2,432 research outputs found

    Blocking Java Applets at the Firewall

    Full text link
    This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet

    SNS programming environment user's guide

    Get PDF
    The computing environment is briefly described for the Supercomputing Network Subsystem (SNS) of the Central Scientific Computing Complex of NASA Langley. The major SNS computers are a CRAY-2, a CRAY Y-MP, a CONVEX C-210, and a CONVEX C-220. The software is described that is common to all of these computers, including: the UNIX operating system, computer graphics, networking utilities, mass storage, and mathematical libraries. Also described is file management, validation, SNS configuration, documentation, and customer services

    Performance evaluation of an open distributed platform for realistic traffic generation

    Get PDF
    Network researchers have dedicated a notable part of their efforts to the area of modeling traffic and to the implementation of efficient traffic generators. We feel that there is a strong demand for traffic generators capable to reproduce realistic traffic patterns according to theoretical models and at the same time with high performance. This work presents an open distributed platform for traffic generation that we called distributed internet traffic generator (D-ITG), capable of producing traffic (network, transport and application layer) at packet level and of accurately replicating appropriate stochastic processes for both inter departure time (IDT) and packet size (PS) random variables. We implemented two different versions of our distributed generator. In the first one, a log server is in charge of recording the information transmitted by senders and receivers and these communications are based either on TCP or UDP. In the other one, senders and receivers make use of the MPI library. In this work a complete performance comparison among the centralized version and the two distributed versions of D-ITG is presented

    The Use of Firewalls in an Academic Environment

    No full text

    RFCs, MOOs, LMSs: Assorted Educational Devices\ud

    Get PDF
    This paper discusses implicit social consequences of four basic internet protocols. The results are then related to the field of computer-assisted teaching. An educational on-line community is described and compared to the emerging standard of web-based learning management.\u

    Traffic measurement and analysis

    Get PDF
    Measurement and analysis of real traffic is important to gain knowledge about the characteristics of the traffic. Without measurement, it is impossible to build realistic traffic models. It is recent that data traffic was found to have self-similar properties. In this thesis work traffic captured on the network at SICS and on the Supernet, is shown to have this fractal-like behaviour. The traffic is also examined with respect to which protocols and packet sizes are present and in what proportions. In the SICS trace most packets are small, TCP is shown to be the predominant transport protocol and NNTP the most common application. In contrast to this, large UDP packets sent between not well-known ports dominates the Supernet traffic. Finally, characteristics of the client side of the WWW traffic are examined more closely. In order to extract useful information from the packet trace, web browsers use of TCP and HTTP is investigated including new features in HTTP/1.1 such as persistent connections and pipelining. Empirical probability distributions are derived describing session lengths, time between user clicks and the amount of data transferred due to a single user click. These probability distributions make up a simple model of WWW-sessions

    Portals and university libraries

    Get PDF
    Section 2: Chapter 8Postprin

    {SoK}: {An} Analysis of Protocol Design: Avoiding Traps for Implementation and Deployment

    No full text
    Today's Internet utilizes a multitude of different protocols. While some of these protocols were first implemented and used and later documented, other were first specified and then implemented. Regardless of how protocols came to be, their definitions can contain traps that lead to insecure implementations or deployments. A classical example is insufficiently strict authentication requirements in a protocol specification. The resulting Misconfigurations, i.e., not enabling strong authentication, are common root causes for Internet security incidents. Indeed, Internet protocols have been commonly designed without security in mind which leads to a multitude of misconfiguration traps. While this is slowly changing, to strict security considerations can have a similarly bad effect. Due to complex implementations and insufficient documentation, security features may remain unused, leaving deployments vulnerable. In this paper we provide a systematization of the security traps found in common Internet protocols. By separating protocols in four classes we identify major factors that lead to common security traps. These insights together with observations about end-user centric usability and security by default are then used to derive recommendations for improving existing and designing new protocols---without such security sensitive traps for operators, implementors and users
    • …
    corecore