3,625 research outputs found

    Hepatitis C viral evolution in genotype 1 treatment-naïve and treatment-experienced patients receiving telaprevir-based therapy in clinical trials

    Get PDF
    Background: In patients with genotype 1 chronic hepatitis C infection, telaprevir (TVR) in combination with peginterferon and ribavirin (PR) significantly increased sustained virologic response (SVR) rates compared with PR alone. However, genotypic changes could be observed in TVR-treated patients who did not achieve an SVR. Methods: Population sequence analysis of the NS3•4A region was performed in patients who did not achieve SVR with TVR-based treatment. Results: Resistant variants were observed after treatment with a telaprevir-based regimen in 12% of treatment-naïve patients (ADVANCE; T12PR arm), 6% of prior relapsers, 24% of prior partial responders, and 51% of prior null responder patients (REALIZE, T12PR48 arms). NS3 protease variants V36M, R155K, and V36M+R155K emerged frequently in patients with genotype 1a and V36A, T54A, and A156S/T in patients with genotype 1b. Lower-level resistance to telaprevir was conferred by V36A/M, T54A/S, R155K/T, and A156S variants; and higher-level resistance to telaprevir was conferred by A156T and V36M+R155K variants. Virologic failure during telaprevir treatment was more common in patients with genotype 1a and in prior PR nonresponder patients and was associated with higher-level telaprevir-resistant variants. Relapse was usually associated with wild-type or lower-level resistant variants. After treatment, viral populations were wild-type with a median time of 10 months for genotype 1a and 3 weeks for genotype 1b patients. Conclusions: A consistent, subtype-dependent resistance profile was observed in patients who did not achieve an SVR with telaprevir-based treatment. The primary role of TVR is to inhibit wild-type virus and variants with lower-levels of resistance to telaprevir. The complementary role of PR is to clear any remaining telaprevir-resistant variants, especially higher-level telaprevir-resistant variants. Resistant variants are detectable in most patients who fail to achieve SVR, but their levels decline over time after treatment

    Baseline MELD score predicts hepatic decompensation during antiviral therapy in patients with chronic hepatitis C and advanced cirrhosis

    Get PDF
    Background and Aims: In patients with advanced liver cirrhosis due to chronic hepatitis C virus (HCV) infection antiviral therapy with peginterferon and ribavirin is feasible in selected cases only due to potentially life-threatening side effects. However, predictive factors associated with hepatic decompensation during antiviral therapy are poorly defined. Methods: In a retrospective cohort study, 68 patients with HCV-associated liver cirrhosis (mean MELD score 9.18±2.72) were treated with peginterferon and ribavirin. Clinical events indicating hepatic decompensation (onset of ascites, hepatic encephalopathy, upper gastrointestinal bleeding, hospitalization) as well as laboratory data were recorded at baseline and during a follow up period of 72 weeks after initiation of antiviral therapy. To monitor long term sequelae of end stage liver disease an extended follow up for HCC development, transplantation and death was applied (240weeks, ±SD 136weeks). Results: Eighteen patients (26.5%) achieved a sustained virologic response. During the observational period a hepatic decompensation was observed in 36.8%. Patients with hepatic decompensation had higher MELD scores (10.84 vs. 8.23, p14, respectively. Baseline MELD score was significantly associated with the risk for transplantation/death (p<0.001). Conclusions: Our data suggest that the baseline MELD score predicts the risk of hepatic decompensation during antiviral therapy and thus contributes to decision making when antiviral therapy is discussed in HCV patients with advanced liver cirrhosis

    Drug-Drug Interactions Among Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV) Medications

    Get PDF
    One-fourth of individuals diagnosed with the human immunodeficiency virus concomitantly have the hepatitis C virus infection. Since the discovery of highly active antiretroviral therapy, liver complications have become the leading cause of morbidity and mortality in HIV-HCV coinfected individuals. Optimal treatment in this patient population is critical, as coinfection has been linked to deterioration of both disease states. The objective of this review article is to highlight the current literature on drug-drug interactions between HIV and HCV treatments. The management of the treatment of coinfection patients has been covered extensively in numerous other publications

    Prevalence of HCV NS3 pre-treatment resistance associated amino acid variants within a Scottish cohort

    Get PDF
    Background: Protease inhibitors (PI) including boceprevir, telaprevir and simeprevir have revolutionised HCV genotype 1 treatment since their introduction. A number of pre-treatment resistance associated amino acid variants (RAVs) and polymorphisms have been associated with reduced response to treatment. Objectives: We measured the prevalence of RAVs/polymorphisms in a PI treatment-naïve HCV genotype 1 Scottish cohort using Sanger sequencing. Study design: Chronically infected, treatment-naïve, HCV genotype 1 patients (n = 146) attending NHS Greater Glasgow and Clyde clinics were investigated for RAVs/polymorphisms to the PIs boceprevir, telaprevir and simeprevir. The NS3/4A region was amplified by nested polymerase chain reaction. The 1.4 kb amplified product was sequenced using an ABI 3710XL DNA sequencer. Sequence analysis was performed using web-based ReCall (beta 2.10). Amino acid positions 36, 41, 43, 54, 55, 80, 109, 122, 155, 156, 168 and 170 were analysed for RAVs/polymorphisms. Results: Overall, 23.29% (34/146) of patients had an RAV or polymorphism detected. Overall, 13.69% (20/146) of patients had HCV virus that contained the Q8 K polymorphism. Other RAVs detected were: V36 M 0.70% (1/146), V36L 0.70% (1/146), T54S 6.85% (10/146), V55A 3.42% (5/146) and V/I170A 0.68% (1/146). Four patients had dual combinations of mutations (T54S + V36L; T54S + V55A and 2 patients with T54S + Q80K). Conclusions: Q80K was the most prevalent baseline polymorphism detected in the Scottish cohort. Simeprevir treatment is not recommended in patients infected with the Q80K genotype 1a variant. This highlights the need for baseline sequencing prior to administration of this drug in this population

    A new paradigm evaluating cost per cure of HCV infection in the UK

    Get PDF
    Background: New interferon (IFN)-free treatments for hepatitis C are more effective, safer but more expensive than current IFN-based therapies. Comparative data of these, versus current first generation protease inhibitors (PI) with regard to costs and treatment outcomes are needed. We investigated the real-world effectiveness, safety and cost per cure of 1st generation PI-based therapies in the UK. Methods: Medical records review of patients within the HCV Research UK database. Patients had received treatment with telaprevir or boceprevir and pegylated interferon and ribavirin (PR). Data on treatment outcome, healthcare utilisation and adverse events (AEs) requiring intervention were collected and analysed overall and by subgroups. Costs of visits, tests, therapies, adverse events and hospitalisations were estimated at the patient level. Total cost per cure was calculated as total median cost divided by SVR rate. Results: 154 patients from 35 centres were analysed. Overall median total cost per cure was £44,852 (subgroup range,: £35,492 to £107,288). Total treatment costs were accounted for by PI: 68.3 %, PR: 26.3 %, AE management: 5.4 %. Overall SVR was 62.3 % (range 25 % to 86.2 %). 36 % of patients experienced treatment-related AEs requiring intervention, 10 % required treatment-related hospitalisation. Conclusions: This is the first UK multicentre study of outcomes and costs of PI-based HCV treatments in clinical practice. There was substantial variation in total cost per cure among patient subgroups and high rates of treatment-related discontinuations, AEs and hospitalisations. Real world safety, effectiveness and total cost per cure for the new IFN free combinations should be compared against this baseline

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    The new paradigm of hepatitis C therapy: integration of oral therapies into best practices.

    Get PDF
    Emerging data indicate that all-oral antiviral treatments for chronic hepatitis C virus (HCV) will become a reality in the near future. In replacing interferon-based therapies, all-oral regimens are expected to be more tolerable, more effective, shorter in duration and simpler to administer. Coinciding with new treatment options are novel methodologies for disease screening and staging, which create the possibility of more timely care and treatment. Assessments of histologic damage typically are performed using liver biopsy, yet noninvasive assessments of histologic damage have become the norm in some European countries and are becoming more widespread in the United States. Also in place are new Centers for Disease Control and Prevention (CDC) initiatives to simplify testing, improve provider and patient awareness and expand recommendations for HCV screening beyond risk-based strategies. Issued in 2012, the CDC recommendations aim to increase HCV testing among those with the greatest HCV burden in the United States by recommending one-time testing for all persons born during 1945-1965. In 2013, the United States Preventive Services Task Force adopted similar recommendations for risk-based and birth-cohort-based testing. Taken together, the developments in screening, diagnosis and treatment will likely increase demand for therapy and stimulate a shift in delivery of care related to chronic HCV, with increased involvement of primary care and infectious disease specialists. Yet even in this new era of therapy, barriers to curing patients of HCV will exist. Overcoming such barriers will require novel, integrative strategies and investment of resources at local, regional and national levels

    Rapid decrease in titer and breadth of neutralizing anti-HCV antibodies in HIV/HCV-coinfected patients who achieved SVR

    Get PDF
    The main targets for neutralizing anti-hepatitis C virus (HCV) antibodies (HCV-nAbs) are the E1 and E2 envelope glycoproteins. We have studied the characteristics of HCV-nAbs through a retrospective study involving 29 HIV/HCV-coinfected patients who achieved sustained virological response (SVR) with pegIFNα+ribavirin anti-HCV therapy. Plasma samples at baseline and week 24 after SVR were used to perform neutralization assays against fve JFH1-based HCV recombinant viruses coding for E1 and E2 from genotypes 1a (H77), 1b (J4), 2a (JFH1), 3a (S52) and 4a (ED43). At baseline, the majority of plasma samples neutralized 1a, 1b, 2a, and 4a, but not 3a, genotypes. Twenty-four weeks following SVR, most neutralizing titers declined substantially. Furthermore, titers against 3a and 2a were not detected in many patients. Plasma samples with high HCV-nAb titers neutralized all genotypes, and the highest titers at the starting point correlated with the highest titers at week 24 after SVR. In conclusion, high titers of broad-spectrum HCV-nAbs were detected in HIV/HCV-coinfected individuals, however, those titers declined soon after SVRThis study was supported by grants from Instituto de Salud Carlos III (ISCIII; grant numbers PI14/01094 and PI17/00657 to JB, PI17/00903 to JGG, PI14CIII/00011 and PI17CIII/00003 to SR) and Ministerio de Sanidad, Servicios Sociales e Igualdad (grant number EC11-241). Te study was also funded by the RD16CIII/0002/0002, RD16/0025/0018, and RD16/0025/0017 projects as part of the Plan Nacional R+D+I and co-funded by ISCIII- Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER
    corecore