactory spectral result. However, such scenarios can be avoided easily by the 

respective timing of the image acquisition, e.g., ahead of scheduled blasting operations.  

It should be noted that for highly distorted pixels, spectral noise can remain at the former atmospheric 

absorption positions. The affected pixels mostly originate from extremely distant targets. Here, the 

proportion of the target signal on the spectral signal received at the sensor is so low that a removal of the 

atmospheric influence leads to an extremely low signal-to-noise ratio of the returned spectrum, which 

therefore appears noisy and featureless. This may suggest an upper distance limit for long-range HSI. 

However, this limit would be at an up to ten or more kilometer distance, depending on the atmospheric 

conditions of the scene. At this distance, the resulting pixel footprint on the ground would be in the range 

of several hundred square meters, questioning the informative value of the measurement. In conclusion, we 

were able to prove the successful application of the introduced atmospheric correction approach within a 

reasonable imaging distance. 

3.7.2 Topographic Correction  

As shown in the example of Nunngarut Peninsula in Figure 3-4, topographic correction is necessary under 

certain circumstances, as it ensures the comparability of absorption intensities between differently 

illuminated parts of the image. However, whereas the correction is effective for the adjustment of intensity 

changes, it cannot reconstruct spectral features in poorly illuminated areas of the image with associated low 

signal intensity, SNR, and feature detail. Therefore, we recommend a masking or at least careful 

interpretation of extremely poorly illuminated or deeply shadowed image parts. We further suggest 

evaluating the usefulness of a topographic correction for each imaged scene. From our general experience 

and the specific performance of the shown examples, natural targets such as mountain slopes or cliffs often 

have a smoother topography and therefore more consistent illumination than manmade outcrops like 
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quarries and open pit mines. In natural targets, with the resulting smoother transitions between image parts 

with maximum and minimum illumination, respectively, the topographic correction usually performs well. 

Artificial targets often feature a terraced geometry and/or rough edges due to blasting and excavation, which 

generates large illumination differences. A topographic correction will not necessarily give an improvement 

of the image, as the applied corrections in the well-illuminated parts are minor, while the correction of the 

dark parts may be futile due to the mentioned reasons. 

The c-factor method, despite its good performance for topographic correction, needs to be applied carefully. 

Due to the band-wise calculation of the correction factor using a linear regression, extreme or infinite values 

in one or several bands can cause an exaggeration of the correction factor for those bands and, finally, a 

change in the spectral shape. These peak values can be caused by bad pixels in the HSI sensor, which, due 

to the push-broom character of the camera, form bad pixel lines that are restricted to few adjacent bands. If 

a topographic correction needs to be applied, a correction or masking of those bad lines is inevitably required 

for a reliable image result.  

3.7.3 Validation 

The spectral validation using field spectrometer data demonstrated a great accuracy of both spectral shape 

and feature position of the corrected image spectra. In general, the difference between the interpolated 

minimum wavelength of field spectra and the corresponding library spectra for a certain absorption feature 

was below 5 nm in both areas of investigation. This value represents the band sampling distance of the 

SWIR data and lies below the achievable spectral resolution of 12 nm (FWHM). Locally, higher errors 

between some image and validation spectra points were observed, but these may be related to the large 

difference in spatial footprints of the different instruments. The field spectrometer data were retrieved from 

one or several 8 mm spots of a single lithologically representative sample, whereas the respective HSI pixel 

can easily represent a mixture of an area of some square meters of outcrop, depending on the distance to 

the sensor. Local variability in alteration can affect the representability of the spectrometer reading and lead 

to deviations from the recorded image spectrum at the same location. Additional to the spectral variations, 

slight mislocation of the spectrometer readings, which can be caused by the limited accuracy of the sample 

GPS position that can reach up to 5 m, needs to be taken into account. 

3.7.4 3D Integration 

The potential, the spatial accuracy, and a possible application of the HSI integration with photogrammetric 

point clouds is discussed in more detail in Salehi et al. (2018). The current paper confirms not only the 

successful 3D integration for two additional examples, but further proves the capability of the workflow to 

integrate and merge hyperspectral datasets from different camera locations and viewing angles as well as 

different acquisition dates and times by eliminating the effects of topography, different illumination 

conditions, and atmospheric absorptions. This allows the use of hyperspectral data in a new way, as it 

facilitates the evaluation of spatial relationships between hyperspectral results that are not visible from one 

observation point or displayable in one dataset, such as opposing faces of a mountain or a mining pit.  

3.8 Conclusions 

With this paper, we present a novel approach for the atmospheric and topographic correction of long-range 

ground-based hyperspectral imagery. Such corrections are essential for obtaining reliable information on 

mineral composition in geological applications. The general workflow is partly based on the algorithms 

developed for drone-borne and vessel-based HSI data, which were presented and used in our previous papers 
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(Jakob et al. 2017, Salehi et al. 2018), but is adapted and extended by adding radiometric and topographic 

correction approaches to meet the particular challenges of long-range, ground-based HSI.  

The most important outcomes of this paper are the following: 

1. The correction spectrum for the atmospheric correction is derived directly from the scene, and the 

correction intensity is determined according to the pixel-specific atmospheric absorption depth. As a 

result, the workflow is independent from knowledge about the composition of the atmospheric layer or 

the distance to the target. 

2. The incidence angles for the topographic corrections are calculated using the point normals of the 

photogrammetric 3D outcrop model. This allows us, for the first time, to utilize common topographic 

correction algorithms, such as the used c-factor method, for vertical outcrops.  

3. The generation of a hypercloud, i.e., a geometrically and spectrally accurate combination of a 

photogrammetric point cloud and the HSI datacube, is achieved through the projective transformations 

of a photogrammetric 3D outcrop model. The removal of the effects of atmosphere and topography 

allows the integration of hyperspectral mapping results originating from different camera positions, 

dates, and, therefore, varying illumination conditions. 

4. Two study areas with five HSI datasets in total proved the applicability and robustness of the workflow 

in differently challenging measuring conditions regarding climate, distance, atmospheric composition, 

geological diversity, and mapping objectives. A successful MWL mapping demonstrated both the 

geological applicability and the accuracy of spectral absorption positions and depths.  

5. The accuracy and reliability of the created data and mapping results is validated by field spectra and 

the mineralogical analysis of geological samples.  

6. The presented workflow is fast and simple and requires only a minimum of input parameters. Most of 

the processing steps are automatized and need no or extremely few manual actions.  

7. The workflow enables (i) reliable spectral mapping of vertical and completely inaccessible outcrops; (ii) 

three-dimensional integration of multiple scans and other data sources; and (iii) a higher spectral 

resolution, range, and SNR than most drone- or air-borne HSI data. 

On account of the promising quality of the presented datasets, we highly encourage the use of carefully 

processed and corrected long-range ground-based HSI data for geological applications and suggest a further 

development of highly adapted topographic and atmospheric correction algorithms. In several upcoming 

application-based papers, we will further present and discuss the geological interpretation of data corrected 

with the presented workflow and their integration with other data types such as structural data and long-

wave infrared (LWIR) hyperspectral data. 
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Chapter Discussion  

In the last couple of years, a number of studies deploying terrestrial HSI for geological outcrop sensing have 

been published by different research groups (e.g., Denk et al. 2015, Murphy et al. 2015, Greenberger et al. 

2016). A large motivation is the high number of targets of interest, which no other approach could map 

sufficiently yet. The usually large and vertical oriented targets, such as cliffs, river incisions, or coast lines, 

are often barely accessible for geological field mapping and sampling, while the vertical orientation inhibits 

air- or spaceborne surveys. Photogeology, i.e. the geological interpretation according to high-resolution RGB 

imagery, is a common mapping approach for such outcrops, however, the informative value is often limited 

and depending on the subjective interpretation of the geologist. Hyperspectral measurements represent a 

promising alternative, allowing a remote and objective analysis according to the spectral characteristics of 

the material, extended beyond the visible range of the electromagnetic spectrum. The sensors are easily 

deployable, fast in acquisition, and require minimum logistics and running costs, in particular, when 

compared to helicopter or extensive field mapping surveys. As the sensor platform is a stable tripod, there 

are basically no limits in sensor weight, enabling the use of high-quality sensors with high SNR and wide 

spectral ranges. First results such as mineral abundance maps or the location of the main spectral domains 

can be provided quickly after the acquisition to support the geologist in the field. Interesting geological 

structures can be identified for further investigation and a much faster, more targeted and meaningful 

sampling is possible.  

Despite the potential of terrestrial HSI data in geoscience and exploration, major challenges in regard to the 

geometric and radiometric correction of the data remain. Illumination variations and shadows are usually 

higher than for (near-)nadir data, as the angles between a (near-)vertical surface and the sun irradiance are 

rather small and the morphology variation of the target high. Correction algorithms for similar effects 

occurring in air- or spaceborne data exist, but require accurate information on the spatial orientation of each 

pixel compared to the illumination source. The required spatial registration of the HS data is, however, 

difficult. Most utilized sensors are designed as push broom scanners, which are commonly orthorectified 

using the current position and angle of the sensor during the acquisition of the specific line. While providing 

sufficient results in air-borne imaging, this approach partially can cause high location errors in terrestrial 

data. Due to the combination of high sensor-target-distance and strong morphology, smallest deviations in 

angle and position can lead to a crucial mis-location of the pixel. A promising registration approach featured 

the concurrent acquisition of HSI and terrestrial laser-scanning (TLS) on the same platform. Using common 

GCPs within both datasets, the external camera parameters of both sensors are calculated and used for an 

accurate registration of spectral and spatial information (Kurz et al. 2011, Buckley et al. 2013). In the 

presented study I use a different approach that utilizes the projection of an available 3D pointcloud into the 

HSI space while maintaining the original coordinates for each projected point in the resulting pseudo-

orthophoto. After automated keypoint-extraction-based registration of HSI and pseudo-orthophoto, each HS 

pixel is assigned to its respective 3D position and can be visualized in a geolocated 3D environment. This 

common space allows the integration of terrestrial HSI with any other available data, e.g., UAS- or airborne 

data, georeferenced lithological maps, geochemical measurements, point spectra, drill-core data, 

geophysical data or extracted structures and veins. It allows to set large datasets with different acquisition 

times and locations into a spatial context, to add spectral information for 3D modelling or to use 

morphological information for the interpretation of spectral images. If a target is covered by HS scans from 

different sides, one can attempt to interpolate the composition of material in-between the measured surfaces, 

which is either hidden under the surface (mountain) or already lost (open-pit mine). 
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The link between surface morphology and spectral characteristics is not only beneficial in the later 

interpretation, but is also prerequisite for the geometrical restoration as well as topographic correction of 

the HSI. The latter is particularly important for any spectral analysis in the SWIR. As the BRDF effect is 

wavelength-dependent, position, and depth of absorption features might appear shifted relative to other 

image regions with different surface orientation. If no correction is applied, this effect can lead to substantial 

errors in calculated mineral abundance and composition maps. Despite the importance of the topographic 

correction, it is usually not considered and makes the accuracy of results questionable. Validation data is 

often not presented or not available due to the inaccessibility of the targets. Within the presented paper I 

emphasize on the importance of such a correction and offer a straight-forward approach that allows the 

application of established topographic correction algorithms such as c-factor or minnaert. A restoration of 

core shadows is not implemented in the workflow and remains a future challenge. I commonly observed a 

drop of the reflectance information down to the noise level within core shadow areas, which questions the 

possibility of a spectral restoration in these regions.  

Longer range terrestrial measurements or acquisition over water bodies pose a specific challenge as the 

water vapor and general atmospheric thickness lead to spectral disturbances that can affect the spectral 

position and depth of important mineral-related features. Model-based atmospheric correction approaches 

are not applicable due to the variable and usually small viewing angle. Largely varying sensor-target-

distances and local water vapor cause varying intensities in atmospheric contribution over the image. The 

proposed atmospheric correction workflow is able to retrieve the spectral shape and intensity of the 

atmospheric contribution directly from the image, and, by that, is able to handle different scenarios without 

requiring user’s knowledge on atmospheric composition or pixel-wise sensor-target-distances.  

The presented study focuses on VNIR and SWIR HSI, however, an extension of the wavelength range to the 

LWIR would be an asset as it enhances the range of detectable minerals. While the geometric correction 

steps of the workflow do also apply for LWIR data, radiometric correction need to be adjusted. A careful 

temperature-emissivity-separation (TES) is required, utilizing different calibration targets and processing 

algorithms. Successful applications of LWIR data for outcrop sensing has been illustrated in several studies, 

such as Boubanga-Tombet et al. (2018), Kirsch et al. (2018) and Lorenz et al. (2018). 
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CHAPTER 4   INTEGRATION OF MULTI-SENSOR HYPERSPECTRAL IMAGING 

FOR NEAR-FIELD SENSING IN MINERAL EXPLORATION  

Preface 

The following chapter represents a yet unpublished manuscript that will be submitted shortly. It is dedicated 

to near-field/lab-scale hyperspectral imaging in mineral exploration, a topic that has evolved rapidly in the 

recent decade and underwent rapid development. In particular, the boom of available low-cost computing 

power and memory enabled the possibility to acquire and process large hyperspectral datasets for batch 

sample mapping in a controlled environment. A wide range of deployable sensors is available nowadays, 

providing high flexibility in spectral as well as spatial resolution and coverage. In reality, however, the data 

is usually acquired and interpreted in a fixed setup or by a single sensor only, which reduces the 

customizability of the setup to the current application. Fusion of data from different customized setups is 

challenging and usually not conducted. In the following study, the spatial integration of such multi-sensor 

datasets is demonstrated on data acquired from five commercially available HS sensors and a pair of stereo 

RGB cameras. A workflow for the integrated image analyses using advanced machine learning methods is 

presented. The suggested workflow is able to overcome differences in sensor and setup parameters as well 

spectroscopic characteristics, which allows e.g., a straight-forward integration of VNIR/SWIR and LWIR data 

or of sensors with highly different spatial and spectral resolution for a more accurate classification result.  
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4.1 Abstract 

Hyperspectral mapping in the near-field or lab-scale (sensor–target distance below two meters) has 

emerged as a fast and non-invasive characterization method for larger amounts of complex sample 

material. Geological samples in particular pose a challenge due to their compositional and textural 

complexity. We use a multi-sensor setup to allow a comprehensive identification of minerals important 

from a lithological and resource perspective. Such a setup ideally covers (1) high spatial resolution RGB 

stereo cameras, which can be utilized to retrieve surface elevation information such as objects or textures, 

(2) VNIR and SWIR hyperspectral-based mapping for the localization of alteration minerals, and (3) LWIR 

hyperspectral-based mapping for the detection of most rock forming minerals such as silicates and 

carbonates. To allow the spatial integration of all datasets, current multi-sensor solutions are usually fixed 

to sensors with similar FOV and spatial resolution. In such setups, a customized sensor integration is not 

possible, preventing the target-specific setting of the desired amount of detail and acquisition speed. This 

paper describes a workflow for the acquisition and processing of a multi-sensor dataset using a range of 

hyperspectral sensors selected to optimize specific instrumental parameters crucial for geological sample 

characterization, i.e. wavelength range, spatial and spectral resolution, signal-to-noise ratio, sensitivity, 

acquisition speed, and data handling. We evaluate the data on a set of geological samples with detailed 

mineralogical and spectral validation data that is used to confirm the outcomes of the study. We show that 

the spatial and spectral integration of the resulting multi-sensor dataset is feasible and advisable. We 

propose a workflow for the fusion of the multi-sensor data for image classification, using sophisticated 

Orthogonal Total Variation Component Analysis (OTVCA) and Support Vector Machine (SVM) 

classification with cross-validation. On the outcome, we analyze the potential application fields of the 

different sensors in mineral mapping and show the value of a multi-sensor approach. Beyond the field of 

mineral mapping, the combination of sensors has many potential application fields, e.g. in the mineral 

processing, recycling or food industry. 

Keywords: hyperspectral; multi-sensor data; data fusion; feature extraction; Support Vector Machine 

(SVM); Orthogonal Total Variation Component Analysis (OTVCA); near-field mineral exploration 

4.2 Introduction  

The usage of spectroscopic information for the evaluation, classification, and sorting of large amounts of 

material is an established approach in industry and mining. As speed, cost-efficiency, and reliability are 

crucial, the measurement setups are usually simple and highly adapted to a specific sorting problem. The 

algorithms rely often on binary decisions (e.g., ore – waste) based on experience-based threshold values 

allowing the separation into predefined object classes according to shape, size or a specific spectral property 

(Wotruba and Harbeck 2010). In these cases, a high spectral resolution is not needed such that the acquired 

dataset can be limited to a few spectral bands. Hyperspectral solutions exist, but are usually focused on the 

UV/VNIR or lower SWIR range of the electromagnetic spectrum. Commercial sensor systems are available 
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by several companies, such as LLA Instruments GmbH & Co.KG, Perception Park GmbH, Spectral Imaging 

Ltd. (Specim), and BK Instruments Inc.  

Whereas these approaches are sufficient for a wide range of applications, the analysis of spectrally and 

spatially complex samples such as drill cores and other geological samples requires higher spectral 

resolution and a wider spectral range. To enable full spectrum analysis at a sufficient speed, a common 

approach is the integration of spectral information over a larger spatial area. This is especially advantageous 

if the spectral composition of the analyzed samples is locally homogenous and only large-scale 

compositional changes should be recorded. The most prominent spectral point sampling sensor is the 

HyLogger (Mason & Huntington 2012, Schodlok et al. 2016), which integrates a point spectrum over several 

measurements and can cover VNIR, SWIR and LWIR. It is widely used for drill-core logging in mineral 

exploration (Tappert et al. 2011, Arne et al. 2016, Ayling et al. 2016, Gordon et al. 2016). The spectral point 

measurements are often combined with other parameters such as pXRF (Burley et al. 2017), magnetic 

susceptibility or gamma ray attenuation (Ross et al. 2013). However, these methods are usually slow and 

pose a security issue in radiation safety. There have also been approaches to integrate spectral point 

sampling with RGB imaging for a 2D extrapolation (Wang et al. 2016).  

The spectral logging approach is often not sufficient when a more detailed analysis of mineralogical 

composition is required as well as for the mapping of textures, structures, veins or local mineral associations 

in complex deposits. To add this local spatial component, higher resolution spectral mapping at a sufficient 

ratio between coverage, speed, and cost is needed. One of the first HS mapping approaches of drill cores was 

performed by Kruse (1996) using a PIMA II spectrometer for spectral sampling in a grid to create a dataset 

similar to an HS datacube. Since then, the usage of push broom HS scanners for drill core analysis came to 

the forth. With these, the HSI can be created by moving samples and sensor relative to each other at constant 

speed. This allows the acquisition of data from different subsequent sensors at the same time, resulting in 

a high throughput of material. Most commonly, single or integrated sensors covering VNIR (Bolin & Moon 

2003) and/or SWIR (Kruse et al. 2010, Baissa et al 2011, Turner et al. 2014, Mathieu et al. 2017, Dalm et al. 

2018) are used, often in combination with RGB image data. Recent studies aim at automatic vein extraction 

directly from the HSI to allow an interpretation of veins and structural features based on their spectral and 

spatial characteristics (Tusa et al. 2019). To handle the large amount of data, machine learning approaches 

have recently been applied to drill core HS data. Using machine learning techniques, Mineral Liberation 

Analysis (MLA) of a small representative sample can be fused with HSI and extrapolated to a larger scale 

by defining mineralogically meaningful classes, which themselves can be used as training data for the 

automatic interpretation of a much larger sample batch (Contreras et al. 2018). 

The mineral mapping capabilities of VNIR and SWIR are mainly limited to alteration minerals such as iron 

oxides and hydroxides, or clays (Hunt 1977). Mapping of important rock-forming minerals, such as quartz 

and feldspars, requires an extension of the spectral range to the LWIR. However, the combined 

interpretation of VNIR/SWIR and LWIR data is challenging due to the different nature of occurring 

spectroscopic features. Spectral absorptions in the VNIR and SWIR are usually caused by electron transfer 

processes and overtones of vibrational bonds (Hunt 1977, see section 1.1). The resulting features appear as 

rather discrete, narrow, and wavelength-specific minima. In contrast, absorption related features in the 

LWIR appear usually as wide, smooth and highly overlapping reflectance maxima (Clark et al. 1999). 

Commonly, VNIR/SWIR and LWIR data are interpreted separately, only few studies have attempted an 

integrated analysis. Two general approaches have been published, (1) the independent analysis of each 

dataset and subsequent integration of abundances by geologically directed logical operators or clustering 

(Kruse 2015, McDowell and Kruse 2016); and (2) the concurrent analysis of both datasets after wavelength-
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range specific absorption feature analysis (Kopačková and Koucká 2017) or continuous wavelet analysis 

(Feng et al. 2018). At the moment only two HS LWIR sensors are available for lab-scale imaging, the Specim 

AisaOWL and the Telops Hyper-Cam. The push broom OWL is integrated as part of the Specim SisuROCK 

drill-core scanner setup (e.g. Kuosmanen et al. 2015). The FOV of the OWL is identical to other available 

SisuRock sensors, which allows a straight-forward co-registration of RGB, VNIR, SWIR, and LWIR data 

(Reginiussen 2014, Armengol 2015, Kendro 2015, Tappert et al. 2015). However, this sensor provides only 

a rather coarse spatial resolution (1.6 mm in the SisuRock setup). The Telops Hyper-Cam is designed as 

FTIR (Fourier-Transform Infrared Spectrometry) frame imager and allows a distinctly finer spatial and 

spectral resolution at a comparable spectral sensitivity. No publications on its usage for lab-scale 

mineralogical sample analysis or drill-core scanning exist.  

Those apparent gaps in lab-scale multi-sensor HSI integration motivated us to investigate (1) the 

integrability and value of multi-sensor datasets acquired in different experimental setups to achieve optimal 

conditions for the desired application, (2) the fusion of multi-sensor data for a more reliable mineral 

detection using sophisticated machine learning algorithms, and (3) the evaluation of the used commercial 

sensors for application fields in mineral exploration. We acquire image data of a set of geological samples 

divers in mineralogy, using stereo RGB imagery as well as five HS sensors with differing specifications in 

terms of sensor design, acquisition speed, spatial resolution, and spectral range. For validation, we obtained 

mineralogical information in form of MLA (Mineral Liberation Analysis) maps and point measurements 

covering the complete electromagnetic spectrum in the wavelength range between 0.35 and 15.39 µm. We 

co-register the datasets preferably using automatically extracted keypoints. We calculate a surface model 

from stereo RGB data and extract both elevation and contour information to separate sample pixels and 

background in all datasets. We use Orthogonal Total Variation Component Analysis (OTVCA) feature 

extraction to extract about five to seven most variant features on each dataset, reducing overall data 

dimensionality and size. This step is not only required to reduce the overall processing time and data 

redundancy, but also to tackle the Hughes Phenomenon (Hughes 1968). This effect is also known as “curse 

of dimensionality” and refers to the drop of classification accuracy that potentially is caused when the 

number of spectral bands is increased while the number of training samples stays limited. We use the 

extracted features as input for SVM with Radial Basis Function kernel (SVM-RBF) to map mineralogical 

classes. We demonstrate this workflow on two sample subsets, (1) with spectrally pure and well-defined, 

but spatially highly unbalanced classes; and (2) with spatially balanced, but spectrally mixed, variable and 

sparse class definitions. We compare the classification accuracies of several single- and multi-sensor inputs 

and discuss the influence of the sensor specifications on the classification outcome. For an overview on the 

proposed workflow, refer to Figure 4-1.  

4.3 Data Acquisition and Processing 

4.3.1 Experimental Setup & Sensor Parameters  

The used hyperspectral sensors are selected to cover the mineralogically most important wavelength ranges 

in the VNIR, SWIR, and LWIR. Additional important parameters for the applicability in scanning of 

geological samples, such as spatial and spectral resolution, acquisition speed and data handling, are 

evaluated by comparing different sensors operating at similar wavelength ranges. The important 

specification and experiment parameters of the used sensors are shown in Table 4-1 and Table 4-2.  
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Figure 4-1. Proposed workflow for the fusion of multi-sensor HSI data using OTVCA feature extraction and 

SVM classification.  

In particular note the differences in spatial resolution and field of view (FOV), which do not allow a co-

registration by simple overlaying. The sensors are used in specific setups that ensure optimal conditions for 

each acquisition (see Figure 4-2 for all system setups) and demonstrate the integration of data regardless 

of changing external conditions. Such, the Specim AisaFENIX (from here on FENIX) and the Specim sCMOS 

(from here on sCMOS) are operated in a Specim SisuRock frame.  

 

Table 4-1. Specifications of the used sensors in their current setup. 

Sensor Spectral range Spectral res. 

(FWHM) 

Approx. 

Peak-SNR 

Image size (px) FOV 

 

Spatial 

res.1 

Teledyne Dalsa 

C4020 (2x) 

RGB (Bayer) -  - 4000x2000 px 

frame 

54.6°x 

27.3° 

0.15 mm 

Specim sCMOS VNIR: 0.40–1.00 µm 2.9 nm 170:1 2185 px line 15° 0.08 mm 

Specim FX10 VNIR: 0.40–1.00 µm 5.5 nm 600:1 1024 px line 54° 0.58 mm 

Specim FX17 SWIR: 0.90–1.70 µm 8 nm 1000:1 640 px line 75° 0.96 mm 

Specim AisaFENIX VNIR: 0.38–0.97 µm 

SWIR: 0.97–2.50 µm 

3.5 nm 

12 nm 

600–1000:1 

1050:1 

384 px line 32.3° 1.54 mm 

Telops Hyper-Cam LWIR: 1300–881 cm-1 / 

7.70–11.80 µm  

6 cm-1 /  

36–76 nm 

250:1 320x256 px 

frame 

6.4°x 

5.1° 

0.62 mm 

Spectral Evolution 

PSR-3500 

VNIR: 0.35–1.00 µm 

SWIR: 1.00–2.50 µm 

3.5 nm 

7–10 nm 

600:1 Point 

measurement 

- ~5.00 mm 

Agilent 4300 FTIR SWIR-LWIR:  

4500–650 cm-1 /  

2.22–15.39 µm  

2 cm-1/  

1–47 nm 

 Point 

measurement 

- ~2.00 mm 

1 length of quadratic pixel 
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Table 4-2. Setup parameters for each sensor used for the experiments performed in the present study. 

Sensor Sensor-Target- 

Distance 

Exposure 

time 

Frame 

rate 

Conveyor 

speed1  

Binning 

(spat/spec)1 

Data size 

(150x240 mm) 

Teledyne Dalsa 

C4020 (stereo) 

60 cm 1 ms 8 Hz 

(frame) 

13 cm/s - 75 MB 

Specim sCMOS 65 cm 10 ms 60 Hz 0.8 cm/s 2/1 5600 MB 

Specim FX10 58 cm 4 ms 240 Hz 13 cm/s 1/2 133 MB 

Specim FX17 40 cm 4 ms 140 Hz 13 cm/s 1/1 50 MB 

Specim AisaFENIX 102 cm VNIR: 14 ms  

SWIR: 4 ms 

30 Hz 5 cm/s VNIR: 2/2 

SWIR: 1/1 

37 MB 

Telops Hyper-Cam 177 cm 0.25 ms 0.08 Hz 

(frame) 

- - 31 MB 

1 if applicable 

 

Due to its smaller FOV in the current setup, two separate scans are needed to cover the sample set with the 

sCMOS. The Specim FX10, FX17, and two Teledyne Dalsa RGB cameras (from here on FX10, FX17, and 

RGB) are used in a custom setup above a moving conveyor belt, but could also be mounted in the SisuRock 

frame. In both setups, even illumination of the respective imaged area is achieved by two (SisuRock) or four 

(conveyor belt setup) broad-band quartz-tungsten halogen units (without protective glass cover) covering 

the VNIR and SWIR. For all line scanners, the images are created over time by constant linear movement of 

the sample table. The RGB cameras are mounted in opposing angles of approximately 3–5° to allow later 

stereo matching and surface reconstruction. The Telops Hyper-Cam (from here on HC) is operated in a 

separate test stand allowing an easy adjustment of the sensor-target distance (see Figure 4-2).  

 

 
Figure 4-2. Schematic illustration of the experimental setup (not to scale). Detailed setup parameters can 

be found in Table 4-2. 

The scene is illuminated by two STIR® infrared quartz radiators such that they provide the highest possible 

irradiance without a signal saturation at diffuse reflectors. Due to a short, but noticeable pre-heating phase 

the units are left switched on during the whole experiment; the samples are only moved into the scene right 

before image acquisition. In this way, heating of the sample is neglectable, i.e. the sample emissivity does 

not increase over the time of the measurement. For the subtraction of ambient radiation and temperature-
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related sample emissivity, a dark scene without IR illumination is acquired in addition to each illuminated 

image. A sand-blasted aluminum panel of high reflectivity (~83%) is used as diffuse reflector to obtain the 

pure irradiance signal. The small FOV of the used lens and the sample-detector-distance of 1.77 m results 

in a high spatial resolution, but distinctly limits the image footprint. For this reason, four single images are 

needed to cover the presented sample set.  

All sensors are used at no or low binning to take advantage of the maximum deliverable spatial and spectral 

resolution. Exposure time and frame rate are balanced to achieve sufficient signal response at a reasonable 

conveyor speed. The entire measurement series is conducted under directed artificial irradiance. Undirected 

irradiance from ambient light was reduced to avoid noise by unstable or flickering irradiance from ceiling 

lamps or daylight (especially at VNIR and SWIR). The sensor-target-distances are primarily defined by the 

minimal focus distance, but also adjusted to deliver a good compromise between spatial resolution and 

coverage. 

4.3.2 Samples Analyzed 

A batch of samples with different spectral, textural, and spatial features is investigated. This comprises 

several cut rocks and thick-sections (~2mm thickness) from different mineral deposits, two drill-core halves 

(cut face, one up and one down), one hand specimen, as well as three epoxy resin disks with Rare Earth 

Element (REE)-bearing minerals from important deposits around the world (Figure 4-3).  

 

 

Figure 4-3. RGB photo of the analyzed sample setup, including thick- and thin-sections, drill-cores, hand 

specimen, and epoxy-resin embedded REE minerals. Sample analyzed in detail in current study are marked 

and labeled in white. 

The samples are arranged and fixed on a tray to avoid any positioning changes between the single 

measurements. For clarity, only a subset of all samples will be depicted in the current study (marked with 

white frames in Figure 4-3). A detailed overview on those sample’s respective type, origin, and mineralogy 

is given in Table 4-3.  
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Table 4-3. Overview on the analyzed samples regarding origin, surface treatment, and mineralogy. Sample 

positions are marked in Figure 4-3. 

Sample Number Origin Sample treatment Main mineralogy1 / main REE (if applicable)2 

NA-RZ2 Carbonatite, 

Namibia 

Rock, clean cut Cal, Ms, Ab, Ap, Fl / La, Ce, Nd 

TS04-802 Copper-Gold-  Rock, clean cut Ms, Ab, Qz, Gp, Or, Fe-Oxide, An70, Chm, Chl, Hbl, Ilt 

TS04-863 Porphyry, Rock, clean cut Qz, Ms, Py, Or, Gp 

TS04-1551 Romania Rock, clean cut Qz, Ms, Ank, Or, Gp, Hbl 

TS04-1900  Rock, clean cut Qz, Ab, Ms, An70, Gp, Or, Chm, Hbl, Py, Ilt 

DT-B3 Miscellaneous Embedded mineral 

grains, polished 

Parisite / La, Ce, Pr, Nd, Sm, Y 

Bastnaesite / La, Ce, Pr, Nd, Sm 

1 MLA map > 1 area%, descending order, minerals abbreviated after IMA (International Mineralogical Association); 2 Rare Earth 

Elements > 0.1 wt.%, determined with Electron Micro Probe Analysis (EMPA, DT sample) 

 

For spectral validation, all samples are analyzed at single reference points using the Spectral Evolution PSR-

3500 (from here on PSR) and Agilent 4300 FTIR handheld spectrometer (from here on FTIR). Each PSR 

spectrum is the result ten consecutive, averaged measurements. A PTFE panel with over 99% reflectance in 

the VNIR and over 95% reflectance in the SWIR is used for reflectance conversion. Each FTIR scan is created 

by 32 consecutive, averaged measurements and converted to reflectance using a diffuse gold standard. 

Using this approach, each reference point is characterized by a continuous, high-resolution reflectance 

spectrum ranging from 0.35 µm (Near-UV) up to 15.4 µm (LWIR). From all rock cuts and thick-sections, 

high-resolution MLA maps exist. 

4.3.3 Data Pre-processing 

Teledyne Dalsa RGB:  

The raw images are saved as bayer 8-bit frame, where the individual information for the red, green, and 

blue channel is saved side by side within a single channel in a grid-like pattern (Figure 4-4, left/middle). 

With knowledge of the color sequence, an RGB image can be calculated by respective interpolation of all 

red, green, and blue pixels as new separate image channels (Figure 4-4, right).  

 

Figure 4-4. Schematic layout of a bayered RGB matrix (left), exemplary bayered RGB image (middle) and 

corresponding RGB image after de-bayering conversion (right). 

The retrieved RGB image needs to undergo subsequent white-balancing, which is achieved with a white or 

grey PTFE reference target. The high frame rate and the off-nadir mounting of the two cameras returns 

images from the observed samples from different viewing angles. This dataset can be used to retrieve a 
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surface model of the covered samples. We use the SfM-MVS (Structure from Motion–Multiview Stereo, 

Westoby et al. 2012, Eltner et al. 2016) workflow implemented in Agisoft PhotoScan Professional 1.2.5. All 

processing parameters are adjusted to achieve the highest matching accuracy and model quality. The 

resulting model is cropped to the extent of the sample set. True-color orthophoto and digital surface model 

(DSM) are exported with a resolution of 0.05 mm per pixel. Scene-intern markers with known spatial 

relations are used to reference the exported data to a true scale. For position localization, we use an artificial 

Cartesian reference system.  

 

Figure 4-5. Results of the SfM-MVS 2.5D reconstruction. (a) Texturized model of the sample set, (b) side 

view to showcase artefacts at concealed regions and transparent objects (markers), (c, d) zoom to details 

marked in (a).  

Specim HSI sensors: 

The preprocessing of all push broom data is mutually similar. Before each measurement, several lines are 

acquired with closed shutter for dark current subtraction and with open shutter over three calibration 

targets. The targets consist of a white, grey, and black reference with known reflectance spectra averaging 

at >99%, 50%, and 6% reflectance in the VNIR, respectively. All calibration datasets are averaged over time 

(along scan direction) and used to convert raw digital number (DN) over radiance to reflectance. Radiance 

is retrieved by wavelength- and row-specific subtraction of the dark current from the raw image and 

subsequent multiplication with a sensor-specific calibration matrix. After this step, bad and hot pixel appear 

as single NaN or infinite values on the sensor. They can be automatically detected and subsequently 

corrected by interpolation. White, grey and black calibration target data are converted to radiance in the 

same manner, averaged separately, and used in an empirical line approach to convert the image to 

reflectance. In the resulting reflectance image, remaining lateral illumination differences can be detected in 

the reflectance distribution across the calibration targets. We use these differences for a row-specific 

correction to achieve a uniform illumination. 

For the FENIX additional geometric corrections are required to remove the effect of signal diffraction at the 

sensor slit and a barrel distortion across the scanning direction. The respective correction factors are 

provided by the manufacturer.  
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Telops Hyper-Cam: 

If the illumination on the sample is strong, but sample emissivity low to neglectable, reflectance, 𝑅, in LWIR 

data can be directly assumed from the dataset by 

with 𝐿D��  and 𝐿�RBt  being radiance measurements with and without illumination, respectively, and 𝐷𝑅D�� 
and 𝐷𝑅�RBt being the spectra of a diffuse reflector under the same conditions. This requires the acquisition 

of at least two datasets per analysis (dark and illuminated), where a diffuse reflector needs to be within the 

scene for each dataset. The image sets for each illumination condition are stitched to two separate image 

mosaics that are subsequently co-registered and subtracted from each other. The spectra 𝐷𝑅D�� and 

𝐷𝑅�RBt	are calculated as mean over the imaged diffuse reflector.  

Co-registration: 

The consistent nadir orientation of all hyperspectral sensors allows a similar view on the sample set despite 

differing acquisition principles, spatial resolution, and FOV. This enables automatic image registration and 

orthorectification to the georeferenced RGB orthophoto by point detection and matching algorithms. We use 

Scale Invariant Feature Transform (SIFT, Lowe 1999) for the extraction of robust keypoints and the Fast 

Library for Approximate Nearest Neighbors (FLANN, Muja and Lowe 2009) for point matching. The 

calculated reference points are then used to apply a polynomial transformation on the respective image. 

We experienced that in experiments with very dark or spectrally featureless samples sets matching failures 

occur and additional parameter adjustments are needed, which will prolonger the overall processing time. 

To increase matching accuracy, reliability, and speed, the usage of additional artificial keypoints within the 

scene is recommended. Especially in a combined sensor setup, high-contrast markers on the conveyor ease 

the registration of datasets by providing stable and easily detectable reference points.  

Illumination effects: 

The off-nadir mounting of the illumination units in all measurement setups provides a uniform illumination 

of the investigated samples and prevents core shadows (compare section 1.3.2). Remaining reflectance 

deviations due to illumination are mostly related to cast shadows near sharp object borders, whenever one 

of the irradiance sources is blocked. Where two illumination sources used, e.g., in the FENIX setup, this 

results in shadows along the scanning direction, whereas with four lamp units, e.g., RGB, FX10, FX17, 

shadows both along and across scanning direction can be observed (compare Figure 4-6). The manifestation 

of the shadows within the datasets is additionally dependent on the relative position of sensor and 

illumination units, which results in different shadow patterns in each dataset. Corrections with methods 

used for topography induced illumination in remote sensing data, such as minnaert or c-factor, are not 

applicable due to the large variety of illumination angles. Accurate modelling of the irradiance is 

theoretically possible, but extremely complicated, and would need to be done for each sensor and sample 

set separately. As the shadows are affecting mostly the sample tray and not the samples themselves, the 

influence of illumination differences can be neglected for this study. 

Sample-background separation and masking: 

The separation of samples and background is a required task to both reduce data size and enhance feature 

extraction performance. Especially for larger amounts of irregularly shaped samples, manual masking is 

not possible within a reasonable time. Automatized classification based on spectral features or reflectance 

intensity usually fails whenever the spectral response of the background is similar to that of the sample.  

𝑅 =
𝐿D�� − 𝐿�RBt

𝐷𝑅D�� − 𝐷𝑅�RBt
 (4-1) 
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Figure 4-6. Spatial overview on the acquired datasets, shown in false color RGB (displayed wavelengths in 

parenthesis). For each dataset, an overview image and a zoom on the top half of sample TS04-1900 is shown.  
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This happens for example when the sample tray is dusty or with dark and featureless samples. An extraction 

based on elevation information only is also not reliable as the borders of very flat samples such as thin 

sections can be easily mistaken for background and, vice-versa, slopes or artefacts in the background as 

samples (Figure 4-7, left). We suggest a sample-background separation based on both contours and 

elevation data. Both can be retrieved from the high-resolution stereo RGB data. In the current case, first a 

slope map is calculated from the previously provided photogrammetric DEM, indicating abrupt changes in 

elevation due to evident samples by increased values (Figure 4-7, middle). These changes can be extracted 

as contours, e.g. by using the approach of Suzuki and Abe (1985), which is implemented in the OpenCV 

toolbox (Bradski 2000). Subsequently, the average elevation values within each contour are compared to 

the expected background elevation. Whenever this value exceeds a certain threshold height, the specific 

contour is identified as sample. With this approach, even transparent, flat or neighboring samples are 

detected, while elevation artefacts or markers in the non-sample areas are ignored (Figure 4-7, right). The 

final mask is then resampled and applied to any co-registered dataset.  

 

Figure 4-7. Left: elevation (relative height from sample tray); middle: first derivative (slope) of the elevation 

image; right: binary mask based on both slope contours and elevation. 

Validation: 

Spectral validation data from different point sensors are acquired at the same locations. The spectra of each 

point are stacked to create a continuous validation spectrum ranging from 0.35 up to 15.39 µm for each 

validation point. Available MLA data are resampled to a pixel size of 0.15 mm to match the pixel size of the 

Teledyne RGB sensors. During the resampling, the area proportion of each mineral phase within one output 

pixel is determined and stored as pixel value in a separate channel of the output image. In this way, a 

datacube of separate mineral maps is created, maintaining the information of all mineral phases and 

allowing the visualization of the relative abundances of specific mineral phases. Subsequently, all MLA 

maps are geometrically referenced on the dataset to provide a 2D mineral map validation for the HSI results. 

The referencing is done manually. On some samples, MLA has been conducted on the counterparts of the 

imaged samples. Due to sample material that has been lost during the cutting and polishing process, the 

MLA data of these samples show slight deviations to the surface of the samples in the dataset. Especially in 

very heterogeneous samples this can lead to large visual differences, complicating the comparison to image-

derived maps and causing false negatives during the validation.  
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4.3.4 Feature Extraction and Classification 

Feature extraction is conducted using the orthogonal total variation component analysis (OTVCA, Rasti et 

al. 2016) method. The algorithm aims to find the best representation of a high dimensional HS input in a 

low dimensional feature space by optimizing of a non-convex cost function. To preserve the spatial structure 

of the features, OTVCA solves a total variation (TV) penalized least square cost function subjected to an 

orthogonality constraint. This constraint achieves the consideration of spatial neighborhood information 

during feature extraction, leading to spatially smoother features and the inclusion of spatial relationships 

in subsequent classification. From each single-sensor dataset, around five to seven spectrally and spatially 

meaningful image features are extracted to achieve a dimensionality near to the number of expected classes. 

The exact number of features is decided upon a visual check. The resulting image features of all sensors are 

stacked and resampled to the input file with the finest spatial resolution (here: sCMOS). This creates a 

spatially highly resolved image containing the most important spectral information of each input dataset, 

while at the same time featuring a highly reduced data size. 

Classification is conducted by Support Vector Machine (SVM, using LibSVM by Chang & Lin 2011) with 

Radial Basis Function Kernel on single- and selected multi-sensor subsets of the OTVCA image feature stack. 

Compared to most supervised classification techniques such as maximum likelihood or multi-layer 

perceptron neural networks, SVM features a low sensitivity to the number of training samples and the 

homogeneity of classes (Melgani and Bruzzone 2004). With SVM, good classification accuracies can be 

achieved even at a high dimensionality discrepancy between input data and training samples. This mainly 

reasons in its concept, which is based on margin maximization rather than statistical criteria. This makes 

SVM advantageous for our dataset, which is characterized by a high dimensionality of the input data due to 

the multi-sensor approach, a limited amount of reliable training data and mineralogically mixed 

(heterogeneous) classes. The optimal hyperplane parameters C (parameter that controls the amount of 

penalty during the SVM optimization) and 𝛾 (spread of the RBF kernel) have been traced in the range of 𝛾 

= 2x and C = 10y, with x in [-3, -2, -1, 0, 1, 2, 3, 4] and y in [-2, -1, 0, 1, 2, 3, 4], respectively, using five-fold 

cross-validation (compare also Ghamisi et al. 2017a and 2017b). Both the classification image as well as the 

probability estimates for each class are exported. The classification accuracies are returned as Overall 

Accuracy (OA) and Average Accuracy (AA). While OA returns the percentage of all true positives on the 

total number of reference points, AA averages the separate true positive percentages of all classes. A 

comparison of both values allows statements on the homogeneity of class accuracies. A large difference 

between OA and AA indicates a lack in accuracy of only one or a few classes, while similar values of OA and 

AA report comparable classification accuracies between all classes.  

4.4 Results 

4.4.1 Spatial and Spectral Integration of the Multi-sensor Dataset 

An overview on the processed and registered multi-sensor dataset is shown in Figure 4-6, illustrating the 

large differences in spatial resolution. The co-registration of all datasets allows the comparison of spectra 

retrieved with different sensors at the exact same spot. The best co-registration results are achieved if 

spectral range or spatial resolution of base and dataset to register are comparable, which can be used to 

retrieve faster and more reliable matching results. For example, due to their more comparable spatial 

resolution, the number of good matches between FX17 and FX10 data is much higher than between FX17 

and the RGB orthophoto. In contrast, FX10 data can be matched well to the RGB base due to their overlapping 
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wavelength ranges, and after registration serve itself as new base for the matching of FX17 data. Such, we 

are able to register all datasets fast and automatically to a common and meaningful reference space. 

A respective spectral overview is displayed in Figure 4-8, showcasing the covered spectral ranges of each 

sensor compared to the spectral point measurements and MLA information for one sample spot. All 

displayed spectra have been retrieved from the same spatial position. Differences in spectral shape are 

mainly caused by the different spatial pixel size of each sensor and slight spatial deviations of the 

acquisition position during the spectrometer point measurements. By extracting the MLA information for 

each position and spot size, the mineral interpretation of observed spectral features can be supported and 

validated. 

 

 

Figure 4-8. Overview on the spectra from different sensors at one validation point on sample TS4-863. Top: 

Merged validation point spectra and position of the measured spot; bottom: image spectra and MLA 

information for the same spot. 

To showcase the influence of the sensors’ spatial and spectral resolution as well as sensitivity, a set of small-

grained REE-bearing minerals is analyzed using all sensors covering the VNIR. The high REE content is 

spectrally expressed by a range of Nd3+-characteristic absorption features (Figure 4-9, lower left, absorption 

positions validated by Turner 2015). The depth of the most prominent absorptions at 741 and 800 nm can 

be used to create REE abundance maps for each sensor (Figure 4-9, top row). The influence of the spatial 

resolution is apparent, with highly detailed maps derived from the sCMOS, resolving even smallest grains, 

down to highly mixed pixels of the FENIX, where several small grains are fused into one larger object. The 

spectra of the largest mineral grain were extracted for each sensor at the same position and compared to a 

validation spectrum acquired with the PSR (Figure 4-9, bottom row). The sCMOS, with the highest spectral 

sensitivity and resolution (compare Table 4-1), delivers an accurate spectrum resolving even small details. 

Besides a decreased SNR, the spectrum is free from artefacts. The lower spectral resolution of the FX10 

causes a loss in spectral detail, however, the intensity of the visible spectral features is maintained. Spectral 
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artefacts, such as near 680 nm, complicate the reliable analysis of smaller features. Due to the large spatial 

pixel size and resulting increased spectral mixing, the FENIX spectrum shows a lowered depth of the visible 

REE features at similar overall reflectance intensity. However, the SNR and spectral resolution are 

sufficiently high to provide a clear spectrum depicting even smaller features.  

4.4.2 Multi-sensor Data Fusion for Image Classification  

For feature extraction and classification, two representative sample subsets with different mineralogy and 

spatial class distribution are selected from the sample set imaged (compare also Figure 4-3): sample NA-

RZ2 (from hereon named RZ2); and samples TS04-802, TS04-863, TS04-1551, and TS04-1900 (from hereon 

named TS4). All single-sensor datasets are cropped to the extents of RZ2 and TS4.  

 

Figure 4-9. Influence of spectral and spatial resolution and sensitivity of the used VNIR sensors on the 

mapping of small-scale absorptions on the example of single REE grains. Top row: RGB image and sensor-

specific REE maps (mean of the depths of the Nd3+-characteristic absorptions at 741 and 800 nm). Bottom 

row: Single-pixel reflectance spectra of the same spot (marked with red circle) of portable spectroradiometer 

(PSR, outer left) and HS sensors.  

For RZ2, five mineralogically meaningful classes are defined, i.e. albite, apatite, muscovite, a goethite-

dominant phase (with small amounts of calcite) and a calcite-dominated matrix (with small amounts of Fe 

and Si). For the last two classes, the grain size of the individual minerals lies below the resolution of the 

MLA, thus, they need to be considered as mineralogically mixed. The spatial coverages of the classes are 

highly unbalanced, the matrix alone accounts for 75% of the sample area, while the other classes are around 

5% each. As the MLA map was taken from the exact sample surface, a direct validation is possible. Such, 

the MLA information is used to select the mineralogically most pure pixels (about 50% of all pixel) as test 

data, of which only 100 pixels for each class are excluded and used as training data (0.3% of all pixel). A 

substantially higher amount of training data cannot be achieved for this sample due to its highly unbalanced 

spatial distribution of classes. 

For TS4, six mineralogically meaningful classes are defined, i.e. quartz, gypsum, anhydrite, muscovite, the 

feldspars (Or, Ab, An70), and the sulfides (Py, Cp). Due to the material offset between the available MLA 

validation maps and the imaged surface, only a visual validation is possible. Additionally, MLA is not able 
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to distinguish gypsum and anhydrite, as the mineralogical difference is matter of the water content. Thus, 

the training data of TS4 is selected manually. Besides the MLA maps, the selection is guided by 

characteristic features apparent in the image spectra; and the analysis of validation spectra in regions 

uniform within the extracted OTVCA features. For each class, around 50 pixels are selected and split 

randomly into a test and training dataset of around 25 pixels per class each. Compared to RZ2, all classes 

are approximately balanced, however, subpixel mixtures of some classes occur, especially between 

muscovite, quartz, and feldspars. 

The achieved SVM classification accuracies for sample subsets RZ2 and TS4 are plotted in Figure 4-10.  

 

  

Figure 4-10. Achieved classification accuracies in sample subsets RZ2 (left) and TS4 (right) using single-

sensor data, selected multi-sensor combinations as well as the complete multi-sensor dataset (labeled “All” 

for SVM on the complete dataset and “All-mean” for an averaging of all single-sensor SVM results). 

Shown are OA and AA for several classification attempts, using OTVCA features of single sensors only as 

well as specific multi-sensor combinations. The complete multi-sensor dataset is classified in two different 

ways: (1) using SVM on all input bands as in the proposed workflow (labeled “All”) and (2) by majority 

voting of all single-sensor SVM results (labeled “All-mean”). For different sensor combinations, the 

respective class images and probability estimates of each class are displayed in Figure 4-11 for RZ2 and in 

Figure 4-12 for TS4 next to the available MLA mineral maps. Classification accuracy assessment of RZ2 

shows a high difference between OA and AA for most single-sensor and some multi-sensor input. The main 

reason lies in the fine-grained texture and unbalanced distribution of classes in the sample. Four out of five 

classes occur finely distributed with grain sizes below the spatial sampling distance of most sensors used. 

Despite mineralogically well-defined training and test data, the related pixel spectra often contain a mixture 

of classes. The classified extents of the spatially inferior classes are, thus, often strongly exaggerated. This 

negatively affects the classification accuracy of the calcite-dominated class, which covers the largest part of 

the sample. The resulting unbalanced accuracies between the single classes become visible as increased 

offset between OA and AA. The fusion of the spectrally most expressive sensors (FENIX, HC) with spatially 
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well resolved input (sCMOS, FX sensors) retrieves the best classification accuracy, visual coherence and 

class separation. It even allows the true positive classification of objects borders lying in the subpixel space 

of some datasets.  

 

 

Figure 4-11. Results of SVM mapping of the five most abundant minerals and mineral groups in sample 

subset RZ2 using selected multi-sensor combinations, compared to the available MLA information.  
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Figure 4-12. Results of SVM mapping of the six most minerals classes (labeled with dominant mineral) in 

sample subset TS4 using selected multi-sensor combinations, visualized next to the MLA information of the 

sample counterpieces. Mind that gypsum and anhydrite are not separated by MLA. 
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Sample subset TS4 features a better balancing between classes, however the training data is much sparser 

and the classes less distinct. For example, the abundances of quartz, muscovite, and feldspar are often 

correlated, which generates fluent transitions between the classes labeled as quartz-, muscovite- and 

feldspar-dominated, respectively. However, the prior extraction of image features and corresponding 

assignment of training pixels allows a proper discrimination in the classification. The classes gypsum and 

anhydrite, which cannot be separated in MLA analysis, are clearly distinguished in the spectral data. In 

general, the classification accuracies and visual validation show that the use of multi-sensor data in general 

achieves better a classification than the use of single-sensor data. Comparing FX10/FX17 and 

FX10/FX17/HC, the added value of LWIR data for the accurate discrimination of silicates becomes striking, 

especially when comparing the probability estimate maps of quartz and feldspar. However, the FX sensors 

can already give a fair estimation of the distribution of these classes, in particular with respect to the lack 

of O-Si-O stretching bonds in their spectral range. Here, the advantage of prior image feature extraction 

accounts, as it does not limit the classification to discrete absorption features, but allows general spectral 

and spatial patterns to be recognized.  

Similar to sample RZ2, the fusion of spectrally meaningful data with spatially highly resolved images 

enabled the mapping of objects and structures lying in the subpixel scale of the coarser resolved input. 

Such, the fusion of FENIX data with finer resolved HC data allows the clear separation of veins, which have 

a width of only half the size of a FENIX pixel. Expectedly, the further inclusion of spatially highly resolved 

VNIR and lower SWIR data (FX and sCMOS), achieved the highest classification accuracy of all tests. Visual 

validation confirms its classification outcome as overall best result, too.  

Both datasets show that SVM on multi-sensor data (“All”) achieves higher accuracy than averaging/majority 

voting of previously calculated single-sensor-SVM (“All-mean”). With multi-sensory input, a concurrent 

evaluation of features in several input data is possible, while unrelated information can be suppressed. In 

contrast, the combination of single SVM-results may give weight to data inconclusive for the evaluated class 

and, by that, decrease the classification accuracy.  

Cross-validation at every performed SVM has been observed a crucial step, for example, the cross-validation 

accuracy for the multi-sensor dataset at TS4 can vary between eight and 99.3% depending on the chosen 

parameters.  

4.5 Discussion 

The proposed workflow has proven to fuse multi-sensor data regardless of their initial spatial and spectral 

characteristics. It allows the simultaneous analysis of spectral and spatial features of one mineral class in 

different wavelength ranges. Such, spatially highly resolved data can be fused with spectrally sensitive and 

diverse sensor information to accurately map even small-scale complex mineral structures. The precedent 

extraction of image features using OTVCA reduces dimensionality and data size, and by that eases the 

handling of multi-sensor data. Highly advantageous is the possibility to fuse information from data with 

very different spectroscopic properties, such as VNIR/SWIR and LWIR data. Future studies could extend the 

data input beyond reflectance data and include for example information from photoluminescence or Raman 

scattering experiments.  

Secondly, the results show that data integration based on machine learning allows the selection of a smaller 

number of sensors required to solve a specific classification problem. The mineralogical composition of most 

samples justifies the definition of mixed classes, distinguishing rather spectral domains that resemble 

characteristic mineral mixtures than single minerals. The used workflow allows to base the classification of 

these domains not only on distinct absorption features, but on any spectral and spatial variations. Such, we 
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are able to discriminate minerals that do not show specific spectral features in the currently used spectral 

range. For example, the FX sensors were able to discriminate the quartz, feldspar, and sulfide classes, that 

actually have no distinct spectral features in the covered VNIR and SWIR range. Even if the inclusion of the 

LWIR further increased the classification accuracies for these mineral domains, the result of the FX data is 

promising. It shows that using advanced image processing, sensors with reduced spectral range can still 

provide a meaningful classification of main mineral domains, suggesting the use of rather low-cost and fast 

sensors for a first sample classification. If a more detailed analysis on selected samples is required, sensors 

with optimized specifications for the current mineralogy can be applied. For a successful implementation of 

this approach, an accurate validation is crucial. It is required to define and interpret mineralogical classes, 

as well as for setting training and test data for the classification itself. The validation can be provided by 

detailed mineralogical analysis of selected samples, and by the spectral characterization of possible domains 

using accurate point spectrometer data.  

According to the outcomes of the study, the applicability of the used HS sensors for specific tasks in lab-

scale mineral mapping can be evaluated: 

The FENIX achieved the coarsest spectral resolution; however, it offers the widest spectral range and an 

overall sufficient spectral quality with high SNR. It is the only tested HSI sensor covering the wavelength 

range between 2000 and 2500 nm, which is essential for the detection of minerals containing AlOH, MgOH, 

FeOH or CO3
2- groups by their vibrational overtones. The FENIX is mostly not able to spatially resolve narrow 

veins or single mineral grains. Such, finely disseminated minerals of interest might be not detected when 

the intensities of their spectral features do not exceed the noise level of the encompassing mixed pixel 

spectrum. In contrast, the FENIX can provide an overview on the overall composition of the sample, 

distinguish lithological zones or larger veins. The data acquisition and pre-processing are quick and straight-

forward and able to cover large sample batches in a reasonable time, making it an ideal tool for drill-core 

scanning. The combination with a sensor with higher spatial resolution has shown to overcome partly its 

spatial limitations and provide accurate classification of objects at subpixel size.  

The FX10 and FX17 provide a less cost-intensive alternative to the FENIX camera. Of all tested sensors, they 

are able to acquire data at the highest speed, such being able to characterize large amounts material in a 

short time, such as ore moving on a conveyor belt. The pixel sampling in the current setup was about 1.7 

(FX17) to 2.7 (FX10) times higher than those of the FENIX sensor, providing a distinctly higher amount of 

detail. With an adjusted measurement setup, even lower spatial sampling rates could be achieved, but at 

the cost of a lower area coverage. The observed SNR of the FX10 is lower than the FENIX’, manifesting itself 

in stripy bands and noisier spectra. With a combined wavelength range of both FX sensors of 400 to 1700 nm 

the amount of detectable mineral features is, additionally, fairly limited, including mostly Fe3+-, Fe2+-, OH-- 

and REE3+-bearing minerals. While in a single-sensor setup this constrains the classification accuracy, a 

combined interpretation of both FX datasets is able to reach reasonable classification results even for 

mineral classes showing no distinct absorption features within the used spectral range. Overall the FX 

sensors are best suited for high-speed scanning and categorizing of samples with high spatial detail and 

limited spectral complexity, such as the analysis of mixed ore-waste streams.  

Similar to the FX10, the covered wavelength range of the sCMOS sensor is limited to the VNIR, however, 

with the fore-optics used it offered the highest spatial and spectral sampling and sensor sensitivity of all HS 

sensors in the current setup. Operated at full resolution, this combination of specifications results in low 

scanning speeds and extreme data sizes. We recommend the use in this mode for the detailed analysis of 

selected samples only, for which it provides an ideal tool for the accurate mapping of REE even at low 

concentrations and host mineral sizes. By image feature extraction the data size can be substantially 
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decreased with only a small loss in spectral information; e.g., the extraction of five OTVCA features from 

sample set TS4 reduced the data size by the factor 45, for 15 extracted features by factor 16. The extracted 

components can be used as additional input for the classification of fine-grained samples. Despite the low 

added value for spectral interpretation sCMOS data has shown that its spatial information crucially 

increases the classification accuracy of such samples. In such cases, we recommend the acquisition of 

sCMOS data with full spatial but highly reduced spectral resolution. By this, acquisition speed and initial 

data size can be fundamentally decreased.  

The HC is the only tested HSI sensor covering the LWIR, by that enabling the mapping of many important 

rock-forming minerals such as quartz, feldspars or carbonates. Its high spectral and spatial resolution allows 

for a detailed mapping of small veins and mineral grains. The SNR is sufficient to retrieve clear spectra at 

short illumination times. Despite being designed as frame imager, the Hyper-Cam can be also operated as 

quasi-line-scanner. By reducing the simultaneously acquired rows to a minimum (two to eight), frame rates 

of up to 30 Hz can be achieved. The respective scanning speed is reasonable for a future integration of the 

sensor in a joint setup with VNIR/SWIR push broom imagers. However, the high initial CAPEX (capital 

expenditure) of the sensor limits its application possibilities. Due to the wide and smooth nature of mineral 

features in the LWIR, a narrow-band multi-spectral sensor with a similar spatial resolution might be an 

asset.  

4.6 Conclusion 

We have shown that the integration of multi-sensor data with different spatial resolution and spectral range 

is feasible and highly advisable in near-field mineral mapping. Separate acquisition and subsequent data 

fusion allow for sensor-specific adjustments of experimental parameters and, thus, an optimal result and 

high flexibility in used sensors. Image feature extraction using OTVCA enables a strong reduction in 

dimensionality and memory size of each input dataset while maintaining the majority of its spatial and 

spectral information. This is in particular advantageous for sensors with very high spatial and/or spectral 

resolution, which are otherwise difficult to handle due to their large data memory requirements. The 

extracted features are not bound to the occurrence of specific absorption features, but recognize any spatial 

or spectral patterns. Such we are able to overcome differences in spectral range specific characteristics, e.g. 

for the fusion of VNIR/SWIR and LWIR data in combined classification approach using SVM. In parallel, the 

feature extraction approach enables the differentiation of classes with indistinct or mixed spectral features. 

These mineral domains can be discriminated even if the most characteristic spectral features of the single 

minerals are outside the analyzed spectral range, reducing the number of sensors required for an overview 

mapping.  

For a more detailed spectral analysis, different multi-sensor combinations can be advantageous. A 

combination of sensors in the VNIR, SWIR, and LWIR allows a simultaneous detection of both alteration and 

rock-forming minerals and increases the detection reliability of certain minerals with features in different 

wavelength regions. The integration of very high spatial resolution data can be used to map mineralogically 

complex samples at a higher resolution than provided by the spectral dataset. 

Within the workflow, stereo RGB cameras revealed a cost-efficient possibility to create high-resolution 

spatial imagery and surface elevation models, usable for detailed sample overview, data co-registration and 

sample/object detection. Due to their high spatial resolution, RGB stereo data can be a potential source for 

surface roughness analysis, texture classification and domain extraction in the future. Similar domains 

might be extracted from any other spatially expressive data sources and could be included in the image 

classification for a clearer delineation of classes. Further promising information to integrate could originate 
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from other surface mapping approaches beyond reflectance data, such as photoluminescence or Raman 

Scattering. 
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Chapter Discussion  

The fusion of different datasets for a combined interpretation or as input for classification is a common task 

in remote sensing and becomes increasingly important as the sensor development proceeds. In the 

controlled environment of near-field or lab-scale measurements, the number of deployed sensors is not 

limited and can lead to high amounts of data that need to be processed in an automated and time-efficient 

manner. The usage of high-sensitive sensors is possible as the acquisition parameters can be optimized for 

any available sensor and environmental influences can be either neglected or controlled. This allows the 

acquisition of spectrally and spatially very detailed and accurate datasets in the required spectral ranges, 

but also implies high requirements on data quality. The most important sensor parameters for HS mineral 

analysis are usually speed/throughput, spectral range, high spatial resolution at a reasonable FOV as well 

as high spectral resolution at a reasonable SNR. The enhancement of one or several parameters inevitably 

increases the created data amount per time. Data processing, fusion and interpretation, however, need to 

happen within short time and at reasonable computing power, while still providing the best possible 

mapping results. Current approaches introduce the usage of spectral domains or mineral assemblage classes 

instead of application-wise often meaningless pure mineral endmembers. The domain approach allows the 

definition of application-important classes such as alteration zones, ore zones or mineralized veins. Due to 

the characteristic mixed composition, the classes are not characterized by one or several distinct spectral 

features or ratios only, but the overall spectral characteristics and shapes. This allows the discrimination of 

classes, which show no sharp and distinct absorption features within the observed spectral range, but a 

unique overall spectral tendency, shape or feature combination making them discriminable from other 

classes. Based on this approach, the sensor selection for the current task can be based on overall class 

discriminability instead of absorption occurrence. Training data required for the classification can be 

defined according to user knowledge, MLA maps, spectral point measurements, or a detailed mineralogical 

analysis of a smaller sample subset. An optimized workflow for training data selection and classification 

needs to be determined, such, first successful approaches were proposed by Tusa et al. (2018) and Contreras 

et al. (2018).  

The core point of the workflow used in the current study is the dimensionality reduction of the acquired HS 

datasets using feature extraction. In HS remote sensing it is a common approach to tackle the otherwise 

high executable processing time as well as an issue known as “curse of dimensionality”, i.e. that a growing 

discrepancy between training and image dimensionality decreases the classification accuracy. Besides these 

reasons, feature extraction allows the integration of data that relies on different spectroscopic processes and 

is therefore not directly analyzable using the same methodology, such as SWIR and LWIR data or reflectance 

and photoluminescence data. Important pre-requisite for a successful integration is the prior co-registration 

of the data. The utilized automated keypoint detection and matching workflow was already successful 

implemented in the previous chapters and now provides an accurate and fast possibility to align multi-

sensor datasets of different spatial sampling distances for a combined processing.  

The choice of the applied feature extraction method crucially influences the outcome of the classification 

result, as it defines the information extracted from the data and passed to the classifier. A feature extraction 

method that considers both spatial and spectral aspects such as the used OTVCA algorithm is recommended, 

as it enhances the discrimination of classes with low spectral differentiability based on spatial patterns. The 

used classifier influences the accuracy of the classification result to a similar extend and should be chosen 

carefully. The SVM classifier used in the current study was chosen due its robustness against the low 

number of training samples and heterogeneity of classes of the used datasets. The determination of optimal 
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classification parameters by cross-validation is crucial to ensure the best possible classification result with 

the given data. While being an established step in image processing, it is, however, mostly ignored in the 

applicational field.  

Besides the satisfying classification results achieved in the presented chapter, the used feature extraction 

and classifier algorithms might still be optimizable. A review of available methods and their added value for 

mineralogical domain mapping is a future task that could raise the awareness in the applicational 

community for innovative, but currently underrepresented feature extraction and classification algorithms.  

The extended usage of spatial information might be an additional future asset for a fast, unsupervised 

mineralogical analysis. Textural and linear features extracted from high-spatial-resolution image features 

of different spectral range could be used to extract mineralogical clusters, which are subsequently labeled 

according to their average spectral characteristics or point-wise geochemical analysis.  
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CHAPTER 5   THE POTENTIAL OF REFLECTANCE AND LASER INDUCED 

LUMINESCENCE SPECTROSCOPY FOR NEAR-FIELD RARE EARTH ELEMENT 

DETECTION IN MINERAL EXPLORATION 

Preface 

The following chapter presents a novel, spectroscopy-based strategy for the detection of Rare Earth Elements 

(REE) in natural minerals. 

For the first time, it combines advanced reflectance imaging spectroscopy with extremely sensitive laser-

induced luminescence spectroscopy, which is not yet commonly used for mineral analysis in geosciences, 

and applies both to natural mineral samples from main REE-deposits around the world. The successful cross-

validation of the results proves the method presented an innovative approach for non-invasive REE 

identification in raw material exploration with increased robustness and a widened range of detectable REE.  

The combined spectroscopic approach has a high potential to contribute to improvements in a wide range 

of REE-related research such as the understanding of mineralogy and evolution of deposits as well as REE 

detection at any step of the raw material value chain, such as in exploration, mining, processing, or 

recycling. Furthermore, it lays the basis for the development of an integrated imaging spectroscopic sensor 

system, which would have high potential for many other geoscience and materials science applications, 

where information of a sample's composition is required (e.g., provenience analysis, impurity analysis).  

 

First results of this study were presented at the 10th EARSeL SIG Imaging Spectroscopy Workshop12 in Zurich 

in 2017. The full paper comprising the contents of this chapter was published as research paper in Remote 

Sensing13 in 2018. 

  

                                                        
12 Jakob S, Fuchs M, Gloaguen R. 10th EARSeL SIG Imaging Spectroscopy Workshop, 19-21 Apr 2017, Zurich, 
CH. 
13 Lorenz S, Beyer J, Fuchs M, Seidel P, Turner D, Heitmann J, Gloaguen R. Remote Sensing 2019, 11, 21. DOI: 
10.3390/rs11010021 
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5.1 Abstract  

New energy, transport, computer, and telecommunication technologies require an increasing supply of 

rare earth elements (REEs). As a consequence, adequate and robust detection methods become essential 

for the exploration and discovery of new deposits, the improved characterization of existing deposits and 

the future recycling of today’s high-tech products. Within this paper, we investigate the potential of 

combining passive reflectance (imaging and point sampling) with laser stimulated luminescence (point 

sampling) spectroscopic measurements across the visible, near, and shortwave infrared for REE detection 

in non-invasive near-field mineral exploration. We analyze natural REE-bearing mineral samples from 

main REE-deposits around the world and focus on challenges such as the discrimination of overlapping 

spectroscopic features and the influence of the mineral type on detectability, feature position, and mineral 

matrix luminescence. We demonstrate that the cross-validation of results from both methods increases the 

robustness and sensitivity, provides the potential for semi-quantification and enables the time- and cost-

efficient detection of economically important REE, including Ce, Pr, Nd, Sm, Eu, Dy, Er, Yb, and potentially 

also Ho and Tm.  

 Keywords: laser induced luminescence spectroscopy, reflectance spectroscopy, hyperspectral imaging, 

laser-induced fluorescence, photoluminescence, rare earth elements 

5.2 Introduction 

Rare earth elements (REE) are a group of 17 metallic elements, comprising the lanthanoid group, yttrium 

and scandium. With their valuable physical and chemical characteristics such as unique magnetic, 

phosphorescent, and catalytic properties, they represent crucial components of many nowadays high-tech 

consumer products and green technologies. Due to their unique characteristics and both globally and 

element-wise inhomogeneous occurrence, REE were included in the European Commission’s Critical Raw 

Materials list published in 2014 and updated in 2017, which set the safeguarding of a sustainable supply of 

raw materials within the European Union as key priority. Especially Neodymium (Nd), Europium (Eu), 

Terbium (Tb), Dysprosium (Dy), and Yttrium (Y), as well as Praseodymium (Pr) as a substituent for 

Neodymium in high-intensity permanent magnets, are commonly indicated as the most critical rare earths 

for both short and long term, based on their role in clean energy as well as supply risk (Bauer et al. 2010, 

Moss et al. 2013, Guyonnet et al. 2015, Nassar et al. 2015). The increasing importance of these critical raw 

                                                        
14 Published: Lorenz S., Beyer J., Fuchs M., Seidel P., Turner D., Heitmann J., Gloaguen R. Remote Sensing 2019, 
11, 21. DOI: 10.3390/rs11010021 (Author’s post-print version) 
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materials for modern civilization and the associated striving for sustainability and efficiency has equally 

increased the need for non-invasive and fast detection methods in exploration and mining.  

Common approaches for the detection of REE deposits in remote sensing rely on indirect mapping of the 

host lithology or associated structural features from air- or space-borne data (Rajendran et al. 2013, 

Zimmermann et al. 2016, Shavers et al. 2018). For direct REE detection in the near field (sample-detector 

distance from centimeter up to meter scale) such as for field validation and the logging of bulk samples or 

drill cores, two spectroscopic approaches have independently shown their potential as alternative to time-

consuming geochemical analysis, that is, reflectance and laser-induced photoluminescence (PL) 

spectroscopy (e.g., Friis 2009, Turner et al. 2015). Reflectance spectroscopy refers to the analysis of the 

characteristic reflectance signal of a material illuminated with a spectrally broad-band light source. PL 

spectroscopy refers to the measurement of the luminescence of a material excited with a spectrally narrow-

band light source such as a laser or high-power LED. Several studies have been published on REE 

characterization by one or the other method (see following chapter). Nevertheless, none prevailed as 

standard for reliable REE detection yet. Important reasons are the detection limitations of reflectance 

spectroscopy and the complicated interpretation of PL in natural minerals. A complementary approach to 

combine fast and straight-forward reflectance with highly sensitive PL spectroscopy could be a promising 

solution, however, the methods have, to our knowledge, never been compared or integrated in a combined 

REE detection approach.  

This motivated us to investigate the detectability of REE in natural minerals using both reflectance and PL 

spectroscopy. As we strive to assess the benefits and obstacles of an integrated result analysis for the new 

task of REE mapping, we use sample-detector distances from centimeter up to meter scale. We focus on the 

analysis of the potential gain in interpretation reliability as well as additional constraints of the combined 

approach. We decided to use a preferably simple and robust methodology, as the goal is to use this 

technology in mining operations, such as for ore grade assessments along conveyor-belts. We separately 

acquire continuous-wave laser-induced luminescence measurements under three different excitation 

wavelengths and reflectance imagery using two recent light weight hyperspectral (HS) sensors. To evaluate 

detection limits and determine the influence of different sample composition, we use a geochemically well-

characterized collection of natural REE-bearing samples of a wide range of mineral hosts and origins. We 

first analyze each acquired dataset separately to evaluate their specific characteristics. We then use the 

results for combined interpretation and cross-validation.  

The outcomes of this study are, besides the added value in REE detectability and robustness, a required 

basis for the future development of an integrated sensor which allows the operational application of the 

combined spectroscopic approach for routine REE mapping in complex natural rock samples and drill-cores.  

5.3  Previous Studies of REE Spectroscopy 

5.3.1 NIR-SWIR Reflectance Spectroscopy 

In contrast to transition elements, trivalent REE ions are characterized by very pronounced and sharp 

absorptions features. They are based on particularly confined electronic 4f levels, localized close to the 

nuclei, from which electrons can be excited by incident radiation and which are comparably unaffected by 

different chemical environments (Adams 1965). 

Early fundamental work on the reflectance spectroscopy of free REE2+ and REE3+ ions was provided by Dieke 

and Crosswhite (1963), followed by a range of studies on the detection of single REE in synthetic compounds 

and the effects of grain size and crystal orientation, such as in Jassie (1964, REECl3.6H2O and REEWO4 
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powders), White (1967, REE2O3), Ropp (1969, REEPO4), and Weidner et al. (1986, REE2O3). In parallel, 

foundation work on natural minerals was started such as by Adams (1965), who recognized differences 

between the absorption patterns of light (LREE) and heavy REE (HREE)-dominated as well as mixed samples. 

Later, Rowan et al. (1986) started to analyze specific REE in natural carbonatite samples of different origin, 

focusing on the investigation of the absorption wavelength position and depth of Nd and Sm. In 2014, 2015, 

and 2018, Turner et al. published a series of studies on visible/near infrared (VNIR) and shortwave infrared 

(SWIR) reflectance spectroscopy of important natural REE bearing mineral classes such as fluorocarbonates, 

phosphates, and silicates from various deposits all over the world. Scanning Electron Microscopy (SEM) and 

Electron Micro Probe Analysis (EMPA) enabled the validation of the HS measurements. By that, Turner et 

al. provided detailed insights into the factors influencing the occurrence and position of REE absorption 

features.  

Parallel to the fundamental research, several papers were published that focus on the applicability of HS 

imaging for the detection and mapping of REE, ranging from drill core logging systems (Huntington et al. 

2015, Turner et al. 2014) to outcrop mapping (Bösche et al. 2014) to regional geological surveys using 

airborne and space-borne systems (Rowan & Mars 2003, Neave et al. 2016). The general consensus is that 

the detection success relies on a sufficient ratio between REE absorption feature depth and spectral noise. 

This ratio is dependent on sensor sensitivity, image processing, pixel size (as a result of target distance) and 

REE grade within the observed pixel. As the latter is usually low, high-quality sensors need to be operated 

with a sufficient spatial resolution and undergo a subsequent careful radiometric correction to enable REE 

detection. This has been achieved at airborne (McDowell & Kruse 2015) and drone-borne level (Booysen et 

al. 2018), but not yet for spaceborne data (Neave et al. 2016). The detected REE are usually limited to a few, 

such as Nd or Sm, which occur in comparably high concentrations and feature both strong and characteristic 

features. 

5.3.2 Laser Induced NIR Luminescence Spectroscopy 

The luminescence of rare earth elements exhibits unique features which are related to the special electronic 

configuration of REE ions. The 4f-4f transitions show narrow emission lines while having a long lifetime 

(Lüthi 1980). In contrast to transition metals, such as Fe3+ or Mn4+, the crystal field splitting (also known 

as Stark level splitting), induced by the presence of different electrostatic environments for the rare earth 

ion, is less pronounced, mainly in the order of 100–200 cm-1. For example, the crystal field splitting of 

Nd3+ leads to various emission lines from 880 nm to 910 nm (Lenz et al. 2013). A result of this effect are the 

variable relative intensities of the split emission lines, if the rare earth ion is hosted in different matrices.  

Fundamental investigations of the luminescence properties of REE by PL were conducted by Gaft et al. in 

1996, 1998, 1999, and 2005. The focus was set on the detection of REE in natural minerals using laser-

induced time-resolved luminescence (TRLS) with several laser excitation wavelengths and resulted in an 

extensive library of PL spectra and characteristic peak positions. Further studies cover not only REE 

luminescence, but also a broad range of mineral- and transition metal luminescence and other effects such 

as molecular or radiation-induced centers. In 2016, Fuchs et al. built up a feature library for the detection 

of REE in synthetic standards, focusing especially on REE phosphates and fluorides. A comprehensive study 

on REE luminescence in natural minerals and doped crystals was conducted by Friis (2009). Besides the 

detection and interpretation of REE related emissions in natural minerals and doped crystals, the study 

elaborated thoroughly on the high complexity of the application of luminescence for REE analysis and 

questions the possibility of a quantitative REE characterization using PL. A similar conclusion was reached 

by Lenz et al. (2013), who investigated the influencing factors on the luminescence of Nd3+ in minerals, as 
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they observed a strong relation between the intensity of certain REE sublevel peaks with both the crystal 

orientation of the sample as well as the polarization of incoming laser light and received emission. In 2015, 

Lenz et al. discussed the characteristics and advantages of laser-induced REE photoluminescence artifacts 

in Raman spectroscopy. Beside the PL analysis of single REE-salts and mixed-REE natural mineral samples, 

they provided a detailed 2D PL map to illustrate the distribution of specific REE emission intensities within 

mineral grains.  

There have been different approaches to extend the application of PL beyond the lab scale. Airborne Laser-

induced Fluorescence (ALF) sensors or Fluorescence LiDAR systems have been used widely to detect and 

monitor organic compounds from long distances. Applications are widespread, such as the detection, 

mapping or monitoring of hydrocarbons, chlorophyll, and dissolved organic matter in surface water (Keizer 

& Gordon 1973, Kim 1973, Rogers et al. 2012), pollen in the atmosphere (Saito et al. 2018), green terrestrial 

vegetation (Günther et al. 1994, Hoge et al. 1983), and photoautotrophic biodeteriogens on stone monuments 

(Raimondi et al. 2009). 

The observation of inorganic compounds such as REE from larger distances or/and under ambient light is 

more difficult, as their cross-section with UV and NIR light is usually much lower compared to organics due 

to the different binding situation (Forget & Chénais 2013). To receive a sufficient signal to noise ratio, high 

laser densities and long exposure times are needed, which usually collide with security standards and 

reasonable acquisition times. Therefore, most PL applications on inorganics focus on near-field 

measurements in a maximum range of few meters, a dark environment, or a reduced spectral resolution. A 

prominent application is the online separation of ore and waste material, and its use for mining machine 

control and bulk sorting (Nienhaus & Bayer 2003, Broicher 2005, Pollmanns 2008). Other application 

studies on inorganics comprise the characterization of mineral coatings on depleted uranium (Baumann et 

al. 2008) and the integration of PL true color imaging and Raman spectroscopy for the use within a rapid 

drill core scanner system (Kauppinen et al. 2014). None of these approaches were yet used for the reliable 

detection of REE in routine sample analytics, as their low intensity and uniquely narrow emission lines 

require both high spectral resolution and signal to noise ratio.  

5.4 Materials and Methods  

5.4.1 Analyzed Samples & Mineral Chemistry 

We analyzed a collection of 24 naturally REE-bearing samples of different mineral species and origin. This 

includes samples of eleven different economically important minerals of fluorocarbonates, oxides, 

phosphates, and silicates with varying REE content and composition (see Table 5-1). All samples had been 

embedded in epoxy-resin discs and analyzed using electron microprobe (EMPA) with average REE2O3-

detection limits of approximately 0.03 wt.% (Turner 2015). The samples were found to be compositionally 

unzoned through SEM-BSE (Scanning Electron Microscope Backscattered-Electron Imaging) investigations 

(Turner 2015). As the spatial coverage of the conducted spectral measurements was always set with respect 

to the EMPA measurement spots, a high accordance in composition and concentration between the spectral 

and EMPA data can be assumed. This allowed a validated interpretation of the observed spectral features as 

well as a correlation of feature intensities and REE concentrations. By that, approximate detection limits for 

both methods could be estimated. A reference spectral library was built from both literature derived values 

as well as by analysis of a suite of synthetic single-REE phosphate (REE-PO4) and fluoride (REE-F3) salts, 

available as partly epoxy-resin embedded single crystals. For PL data, this library was described by Fuchs 

et al. (2016). 
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Table 5-1. Overview of the investigated mineral samples with formulae, origin, and electron micro probe 

analysis (EMPA) average total rare earth element (REE) content (Turner 2015). Dominance of LREE (La to 

Gd) versus HREE (Tb to Lu+Y) is indicated. 

Mineral 

Group 

Mineral 

Species 

General Formula Sample Origin Total [REE+Y]2O3 [%] 

Fluoro- Bastnaesite CeCO3F Diao Lou Shan (Sichuan, CN) 69.35 (LREE) 

carbonates Parisite CaCe2(CO3)3F2 Muzo (Boyacá, CO) 58.61 (LREE) 

      Snowbird (Montana, US) 58.99 (LREE) 

      Mexico 48.44 (LREE) 

  Synchysite CaCe(CO3)2F Mt. St. Hilaire (Quebec, CA) 48.54 (LREE) 

Oxides Fergusonite (Y,REE)NbO4 Lyndoch Township (Ontario, CA) 14.49 (HREE) 

Phosphates Monazite (Ce,La,Nd,Th)PO4 Elk Mountain (Nebraska, US) 59.00 (LREE) 

      Serra Verde (Para, BR) 63.71 (LREE) 

      Unknown 65.28 (LREE) 

  Xenotime (Y,Yb)PO4 Novo Horizonte (Bahia, BR) 69.63 (HREE) 

      Novo Horizonte (Bahia, BR) 68.26 (HREE) 

      Serra Verde (Para, BR) 66.55 (HREE) 

  Britholite (Ce,Ca)5(SiO4,PO4)3(OH) Oka (Quebec, CA) 44.09 (LREE) 

      Kipawa (Ontario, CA) 53.58 (LREE) 

Silicates Cerite (Ce,La,Ca)9(Mg,Fe)(SiO4)6 

(SiO3OH)(OH)3 

Bastnas (Västmanland, SE) 69.21 (LREE) 

  Eudialyte Na15Ca6(Fe,Mn)3Zr3SiO 

(O,OH,H2O)3(Si3O9)2 

(Si9O27)2(OH,Cl)2 

Kipawa (Ontario, CA) 

Kipawa (Ontario, CA) 

Kipawa (Ontario, CA) 

 5.25 (HREE) 

 4.82 (HREE) 

 5.63 (HREE) 

  Kainosite Ca2Y2(SiO3)4(CO3).H2O Long Lake (New York, US) 36.93 (HREE) 

  Zircon ZrSiO4 Green River (Wyoming, US)  0.32 (HREE) 

      Mt. Malosa (Zomba, MW)  4.83 (HREE) 

      Mudtank (Harts Range, AU)  0.04 (HREE) 

      North Burgess (Ontario, CA)  0.04 (HREE) 

      St. Peters Dome (Colorado, US)  0.10 (HREE) 

5.4.2 Reflectance Spectroscopy – Technical Setup and Implementation 

Reflectance spectroscopy data was acquired using both point measurements and HS imagery (Figure 5-1). 

The point measurements were acquired with a Spectral Evolution PSR-3500 spectrometer (see Table 5-2 for 

detailed specifications). An internal white light source and intermediate white target calibrations 

(Spectralon SRS-99) ensured stable measurement conditions and resulted in accurate and highly resolved 

spectra. The signal was integrated over ten single measurements at a target spot of around 3 mm2. Due to 

the very small size of some of the investigated mineral grains, which can fall far below the measurement 

spot diameter, a light blocking foil was used as background to reduce the influence of ambient light. An 

influence of the surrounding resin is still possible and needs to be considered for the respective samples. In 

contrast to point measurements, HS imagery adds a spatial component to the reflectance data by providing 

a spectrum for each pixel of a measured scene. Thus, spectral information can be set into a spatial context 

and used to provide mineral or element abundance maps. However, a high spatial resolution often goes 

along with a loss in spectral sampling and/or wavelength detection range, as the imager must be able to 

acquire and process a large batch of spectra simultaneously.  
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Figure 5-1. Schematic illustration of the technical setup (not to scale). 

In order to test the applicability of common commercial low-to-medium priced HS imagers for the mapping 

of REEs in natural minerals, the data was acquired using both the frame-based Senop Rikola HS Camera as 

well as the push-broom Specim FX10 (see Table 5-2 for detailed specifications). The spatial resolution of 

both sensors is sufficient to separate smaller mineral grains, while the covered wavelength ranges include 

most of the relevant REE absorption features. The spectral resolution in VNIR is coarser compared to 

spectrometer point measurements but is usable to detect the most prominent absorption features. During 

the image acquisition, a uniform illumination over the whole sample batch was needed to ensure the 

comparability of REE absorption depths in different samples. Therefore, the imaging was conducted using 

the sample illumination unit of the Specim SisuRock drill-core scanner, which features two rows of full-

spectrum halogen spotlights, uniformly illuminating an area of ~640x200 mm.  

Table 5-2. Visible/near infrared (VNIR) HS sensor characteristics. *FWHM = full width at half maximum, 

**SNR values estimated for each spectral channel as ratio of mean and standard deviation of 20–40 spectra 

acquired under uniform conditions.  

 Spectral Evolution PSR-3500 Senop Rikola Specim FX 10 

sensor type portable field spectrometer frame-based imager push broom scanner 

data dimension 1 px 1010x1010 px frame 1024 px line 

wavelength range 350–2500 nm 500–900 nm 400–1000 nm 

spectral resolution (FWHM*) 3.5 nm (VNIR), 7-10 nm (SWIR) 10 nm  5.5 nm 

estimated peak signal-to-

noise ratio (SNR)** 

600:1 150:1 600:1 

spatial resolution  

(length of quadratic pixel) 

2 mm distance dependent (here: 

0.14 mm, slightly defocused) 

distance dependent (here: 

0.41 mm, focused) 

spectral bands 1024 up to 380 224 

 

Although the Rikola sensor theoretically features a similar spatial resolution to the FX10 at the same 

working distance, its significantly lower SNR results in a noisier image. To still deliver a sufficient image 
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quality even for very small samples, it was required to operate the sensor at reduced distance. This resulted 

in optimal imaging distances of about 430 mm for the Rikola and 600 mm for the FX10. However, as the 

optics of the Rikola are fixed with an optimal focusing distance of approximately 600 mm to infinity, a minor 

but acceptable blur was noticeable within the data. 

5.4.3 PL Spectroscopy – Technical setup and Implementation 

The PL spectroscopy measurements were conducted in a darkroom lab to avoid the influence of ambient 

light on the measurement result. The samples were investigated under three different continuous wave laser 

excitation wavelengths to analyze potential REE detection variabilities (Figure 5-1). The used laser 

excitation wavelengths, respective spot sizes, and resulting power densities are given in Table 5-3.  

Table 5-3. Laser specifications. Beam diameter is given as 1/e2 of a gaussian fit. The power density is 

calculated assuming a constant power distribution over the given beam diameter.  

Laser wavelength (laser type) Beam diameter Power density 

325 nm (Kimmon He-Cd-laser) 185 µm 14.58 W/cm2 

442 nm (Kimmon He-Cd-laser) 170 µm 16.73 W/cm2 

532 nm (diode-pumped frequency-doubled Nd:YAG) 143 µm 26.93 W/cm2 

 

The power of the respective laser beams has been tuned to 4 mW for all lasers. The luminescence signal of 

the excited sample is dispersed by an Acton SP2560 Triple-Grating Monochromator (300 gr/mm grating, 

blazed at 750 nm) and recorded by a Princeton Instruments SPEC-10:100BR_eXcelon CCD-Camera (Figure 

5-1). The data are recorded in up to 5743 channels for a full spectrum from 340 to 1080 nm. The 

measurements with 325 and 442 nm laser excitation were conducted in two single measurements, differing 

in the employed long-pass filters to suppress excitation laser light on the one hand and spectral second 

order effects from the monochromator gratings on the other hand. The two measurements are later merged 

in the post-processing of the spectral data (Fuchs et al. 2016). Due to limited sensitivity at extreme 

wavelengths, data under 400 and over 1050 nm is excluded from the analysis.  

5.5 Results 

5.5.1 Reflectance Spectroscopy 

Reference reflectance spectra and positions of characteristic absorption features for each REE were 

determined from the single-REE salt suites using both lightweight HS imagers (see example in Figure 5-2) 

and were validated by point spectrometer data. This measurement redundancy was important to consider 

possible sensor specific disturbances such as feature shifts and ensure valid feature positions. The resulting 

feature tables were complemented with additional feature positions reported in the literature (White 1967, 

Ropp 1969, Rowan et al. 1986, Turner 2015). The resulting library shows a potential detectability of Pr3+, 

Nd3+, Dy3+, Ho3+, Er3+, and Tm3+ for both Rikola and FX10. An overview on the most characteristic and best 

observable REE features in the VNIR is shown in Figure 5-3a. The most characteristic absorption features 

of Sm3+, Eu3+, Tb3+, and Yb3+ are located outside the wavelength coverage of both VNIR imaging 

spectrometers, but Sm3+ and Yb3+ can be reliably detected at the extended wavelength coverage of the hand 

spectrometer. A detection of these elements using a SWIR HS camera should therefore be possible, as 

documented in Turner (2015). However, the absorption features of Eu3+ and Tb3+ expected in the VNIR are 

weak and often hardly visible, which questions their potential detectability with reflectance 

spectroscopy. The same accounts for Sc3+, Y3+, La3+, Ce3+, Gd3+, and Lu3+, which are not detectable with any 



 

 138 

of the used devices, as they do not absorb at all in the VNIR and SWIR wavelength region due to their 

respective electronic configuration (White 1967).  

 

Figure 5-2. HS imaging of an REE-PO4 standard sample disc using a lightweight Senop Rikola sensor. The 

data are displayed as false color and minimum noise fraction (MNF, Green et al. 1988) composite. 

After the compilation of the absorption feature catalogue, the mixed-REE natural sample batches were 

analyzed and imaged with the same procedure. In Figure 5-3b, two example image spectra for both LREE- 

and HREE-dominated samples are shown. The given EMPA-derived REE-concentrations represent a mean of 

five single EMPA measurements of the respective sample (Turner 2015). Low standard deviations suggest 

relatively uniform values for chemical composition and REE3+-concentrations within the analyzed mineral 

grain. A comparison of the spectral datasets of the Rikola and FX10 sensor with known REE absorption 

feature positions pictures a distinct, but constant spectral shift of the Rikola data to higher wavelengths by 

about 10 nm (Figure 5-3b), which might originate from an internal sensor misalignment and must be 

considered for data interpretation. The spectral gap between the two built-in sensors in the Rikola generates 

an additional spectral disturbance observed as a sharp artifact around 636–650 nm (Figure 5-3b). Despite 

the mentioned spectral perturbations, the shapes of the received spectra for both sensors match well, 

however, the spectral quality of the FX10 data exceeds the Rikola data due to higher spectral resolution 

(FWHM) and Signal-to-Noise-Ratio (SNR) (Table 5-2). The depicted spectra of LREE-enriched monazite and 

britholite are clearly dominated by the absorption features of Nd3+ and Pr3+. Especially the prominent 

absorptions around 580, 750, 800, and 880 nm are very characteristic and easily detectable. The exact 

positions of the absorption minima vary slightly according to the present quantities of the main absorbents, 

such as Pr3+, Nd3+, Er3+ and Dy3+, which each contribute to the respective observed absorption feature. A 

good example is the shift of the feature around 810 nm, which is influenced by absorptions of Nd3+ (800 

nm), Er3+ (805 nm), and Dy3+ (810 and 830 nm). Both HS sensors are not able to separate these features, so 

they result in a single deep minimum and its exact position is dependent on the abundance of the three 

REE. For example, the spectrum of the monazite sample with low Er3+ and Dy3+ content features a mixed, 

but clearly Nd-dominated absorption at 802 nm (Figure 5-3b). In contrast, the spectrum of the HREE-

enriched xenotime sample is characterized mainly by Er3+ and Dy3+ related features. Here, a distinct shift of 

the feature to longer wavelengths and towards the pure Dy3+ absorption can be seen (812 nm). Features 

solely related to LREE, such as the mixed 590 nm absorption of Nd3+ and Pr3+, are weak or not observable 

in this sample.  
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Figure 5-3. a) Position of the most characteristic REE absorption features in the VNIR range according to 

the analysis of single-REE salts and literature review, b) extracted spectra from HS imaging of 

natural mixed REE mineral samples using two different HS sensors. Sample (1) represents LREE-enriched 

grains, while (2) is HREE-dominated. EMPA analysis results are given as mean of a series of five 

measurements (<LOD: below Limit of Detection). 

To illustrate the correlation between absorption shift and the relative quantity of the respective absorbing 

REE, a Minimum Wavelength Map (Bakker et al. 2011) of the REE related absorption around 810 nm was 

conducted. With this approach, the wavelength position and depth of the deepest signal minimum within a 

defined wavelength window (here: 790–860 nm) is determined for each pixel and plotted after as 

wavelength position map (see Figure 5-4a). The wavelength position of the reflectance minimum is 

determined using a 5th order polynomial fit of the investigated spectral range. Even if such high-order 

polynomial may feature possible instability in the presence of spectral distortions, Murphy et al. (2014) 

shows that this method delivers a good accuracy and reliability of the result, as it excludes artificial position 

shifts due to spectral noise. In Figure 5-4b the shifts of the absorption minimum wavelength of the 

respective samples are plotted against the ratio of Nd2O3 (LREE) and Dy2O3 (HREE). For most of the samples, 

a very good correlation between composition and shift can be observed. Highly LREE-rich samples (numbers 

5 and 6, in red) can be easily distinguished from HREE-rich samples (numbers 2 and 3, in blue). 

Furthermore, LREE-HREE-mixed samples can be characterized and compositionally arranged in between 

(numbers 4 and 7, ranging from orange to green according to LREE-HREE-ratio). Only one sample seems to 

be off the trend and features a strong shift to larger wavelengths despite its comparably low Dy 

concentration (Figure 5-4, sample number 1). This aspect can be explained as the hosting sample is 

britholite, which is known for high systematic shifts of occurring Nd3+ features to longer wavelengths by 



 

 140 

about 5–7 nm (Turner 2015). Taking this into account, the remaining shift indicates an LREE-HREE-ratio in 

the range of sample number 7, which correlates to the EMPA results.  

  

Figure 5-4. Relation between relative abundances of different REE and observed absorption feature positions 

for both used HS imagers: (a) Reflectance minimum wavelength mapping in the range of 790 and 860 nm 

for three natural mineral sample batches and (b) scatter plot between observed minimum wavelength and 

the respective ratio of EMPA derived Nd3+ and Dy3+ concentrations for seven sample grains marked in (a).  

The resulting graph proves a clear correlation between the observed minimum position and the Nd2O3-

Dy2O3-ratio. However, this relation is not assumed to be linear, especially as the individual ratio between 

concentration and resulting absorption depth is not identical for different REE. Still, it opens up the 

possibility for both an indirect detection of REE with features hidden by neighboring absorptions and the 

semi-quantitative estimation of the involved REE. A few REE remain indiscernible in natural minerals 

despite being detectable in single-REE salts. For example, Eu3+ showed weak features in all analyzed single-

REE salts, which are situated mainly in the lower VNIR (380–600 nm) and the upper SWIR (especially 1900–

2200 nm) (Jassie 1964, White 1967, Ropp 1969). However, within natural samples, the detection of Eu3+ 

becomes nearly impossible due to a strong overlap of the weak VNIR features with other highly visible REE 

such as Nd3+, Er3+, and Ho3+. The characteristic SWIR features around 1900–2100 nm (not shown here) may 

in mixed pixels additionally overlap and be confused with nearby characteristic broad features of OH/H2O 

(center wavelength around 1900 nm). Similar to Eu3+, the features of Tb3+ were hardly visible and highly 

ambiguous, which excludes both elements from the list of REE potentially detectable with reflectance 

spectroscopy.  
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5.5.2  PL Spectroscopy 

Reference PL spectra and positions of characteristic emission features for each REE were previously 

determined using a series of single-REE salts (Fuchs et al. 2016). The resulting feature library was merged 

and extended with similar and additional feature positions reported in the literature (Gaft et al. 2005, 

Reisfeld et al. 1996). Results showed a potential robust detectability of Nd3+, Sm3+, Eu3+, Yb3+
, Dy3+, Er3+, and 

Tb3+ when using continuous-wave laser-induced fluorescence with excitation wavelengths of 325, 442, and 

532 nm on single-REE salts. The same experimental setup was used in the current study to analyze the 

described natural REE-bearing mineral sample suite. Several factors and effects were observed 

accompanying mixed samples, which may support or hinder a robust detection of specific REE. These effects 

need to be considered during data interpretation and are described in more detail in the following. 

Influence of the Excitation Wavelength: 

Due to the discrete nature of the REE 4f-4f intra-configurational transitions, direct optical excitation of the 

typical REE luminescence lines is possible only for excitation wavelengths in the visible range which are 

specific to each REE (Kim et al. 1998). Broad-band, more unspecific, excitation is only possible for high 

excitation energies, reaching the charge transfer bands or the host’s conduction band, which may be far in 

the UV range. Thus, by stimulating using an appropriate wavelength, specific REE luminescence may be 

enhanced or suppressed, which opens up the possibility for (1) the discrimination of overlapping REE 

features and (2) the suppression of broad emissions originating from non-REE impurities and crystal 

structure defects. The influence of the employed excitation wavelength on the detectable REE is displayed 

for an analyzed xenotime sample in Figure 5-5. For some REE, such as Yb3+, Er3+ or Ho3+, the excitation 

wavelength influences mainly the feature intensity or the occurrence and position of sub-level peaks. 

Others, such as Dy3+ and Sm3+ show a clearer dependency on the chosen excitation wavelength and are 

suppressed or not visible at other excitation wavelengths. For those elements featuring a variety of strong 

peaks that often superpose other REE, this excitation wavelength dependency demonstrates a possibility to 

reveal hidden REE peaks or discriminate and interpret overlapping features.  

The excitation wavelength dependency of broad matrix emissions is shown on spectra of eudialyte and 

zircon (Figure 5-6). In all analyzed eudialyte samples, several broadband luminescence features occur, 

whose visibilities are dependent on the respective excitation wavelength. At this, a strong Ce3+-

luminescence at 380–400 nm can be observed only at 325 nm excitation wavelength (Figure 5-6a). 

However, at longer excitation wavelengths a previously not visible broadband feature appears at 600 nm 

(Figure 5-6c) and most probably originates from the substitution of Ca2+ with Mn2+ within the crystal 

(Rastsvetaeva 2007). A respective MnO content of ~1.4 wt.% is validated by EMPA data for this sample. A 

third broadband luminescence at 505 nm, possibly related to the sample embedding epoxy resin, occurs 

only with blue excitation. It overlaps with the slightly weaker 600 nm luminescence, which appears as 

shoulder (Figure 5-6b). The observed broad emissions in zircon are many and often of uncertain origin, but 

commonly dependent on specific excitation wavelengths, such as:  

(I) A strong and broad emission with a center wavelength of 580 to 590 nm visible mainly at 325 nm 

excitation (Figure 5-6d, I) and substantially decreased at longer excitation wavelengths (Figure 5-6e and f, 

I). It originates probably in radiation damage centers that cause the characteristic red-brown color of many 

zircons and is decreased in intensity for longer excitation wavelengths (Gaft 1992, Gaft et al. 2005).  

(II) A broadband near-infrared luminescence (center-wavelength around 780 nm) was observed in some 

zircon samples under 325 nm (Figure 5-6d, II) and 442 nm excitation (Figure 5-6e, II) and might be related 

to Fe3+ or Ti3+ (Gaft 1992, Gaft et al. 2005). It nearly disappears under 532 nm excitation (Figure 5-6f, II).  
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Figure 5-5. REE and matrix emission variability in a xenotime sample are displayed as a function of three 

different laser excitation wavelengths. Selected REE emissions have been labeled according to reference 

feature positions (see text, Section 4.2).  

 

Figure 5-6. Interpretation of variable broad emission features as a function of excitation wavelength in (a-

c) eudialyte and (d-f) zircon samples. Excitation wavelengths are indicated on top of each plot group. 
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(III) A strong green luminescence appears around 510 nm under 442 nm excitation (Figure 5-6e, III), which 

in zircon is usually connected to the luminescence centers of UO2
2+ (Gaft 2002). It may also originate from 

the sample embedding epoxy resin, which shows a very similar feature. At 325 nm excitation, this center 

is weak and hardly observable, as it is nearly covered by the stronger orange broadband luminescence 

(Figure 5-6d, I). 

 

Influence of the Mineral Type: 

The spectral position of specific REE emission lines were found to be constant within a few nanometers, 

which reasons in the REE 4f-4f transitions that are generally not affected by their chemical environment. 

However, the specific Stark-level peak positions and relative intensities varied heavily between host 

minerals and slightly between samples of the same host mineral from different geological localities (Figure 

5-7).  

 

Figure 5-7. Variability of Stark-level emission peaks for the literature reported Nd3+ feature center 

wavelength of 890 nm (Reisfeld et al. 1996, Gaft et al. 2005) for different samples and excitation 

wavelengths. EMPA derived Nd2O3-concentrations are given in squared brackets in wt.%. Excitation 

wavelengths are indicated on top of each plot group. 

This observation coincides with statements in the literature, such as in Burns (1993) and Lenz et al. (2015). 

Accordingly, the local structural environment of the REE3+-ion decides on the splitting of the recorded 

emission peaks, which is also known as crystal-field dependent Stark’s splitting. A respective REE3+ sub-
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level peak database would open up the possibility to a fingerprint-like detection of the host mineral (Lenz 

et al. 2015). Figure 5-7 displays the variability of the observed sub-level peaks at the characteristic Nd3+ 

feature center wavelength of 890 nm (Reisfeld et al. 1996, Gaft et al. 2005) for the investigated samples in 

dependency of the excitation wavelength and gives an example on such a potential database. Remarkable 

are the bandwidth of occurring sub peak positions and the overall similarity of spectral shape and sub peak 

positions within one mineral type or even group. Similar patterns were observed for many mineral types 

such as for monazite or eudialyte. Few minerals such as britholite showed a higher variability, which in the 

current case might be related to abundant REE-bearing apatite in the britholite samples from Oka. 

In some samples such as xenotime or kainosite, characteristic Er3+ features around 855 nm become 

apparent, which interfere with the investigated Nd3+ sub-level peaks. A high variability in response to 

different excitation wavelengths is given, ranging from no change (monazite) over differing spectral shape 

(britholite) up to a suppression of detectability (zircon). 

REE Absorption Effects in PL Spectra: 

For samples and excitation wavelengths where intense and broad emissions occur around 500 to 800 nm, 

specific absorptions effects were likely to be observed within the PL signal. For each case, they could be 

certainly assigned to occurring REE (Figure 5-8).  

 

Figure 5-8. Occurrence of REE absorption features within PL spectra on the example of Monazite Elk 

Mountain sample. Significant features are labeled with the most probably related REE (also compare Figure 

5-3a). Laser excitation: 532 nm. 

The features originate mainly from Nd3+, which is known to show extremely distinct absorption features in 

this wavelength region, and to a lesser degree Pr3+, Dy3+, and Er3+, which strongly overlap with the Nd3+ 

features. While providing additional information on these four elements, this phenomenon also holds a 

crucial disadvantage. Weak, but characteristic emission features of other REE in this wavelength range can 

be either annihilated completely or masked to an extent, where they are not discriminable anymore from, 

for example, artificial peaks originating from two adjacent absorptions. For example, the two most 

characteristic Pr3+ emission features are located at 480 and 599 nm and are often completely masked by 

strong Nd3+-related absorptions around 475 and 580 nm, Dy3+-related absorptions at 476 nm, and the Pr3+-

related absorption around 593 nm (see also Figure 5-3a). This crucially affects the general detectability 

with PL spectroscopy of all REE that are solely detectable by peaks in the respective wavelength ranges, 
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such as Tm3+, and weakens the detectability robustness of REE with characteristic peaks in the respective 

wavelength ranges, such as Pr3+, Sm3+ and Ho3+. Variation of the excitation wavelength can be used to avoid 

broad-band emission of the mineral host and by that to reduce the influence of absorption on the PL signal 

(see also Section 5.5.2).  

5.6 Discussion and Cross-Method Considerations 

A concise overview on the features, advantages and weaknesses of both reflectance and PL spectroscopy is 

given in Table 5-4 and discussed further in detail in following sections.  

Table 5-4. Concluding overview on the capabilities of reflectance and PL spectroscopy for near-field REE 

detection. 

 Reflectance spectroscopy PL spectroscopy (325/442/532 nm excitation) 

Detectable REE in  

single-REE salts 

Robust: Pr3+, Nd3+, Sm3+, Dy3+, Ho3+, Er3+, 

Tm3+, Yb3+ 

Weak: Eu3+ 

Robust: Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Tb3+, Dy3+, Er3+, 

Yb3+ 

Weak: Ho3+, Tm3+ 

Detectable REE in  

mixed-REE natural samples 

Robust: Nd3+, Sm3+, Dy3+, Yb3+ 

Ambiguous (detectable by feature shift):  

Pr3+, Ho3+, Er3+, Tm3+ 

Robust: Ce3+, Nd3+, Eu3+, Dy3+, Er3+, Yb3+ 

Ambiguous: Pr3+, Sm3+, Ho3+, 

REE detection limit down to ~0.10 wt.% less than 0.03 wt.% 

Acquisition time:  

Point measurements 

ms–s ms–s 

Acquisition time:  

Mapping of 100x100px 

ms–s (commercial push broom and frame-

based sensors available) 

hours (x-y rastering of point measurements) 

Quantitative analysis semi-quantitative by correlation of absorption 

depth and position with REE grade 

not yet applicable  

5.6.1 Qualitative REE Detection 

REE can be classified into four groups according to their qualitative detectability by the used PL and 

reflectance spectroscopy methods in natural samples with mixed REE content (see also Figure 5-9):  

(I) No detectable features for both methods: Sc3+, Y3+, La3+, Gd3+, Lu3+ 

(II) Weak, masked, or otherwise inconsistently detectable features for both methods: Tb3+, Ho3+, Tm3+ 

(III) Well detectable features for one spectroscopic method: Ce3+, Pr3+, Sm3+, Eu3+, Er3+ 

(IV) Well detectable features for both spectroscopic methods: Nd3+, Dy3+, Yb3+  

The classification shows that few REE, which were well detectable in single-REE standards (Fuchs et al. 

2016), feature a decreased or inconsistent detectability in mixed natural samples for either one or both 

methods. This applies especially for Pr3+, Sm3+, Tb3+, Ho3+, and Tm3+. Two main explanations can be found: 

(1) hindered detection through overlapping REE- or mineral-matrix-related features (especially in PL data), 

and (2) non-comparability of single-REE salt concentrations versus fundamentally lower concentrations of 

certain REE in natural samples that may fall near or below the detection limit of the used method (especially 

for reflectance spectroscopy). For example, the concentration of TbPO4 samples used as reference amounts 

for roughly 60 wt.% Tb3+, while in the analyzed natural minerals Tb3+ rarely exceeds 1 wt.% (Turner 2015). 

Thus, REE features showing only weak spectral representations in high-grade single-REE salts might be 

expected to vanish in natural mixed-REE sample spectra. For the affected elements, a direct detection using 

one method is often not possible, thus, a combination of both methods and/or a variation in the acquisition 

parameters such as laser excitation wavelength is needed. For example, Pr3+, as one of the critical REE, is 
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hardly detectable in natural minerals by continuous-wave PL, as its features can be easily confused with the 

characteristic peaks of Dy3+ at 470–490 nm, Sm3+ at 600–650 nm, and Nd3+ at 870–900 nm, respectively. 

By variation of the excitation wavelength, Dy3+ and Pr3+ can be distinguished, as Dy3+ is well observable 

under 325 nm, but not 442 nm excitation, which is vice versa for Pr3+. Similar dependencies exist for Nd3+ 

and Sm3+. With a parallel sample analysis using reflectance spectroscopy, the occurrence and relative 

content of Dy3+, Sm3+, and Nd3+ can be cross-validated, as those elements show very specific features in 

reflectance spectroscopy data. By that, the results of reflectance spectroscopy can support the interpretation 

of PL spectroscopy data. 

 

Figure 5-9. Overview on the performance of the employed reflectance and PL approaches for the detection 

of REE and the possibilities of a combined approach. A comparison of detectability with criticality and 

vulnerability to supply restrictions of the individual REE shows the economic value of the presented 

approach (NA: no data available). 
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5.6.2 Quantitative REE Detection and Detection Limits 

In the current study, moderate detection limits of about 0.1 wt.% REE2O3 for each spectrally active REE were 

estimated for reflectance spectroscopy. As shown in Turner (2015), the absorption feature depth analysis of 

similar absorptions at different samples allows for a semi-quantification of the REE content. A relationship 

between absorption depth and concentration exists and can be used for single defined absorption features. 

Within this study, we could add on to this by providing a semi-quantification approach for overlapping REE 

features using the minimum wavelength position. The respective analysis of the best observable REE 

absorption feature at 800–810 nm enables a straight-forward sample categorization into HREE (low 

Nd3+/Dy3+-ratio, feature shifted to longer wavelengths) or LREE (high Nd3+/Dy3+-ratio, feature shifted to 

shorter wavelengths) enriched mineralization. Equivalent analyses could be used to evaluate the Nd3+/Pr3+- 

(580–595 nm), Er3+/Ho3+- (540–545 nm), and Tm3+/Dy3+-ratios (760–780 nm) of different samples.  

In contrast, PL spectroscopy provides significantly lower detection limits, but currently without the 

possibility of robust quantification. In many samples, distinct emissions could be unequivocally attributed 

to REE that were not or only in very low amounts detected by EMPA. As the EMPA detection limit for each 

REE was in average given with 0.03 wt.% REE2O3, a similar or even lower detection limit for PL spectroscopy 

can be assumed. However, the relation between emission intensity and REE content was inconsistent, up to 

the point of no or extremely weak detection despite EMPA proven REE occurrence. This confirms the 

findings of Friis (2009) and Lenz (2013), stating the complexity of REE emission and the resulting difficulty 

of REE quantification using PL analysis.  

5.6.3  Considerations on the Measurement Setup 

Spatial Data Integration: 

A successful integration of PL and reflectance spectroscopy results is dependent on the subsequent 

observation of the exact same spot of the sample. This applies not only between reflectance and PL 

spectroscopy results, but also between PL measurements with different excitation wavelengths. Hereby, not 

only the lateral extent and position correspondence of the measurement spot needs to be considered. At 

constant excitation wavelength, the penetration depth of a certain light source is also dependent on the 

optical and chemical characteristics of the investigated sample type (Friis 2009). In addition to that, a 

relation between the wavelength of the illumination source and penetration depth exists. Such, a 532 nm 

laser reaches a slightly deeper penetration than a 325 nm laser with the same power at the same surface 

spot, and therefore also stimulates deeper zones of the mineral crystal or, in case of very small grains or 

heterogeneous samples, can also excite emissions of surrounding minerals or embedding resin. These 

usually broad emissions can interfere with the target emission by both signal mixture as well as by 

providing a broad signal in which absorption effects can occur. These can mask or interfere smaller emission 

peaks nearby and complicate the overall spectral interpretation (see also section 5.5.2).  

Excitation Wavelength: 

A variation of the laser excitation wavelength can be used to highlight or suppress specific REE emissions, 

and also to minimize the influence of possible mineral matrix background emissions. However, the use of a 

laser with a longer excitation wavelength also leads generally to a loss in spectral coverage, as only features 

in a wavelength range longer than the laser excitation wavelength are recorded. Up-conversion 

measurements that enable the detection of emission features at shorter wavelengths than the laser 

wavelength could be a work-around and subject of a subsequent study.  
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Sample Size and Spatial Resolution: 

For both single-REE salts as well as mixed-REE natural mineral grains, the detectability by reflectance 

spectroscopy was highly influenced by the sample size. Some of the analyzed single grains samples featured 

diameters of less than a millimeter and even lower thicknesses. This made them hard to investigate with 

the portable spectroradiometer, whose measurement spot size exceeds the sample size. Thus, for very small 

or thin and transparent samples spectral mixing with the embedding resin or the surface below the analyzed 

sample can occur. Additionally, scattering of the emitted and reflected light within the transparent 

embedding resin can lead to additional disturbances within the observed spectral signal. Such spectral 

influences from neighboring or surrounding materials must also be expected for future measurements on 

rock samples. For this reason, it makes sense to consider the grain size of the examined sample when 

selecting the sensor parameters for both PL and reflectance measurements. 

Sensor Calibration: 

During the measurements, a constant and distinct calibration offset of about 10 nm between the measured 

spectral signal and the expected wavelength labelling was observed for the Rikola sensor. As this might be 

expected also for other sensors, routine calibration checks are highly recommended. By that, instrumental 

deviations can be distinguished from natural variability in absorption features, which occur due to changes 

in chemical concentration, spectral mixtures or environmental effects. This is especially important for the 

analysis of overlapping REE absorption features, which relies on the evaluation of the exact absorption 

position. The calibration could be easily done by a reference measurement of a standard material with a 

known absorption feature position.  

5.7 Conclusion 

Our study outlines the strengths of combining hyperspectral reflectance and PL spectroscopy for the 

detection of REE in natural minerals. Challenges accompanying the analysis of natural samples using only 

one of the two methods, such as masking of characteristic features by broad mineral matrix emissions and 

overlapping REE features, can be addressed by this combined approach. The integration of HS reflectance 

spectra and luminescence induced by continuous-wave lasers with different excitation wavelengths offers 

a possibility to cross-validate the observed results and robustly assign otherwise ambiguous features to 

specific REE. This increases the certainty of correct feature interpretation and enables more robust detection 

of economically important REE, including Ce, Pr, Nd, Sm, Eu, Dy, Er, Yb, and potentially also Ho and Tm. PL 

spectroscopy provides an extremely high sensitivity such that it partly outruns the detection limit of the 

conducted EMPA measurements (here: ~0.03 wt.% per individual REE2O3). Reflectance spectroscopy in 

general delivers a higher detection limit (>0.10 wt.% for selected REE2O3), but in contrast offers the 

possibility for semi-quantification through the analysis of absorption depth or, in case of highly overlapping 

features, absorption position.  

The integrated reflectance and PL spectroscopy offers already at the present laboratory stage an innovative, 

robust tool for non-invasive REE detection in near-field (in the range of 0.5 to 2.0 m) raw material 

exploration. It delivers especially advances in small-scale, high-precision sample mapping, and can directly 

be applied to REE detection in ore samples, drill cores, and as fast validation approach in large-scale REE 

exploration. 

As the integrated reflectance and PL analysis has now been proven to be successful for natural and complex 

samples, the next steps will need to focus on the technical implementation and the optimization of sensor 

parameters such as spatial and spectral resolution to produce integrable mineral maps. Co-registration of 
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the resulting PL data cubes with the presented HS reflectance imagery will allow a pixel-wise integration 

and by that, a combined mapping approach uniting the strengths of both methods. Further technical 

optimization may include the implementation of time-resolved PL as it is known to increase the 

discriminability of specific REE, but this will be at the cost of increasing the complexity of the setup, while 

already great benefit could be achieved with the integration of the here presented simple PL 

instrumentation. 

The relevance of integrating reflectance and PL spectroscopy for mineral mapping lies at present in a wide 

range of near field sensing applications with focus on any REE detection, may it be in geology, exploration, 

mining, processing or recycling. Expanding especially the PL spectral library beyond the focus on REE has 

significant potential to enable the robust detection and cross-validation of other critical raw materials. 

Applications beyond the current near-field scale need to tackle especially the challenge of ambient light for 

PL spectroscopy. Similar questions apply for the simultaneous acquisition of reflectance and PL signals 

using narrow and broad-band illumination at the same time. Both applications are generally possible, but 

require specific solutions, because PL signals are orders of magnitude less intense and rely on sufficient 

discrimination from much brighter reflectance signals and ambient light, respectively. Yet, a technical 

solution is available in form of, for example, a Fluorescence LiDAR system (Raimondi et al. 2009) for 

biogenic materials. To transfer the approach to the essentially weaker REE signal is possible, but requires 

advanced camera systems of high sensitivity and distinctly increased power of the laser excitation source. 

Besides security issues and possible sample altering, interferences between REE emission and absorption 

features occurring in close spectral proximity will cause a loss in informative value. For these reasons, the 

detailed and sensitive REE characterization is the strength of our combined spectroscopic approach. A 

separate acquisition guarantees to record the full range of information from both methods and is suitable 

especially for small sample-sensor distances (cm to m) under separate acquisition of reflectance and PL 

spectra. 
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Chapter Discussion  

Spectral characterization of valuable elements in mineral exploration such as REE with only one 

spectroscopic method is often not sufficient or only provides insufficient information, either regarding the 

nature of discriminable elements or their concentrations. Alternative methods that allow a much more 

sensitive characterization may exist and could extend the number of discriminable elements or reduce the 

ambiguousness of overlapping features. However, as it is the case for PL spectroscopy, the higher sensitivity 

is usually accompanied by the integration of several measurements over a given area or a longer integration 

time. The combination of several spectroscopic methods is therefore recommended for better material 

characterization. However, prior knowledge and dedicated feature libraries are needed to reliably link the 

observation of a specific spectral feature to the occurrence of a specific ion, molecule or mineral. A large 

number of fundamental studies on the spectroscopic features of REE and other ions exist, however, they are 

usually focused on synthetic materials and do not apply to relevant natural rocks in mineral exploration. 

Alternatively, the applied methodology is complex or highly specialized to the current sample or ion, e.g., 

using specific excitation wavelengths and decay-time windows in PL spectroscopy. Reflectance spectroscopy 

is an established technique in geosciences and has repeatedly been used to detect REE in rock samples, 

however, due to the higher detection limit and usually lower sensor-SNR in remote sensing, the detectable 

REE are limited to a few elements (Nd, Dy, Sm). 

The characterization of REE using both reflectance and PL spectroscopy as described in the presented 

chapter allowed a much more detailed analysis of REE than it would be possible with only one spectroscopic 

method. A resulting workflow for the routine REE characterization in rock samples could include the 

location and semi-quantification of REE-relevant regions in sample batches using HS reflectance imaging, 

followed by a detailed analysis and characterization with PL on selected samples with specific excitation 

wavelengths to determine the occurring REE. Observed Stark-level emission peaks could be cataloged and 

used for the characterization of the REEs’ host lattice. Future 2D mapping of PL and other spectroscopic data 

types and their integration with HSI could help to discriminate even more substances or to further increase 

the reliability of the detection.  

For example, Raman spectroscopy could be utilized to gain more information on the host minerals and by 

that, help to interpret the spectral features observed in HSI and PL. In particular, the results could support 

addressing observed broad-band emissions, which are usually attributed to the host lattice. 
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CHAPTER 6   CONCLUDING REMARKS 

6.1 Discussion 

The importance of rigorous pre-processing for the retrieval of spectrally and spatially meaningful data is 

well known in established remote sensing fields such as air- or space-borne imaging. Commonly accepted 

pre-processing workflows allow users to track the correction level of published data and obtain well-

corrected images for their specific needs. I found drone-borne, terrestrial, and lab-scale spectral imaging 

approaches to have no comparable established routines yet, may it be due to their novelty, the diversity of 

used sensors or the fact that these data are often acquired by the end users themselves. The awareness of 

the users for required data corrections is usually low, and readily available software rare. This often ends 

in the publication of results based on insufficiently corrected data or in the contemporaneous development 

of customized, usually not publicly available data processing solutions. The presented work showed the 

potential that lies in well-corrected spectral image data and how such data could be utilized for complex 

tasks in mineral exploration and geosciences. The proposed workflows may provide a guideline for the 

applicational community and raise the awareness for the importance of rigorous pre-processing. Further 

optimized and combined with available open-source algorithms, a set of tools could be delivered for public 

use, allowing each user to obtain well-corrected data for his specific needs.  

In the course of the study, I noticed several important aspects that are particularly relevant to all fields of 

spectral imaging and require a summarizing discussion to emphasize their importance:  

Large datasets are common as a sufficient target area needs to be covered optimally with high spectral and 

spatial sampling rates. Automation and speed are paramount features of a practicable processing, not least 

as first results are often demanded after short turnaround times. A prominent example is the required (near-

)real-time interpretation of data in the field. Ideally, overview scans or high-elevation flights are conducted 

in the first days of a field campaign. After data correction, feature extraction or clustering approaches can 

deliver an overview on the spectral (and by that mineralogical) variability of the target and be used to locate 

the most important regions of interest. These might be subject to further investigation by close-range scans 

or low-elevation flights with higher resolution. First mineralogical maps created from the resulting data can 

help to guide geologists in the field for targeted validation sampling and further investigation. Automation 

in processing is a key pre-requisite for such a workflow.  

A paramount but usually tedious task is the co-registration of images required for any sensor or data scale. 

Common application fields are image correction (such as band alignment), mosaicking or georeferencing. A 

manual selection of the required control points is usually only feasible for a low number of images or simple 

transformations. For more complex tasks I proposed the use of robust key point detection and matching 

algorithms that are invariant to size, orientation, spectral range, brightness, and perspective. The SIFT key 

point detection algorithm features such robustness and performed well for most tasks. However, it is slow 

compared to other available methods. The ORB algorithm turned out to be a promising alternative for simple 

matching tasks such as band-to-band registration, but also has a decreased scale-invariance. A use of ORB 

for HSI-to-RGB or multi-sensor registration could therefore not yet be implemented in the presented 

workflows. As an alternative, I decided to add supporting parameters to decrease processing time, e.g. the 

integration of GPS data for the georeferencing of UAS-HSI, logged either by the platform or the sensor itself. 

The geotag of each image can be used to refine the search radius for the matching process, which decreases 

processing time and enhances the reliability of the matching in data with high textural similarity. Further 
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code optimization such as the implementation of parallel processing will be an upcoming task to enhance 

the performance of the used tools. 

The effect of BRDF is one aspect that is particularly important to be considered for any spectral imaging 

survey. The wavelength-dependency of the effect can affect the observed position and depth of absorption 

features, whereas the illumination-angle-dependency causes these changes to vary between image regions 

with different surface orientation. If no correction is applied, substantial errors may occur in calculated 

mineral abundance and composition maps. BRDF is widely considered in the correction of air- and space-

borne images, e.g. by application of a topographic correction using a DEM with enhanced spatial resolution. 

Radiometric block adjustment poses a solution to reduce anisotropy-related differences in reflectance for 

UAS data with high image overlap and low morphological variation (Honkavaara et al. 2012). However, 

these pre-requisites are not fulfillable in common geological surveys, where strong changes in surface 

orientation and texture are common and acquisition conditions may inhibit a sufficient image overlap. I 

found a transfer of the topographical correction approach used in space- and airborne data to UAS- and 

terrestrial imaging most beneficial. It is based on an accurate link of the drone-borne spectral imagery to 

high-resolution morphological information in form of a DEM or pointcloud, which may be provided by 

photogrammetric or LiDAR surveys. The integration of morphological and spectral information is 

further beneficial as it allows to assign each spectral pixel to its real 3D position. The 3D geolocation removes 

geometric distortions and delivers a common space where HSI can be visualized and integrated with any 

other available geolocated data, e.g. other remote sensing data, georeferenced lithological maps, 

geochemical measurements, point spectra, drill-core data, geophysical data, or extracted structures and 

veins. Georeferencing spectral imagery is not a new task, however, terrestrial data demand specific 

treatment due to their characteristic small viewing angle. The basic principle of our georeferencing approach 

is in line with that of Kurz et al. (2011). However, instead of directly projecting the HSI into the geolocated 

3D space, I project the morphological information to the geographically artificial space of the spectral image. 

From there any spectral results can be exported to a “hypercloud”, i.e. the representation of the HSI or its 

results as pointcloud in a 3D environment. The reversed workflow causes no distortion or interpolation of 

the original spectral data and allows to handle and process morphological information together with the HSI 

in a 2D environment, a concept similar to the visualization of nadir HSI, DEM, and orthophoto in a Lat/Lon 

Geographic Information System (GIS). Morphological information from photogrammetric and LiDAR data 

can provide information about geological structures such as dykes and fractures. For example, the work of 

Thiele et al. (2017) provides a tool to trace lineaments and structural patterns in RGB pointclouds. The 

benefit of a fusion of topographical and spectral information for geological mapping was discussed by Kirsch 

et al. (2018) and Dering et al. (2019) and is a required task in the future. The potential of a combined 

interpretation of multi-sensor datasets in general needs to be emphasized at this point. Besides 

topographical information this may encompass data acquired at different spectral ranges, experimental 

scales or settings. Two prominent examples were given in Chapter 4 and 5, which illustrated the enormous 

potential of multi-sensor datasets at the lab-scale for mineral domain mapping and raw material detection, 

respectively.  

The review of the current state of the art in HS image processing and applications revealed an important 

issue that is not originating from the data itself but from an apparent communication gap between sensor 

development, image processing community and application field. Despite the overall number of publications 

in each field, the exchange of knowledge between these communities often seems hampered. Many novel 

developments in image processing algorithms do not reach the application stage, as the tools do either not 

tackle the users’ specific challenges or the users are not aware that these tools could be beneficial for their 
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specific task. Methodology used in the applicational field is more often linked to what is available in 

commercial software, even if more suited approaches may be already published. A profound review of 

available advanced algorithms, e.g. for feature extraction and classification, would be beneficial to evaluate 

their applicability in applicational conditions and promote their establishment in the users’ community. 

In this context, I additionally promote the importance of target-oriented spectral analysis in mineral 

mapping. The selection of the approach used for data interpretation should be reasonable and tailored to the 

task or desired outcome. For example, classes may be defined according to mineral mixtures or domains 

that are important to distinguish for the current aim and not by automatically extracted endmembers, which 

are usually difficult to interpret and may miss minor, but important spectral variations. Unsupervised 

clustering can be helpful to present an overview on the spectral variations within the image, however, if 

information on specific compositional variations is required, a targeted mapping of specific absorption 

features is more meaningful. This recommendation also affects the selection of the used classifiers or feature 

extraction algorithms, which should be justifiable on a data or applicational basis. 

6.2 Summary 

Current remote spectral imaging, benefitting from novel operational principles, allows to overcome the 

scale, flexibility and cost limitations of traditional space and airborne surveys. These in particular 

encompass ground- and UAS-based remote sensing as well as near-field multi-sensor solutions. In mineral 

exploration, these approaches support the detailed mapping of small-scale, otherwise inaccessible or vertical 

targets as well as the quick mineralogical analysis of samples and drill-cores.  

The novel acquisition approaches are accompanied by new challenges, inherent to unique radiometric and 

geometric effects. However, a proper pre-processing is often neglected in contemporary UAS-borne, 

terrestrial or near-field sensing studies. For most pre-processing tasks, no applicable software solutions 

existed and the development of appropriate tools is complex. In contrast, the scientific community recently 

made tremendous contributions to the development of algorithms for subsequent spectral analysis and 

mapping. Such processing tools are quasi-independent from the data scale or acquisition approach, as they 

are usually developed using synthetic or well-corrected data. The quality difference between synthetic and 

non-controlled datasets is apparent, which is why many promising machine learning algorithms are not yet 

implemented by the end users. Instead, the raw material sector often sticks to simple, outdated workflows 

or commercial software that allows a very restricted range of tools. Thus, resulting spectral maps remain 

subject to strong distortions, are barely validated or have no spatial relation to other datasets. A balance 

between the complexity of data correction and processing workflows needs to be achieved to allow a 

meaningful data interpretation based on spectrally and spatially sound datasets. 

The outcomes of the thesis contribute substantially to solve this major challenge in current most emerging 

imaging spectroscopy applications in mineral exploration. The presented Mineral Exploration Hyperspectral 

Toolbox (“MEPHySTo”) reduces the complexity of required pre-processing steps to a set of rather straight-

forward workflows that can be composed and adapted for most imaging sensors, scales or platforms (Figure 

6-1). The results show the overall positive impact of accurate preprocessing on both the amount of feasible 

application scenarios as well as the scientific soundness of the created material maps. MEPHySTo allows to 

retrieve accurate spectroscopic information even under challenging acquisition conditions, and to set the 

corrected data into a spatially meaningful context. This allows the combined interpretation or even fusion 

of datasets acquired under different acquisition circumstances such as sensor-type, sensor position, viewing 

angle or illumination. 



 

 160 

 

F
ig

u
re

 6
-1

. 
S

ch
e
m

a
ti

c 
su

m
m

a
ry

 o
f 

th
e 

o
u

tc
o
m

e
s 

o
f 

th
e
 t

h
e
si

s.
  

 



 

 161 

In more detail, the main tools of MEPHySTo are the following: 

(1) Correction routines of sensor-specific internal geometric and radiometric disturbances – for both 

push broom and frame-based HS imagers; 

(2) Workflows for automatic co-registration of images – usable for the correction of band-offsets in 

frame-based HS image data, automatic georeferencing and orthorectification of UAS-, ground-and 

near-field data, and the stitching of overlapping images; 

(3) External radiometric correction solutions – including data-driven atmospheric correction for long-

range off-nadir HS images, where common radiometric models do not apply; 

(4) Integration of 3D surface and hyperspectral image data – enabling both the correction of 

topography-/ surface-induced geometric distortions and illumination differences, as well as the 

addition of geo-spatial reference to each hyperspectral pixel. The resulting “hyperclouds” can be 

calculated for any hyperspectral scene independent of acquisition time, angle or sensor 

specification, which allows the combined interpretation of different datasets. This approach is 

applicable for all acquisition scales and principles and poses the preposition for multi-sensor fusion. 

(5) Optimized data acquisition and fusion of multi-sensor data for a better mapping result and 

flexibility in used sensors – the retrieval of spectrally and spatially meaningful image features 

allows the integration of highly different HSI and a substantial dimensionality reduction for large 

datasets; 

(6) Fusion of hyperspectral reflectance data with further spectroscopic methods to increase and cross-

validate their spectroscopic significance – application to the enhanced characterization of Rare 

Earth Elements by the integration of photoluminescence data. 

Altogether, the MEPHySTo bridges data acquisition and image processing, research fields that are often 

independent. A comprehensive image processing workflow is provided instead, starting with the acquisition 

of raw data in the field or lab, to returning fully corrected, validated and spatially registered at-target 

reflectance datasets. Case studies exemplarily demonstrated their value for subsequent spectral analysis, 

image classification or fusion in different acquisition scales and environments.  

The positive feedback received on our publications and presentations indicated a large field of potential 

users and application fields, such as 

- Mineral exploration: Being in the focus of the thesis, mineral exploration is one of the major 

application fields of the presented tools. No matter whether outcrop, drill-core or sample scale, the 

small and often indistinct spectral features of minerals of interest require a careful data correction. 

Rough acquisition conditions and inaccessible targets cause prominent radiometric and geometric 

disturbances and often limit the amount of available validation. The presented workflows allow the 

retrieval of reliable HS data even under challenging circumstances and set them into a common 

spatial context with other exploration-relevant information such as drill-core logs or geological 

profiles.  

- Mining: Both the acquisition and correction of data under active mining conditions is comparable 

to exploration surveys, however, the workflows need to be routinized, reliable, and straight-

forward. Frequent tasks such as mine-face mapping for grade control after blasting demand 

flexibility, short turn-around times, and resistance of the equipment for dust, weather, and repeated 

assembly and disassembly. The proposed correction of topography-induced illumination 

differences and spectral disturbances due to dust, as well as the accurate geolocation of separate 

acquisitions are crucial to retrieve meaningful and comparable multi-temporal HS measurements.  
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- Mineral processing, material sorting, and recycling: While usually conducted under controlled 

conditions, these application fields place special requirements on speed and reliability. Tailored 

sensor solutions and accurate processing workflows are required to optimize specific tasks, e.g., 

the semi-quantitative monitoring of rare earths content during mineral processing. The integration 

of reflectance data with other material characterization methods was shown to increase the 

reliability of the analysis as well as the amount of detectable materials.  

- Geological research: Similar to mineral exploration, HS workflows can complement and improve 

efficiency of lithological, mineral, and structural mapping in general, by contributing to the 

understanding of geological processes and subtle mineralogical differences.  

- Agriculture and environmental monitoring: Further applications of interest apart from mineral 

resources include (not comprehensively) the monitoring of spectrally indicative parameters in 

agriculture and environmental studies. Despite the differing focus, most challenges in HS image 

processing are similar, which allows a smooth transfer of the workflows.  

While providing solutions for each of the mentioned topics, the further optimization of MEPHySTo for 

specific applications is a future challenge and might be boosted by already existing approaches in machine 

learning. Tailoring these algorithms to important applications and raising the awareness in the user 

communities for already existing methods is a crucial task. They might further improve specific steps such 

as topographic and atmospheric corrections, image denoising or sharpening, or the overall optimization in 

regard to time and data memory consumption. The further development of sensors and platforms might 

bring up new challenges, but also opportunities to acquire data at enhanced resolution and spectral ranges.  
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