12 research outputs found

    Blending Basic Implicit Shapes Using Trivariate Box Splines

    Get PDF

    Determination and (re)parametrization of rational developable surfaces

    Get PDF
    The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable surfaces have rational parametrizations. In this paper, the authors focus on the rational developable surfaces. For a given algebraic surface, the authors first determine whether it is developable by geometric inspection, and then give a rational proper parametrization in the affirmative case. For a rational parametric surface, the authors also determine the developability and give a proper reparametrization for the developable surface

    On the base point locus of surface parametrizations: formulas and consequences

    Get PDF
    This paper shows that the multiplicity of the base point locus of a projective rational surface parametrization can be expressed as the degree of the content of a univariate resultant. As a consequence, we get a new proof of the degree formula relating the degree of the surface, the degree of the parametrization, the base point multiplicity and the degree of the rational map induced by the parametrization. In addition, we extend both formulas to the case of dominant rational maps of the projective plane and describe how the base point loci of a parametrization and its reparametrizations are related. As an application of these results, we explore how the degree of a surface reparametrization is affected by the presence of base points.Agencia Estatal de InvestigaciĂł

    Geometric Information and Rational Parametrization of Nonsingular Cubic Blending Surfaces

    Get PDF
    The techniques for parametrizing nonsingular cubic surfaces have shown to be of great interest in recent years. This paper is devoted to the rational parametrization of nonsingular cubic blending surfaces. We claim that these nonsingular cubic blending surfaces can be parametrized using the symbolic computation due to their excellent geometric properties. Especially for the specific forms of these surfaces, we conclude that they must be 3, 4, or 5 surfaces, and a criterion is given for deciding their surface types. Besides, using the algorithm proposed by Berry and Patterson in 2001, we obtain the uniform rational parametric representation of these specific forms. It should be emphasized that our results in this paper are invariant under any nonsingular real projective transform. Two explicit examples are presented at the end of this paper

    Characterization of rational ruled surfaces

    Get PDF
    The algebraic ruled surface is a typical modeling surface in computer aided geometric design. In this paper, we present algorithms to determine whether a given implicit or parametric algebraic surface is a rational ruled surface, and in the affirmative case, to compute a standard parametric representation for the surface
    corecore