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Abstract

Measurement and analysis of real traffic is important to gain knowledge about the char-
acteristics of the traffic. Without measurement, it is impossible to build realistic traffic
models. It is recent [18] that data traffic was found to have self-similar properties. In
this thesis work traffic captured on the network at SICS and on the Supernet, is shown
to have this fractal-like behaviour. The traffic is also examined with respect to which
protocols and packet sizes are present and in what proportions. In the SICS trace most
packets are small, TCP is shown to be the predominant transport protocol and NNTP
the most common application. In contrast to this, large UDP packets sent between not
well-known ports dominates the Supernet traffic. Finally, characteristics of the client
side of the WWW traffic are examined more closely. In order to extract useful informa-
tion from the packet trace, web browsers use of TCP and HTTP is investigated includ-
ing new features in HTTP/1.1 such as persistent connections and pipelining. Empirical
probability distributions are derived describing session lengths, time between user
clicks and the amount of data transferred due to a single user click. These probability
distributions make up a simple model of WWW-sessions.

1.0  Introduction

Measurement and analysis of real traffic is important to gain knowledge about the char-
acteristics of the traffic. Without measurement, it is impossible to build realistic theo-
retical traffic models. The traditional telephone network could very successfully be
analysed and modelled using applied mathematics such as stochastic processes. Espe-
cially Poisson processes have been used which states that call arrivals are mutually
independent and that the call interarrival times are all exponentially distributed, with
one and the same parameter . Because of the success of voice network modelling and
because Poisson processes have some attractive theoretical properties, the same
approach have often been used when modelling data network traffic. Packet and con-
nection arrivals have been assumed to be Poisson processes. But several studies [21]
have shown that the distribution of packet interarrivals clearly differs from exponential
and Leland et al. [18] showed that the burstiness on many timescales, observed in real
traffic, can not be described with traditional Poisson-based traffic modelling. Instead
they introduced statistically self-similar processes as a better way of modelling LAN
traffic.

In this thesis work, network traffic on the Supernet and external traffic at SICS is ana-
lysed. The traffic was captured using tcpdump [15]. Figure 1 shows the network at
SICS. The machine running tcpdump (called network monitor in the figure) was listen-
ing to the 100 Mbit/sec line connecting all workstations at SICS with the gateway and
in the end the SUNET network. This was used to capture all conversations between
machines at SICS and the outside Internet world, for 24 hours. The packet trace was
taken between 21:36 990414 and 21:40 990415 and includes more than 21 million
packets.

λ
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 The Supernet trace includes 15 million packets captured between 15:27 and 23:06
980423 on the Supernet in Sundsvall. Supernet consists of a mixture of Ethernet,
ADSL (Asymmetric Digital Subscriber Line) and cable TV modems. Figure 2 shows
the part of the network where the trace was taken. The trace includes all traffic between
the ADSL-switch and the router and also the traffic between the two switches. ADSL
provides approximately 7.6 Mbit/sec of downstream bandwidth (to the costumer) and
1.8 Mbit/sec of return bandwidth. For the cable modems each outgoing line from the
switch makes up a segment where the active modems share 10 Mbit/sec of bandwidth.

The work is organized as follows. In Section 2 these packet traces are examined with
respect to self-similarity. The section begins with definitions and a description of the
methods used for estimating the degree of self-similarity. The result of applying these
methods to the SICS and Supernet traffic data is presented in 2.3, and the section con-
cludes with a discussion of what the possible causes and implications of self-similarity
might be. In Section 3 the traffic is examined with respect to which protocols and
packet sizes are present and in what proportions. To put the results in context this sec-
tion begins with a brief outline of the TCP/IP protocol suite. The results show for
instance the packet size distribution, the composition of the IP traffic during the time
the traces were taken, which transport protocol is most common and what applications
are the most popular. Finally in Section 4, characteristics of the client side of the
WWW traffic are examined more closely. In order to extract useful information from
the packet trace, web browsers use of TCP and HTTP is investigated including new
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features in HTTP/1.1 such as persistent connections and pipelining. Empirical proba-
bility distributions are derived describing session lengths, time between user clicks and
the amount of data transferred due to a single user click. These probability distributions
make up a simple model of WWW-sessions.

2.0  Self-similarity

In Section 2.1 the mathematics used are presented, leading up to the definition of self-
similarity. Section 2.2 deals with the methods used for estimating the Hurst parameter
that describes the degree of self-similarity. In Section 2.3 the result of applying these
methods to the SICS and Supernet traces are presented, and in 2.4 these results are put
in context when possible causes and implications of self-similarity are discussed.

2.1  Definitions

A random variable is a quantity that each time it is measured takes on one of a range of
values. Particular values occur with different probabilities. Each separate measurement
is referred to as an instance of the random variable. A generic random variable is
denoted X, and xi represents the ith instance of X. Unless otherwise stated, it is assumed
that there are a total of n instances. X is discrete if it assumes a finite or countable
number of values. The random variable is continuous if it assumes all values in an
interval according to a density function fX(x).

The Cumulative Distribution Function (CDF) of a random variable X tells the probabil-
ity that an instance of X is less than or equal to a given value x.

,

The derivative of the CDF is called the probability density function (pdf) of X:

If X is discrete the CDF is not differentiable, and instead of the pdf the probability func-
tion px(k) = P(X=k), (k = 0,1,....) is used. This function tells the probability that an
instance of X is equal to a given value x. Some well-known distributions mentioned
later on are:

Poisson distribution:  (k=0,1,...),

Exponential distribution:    and

Pareto distribution: , .

FX x( ) P X x≤( )= ∞ x ∞< <–

f X x( )
xd

d
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px k( ) e
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If in the Pareto distribution , then the distribution has infinite variance, and if

then it has infinite mean. The Pareto distribution is an example of a heavy-tailed
distribution. A distribution is said to be heavy-tailed if

, as .

In practical terms a random variable that follows a heavy-tailed distribution can give
rise to extremely large values with non-negligible probability.

The cumulative distribution function or the density/probability function is used to get a
complete description of a random variable. To get a description in more condensed
form indices of central tendencies and dispersion is often used. The purpose of an
index of central tendency is to summarize the data by a single number that (to be mean-
ingful) should be representative of the major part of the data set. The most common
used is the mean or expected value

,

where summation is used for discrete variables and integration for continuous random
variables. An alternative is the median, which is obtained by sorting the observations in
an increasing order and taking the observation that is in the middle of the series. To
avoid drowning crossing a stream with an average depth of six inches, it is also impor-
tant to know something about the indices of dispersion. These specifies the variability
in a data set. Three popular alternatives are:

variance:

standard deviation:

coefficient of variation: .

Often it is also important to know if two random variables are dependent of each other.
This can be examined using the simultaneous probability- or density function. But it is
more often expressed as a single number using the covariance or the correlation coeffi-
cient. Given two random variables X and Y with means  and , their covariance is

.

For independent variables, the covariance is zero. But the reverse is not true, it is possi-
ble for two variables to be dependent and still have zero covariance.The other measure
of dependence between two random variables is the correlation coefficient:

The correlation coefficient always lies between -1 and 1.

β 2≤
β 1≤

P X x≥( ) cx
β–∼ x ∞ β 0≥,→

E X( ) µ xi p xi( )
i
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∞–

∞
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When data is collected sequentially in time, a time series can be used for modelling and
predictions. A time series [2] is a set of observations xt, each one being recorded at a
specified time t. In a discrete-time series the set of times in which observations are
made is a discrete set, as is the case when observations are made at fixed time intervals.
Continuous-time series are obtained when observations are made continuously over
some time interval. The observations xt are often supposed to be instances of a random
variable X, and the time series is modelled as a stochastic process. A stochastic process
is a family of random variables  with the same range. If T is an interval
of real numbers then the process is said to have continuous time, and if T is a sequence
of integers it is said to have discrete time. The term time series is often used to mean
both the data and the process of which it is a realization.

The autocovariance function of a process with finite variance is defined

by . A discrete time series is said to be covari-

ance stationary (or weak stationary or sometimes just stationary) if the expected value
of Xt is finite and equal to the same value m for all t, and it holds that

for all r, s, and t. That is, the series is covariance stationary

if the mean is the same all the time and the dependence between all equally distanced
pairs of observation is the same.

The autocovariance function can be redefined for a stationary process as a function of
just one variable:  for all t and h. The auto-

correlation function of {Xt} is defined analogously as the function whose value at lag h

is  for all t and h.

If a series is strict stationary then Xt has the same distribution for all t, which implies
that the expected value and variance are constant and the covariance is the same for all
h. A process is said to have stationary increments if the distribution of X(t+h)-X(t) only
depends on h.

For a detailed discussion of self-similarity and long-range dependence see Beran [4]
and Willinger et al.[31], [33]. The description in this subsection follows those sources
closely. There are a number of different, not equivalent, definitions of self-similarity.
The standard one states that a continuous-time process is self-simi-
lar with self-similar parameter H if it satisfies the condition:

where the equality is in the sense of finite-dimensional distributions. While a process Y

satisfying this can never be stationary, that would require , Y is typically
assumed to have stationary increments. A second definition of self-similarity that is
more appropriate in the context of standard time series, involves a stationary sequence

. Let

, k = 1,2,...,

X t( ) t T∈,{ }
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γ X r s,( ) Cov X r( ) X s( ),( )= r s T∈,
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Y t( )
d
= Y at( )
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be the corresponding aggregated sequence with level of aggregation m, obtained by
dividing the original series X into blocks of size m and averaging over each block. The
index k labels the block. If X is the incremented process of a self-similar process Y, that
is X(i) = Y(i+1) - Y(i), then for all integers m,

.

If a stationary sequence  satisfies this for all aggregation levels m,
then it is called exactly self-similar. It is said to be asymptotically self-similar if it holds
as . Similarly, a covariance-stationary sequence X(i),  is called exactly

second-order self-similar if  has the same variance and autocorrelation as X

for all m. It is said to be asymptotically second-order self-similar if it holds as .

A related notion is that of long-range dependence (LRD), which means correlations
across large time scales. A stationary process is long-range dependent if its autocorre-
lation function  is nonsummable:

Thus the definition of long-range dependence applies only to infinite time series. The
two notions of long-range dependence and self-similarity are in general not equivalent.
Long-range dependence is one of the ways in which self-similarity manifests itself [18]
and self-similar processes are the simplest models with long-range dependence [21].
Self-similarity typically refers to scaling behaviour of the distributions of a continuous
or discrete time process, while long-range dependence involves the tail behaviour of
the autocorrelation function of a stationary time series. But since second-order self-
similar also is defined in terms of autocorrelations, the terms long-range dependence
and (exactly or asymptotically second-order) self-similarity are sometimes used in an
interchangeable fashion, because both refers to the tail behaviour of the autocorrela-
tions and are essentially equivalent [31].

One attractive feature with self-similar models is that the degree of self-similarity is
expressed using only a single parameter, the so called Hurst parameter H. For self-sim-
ilar series with long-range dependence, 1/2 < H < 1, and as the degree of both
self-similarity and long-range dependence increases.

2.2  Methods for estimating the Hurst parameter

It is not possible to use the definition to check whether a finite traffic trace is self-simi-
lar or not. Instead different features of self-similarity such as slowly decaying variances
are investigated in order to estimate the Hurst parameter H. As mentioned in section
2.1, this parameter H can take any value between 1/2 and 1 and the higher the value the
higher the degree of self-similarity. For smooth Poisson traffic the value is H=0.5. Here
four methods are used to test for self-similarity. These four methods are all heuristic
graphical methods, they provide no confidence intervals and they may be biased for
some values of H. The rescaled adjusted range plot (R/S plot), the Variance-Time plot

X
d
= m

1 H–
X

m( )

X X i( ) i 1≥,{ }=

m ∞→ i 1≥
m1 H– X m( )

m ∞→

ρX h( )

ρX h( )
h 1=

∞

∑ ∞=
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and the Periodogram plot, and also the theory behind these methods, are described in
detail by Beran [4] and Taqqu et al. [28]. Molnar et al. [20] describes the index of dis-
persion for counts method and also discuss how the estimation of the Hurst parameter
can depend on estimation technique, sample size, time scale and other factors.

Each packet captured with tcpdump has a timestamp. The traffic trace is divided up into
time intervals (bins), for instance of size 100 ms. For each time interval the number of
packets or bytes that arrived is counted. The resulting vector, with the number of pack-
ets (or bytes) that arrived in each time interval, is input to all four of the methods
described.

2.2.1  The R/S method

The R/S method is one of the oldest and most well known methods for estimating H.
Let Xt denote the number of packets that arrive at time t, i.e the number of packets in
bin t, and let

be the cumulative inflow up to time j. The R/S-statistic or rescaled adjusted range is
defined by the ratio

R/S =            where

is called the adjusted range and

   where

makes it possible to study properties that are independent of scale.

To determine the Hurst parameter H the ratio R/S is calculated for every possible, or a
sufficient number of, values of t and k and log R/S is plotted against log k. The slope of
a straight line fitted to the points in the plot, for instance by the least square method, is
an estimation of the parameter H.

In practice the ratio R/S is not calculated for every possible t and k. Instead a number of
equally spaced starting points t and a number of intervals (lags) k are chosen. Typically
logarithmically spaced values of k is chosen because log R/S is to be plotted versus log
k. For each starting point t the ratio R/S is calculated for every lag k such that t+k <=
length of X. For small k one get many estimates of R/S but for large k one gets only a
few, down to one, estimate of R/S.

Y j Xi
i 1=

j
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S t k,( )
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i
k
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k
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1–
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The R/S method is known [28] to be biased towards H=0.7. It is biased upwards for
small values of H and downwards for large values of H.

A number of questions arise: The ratio R/S can not in practice be calculated for every
possible starting point t and lag k. What is a sufficient number of different values of t
and k? The low and high ends of the plot is usually not used when estimating H
because of the influence from short-range dependence in the low end and because there
are too few points to make a reliable estimate in the high end. How to choose cut-offs?
It turns out that slight changes in the values of the cut-offs and in the number of values
of t and k don’t affect the estimate very much. The values used, when estimating H for
the SICS and Supernet traces, are described in 2.2.5.

2.2.2  Variance-Time plot

Let X be a vector with the number of packets in each interval (bin). If for example the
bin size has been chosen to 100 ms then X1 is the number of packets that arrived the
first 100 ms. Characteristic of long-range dependent processes is that the variance of
the sample mean converges slower to zero than 1/n (the reciprocal of the sample size).
It can be shown that

where c > 0.

This is what the variance-time plot method is based on and the actual method to esti-
mate H is as follows:

First the mean of each pair of consecutive, non-overlapping bins are calculated and
then the variance of these means is calculated. The 2-logarithm of the variance is plot-
ted against the logarithm of the block size i.e 1. Then the same thing is done for blocks
of size 4,8,16,..,length(X)/2 bins. The parameter H can be estimated by fitting a simple
least squares line through the resulting points and using the relation slope = 2H - 2.

The values for the smallest and largest block sizes are usually not included when esti-
mating H. The problem is the same as for the R/S method. How to choose cut-offs?

2.2.3  The Periodogram method

The periodogram is defined as

where υ is a frequency, N is the length of the series, and X is the time series. I(υ) is an
estimator of the spectral density. A series with long-range dependence should have a

periodogram which is proportional to |υ|1-2H close to the origin. An estimation of H is
given by fitting a straight line to a log-log plot of the periodogram against the fre-
quency. The slope of the line is approximately 1-2H. In practice only the lowest 10% of

the roughly N/2 frequencies is used when estimating H [27].

var Xn( ) cn
2H 2–≈

I υ( ) 1
2πN
----------- X j( )e

ijν

j 1=

N

∑
2

=
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2.2.4  Index of Dispersion for Counts

The index of dispersion for counts is a common used measure for capturing the varia-
bility of traffic over different time scales [18], [20]. For a given time interval t the index
of dispersion for counts (IDC) is given by the variance of the number of arrivals during
the interval divided by the expected value. The vector X with the number of packets
that arrived in each interval (bin) is divided into non-overlapping blocks of length t.
IDC(t) is the variance of the number of packets in the blocks divided by the mean.
IDC(t) is calculated for increasing block sizes t and for self-similar processes the val-
ues increases monotonically. The Hurst parameter H can be estimated by plotting log
IDC(t) against log t which results in an asymtotic straight line with slope 2H-1 [18].

To get a reliable estimate of IDC(t) the maximum block size is limited to 10% of the
sample size [20]. Using non-overlapping blocks of length t at least about 10 values is
needed to calculate the variance with acceptable confidence. Thus the calculated
IDC(t) value is getting more and more inaccurate as t increases. As a result, the IDC
plot becomes more and more noisy as t increases.

2.2.5  Implementation

The methods described for estimating the Hurst parameter were implemented using
Matlab. In Section 2.3, the results of applying these methods to the SICS and Supernet
traces are presented. But first the implementations were tested on traces, taken at the
Bellcore Morristown Research and Engineering Center, which are available at the
Internet Traffic Archive [14]. These traces are a subset of those analysed in Leland et
al. [18]. The estimates of the Hurst parameter that were obtained by applying the meth-
ods to the Bellcore data were compared to the results presented in [18] in order to con-
firm that the implementations give reasonable results. For the R/S method different
number of starting points t and lags k and different cut-offs were tried. Since the results
were almost the same the method seems to be stable and when the results are presented
in Section 2.3 the same values of these parameters are used. Twenty starting points
were used and the lower cut-off was chosen as in Taqqu et al. [28] to 10^0.7. Besides
this minimum, lags of sizes 10^0.75, 10^0.8,...,length(sample) were used. For the Vari-
ance-Time method the problem is to decide which of the plotted points should be
included when determining the slope. The points due to the smallest and largest block
sizes were not used when estimating the Hurst parameter. For the IDC method the max-
imum block size was restricted to 10% of the sample size when estimating H. The
implementation of the Periodogram method seemed to work well for the traffic in the
SICS trace when the proposed [27] lower 10% of the frequencies were used. But for
the Supernet traffic and the Bellcore data the method sometimes gives absurd results.
Therefore one Periodogram plot is shown for the SICS trace in 2.3.1, but all other
results presented relies only on the R/S, Variance-Time and IDC methods.

2.3  Is SICS and Supernet traffic self-similar?

The methods described in 2.2 for estimating the Hurst parameter were used to investi-
gate if the traffic captured in the SICS and Supernet traces are self-similar. The defini-
tions of self-similarity and long-range dependence rely on the fact that the traffic, or the
stochastic process describing the traffic, is stationary (or have stationary increments).
This means for instance that the expected number of packets that arrive in 100 ms
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should be the same irrespective of when the traffic is investigated. This would not be
the case if 24 hour of traffic was examined at once, since the number of users and the
load on the network varies during the day. The fact that it is not possible to tell with
certainty whether or not the traffic is stationary and since it is difficult to distinguish
stationary traffic with long-range dependence from certain non-stationary traffic with
short-range dependence [13], at most one hour at a time of the traffic traces was exam-
ined.

2.3.1  SICS

The hour between 14:00 and 15:00 of the trace was chosen for closer examination. This
choice was somewhat arbitrary but it seems to be a “normal hour” of traffic (see also
Figure 11 in Section 3.2). First the number of packets that arrived each 100 ms interval
was counted and Figure 3 shows the resulting R/S plot, Variance-Time plot, IDC and
Periodogram plots. With the R/S method the Hurst parameter was estimated to H =
0.85. The line fitted by least-square to the Variance-Time plot has slope -0.386 which
gives an estimate of H=1+slope/2 = 0.81. The Index of Dispersion for Counts estimates
H to 0.77 and the Periodogram gives the value H=0.84. The methods don’t give exactly
the same result but the values are all clearly above 0.5, so the traffic is self-similar with
Hurst parameter .

Also, the byte traffic is self-similar with approximately the same H value. The number
of bytes arriving in each time interval was counted and the R/S, Variance-Time and
IDC methods were applied to this data. The results are shown in Table 1. This table
also shows the resulting estimates of the Hurst parameter when different time intervals
(bin sizes) were used, ranging from 10 ms to 1 second.

H 0.8≈
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Figure 3. Estimates of the Hurst parameter H for the hour 14:00 -15:00 of
the SICS trace. At the top the R/S plot followed by Variance-Time plot,
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With the fact in mind that non-stationary traffic can be mistaken for self-similar station-
ary traffic, even smaller parts of the trace was examined. The Hurst parameter was esti-
mated for each of the six non-overlapping 10 minutes intervals between 14:00 and
15:00. The result is shown in Figure 4. None of the estimates is less than 0.75, so this
hour of traffic is clearly self-similar.

So far only one hour out of the 24 hours of traffic captured in the SICS trace has been
analysed. The Hurst parameter was estimated for each hour of the trace and the results
are presented in Figure 5. The estimates are for packet traffic and the bin size 100 ms
was used. All three methods show high values between hour 12 and 19. The trace
started at 21:36 so that means between 8:30 and 16:30. Since this is also the time of the
day when most people use the network it corresponds well with the findings of Leland
et al. [18] that the higher the load on the network the higher the degree of self-similar-
ity.

It is also notable that the three methods used sometimes give quite varying estimates of
the Hurst parameter. Especially for the fifth hour between 01:36 and 02:36 when the
R/S method estimates H to approximately 0.75, the Variance-Time plot gives a much
lower value and the IDC method states that H=0.5, thus not self-similar at all.

Packets Bytes

Bin size: Hrs Hvar Hidc Hrs Hvar Hidc

0.01 s 0.85 0.85 0.77 0.83 0.86 0.78

0.1 s 0.85 0.81 0.77 0.85 0.82 0.78

1 s 0.86 0.76 0.77 0.87 0.78 0.78

Table 1. Hurst parameter estimates for the hour 14:00-15:00 of the SICS trace.
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Figure 4. Hurst parameter estimates for ten minutes intervals 14:00 -15:00.



16

2.3.2  Supernet

The Supernet trace consists of 150 different files, each containing 100000 packets. A
single file covers between two and three minutes of network traffic but there is always a
short silence, were packets are missing, before the next file starts. These intervals of
silence between files ranges from 150 to 580 ms. It is hard to know how much impact
these silences have on the estimate of the Hurst parameter, but they don’t make the traf-
fic less bursty. The hour between 19:42 and 20:42 was selected for a closer analysis
since the silences between files were smallest during this hour.

The procedure is the same as for the SICS trace in section 2.3.1. The hour 19:42-20:42
was analysed in detail and the Hurst parameter was estimated using R/S plot, Variance-
Time and IDC plots. The results are shown i Figure 6 and Table 2. The plots in the fig-
ure show estimates of H for packet traffic using the bin size 100 ms. The R/S method
gives the highest estimate H=0.90 while the Variance-Time and IDC methods estimates
the Hurst parameter to 0.85 and 0.84. All methods estimates H to more than 0.75 for
both packet and byte traffic and irrespective of bin size.
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Figure 5. Hurst parameter estimates for each hour of the SICS trace.
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Packets Bytes

Bin size: Hrs Hvar Hidc Hrs Hvar Hidc

0.01 s 0.82 0.88 0.84 0.78 0.83 0.79

0.1 s 0.90 0.85 0.84 0.87 0.86 0.79

1 s 0.89 0.79 0.84 0.88 0.76 0.79

Table 2. Hurst parameter estimates for the hour 19:42-20:42 of the Supernet trace.
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Figure 6. Estimates of the Hurst parameter H for the hour 19:42-20:42 of
the Supernet trace. At the top the R/S plot followed by the Variance-Time
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The six non-overlapping ten minutes intervals between 19:42 and 20:42 was investi-
gated and the values of the Hurst parameter is shown in Figure 7. Finally, each hour in
the trace from 15:27 to 22:27 was analysed. Only the packet traffic was examined using
bin size 100 ms.The results are presented in Figure 8 and show that the lowest value of
H was approximately 0.75, but most estimates are above 0.85 and sometimes as high as
0.95. Thus, if the short silences between the trace files have little or no influence on the
estimates then the traffic in the Supernet trace is clearly self-similar.

2.4  Self-similarity - explanations and implications

2.4.1  Why self-similarity?

The first findings of self-similarity in network traffic were met with scepticism, mainly
because of the absence of physical explanations for the observed phenomena. It turned
out that heavy-tailed distributions play an important part when explaining the causes of
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Figure 7. Hurst parameter estimates for ten minutes intervals between
19:42 and 20:42 in the Supernet trace.
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self-similarity. These distributions have been found [32] for instance in sizes of files in
a file system, inter-keystroke times when a person types, sizes of FTP bursts and in
sizes and durations of bursts and idle periods in traffic between pairs of computers on
an Ethernet LAN.

When trying to explain the empirically observed self-similarity, a structural modelling
approach has been proposed by Leland et al. [18] and Willinger et al. [31], [33]. These
structural models take into account specific features of the underlying network struc-
ture and hence provide a physical explanation for the observed fractal nature of aggre-
gate network traffic. Aggregate Ethernet LAN traffic can be separated into individual
source-destination pairs that represents the traffic flow between each active pair of
computers. These pairs are modelled as ON/OFF sources. The model assumes that a
source alternates between an active and an idle state. During ON-periods packets are
sent at a constant rate, and during OFF-periods no packets are transmitted. The length
of the ON-periods are identically distributed, and so are the OFF-periods. The length of
ON- and OFF-periods are independent. Willinger et al. [31], [33] presents a limit theo-
rem that states that the superposition of many such ON/OFF sources captures the self-
similar nature of aggregate LAN traffic, provided that the distribution of either the ON-
or OFF-periods of an individual source-destination pair are heavy-tailed with infinite
variance. In [33] a data set of self-similar Ethernet LAN traffic is analysed to validate
the model, and it shows that a typical individual source-destination pair exhibits an
apparent ON/OFF structure and that the distribution of the ON/OFF periods satisfy the
heavy-tailed property. Thus self-similar LAN traffic can be constructed by multiplex-
ing a large number of ON/OFF sources that have heavy-tailed ON or OFF period
lengths.

Traffic carried over wide-area networks such as the Internet differs from LAN traffic in
some fundamental ways that makes structural modelling more complicated. WANs are
generally more heterogeneous and they have to cope with delays associated with
obtaining and adapting to feedback on current network conditions, which introduce
additional structure to the flow of packets. Structural modelling approaches for WAN
traffic have been proposed by Willinger et al. [33], Paxson et al. [21] and Feldmann et
al. [11]. These models attempt to explain the self-similar nature of aggregate WAN
traffic at the packet level in terms of the characteristics of the main applications (e.g.
HTTP, FTP and Telnet). The structural models are based on a construction called the
M/G/  model, where session arrivals are assumed to be Poisson, session durations are
heavy-tailed and packets are generated at a constant rate for the duration of a session.
These models are shown to be partly valid for todays WAN traffic, but a more flexible
traffic behaviour within sessions is needed. Multifractals, described by Feldmann et al.
[11], [12], is another approach to describe and understand the dynamics of WAN traf-
fic.

Thus, it seems like the self-similarity in network traffic can be explained simply in
terms of the nature of the traffic generated by individual sources.

2.4.2  Implications

Self-similarity is a way of describing the existing traffic. The network traffic was (prob-
ably) bursty and fractal-like in its behaviour even before 1994, when Leland et al. [18]
first described it as self-similar. The fact that traffic is found to be self-similar does not

∞
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change its behaviour but it changes the knowledge about real traffic and also the way in
which traffic is modelled. It has lead many [21] to abandon the Poisson-based model-
ling of network traffic for all but user session arrivals. Real traffic, well described as
self-similar, has a “burst within burst” structure that cannot be described with the tradi-
tional Poisson-based traffic modelling.

Erramilli [10] shows, using trace-driven simulation experiments, that long-range
dependence in packet traffic has measurable and practical impact on queueing behav-
iour. That long-range dependence is of crucial importance for buffer sizing, admission
control and rate control, and if ignored typically results in too optimistic performance
predictions and inadequate network resource allocation.

It should be emphasized that there is no total consensus among researchers about the
importance of self-similarity and long-range dependence. The first fractal traffic mod-
els were met with scepticism. Mainly because of the absence of physical explanations,
but also because it was preceded by short-lived trends of using fractals in many other
areas, such as economics, hydrology and biophysics. But not many articles have been
published recently that argue against the use of self-similarity in network modelling.
Grossglauser and Bolot [13] does not question the evidence that network traffic exhibit
properties of self-similarity and long-range dependence, but debate about their practi-
cal impact on network and application performance. They argue that processes with the
same correlation structure (for instance LRD) can generate vastly different queueing
behaviour. Therefore it is also important to consider other parameters for accurate per-
formance predictions, such as the marginal distribution of the arrival process and the
finite range of time scales of interest in performance evaluation.

3.0  Results of traffic measurements

Besides the question whether traffic is self-similar or not, it is also interesting to know
what protocols and packet sizes are present and in what proportions. These questions
are discussed in this section and the results of traffic measurements are presented. To
put these results in a context, Section 3.1 gives a brief outline of the TCP/IP protocol
suite. It also describes how information about protocols and packet sizes were
obtained. In Section 3.2 the packet trace taken at SICS is analysed and 3.3 gives the
results of the Supernet trace.

3.1  Introduction

This section gives a brief outline of the TCP/IP protocol suite. The description follows
Stevens [25].

Networking protocols are normally developed in layers, each having a different respon-
sibility. The TCP/IP protocol suite is a 4-layer system with different protocols at these
layers. The link layer normally includes the device driver in the operating system and
the corresponding network interface card in the computer. Together they handle all the
hardware details of physically interfacing with the cable. The network layer handles the
movement of packets around the network. The transport layer provides a flow of data
between two hosts and the application layer handles the details of the particular appli-
cation.
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TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) are the two
predominant transport layer protocols. Both use IP (Internet Protocol) as the network
layer. TCP provides a connection-oriented, reliable, byte stream service to the applica-
tion layer. SMTP (Simple Mail Transfer Protocol) for transferring electronic mail mes-
sages, Telnet for remote login and FTP (File Transfer Protocol) are some well-known
applications that use TCP. UDP is a simpler, unreliable, transport protocol that sends
and receives datagrams for applications. UDP is for instance used by DNS (Domain
Name System).

IP, ICMP (Internet Control Message Protocol), and IGMP (Internet Group Manage-
ment Protocol) provide the network layer in the TCP/IP protocol suite. IP is the main
protocol at the network layer and it defines the IP datagram as the unit of information
passed across an internet and provides the basis for connectionless, best-effort packet
delivery service. It is used by both TCP and UDP. It is also possible for an application
to access IP directly. ICMP is an integral part of IP that handles error and control mes-
sages. Gateways and hosts use ICMP to send reports of problems about datagrams back
to the original source that sent the datagram. ICMP also includes an echo request/reply
used to test whether a destination is reachable and responding. Although ICMP is used
primarily by IP, it is possible for an application to also access it. For instance the Ping
program uses ICMP. IGMP is used by hosts and routers that support multicasting - the
sending of a UDP datagram to a group of hosts. IGMP lets all the systems on a physical
network know which hosts currently belong to which multicast groups. This informa-
tion is required by multicast routers, so they know which multicast datagrams to for-
ward on which interfaces. The positioning of the ICMP and IGMP boxes in Figure 9 is
not obvious. It shows them at the same layer as IP, because they really are adjuncts to
IP, but ICMP and IGMP messages are encapsulated in IP datagrams.

ARP (Address Resolution Protocol) and RARP (Reverse Address Resolution Protocol)
are specialized protocols used only with certain types of network interfaces, such as
Ethernet and token ring, to convert between the addresses used by the IP layer and the
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Figure 9. TCP/IP layers and protocols.
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addresses used by the network interface. ARP provides a dynamic mapping from an IP
address to the corresponding hardware address. RARP is the protocol a diskless
machine uses at start-up to find its IP address. The machine broadcasts a request that
contains its physical hardware address and a server responds by sending the machine
its IP address. Also ARP and RARP are somewhat difficult to position in the layer hier-
archy. In Figure 9 they are at the same layer as the Ethernet device driver, but they both
have their own Ethernet frame type like IP datagrams.

When an application sends data, it is sent down the protocol stack, through each layer,
until it is sent as a stream of bits across the network. Each layer adds information to the
data by adding headers to the data that it receives. Figure 10 shows the Ethernet frame
that results from an application using TCP. The result would have been similar if UDP
were used but the UDP header is only 8 bytes compared to the 20 byte TCP header.
When an Ethernet frame is received at the destination host it starts its way up the proto-
col stack and all headers are removed by the appropriate protocol.

A physical property of an Ethernet frame is that the size of its data must be between 46
and 1500 bytes. The network interface sends and receives frames on behalf of IP, ARP,
and RARP. To identify which protocol generated the data a 16-bit frame type field in
the Ethernet header is used. TCP, UDP, ICMP, and IGMP all send data to IP. IP stores
an 8-bit value in the protocol field of its header, to indicate the layer to which the data
belongs. A value of 1 is for ICMP, 2 is for IGMP, 6 indicate TCP, and 17 is for UDP.
Similarly, many different applications can be using TCP and UDP at the same time.
Both TCP and UDP use 16-bit port numbers to identify applications. The source and
destination port numbers are stored in the header. Servers are normally known by their
well-known port number. For example, every Telnet server is on TCP port 23.

The unit of data that TCP sends to IP is called a TCP segment, the data that IP sends to
the network interface is called packet or IP datagram, and the stream of bits that flows
across the Ethernet is called a frame. But here the word packet will be used in a wide
sense to cover all of these.

To get information about packet sizes the tcpdump software were used with the -e
option to print the link-level header on each dump line. Suitable tcpdump expressions
were chosen to select which packets should be read from the dumpfile in order to get
information about protocols. For example the command:

tcpdump -e -r dumpfile port telnet

selects all Telnet packets in the file dumpfile and for each of them prints header infor-
mation like

Ethernet
header

   IP
header

   TCP
header application data

Ethernet
trailer

14 bytes 20 bytes 20 bytes 4 bytes

Ethernet frame

46 to 1500 bytes

Figure 10. An Ethernet frame.
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21:38:09.805840 [link-level info in hex]  ip 60: src_host.sics.se.17209 >
dst_host.se.telnet: . ack 1 win 32696 (DF)

showing the timestamp, link-level header information in hex, the packet size including
the Ethernet header, source and destination IP addresses and ports etc. The UNIX com-
mands awk and egrep were used to get timestamps and packet sizes from each dump-
line.

3.2  SICS

The 24-hour packet trace taken at SICS contains header information from more than 21
million packets with a total of almost 7.6 Gigabyte (data included). Only external traf-
fic, conversations between machines at SICS and the outside world, was captured using
tcpdump.The utilization of the network varied a lot during the time the trace was taken.
Figure 11 shows the number of packets that arrived each minute. Figure 12 shows the
byte traffic.

There was a maximum of 64971 packets in one minute at 10:31 and a minimum of
3543 packets at 00:52. These 3543 packets together contained 364234 bytes which also
is the minimum number of bytes that arrived in one minute. The maximum was
39468753 bytes at 17:04.
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Figure 11. External packet traffic at SICS.
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To be able to express the load in the more common units the number of packets and bits
per one-second bin was counted. The maximum was 33.36 Mbit/sec and 4170 packets/
sec. The minimum was 13.13 Kbit/sec or 9 packets/sec and the mean was 0.705 Mbit/
sec and 245 packets/sec.

3.2.1  Protocols

The two tables below show the proportions in which the lower layer protocols appeared
in the packet trace taken at SICS. The first shows IP versus non-IP traffic and the sec-
ond shows these results in more detail.

ICMP, IGMP and the transport protocols TCP and UDP all use IP, so the first five rows
in the table below is the IP traffic. The amount of ARP, RARP and other traffic not
using IP is presented in the following three rows.

TCP is the transport layer protocol that dominates the traffic with 56% of the packets
and 75% of the bytes. Almost 30% of the packets and 19% of the bytes in the trace
taken at SICS is UDP. Together TCP and UDP stands for 86% of the packets and 94%
of the bytes. Note that the Other IP category have more than 8% of the total number of
packets. These are IP packets not due to any application using TCP or UDP at the
transport layer and not ICMP or IGMP packets. A closer examination shows that most
of the traffic in the Other IP category is due to IPv6 and IP in IP. As mentioned in Sec-
tion 3.1 the IP header includes an 8-bit value in the protocol field which identify the
next level protocol. 83% of the Other IP packets (comprising 57% of the bytes) have a
protocol field value of 41, which is the IPv6 protocol. So, approximately 7% of the
total number of packets (and 2.5% of the bytes) is IPv6 packets sent in ordinary IPv4
packets. 16% of the Other IP packets and 41% of the bytes is due to IP in IP. That is IP
packets encapsulated (carried as payload) within other IP packets. Encapsulation is a
means to alter the normal IP routing by delivering packets to an intermediate destina-
tion that would otherwise not be selected based on the destination address in the origi-

Protocol Packets % of packets Bytes % of bytes

IP 20377055 96.17 7586281725 99.32

non-IP 810906 3.83 51565643 0.68

Total 21187961 100 7637847368 100
Table 3. IP and non-IP traffic in the SICS trace.

Protocol Packets % of packets Bytes % of bytes

TCP 11965862 56.47 5764625001 75.47

UDP 6303931 29.75 1438035012 18.82

ICMP 156169 0.74 13209489 0.17

IGMP 154166 0.73 30929559 0.40

Other IP 1796927 8.48 339482664 4.44

ARP 589968 2.78 35398128 0.46

RARP 0 0 0 0

Other non-IP 220938 1.04 16167515 0.21

Total 21187961 100 7637847368 100
Table 4. IP and non-IP traffic in more detail.
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nal IP header. When the encapsulated packet arrives at this intermediate destination it
is decapsulated, yielding the original IP packet which is sent to the destination indi-
cated by the original destination address. This use of encapsulation and decapsulation
of a packet is called tunneling. A common application is multicasting.

The composition of the IP traffic during the time the trace was taken can be seen in the
figures below. Figure 13 shows composition of packets and Figure 14 composition of
byte volume by IP protocols. The Other IP category here includes ICMP and IGMP.

The TCP traffic comprises a large part of the traffic but, compared to recent measure-
ments on Internet backbone [6],[29] where TCP averages about 95% of the bytes and
90% of the packets, the external traffic at SICS also includes a lot of UDP and other
traffic.

To get an idea of which application protocols are most used, the source and destination-
ports of all TCP and UDP packets were taken out of the trace using awk and the
number of occurrences of each portnumber were counted. For the most common proto-
cols more detailed information, such as the exact number of packets and bytes, were
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Figure 13. Compostion of packets in the SICS trace by IP protocol.
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then obtained using tcpdump with appropriate boolean expressions. Table 5 shows
these results but also information about some well known protocols, like Telnet for
instance, that don’t comprise a very large part of the traffic.

The third column shows the percentage of all TCP and UDP packets and the figures put
in parenthesis is percentage of the total number of packets. The total number of TCP
and UDP packets are 18269793 with a total of 7202660013 bytes. There are some traf-
fic (554 packets actually) between the NetBIOS ports and the domain or nfs ports, so
some packets are counted for twice. The Other category have more than 15% of the
TCP and UDP packets spread among a lot of different ports, non of which represents
more than 3% of the packets.

 The most common application protocol is the NNTP (Network News Transfer Proto-
col). More than 22% of all packets are due to NNTP, which is an application protocol
that uses TCP to distribute news articles between cooperating hosts.

The second most common application is DNS (Domain Name System), the on-line dis-
tributed database system used to map human-readable machine names into IP
addresses. More than 15% of the total number of packets in the trace is DNS and
almost 6% of the bytes. DNS uses both TCP and UDP. A DNS client (called resolver)
is normally part of a client application, for example, a Telnet client, an FTP client, or a
WWW browser. The resolver sends a single UDP datagram to a DNS server requesting
the IP address associated with a domain name. The reply is normally a single UDP dat-
agram from the server, but if the reply exceeds 512 bytes only the first 512 bytes are
returned along with a flag indicating that more information is available. The client then
resends the query using TCP and the server returns the entire reply using TCP [26].

The TCP port 544, kshell (Kerberos remote shell), is the third most common port in the
SICS trace. It is used for secure remote login and file transfer.

HTTP (Hypertext Transfer Protocol) is the basis for the World Wide Web (WWW).
HTTP messages are transported by TCP connections between clients (web browsers)

Protocol Packets % of packets Bytes % of bytes

NNTP 4745322 25.97 (22.40) 2805319120 38.95 (36.73)

DNS 3322824 18.19 (15.68) 451128865 6.26 (5.91)

kshell 2361908 12.93 (11.15) 1089165179 15.12 (14.26)

HTTP 1910608 10.46 (9.02) 1049716285 14.57 (13.74)

NetBIOS 1058226 5.79 (4.99) 185667131 2.58 (2.43)

NFS 957975 5.25 (4.52) 417610717 5.80 (5.47)

SMTP 568871 3.11 (2.68) 120384357 1.67 (1.58)

FTP 379186 2.08  (1.79) 169015460 2.35 (2.21)

Telnet 128610 0.70 (0.61) 12619392 0.18 (0.17)

NTP 27538 0.15 (0.13) 2529840 0.035 (0.03)

Other 2809279 15.38 (13.26)  899611097 12.49 (11.78)

Total 18270347 100.01 (86.2) 7202767443 100.00 (94.3)
Table 5. Application protocols using TCP or UDP.
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and servers. HTTP dominates the information exchange on the Internet. Measurements
on Internet backbone [6], [29], shows that HTTP comprises 75% of the overall bytes
and up to 70% of the overall packets. But in the trace taken at SICS less than 10% of all
packets are HTTP.

NetBIOS (Network Basic Input Output System) in the table above refers to all packets
with source or destinationports netbios-ns 137 (nameservice), netbios-dgm 138 (data-
gram service) or netbios-ssn 139 (session service). Put together these packets make up
about 5% of the traffic. NetBIOS was originally developed by IBM as an Application
Program Interface (API) for IBM PC programs to access LAN facilities. In the TCP/IP
internet, NetBIOS refers to a set of guidelines that describes how to map NetBIOS
operations into equivalent TCP/IP operations.

Another 5% of the traffic is due to NFS (Network File System), a protocol that uses IP
to allow a set of cooperating computers to access each other’s filesystems as if they
were local. SMTP, FTP and Telnet all have low byte and packet percentage. Together
they make up 5-6% of the packet traffic. FTP includes traffic using both the ftp and the
ftp-data ports. NTP (Network Time Protocol) is a protocol used for maintaining the
clocks for a group of systems on a LAN or WAN to within millisecond accuracy. NTP
constitutes only 0.13% of the packets.

3.2.2  Packet sizes

The smallest packets in the trace were 60 bytes and the largest 1514 bytes. Figure 15
below shows the relative frequency of packet sizes including the 14 byte Ethernet
header.

 The ten most common packet sizes are 60, 566, 1514, 98, 86, 66, 87, 92, 122 and 225
bytes. There are peaks at sizes 60, 566 and 1514 bytes. The small packets, 60 bytes in
length, include TCP acknowledgement packets, TCP control packets such as SYN, FIN
and RST packets, and Telnet packets carrying single characters (keystrokes of a telnet
session). A packet containing a TCP acknowledgement does not include any data
except for the TCP and IP headers (20 +20 = 40 bytes) so the packet size of 60 bytes is
due to the fact that the minimum data portion of an Ethernet packet is 46 bytes and a
pad field is used to fill out the frame to the minimum size. The minimum 46 bytes of
data plus the 14 bytes Ethernet header make up the 60 bytes packet size.
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Figure 15. Relative frequency of packet sizes in the SICS trace.
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Many TCP implementations use 512 bytes as the default Maximum Segment Size
(MSS) for non-local IP destinations, yielding a 512+20+20+14 = 566 byte packet size.
Each network has a Maximum Transfer Unit (MTU) - the largest amount of data that
can be transferred across a given physical network. A MTU size of 1500 is characteris-
tic of Ethernet attached hosts.

Figure 16 shows the cumulative distribution of packet sizes, and of bytes by the size of
packets carrying them. Most of the packets are small but most of the bytes are trans-
ferred in large packets. Half of the packets are less than 100 bytes. 73% of the packets
are smaller than the common TCP maximum segment size (566 bytes with headers
included) but more than 75% of the bytes are carried in packets of size equal to or more
than 566 bytes. Less than 11% of the packets have the maximum size, 1514 bytes, but
almost 45% of the bytes are transferred in packets of this size.

3.3   Supernet

The packet trace taken at Supernet contains header information from exactly 15 million
packets. These packets make up a total of more than 12 Gigabytes. The number of
packets and bytes that arrived in each one-minute bin was counted. Figure 17 shows
how the packet traffic varies during the time the trace was taken. Figure 18 shows the
byte traffic.
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There are minimums of 22664 packets/minute at 20:58 and 20595624 bytes/minute at
22:19. The maximum number of packets in one minute is 52264 at 19:29 and the max-
imum number of bytes/minute is 44223918 at 18:22.

To express the load in the more common units the number of packets and bits per one-
second bin was counted. The maximum was 9.68 Mbit/sec and 1560 packets/sec. The
minimum was 1.28 Mbit/sec or 175 packets/sec and the mean was 3.6 Mbit/sec and
544 packets/sec.

3.3.1  Protocols

The presentation of the results is done in the same way as for the SICS trace. The two
tables below show the proportions in which the lower layer protocols appeared in the
packet trace.
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Figure 17. Packet traffic in Supernet trace.
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Table 6 shows IP versus non-IP traffic. Table 7 shows these results in more detail with
the IP traffic divided up in TCP, UDP, ICMP and IGMP traffic.

There is a very large amount of UDP traffic in this trace. More than 70% of the packets
and 80% of the bytes are UDP which is a big difference compared to the SICS trace.
UDP and TCP together comprises more than 96% of the packets and 99% of the bytes.
The Other IP category have less percentage of the traffic here than at SICS. The figures
below shows the composition of the IP traffic during the time the trace was taken. Fig-
ure 19 shows the composition of packets and Figure 20 the composition of byte volume
by IP protocols

Protocol Packets % of packets Bytes % of bytes

IP 14612623 97.42 12294871647 99.68

non-IP  387377 2.58 39557446 0.32

Total 15000000 100 12334429093 100
Table 6. IP and non-IP traffic in Supernet trace.

Protocol Packets %of packets Bytes % of bytes

TCP 3839247 25.59 2060668280 16.71

UDP 10616430 70.78 10221812908 82.87

ICMP 119084 0.79 9099175 0.074

IGMP 3876 0.026 232560 0.0019

Other IP 33986 0.23 3058724 0.025

ARP 68241 0.45 4094460 0.033

RARP 485 0.0032 29100 0.00024

Other non-IP 318651 2.12 35433886 0.29

Total 15000000 100 12334429093 100
Table 7. IP and non-IP traffic in more detail.
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The Other IP category here also includes ICMP and IGMP. Notice in Table 7 above that
there is a small amount of RARP traffic in this trace which didn’t occur in the SICS
trace.

The trace is known to include two TV channels and one radio channel sent as unicast.
There should also be a lot of game playing (Quake). Without this knowledge, it would
not be easy to explain what applications are used on the Supernet by analysing the
packet trace. The well known application protocols make up only a minor part of the
traffic. Table 8 shows the most common ports and the number of packets and bytes in
the trace sent to or from these ports.

Packets % of packets Bytes % of bytes

port 2048 4262364 29.49 (28.42) 4599203709 37.45 (37.29)

port 1032 1448021 10.02 (9.65) 1417213223 11.54 (11.49)

HTTP 957682 6.62 (6.38) 484476726 3.94 (3.93)

port 7070 617031 4.27 (4.11) 322146669 2.62 (2.61)

NetBIOS 506173 3.50 (3.37) 83768506 0.68 (0.68)

port 5501 488216 3.38 (3.25) 451899542 3.68 (3.66)

port 1042 472751 3.27 (3.15) 132064762 1.08 (1.07)

port 1090 334116 2.31 (2.27) 360962491 2.94 (2.93)

port 1267 328932 2.28 (2.19) 355555718 2.89 (2.88)

port 9000 307638 2.13 (2.05) 22765116 0.19 (0.18)

FTP 247729 1.71 (1.65) 189000564 1.54 (1.53)

Other 4498253 31.12 (29.99) 3865965233 31.48 (31.34)

Total 14467833 100.1 (96.5) 12282481188 100.0 (99.6)
Table 8. Application protocols using TCP or UDP.
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Figure 20. Composition of byte volume in Supernet trace by IP protocol.
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The total number of TCP and UDP packets were 14455677. There is some traffic
(12156 packets) between the ports in the table above. These packets are counted for
twice. The other category have 31% of both packets and bytes spread among a wide
range of TCP and UDP port numbers. None of these ports represents more than 1.7%
of the total number of packets.

The traffic with source or destination port 2048 dominates the traffic with almost 30%
of the packets and 37% of the bytes. 99.6% of this traffic is UDP traffic between the
same two hosts with the other port being 8003. The traffic is very smooth with approx-
imately 9250 packets/minute during the interval the trace was taken.

Almost all (99.29%) of the port 1032 traffic is UDP traffic between two hosts with the
other port being 8002. This traffic is as smooth as the port 2048 traffic.

99.5% of the port 7070 (ARCP) traffic is TCP traffic.

NetBIOS in Table 8 is all the traffic to the three NetBIOS ports(137-139) put together.

All of the port 5501(fcp-addr-srvr2 ) traffic is TCP. This port is used on three occasions
in the trace. 96% of this traffic is between the same two hosts. None of the traffic coin-
cide with traffic to TCP ports 7070, 1042, http or the ftp ports.

Almost all (99.7%) of the traffic with source or destination port 1042 is TCP traffic.
99.8% of this traffic is between the same two hosts with the other port being 40094.

99.8% of the traffic to or from the ports 1090, 1267 (both unassigned) and 9000 (CSlis-
tener) is UDP.

There are four (!) NFS packets in the trace. Note that the tcpdump software distinguish
between NFS and traffic to port 2049. The tcpdump expression port 2049 does not give
the same result as port nfs.

The trace contains 25217 DNS packets using either TCP or UDP with a total of
2632572 bytes. That is 0.16% of the total number of packets and 0.00021% of the
bytes.

There is no NTP packets in the trace.
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 UDP traffic dominates the above table of the most common application traffic. The
table below shows only TCP traffic including the well-known SMTP, Telnet and NNTP
traffic.

The total number of TCP packets were 3839247. There is some traffic (1138 packets)
between the ports in the table above. These packets are counted for twice. The other
category have 26% of the packets and 23% of the bytes spread among a wide range of
TCP ports. None of these ports represents more than 4% of the total number of TCP
packets. Notice that the trace only contains eight NNTP packets. In the SICS trace
NNTP was dominating the traffic with 22% of all packets.

3.3.2  Packet sizes

The smallest packets were 43 bytes and the largest 1514 bytes.

The ten most common packet sizes are 1082, 1514, 60, 1084, 791, 74, 792, 852, 590
and 92 bytes including the 14-byte Ethernet header. Almost all of the packets (99.8%)
of size 1082 bytes is UDP packets between the same two hosts using ports 2048 and
8003. The other two peaks are the same as described for the SICS trace. 1500 bytes is

Packets % of packets Bytes % of bytes

HTTP 957682 25.59 (6.38) 484476726 23.51 (3.93)

port 7070 614206 16.00 (4.09) 320592324 15.58 (2.60)

port 5501 488216 12.72 (3.25) 451899542 21.93 (3.66)

port 1042 472691 12.31 (3.15) 132059486 6.41 (1.07)

FTP 247729 6.45 (1.65) 189000564 9.17 (1.53)

SMTP 45079 1.17 (0.30) 16086871 0.78 (0.13)

Telnet 6627 0.17 (0.0004) 469120 0.023 (4e-5)

NNTP 8 2.1e-4 (5e-7) 546 2.6e-5 (4e-8)

Other 1008147 26.26 (6.72) 466512715 22.64 (3.78)

Total 3840385 100.7 (25.5) 2061097894 100.0 (16.7)
Table 9. Application protocols using TCP.
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the maximum packet size for Ethernet attached hosts and small packets are padded to
the minimum size 46 bytes. Add the 14 bytes Ethernet header and you get the common
packet sizes 1514 and 60 bytes. With this in mind it somewhat peculiar that the mini-
mum packet size found in the trace is 43 bytes. There are 9155 packets in the trace that
are smaller than 60 bytes. A more detailed analysis shows that small UDP packets are
not padded to the minimum size. In the trace taken at SICS small UDP packets are pad-
ded and in both traces are small TCP packets padded to the minimum 46 bytes.

Figure 23 shows the cumulative distribution of packet sizes, and of bytes by the size of
packets carrying them. Most of the packets are large. 55% of the packets are 1082 bytes
or more. More than 80% of the bytes are transferred in packets larger than or equal to
1082 bytes in size. This is very different from the packet size distribution at SICS and
different from measurements made at Internet backbones [29], where most of the pack-
ets are small. The UDP traffic between the same two hosts generates almost all of the
packets of size 1082 which have a great influence on the distribution in Figure 23. Fig-
ure 24 shows the cumulative distribution of packet sizes with this traffic excluded.
There are still a lot of large packets and only slightly more than 30% of the packets are
smaller than 100 bytes.
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Figure 23. Cumulative distribution of packet sizes and of bytes by the
size of the packets carrying them.
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Figure 24. Cumulative distribution of packet sizes with UDP packets of
size 1082 bytes excluded.



35

4.0  Modelling HTTP traffic

HTTP (Hypertext Transfer Protocol) is the basis for the World Wide Web (WWW).
Recent measurements on Internet backbone [6],[29] show that HTTP comprises
approximately 70-75% of the total traffic. Here HTTP traffic captured at SICS is ana-
lysed to obtain traffic characteristics of a single client. Empirical probability distribu-
tions are derived describing session lengths, time between user clicks and the amount
of data that is transferred due to a single user click. These probability distributions
make up a simple model of WWW-sessions that can be used to generate traffic. The
definition of session varies between different authors and different contexts. Here a ses-
sion is defined to be an interval in which a user creates WWW-traffic without being
silent for more than a certain time. How the session boundaries were determined in
detail is described in section 4.2.

The model is not dealing with the number, size and interarrival times of TCP packets
since these quantities are governed by the TCP flow control and congestion control
algorithms. The timing of a connection’s packets as recorded in a trace reflects the con-
ditions in the network at the time the connection occurred [22]. Due to this adaptation
to the network done by TCP, a trace of a connection’s packets cannot be reused in
another context, because the connection would not have behaved the same way in the
new context.

The tcpdump software [15] was used to capture the HTTP traffic. To extract useful
information from the trace, about the client’s behaviour, knowledge about the HTTP
protocols and their use of TCP is needed. Section 4.1 describes the protocols HTTP/1.0
and HTTP/1.1 and how they are used by web browsers. Section 4.2 describes in more
detail how information was extracted from the packet trace and in 4.3 the results are
presented.

4.1  The HTTP protocols

The application-level protocol HTTP exists and is used in more than one version, but
there is yet no formal standard that everybody follows. HTTP/1.0 evolved from the
original 0.9 version of HTTP (which is still in rare use). The HTTP Working Group
(HTTP-WG) of the Internet Engineering Task Force (IETF) produced the document
RFC 1945 [23] that described the common usage of HTTP/1.0, but did not attempt to
create a formal standard out of the many variant implementations. Instead, over a
period of roughly four years, the working group has developed an improved protocol,
known as HTTP/1.1. Because the HTTP/1.1 effort took over four years, and generated
numerous draft documents, several pseudo-HTTP/1.1 versions were created and used
by many implementors. When this is written HTTP/1.1, as it is described in RFC 2616
[24], has recently (7 july 1999) been approved by the Internet Engineering Steering
Group (IESG) of the IETF, as a IETF Draft Standard. A Draft Standard is the second of
the three step IETF standardization process, and is considered to be close to a final
specification.
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4.1.1  HTTP/1.0

 HTTP is a simple protocol. The client establishes a TCP connection to the server,
issues a request, and reads back the server’s response. The server indicates the end of
its response by closing the connection.

Three types of HTTP/1.0 requests are supported: GET, HEAD and POST. The format
of a request is:

The format of an request-line is: request   request-URI    HTTP-version.

Each web page has a URI (Uniform Resource Identifier) that effectively serves as the
page’s worldwide name. The GET request returns whatever information is identified by
the request-URI. The HEAD request is similar to the GET request, but only the servers
header information is returned, not the actual contents of the specific document. This
request is used to test a hypertext link for validity, accessibility, and recent modifica-
tion. The POST request is used for posting electronic mail, news, or sending forms that
can be filled in by an interactive user. This is the only request that sends a body with the
request. In a sample of 500,000 client requests 99.68% were GET, 0.25% were HEAD,
and 0.07% were POST [26]. This of course depends somewhat on the applications
available at the server.

The format of an HTTP/1.0 response is

The status-line begins with the HTTP-version, followed by a 3-digit numeric response
code, followed by a human-readable response phrase. For instance code 200 (OK), 304
(not modified) or 400 (bad request). With HTTP/1.0 both requests and responses can
contain a variable number of header fields. For more information Stevens [26] lists sev-
enteen different headers and also in detail explains the different response codes and
phrases used by HTTP/1.0. Following the last response header, the server sends a blank
line followed immediately by the data, for instance an HTML document, an image or a
PostScript file.

As mentioned above, HTTP uses TCP as its transport protocol. When a browser using
HTTP /1.0 is used to fetch web pages, a new TCP connection is set up for each docu-
ment requested. Web pages often have many embedded images, and each image is
retrieved via a separate HTTP request. Thus, to retrieve a web page with five images,
six different TCP connections are required. The first TCP connection transfers an
HTTP GET request to receive the HTML document that refers to the five images. A
very simple browser would, when the HTML document is received, open one new TCP
connection to get the first image. After sending the response the connection is closed

request-line

headers

<blank line>

body (only if POST request)

status-line

headers

<blank-line>

body
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by the server and another connection is opened to get the second image and so on. The
use of a new TCP connection for each image serializes the display of the entire page.
Netscape introduced the use of parallel TCP connections to compensate for this seriali-
zation. When the HTML document is received four TCP connections are opened in
parallel for the first four images. Stevens [26] show that for Netscape 1.1N simultane-
ous connections decreases the transaction time for the user.

4.1.2  HTTP/1.1

HTTP/1.1, as it is described in RFC 2616 [24], differs from HTTP/1.0 in numerous
ways, both large and small. For instance there are 24 new status codes in HTTP/1.1,
several new header fields and besides the GET, HEAD and POST requests used in
HTTP/1.0 there are 5 other request methods specified. The OPTION method represents
a request for information about the communication options available on the request/
response chain identified by the Request-URI. This method allows a client to determine
the options and requirements associated with a resource, or the capabilities of a server,
without initiating a resource retrieval. Here a resource is defined to be a network data
object or service that can be identified by a URI. The PUT method is somewhat similar
to the POST method and requests that the information transferred as payload of the
request be stored under the supplied Request-URI. The DELETE method requests that
the server delete the resource identified by the Request-URI. The TRACE method
allows the client to see what is being received at the other end of the request chain and
use that data for testing and diagnostic information. The specification also reserves the
name CONNECT for use with a proxy that can dynamically switch to being a tunnel.

The PUT and DELETE requests also exists in some versions of HTTP/1.0. RFC 1945
[23] describes them in an appendix as protocol elements used by some existing imple-
mentations, but not consistently and correctly across most HTTP/1.0 applications.

Krishnamurthy et al. [17] describes the major differences between HTTP/1.0 and
HTTP/1.1 and the rationale behind them. They divide the protocol changes into nine
major areas. Of most interest here is the network connection management. The prob-
lem in HTTP/1.0 that a new TCP connection is required for each document is resolved
by the use of persistent connections and the pipelining of requests on a persistent con-
nection. Persistent connections means that the client and server keep a TCP connection
open instead of the server closing the connection after sending the response. The same
connection can be used to fetch several images and is kept open even if the user clicks
to another web page as long as the page is located on the same server. Pipelining means
that a client can send an arbitrarily large number of requests over a TCP connection
before receiving any of the responses. Each request must still be sent in one contiguous
message and a server must send responses (on a given connection) in the order that it
received the requests.

HTTP/1.0, in its documented form, made no provision for persistent connections but
some implementations use a Keep-Alive header to request that a connection persist.

4.1.3  An example

To get an idea of how HTTP and TCP actually are used when a client is surfing the net,
two common web browsers were tested, and the TCP traffic that arise when web pages



38

were fetched was captured using tcpdump. Some information about the HTTP requests
and responses, such as request method, URI, version and response codes, can be
obtained from the tcpdump packet trace by looking at the raw packets in plain text.

The browsers Netscape 4.6 and Microsoft Internet Explorer 4.0 were used to visit the
homepage of Uppsala University (http://www.uu.se) and following the link English to
get a presentation in english (http://info.uu.se/presengl.nsf) and then the link Nobel
prizes to see a presentation of the eight Nobel laureates that have been connected with
the University (http://info.uu.se/presengl.nsf/0/1....). The homepage includes eleven gif
images, the english presentation page includes 5 and the page about nobel prizes
includes 9 different images. The images are all located at the same addresses as the
pages, thus all images on the homepage have address http://www.uu.se/images/... . The
web pages are not located on the same server. The tcpdump trace shows that the
homepage is located on a server named columba and the other two on the server info.
This is of importance for the use of persistent connections, which only can be held
open if the pages are located on the same server.

Figure 25 shows a time line for the TCP connections. Each arrow represents a TCP
connection and for each connection all HTTP client requests transferred are shown. To
make it easier to compare the behaviour of the two browsers, the times between user
clicks have been converted to the same values for both browsers. The purpose of this
example is not to explain the complete behaviour of these browsers or to evaluate
which browser is the best, but to describe how HTTP and TCP is used.
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In Figure 25 it shows that two requests are made to get the second web page with a
presentation in english. The first one, GET /index.eng.html, is an immediate conse-
quence of the user clicking on the link English to get to this page. However the
response from the server to this request is response code 301 (Moved Permanently).
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Figure 25. Comparison between how the browsers Internet Explorer 4.0 and Netscape 4.6  use TCP and
HTTP when fetching three web pages from Uppsala University.
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This means [24] that the requested resource has been assigned a new permanent URI
and any future reference to this resource should use the returned URI. The new perma-
nent URI is given by the Location field in the response. When the client receives this
response a second request for the page is made, now using the new URI (http://
info.uu.se/presengl.nsf).

In this example Internet Explorer uses six different TCP connections to get the three
web pages whereas Netscape uses twenty one connections. Both browsers (sometimes)
holds a connection to get more than one image, but only Internet Explorer holds a con-
nection to get images from different web pages. The TCP connection used to get the
second and fourth image to the english presentation web page (the second page) is held
open and is used, after the user click, to get the third web page.

4.2  Methodology

4.2.1  Prior work

Three approaches have been widely used in investigating the WWW traffic: server
logs, client logs and packet traces. For different reasons most web servers keep logs of
the requests they have served and these logs can be processed and used to characterize
the traffic at the server. But server logs cannot easily be used to describe the client side
since a client usually access many different web servers. To capture the user accesses
between multiple servers client logs can be used. This approach was used by Catledge
[5], Cunha [7], Crovella [8] and Barford [1] when investigating various characteristics
of web accesses. This approach requires that browsers can log their requests, that the
source code for the browser is available so that logging can be added, or some other
way to log the clients behaviour. In [5], [7] and [8] instrumented versions of the Mosaic
web browser were used, and in [1] HTTP proxies were used to track all documents ref-
erenced by unmodified Netscape Navigator clients. The third approach of gathering
data, and the method used here, is to analyse packet traces taken from a subnet carrying
HTTP traffic. With knowledge about the HTTP and TCP protocols the packet trace can
be analysed and used to model the web traffic. This method is used by Stevens [26] to
analyse the traffic arriving at a server, and by Mah [19] and Vicari [30] to model the cli-
ent side of the HTTP traffic.

4.2.2  The packet trace

To analyse the HTTP traffic a 24 hour packet trace was used. This trace, taken at SICS,
was described in detail in Section 2 and 3. The trace was taken by using tcpdump with
the -w option so that the raw packets were written to file. In this way the trace could be
used many times as input to tcpdump to filter out certain aspects of the traffic using dif-
ferent tcpdump options. In this case only the HTTP traffic was of interest. HTTP com-
munication usually takes place over TCP/IP connections. The default port is TCP 80,
but other ports can be used. In an examination of WWW pages Woldruff et al. [34]
analysed 2.6 million HTML documents collected by the Inktomi Web crawler, and
show that approximately 94% of the documents investigated were accessed using the
standard HTTP port 80. By using the tcpdump option to gather all packets to or from
this port a vast majority of the HTTP traffic was captured. Only traffic where users at
SICS were clients was captured, not the HTTP traffic that arise from people outside
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visiting the SICS web pages. The trace contains 1339209 packets transferred between
TCP port 80 on web servers and 106 different clients at SICS.

4.2.3  Sessions

The definition of a session varies between different authors and different contexts. For
instance Vicari [30] defines a WWW-session as the period starting at the time a user
launches his WWW-browser and ending when the user quits the browser. He also
defines a sub-session to be the interval in which a user creates WWW-traffic without
being silent for more than certain time. Barford et al. [1] and Crovella et al. [9] defines
a session as a single execution of the browser. Barford and Crovella [3] defines a
browsing session as the period during which Web objects are transferred with interven-
ing idle periods.

The notion of a session is supposed to cover the time interval when a user is active and
uses the browser to fetch and read web pages (or listen to them, watch them or what-
ever the applications are). A session starts when the first web page is fetched and ends
when the user stops surfing the net to get some work done. This is vague and difficult to
exactly define in terms of packets sent and received. Since it can’t be determined from
a packet trace when a user starts and quits the browser and since users often leave the
browser running for extended periods of time without interacting with it, determining
session boundaries artificially is necessary. Here a session is defined to be something
close to what Vicari calls a sub-session: the interval in which a user creates WWW-traf-
fic without being silent for more than a certain time. That is, a session starts when the
first web page is fetched (the first request is made) and ends when the last page is
received (but not yet read).

If we look at this on the application protocol level, then for each HTTP client the start
of the first session is given by the transmission of the first request to a server. The
server’s response always belongs to the same session. If the next request occur within a
certain time after the previous response is completed (or before it is completed) the
new request and its response also belong to the same session. That is, two request-
response pairs originated from the same client belongs to the same session if they are
not separated by “to much time”, an interval determined by a parameter here called
Tsession. If no request or response it sent for more than Tsession minutes then the next
request is the start of a new session.

The packet trace doesn’t contain application level HTTP requests and responses, but
only lower level TCP/IP packet headers. Since the HTTP client sends nothing but
requests, every TCP packet from a client - carrying some payload data (not pure
acknowledgement or control packet) - is transferring a HTTP request. If the transfer-
ring of a TCP packet that carries a request is preceded by a period of Tsession minutes
where no data is transferred to or from this client then (the timestamp of) this packet
represents the start of a new session.

The problem is to determine a decent value of Tsession. The value must be big enough,
so the user is given time to read a web page without starting a new session, and small
enough so that different periods of web surfing can be separated.
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To characterize browsing strategies Catledge and Pitkow [5] used a version of Mosaic
to log all user interaction with the browser. By calculating the mean and standard devi-
ation of the time between each user interface event they determines that all events that
occurred over 25.5 minutes apart should be delineated as a new session.

Vicari [30] used a tcpdump packet trace and tested different values ranging from 15 to
45 minutes, and the same sessions were found for each value. That made the choice of
value less important.

With the trace used here, the value of Tsession do matter. Different values ranging from
10 to 45 minutes were tested and they all gave rise to a different number of sessions.
With the value 10 minutes 645 sessions were found in the trace, if 15 minutes was cho-
sen the trace contained 536 sessions etc. The higher the value of Tsession the fewer ses-
sions were found. With Tsession = 45 minutes 299 sessions were found.

For each client the time of silence preceding the (second and all following) HTTP
requests was calculated. In most cases this time interval is short, 54246 of 55252
requests was preceded by less than 5 minutes of silence. These short silences separates
user clicks and the retrieval of different parts of a web page, not sessions. Figure 26
shows time of silence in 5 minute bins ranging from 5 to 50 minutes.

There were 1006 requests preceded by more than 5 minutes of silence. Of these
requests 448 (44%) was preceded by less than 10 minutes of silence. The figure may
suggest 10 minutes as a reasonable value, or at least as a lower limit. Otherwise the fig-
ure doesn’t help much in the search for a value of Tsession.

As stated above, the notion of a session is vague and hard to define. In the end it deals
with how people behave when they surf the net, and a packet trace might not be the best
tool for studying human behaviour. Ten minutes is not much time for a user to read the
last received web page, stop surfing, get something else done and then return to the
browser. Also, if a client uses the Back command on the browser to navigate, the page
is fetched from the browsers cache, and no network traffic occur. This makes it even
harder to determine session boundaries.
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Figure 26. Time of silence preceding HTTP requests.
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The value Tsession = 15 minutes was chosen.

4.2.4  User clicks

Mah [19] determines the number of files (HTML document and images) per web page,
by investigation of a tcpdump packet trace. With the assumption that only HTTP/1.0 is
used, there is one TCP connection for each file. He uses two simple heuristics to deter-
mine whether two connections belong to the same document. First, the two connec-
tions must originate from the same IP address and second, the two connections cannot
be separated by too much time. If two connections are separated by more than a certain
time then the user have clicked on a link and the connections belong to different pages.

Today, the assumption that only HTTP/1.0 is used, is not valid. The example in section
4.1.3 shows that some common web browsers give rise to persistent connection. There
can be more than one HTTP request per TCP connection, and a connection can be held
open after a user click to transfer more than one web page. This means that the time
between connections cannot be used to determine if a user have clicked on a link to
fetch a new web page. Instead only the time between the last HTTP response (or
request) and a new request is considered, irrespective of which TCP connection the cli-
ent uses for the transfer.

The reasoning here is the same as above when session boundaries were determined.
Every TCP packet from a client that carries some payload data (not pure acknowledge-
ment or control packet) is transferring a HTTP request. If the transfer of a TCP packet
that carries a request is preceded by a period of Tclick seconds where no data is trans-
ferred to or from this client then (the timestamp of) this packet represents a user click.

The problem is to determine the value of Tclick. The value must be large enough, so that
requests for parts of the same web page is not counted as user clicks, and small enough
to separate different user clicks.

As described in the previous section, for each request the time of silence preceding it
was calculated. From these times the requests were sorted and counted. Figure 27
shows the result with time of silence in 0.2 second bins ranging from 0 to 2.2 seconds.
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Mah [19] uses the threshold value 1 second to separate connections that belongs to dif-
ferent web pages. The main reason for the choice of this value was that users will gen-
erally take longer than one second to react to the display of a new page before they
order a new document retrieval. When trying to find possible causes of self-similarity
in WWW traffic, Crovella [8] investigates OFF times that correspond to periods when a
workstation is not receiving web data. He concludes that OFF times in the range of 1
ms to 1 second is determined by machine processing and display time for data items
that are retrieved, not due to users examining data.

From this the value Tclick = 1 second was chosen, even though the figure above might
suggest that an even smaller value would have been reasonable.

4.2.5  Tcpdump, Awk and Matlab

Awk was used to extract the needed information from the tcpdump file. The extracted
data was later investigated further using Matlab. Below is an example of what a tcp-
dump file look like:

14:27:35.707978 193.10.65.225.4110 > 130.238.7.10.80: S 120339986:120339986(0) win 8192 <mss 1460> (DF)

14:27:35.718623 130.238.7.10.80 > 193.10.65.225.4110: S 207593203:207593203(0) ack 120339987 win 16384 <mss 512>

14:27:35.719135 193.10.65.225.4110 > 130.238.7.10.80: . ack 1 win 8192 (DF)

14:27:35.719765 193.10.65.225.4110 > 130.238.7.10.80: P 1:243(242) ack 1 win 8192 (DF)

14:27:35.756345 130.238.7.10.80 > 193.10.65.225.4110: . ack 243 win 16384

14:27:35.768221 130.238.7.10.80 > 193.10.65.225.4110: . 1:513(512) ack 243 win 16384

14:27:35.768410 130.238.7.10.80 > 193.10.65.225.4110: . 513:1025(512) ack 243 win 16384

..........

From this, only information about packets carrying payload data was extracted.The
input to Matlab was a matrix where each such packet was represented with a timestamp
in microseconds, a unique client id, direction (0 = client request, 1= server response),
and the packet size without headers:
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A Matlab program was written which for each client went through the times between
requests and responses and used Tsession and Tclick to determine session lengths, time
between user clicks within a session and the amount of data transferred as response to a
user click. The sessions that started within Tsession minutes from the beginning of the
trace, and sessions not finished when less than Tsession minutes remained was discarded.

4.3  Results

4.3.1  Model representation

There are two basic approaches to representing the probability distributions that make
up a traffic model. One is to attempt to fit the observed data to well-known probability
distributions that are described analytically in a simple mathematical form. This
approach has the advantage of being compact, thus easily communicated, and also
makes it easy to compare different datasets. The disadvantage is that datasets cannot
always be well described by known distributions. The alternative is an empirical model
that represent probability distributions by the observed cumulative distribution func-
tions (CDF). This approach is obviously less compact, requires more storage, and
makes it somewhat harder to compare different datasets, but can be used to represent
arbitrary probability distributions. Here no attempt is made to fit the data to well-
known distributions. Instead the more flexible CDF representation is used for all distri-
butions. To generate values from a CDF, the inverse transformation method, for
instance described in Jain [16], can be used.

4.3.2  Session lengths

There were a total of 536 complete sessions. The minimum session length was
0.049683 seconds and the maximum was 4 hours, 13 minutes and 13.6 seconds. The
very short sessions appear when users do just one single click and then nothing more.
That sometimes give rise to just one request and a short response, and altogether only a
few hundredth of a second of network traffic. Figure 28 shows a histogram and Figure
29 the empirical CDF of session lengths.

52055768410 1225 1 512

..... .... . ...
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The median session length was 239 seconds (3 minutes and 59 seconds) and the mean
was 770 seconds (12 minutes and 50 seconds) with a standard deviation of 1421 sec-
onds. The coefficient of variation was 1.8.

4.3.3  Interarrival times of user clicks

Below, a histogram and the CDF of interarrival times of user clicks are shown. These
are the time interval between user clicks within a session. There are a total of 10088
interarrival times in the data set. The minimum time was 1.001317 seconds, just above
the Tsession threshold of one second. The maximum time between two user clicks within
the same session was 5989 seconds! That is, data was transferred in 1 hour 39 minutes
and 49 seconds without interruption. Since only four values are above 1000 seconds
the range in the figures below have the upper limit 1000 seconds.
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The median interarrival time was 11 seconds and the mean 47 seconds with a standard
deviation of 125 seconds. The coefficient of variation was 2.7.

4.3.4  Data transferred

The amount of data transferred from servers as response to a single user click varies a
lot. On one occasion 72707362 bytes were transferred and at other times no data at all
was received by the client. There is no way to show a meaningful histogram that covers
such a large range of values. Here only the part of the CDF that covers values below
250000 bytes is shown. Only 164 of the total 10624 values were larger than 250000.
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The median was 10511 bytes and the mean was 54144 bytes with a standard deviation
of 921851 bytes. The coefficient of variation was 17.0.

In the results presented above it shows that in some cases no data at all is received.
Actually, more than 4% of the discovered user clicks doesn’t get any response. This is
somewhat peculiar and might indicate that something is wrong. No thorough investiga-
tion of all these cases is done here, but a closer examination of the packet trace for
some of them shows the same result. Below is an extract from the packet trace:

....

11:39:20.450950 client.sics.se.1085 > server1.com.http: F 879:879(0) ack 17460 win 16926 (DF)

11:39:20.622081 server1.com.http > client.sics.se.1085: . ack 880 win 16926 (DF)

11:39:55.448682 client.sics.se.1087 > server2.se.http: S 453297664:453297664(0) win 16616 <mss 546,wscale 0,eol> (DF)

11:39:55.463524 server2.se.http > client.sics.se.1087: S 2053890870:2053890870(0) ack 453297665 win 1092 <mss 1460> (DF)

11:39:55.498164 client.sics.se.1087 > server2.se.http: P 1:391(390) ack 1 win 16926 (DF)

11:39:56.999251 client.sics.se.1087 > server2.se.http: P 1:391(390) ack 1 win 16926 (DF)

11:39:57.114233 server2.se.http > client.sics.se.1087: P 1:227(226) ack 391 win 8346 (DF)

....

The rows in italic style represents client requests. The first request is preceded by more
than 35 seconds where no data is sent to or from this client so this clearly represents a
user click. Following this request there is a silence of more than 1.5 seconds and then
the same request appears again. Why? Is it a retransmission or a duplicate of the same
packet? Are there packets missing? In either case, this second request is not due to a
user clicking a link. But since it is preceded by more than Tclick seconds of silence the
algorithm used detects it as a new click, and so no data was transferred in response to
the previous request.

4.3.5  Remarks

The results presented above can be used as a model of WWW session. The intention
was to create a simple model, not the perfect one. A few weaknesses in the model and
the methodology used were mentioned in the previous sections. Some additional short-
comings are to be presented here.

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data transferred  (byte)

CD
F

Figure 32. Empirical CDF of the amount of data transferred as response
to a single user click.



49

The threshold values Tsession and Tclick are heuristic. Although a lot of effort were
put into determining these values all cases cannot be covered. For instance, if a client
quickly clicks to navigate to another web page before the transfer of the previous one
was completed. Then this click will not be discovered.

The users are separated by IP addresses. If several clients uses the same machine
they cannot be distinguished. This is probably unusual and thus of little consequence.

The choice of variables. Here session lengths, interarrival time of user clicks and the
amount of data transferred as response to a user click, were studied. These are not the
only three variables that can be used in order to model the traffic. For instance Mah
[19], examines request and reply lengths, document sizes, user think time, consecutive
document retrievals from the same server and the relative popularity of any server.
Considering the problem of determining session boundaries it might not be necessary
to use sessions at all. Instead, only examine the interarrival time of user clicks even
though there might be days between them.

Dependencies between the variables studied. It would be interesting to analyse if
there is a correlation between the interarrival time of user clicks and the amount of data
transferred.

The presence of caching. Most clients employ caching to speed up access to WWW
files. When a request is made, the browser software first checks to see if the file
requested can be found in the cache. The file can then be copied directly from the cache
instead of being retrieved over the Internet. The risk with caching is that it might return
a response different from what would be returned by direct communication with the
origin server. The HTTP protocols specify different headers, such as Expires, Last-
Modified and If-Modified-Since, to facilitate the use of caching. Although, here only the
actual traffic generated is of interest, the use of caching do influence the results. As
mentioned in 4.2.3 the use of caching makes it harder to determine the value Tsession.
Also the amount of data transferred due to a user click depends on whether the files
requested resides in cache or not. If the same web pages were requested using browsers
with different caching mechanisms the results would differ.

In order to evaluate the model, traffic should be generated and compared to real traffic.
For a meaningful simulation, the actual data transferred must be regulated by the TCP
congestion an flow control mechanism, which are not included in this model. Doing
this is beyond scope of this work.

5.0  Summary

In this thesis work, network traffic captured at SICS and on the Supernet was analysed.
The external traffic at SICS was shown to be self-similar with the Hurst parameter esti-
mated to . The value depending somewhat on estimation method, bin size and
point of time. For the Supernet trace most estimates were above 0.8, so the traffic is
clearly self-similar. The traffic was also examined with respect to which protocols and
packet sizes are present and in what proportions. In the SICS trace most packets are
small, TCP was shown to be the predominant transport protocol and NNTP the most
common application. In contrast to this, large UDP packets sent between not well-
known ports dominates the Supernet traffic. Finally, characteristics of the client side of

H 0.8≈
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the WWW traffic was examined more closely in order to create a simple model of
WWW-sessions. Empirical probability distributions were derived describing session
lengths, time between user clicks and the amount of data transferred due to a single
user click.
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