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Abstract The developable surface is an important surface in computer aided design, geometric mod-

eling and industrial manufactory. It is often given in the standard parametric form, but it can also

be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable

surfaces have rational parametrizations. In this paper, we focus on the rational developable surfaces.

For a given algebraic surface, we first determine whether it is developable by geometric inspection, and

we give a rational proper parametrization for the affirmative case. For a rational parametric surface, we

can also determine the developability and give a proper reparametrization for the developable surface.

Keywords Parametrization, proper, rational developable surface, reparametrization.

1 Introduction

A developable surface can be constructed by bending a planar region at every point. It is

a commonly used surface in computer aided design and geometric modeling [1–4]. Developable

surfaces have zero Gaussian curvature and they are a subset of ruled surfaces. In general design,

the developable surface is often proposed as a parametric form. In recent years, people challenge

to geometrically design with algebraic surfaces since they have more geometric features and

topologies than those of the parametric surfaces (see [5, 6]). In this situation, a natural problem

is to determine the type of algebraic modeling surfaces. For expected cases, some surfaces can

be commonly used surfaces, for example, developable surfaces. As a successive problem, we

need to find a rational parametrization of the determined surface, since the parametrizations

are better representations for manufactural control and computer display.
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The two problems are both difficult for general surfaces, particularly in computation. Since

the algebraic surfaces are basic objects in algebraic geometry, there were some classical results

associated to these two problems. Let S be an algebraic surface. If S is a rational surface then

Pn = q = 0 for all n, and conversely, any surface with q = P2 = 0 is a rational surface, where

Pn and q are the plurigenus and the irregularity of S, respectively. This is called Castelnuovo’s

rationality criterion (see [7], V.1). If S is a ruled surface then Pn = 0 for all n, and conversely,

any surface with P4 = P6 = 0 (or P12 = 0) is a ruled surface. This is called the criterion of

ruled surfaces (see [7], VI.18).

The above results gave important theoretical effects, but there were lack of practical method

for real computation. In fact, the plurigenus and irregularity are difficult to compute. There-

fore, for a general implicit curve and surface, to propose a parametrization algorithm is still

an open problem [6]. To meet the practical needs, people tried to design some parametriza-

tion algorithm for some special surfaces which are commonly used. Sederberg and Snively [8]

proposed four methods of parametrization of cubic algebraic surfaces. Sederberg [9] and Bajaj

et al. [10] expanded this method. In [11], a method to parameterize a quadric is given using a

stereographic projection; Berry et al. [12] tried to unify the implicitization and parametrization

of a nonsingular cubic surface with Hilbert-Burch matrices. Recently, Chen et al. [13] presented

a method to deal with the implicitization and parametrization of quadratic and cubic surfaces

by the µ-basis which is a developing method. In [14], Shen and Pérez-Dı́az characterized the

rational ruled surfaces using the reduced standard form. These methods were designed for some

special surfaces. For a general given surface, Schicho [15] gave well analysis in parametrization

problem. He provided more contributions on theoretical analysis than practical computation,

since the problem is quite difficult for general situations.

There were also some numerical mesh parametrization methods designed for the industrial

manufactory [16]. A difficult problem in the numerical methods is to set the values of param-

eter for the points in an implicit surface. This is the main reason that people can only get

an approximate parametrization using the numerical methods. Since the numerical approxi-

mate method may lose some intrinsic properties of the surfaces, we prefer to find the symbolic

parametrization method in this paper for a typical surface named as the developable surface.

As mentioned above, the developable surface is an important modeling surface. But there

are few papers that discussed the parametrization of an algebraic developable surface. This

motives us to focus on the problem in this paper. In the geometric investigation, a developable

surface must be either a cylindrical surface, a conical surface, or a tangential surface of a space

curve. We then reduce the problem to determine and parameterize these three special surfaces.

The paper is organized as follows. Some necessary notations and preliminary results are

proposed in Section 2. The algebraic rational developable surfaces are characterized in Sec-

tion 3, and a rational proper parametrization is computed. Examples are given for some typical

surfaces. In Section 4, we focus on the parametric surface and the reparametrization problem.

The examples are also presented. Finally, we concluded the paper in Section 5.



(RE)PARAMETRIZATION OF DEVELOPABLE SURFACES 3

2 Preliminaries

Let L[t] be the polynomial ring over the subfield L of an algebraically closed field of char-

acteristic zero K, and let L(t) be the field of rational functions over L.

A ruled surface is defined by one parameter family of straight lines moving along a curve.

The curve is called the directrix and the straight lines are called rulings or generators. A

developable surface is a ruled surface with zero Gaussian curvature (see [17, 18]). If the rulings

all pass through one point which called apex, the surface is a conical surface. If the rulings of

a developable surface are parallel to the same straight line, the surface is a cylindrical surface.

In the remaining cases the developable surface is the tangential surface which is defined by the

tangents to a certain space curve. We also call it the tangential surface of the space curve. The

space curve is called cuspidal edge of the tangential surface.

Although the developable surfaces are often given in parametric form, not all developable

surfaces have rational parametrizations.

A proper parametrization of a rational ruled surface in standard form is given by

P(s, t) = P0(t) + sP1(t). (1)

where Pi(t) ∈ L(t)3, i = 1, 2, and P1 6= (0, 0, 0). The rational developable surface has three

forms by the following lemma presented in [18].

Lemma 2.1 A ruled surface of the form (1) is a developable surface if and only if P′
0 ×

P′
1 ·P1 = 0. In addition, a rational developable surface can only be one of the following cases:

• If P0(t) is a constant vector, then P(s, t) defines a conical surface.

• If P1(t) is a constant vector, then P(s, t) defines a cylindrical surface.

• If P1(t) = P′
0(t), then P(s, t) defines a tangential surface.

Remark 2.2 Note that for a tangential surface S defined by the parametrization P(s, t) =

P0(t) + sP′
0(t), the cuspidal edge P0(t) defines a rational curve and it is a singular curve of S

(one has that P(s, t) is singular at (0, t)).

The parametric form is widely used in computer aided geometric design and in geometric

modeling. An algebraic surface implicitly defined by a polynomial F (x, y, z) may not have a

rational parametrization. If an algebraic developable surface has a rational parametrization,

we call it a rational developable surface. In the following of this paper, we focus on finding the

rational parametrization of a given rational developable surface.

3 Implicitly rational developable surface

In this section, we consider a surface S implicitly defined by a polynomial

F (x, y, z) ∈ L[x, y, z].
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We provide necessary and sufficient conditions so that S represents a developable surface.

In the affirmative case, we compute a rational parametrization of the form given in 1.

For this purpose, we start with a theorem that determines the developability of S. The

referenced discussion can be found in [17–19].

Theorem 3.1 Let S be an algebraic surface implicitly defined by the polynomial F (x, y, z).

S is a developable surface if and only if K(x, y, z) = 0 on S, where

K(x, y, z) =

∣∣∣∣∣∣∣∣∣∣∣

Fxx Fxy Fxz Fx

Fyx Fyy Fyz Fy

Fzx Fzy Fzz Fz

Fx Fy Fz 0

∣∣∣∣∣∣∣∣∣∣∣
. (2)

In some papers, it is also said that S is developable if and only if its Gaussian curvature

κ(F ) = 0 on S, since we have the formula κ(F ) = K(x, y, z)/|∇F |4, where ∇ means the gradi-

ent [18]. Goldman [20] gave a proof for this formula.

Since there are three types of developable surfaces (see Lemma 2.1), in the following we

discuss the rationality for each of them.

Lemma 3.2 Let S be a conical surface with the apex P0 ∈ L3. Let L be a plane not

passing through P0, and let C be the intersection curve of S and L. S has a rational proper

parametrization of the form P0 + sP1(t) ∈ L(s, t)3 if and only if C is rational over L.

Proof For the necessity, let S be a conical developable surface and let

P(s, t) = (p01, p02, p03) + s(p11(t), p12(t), p13(t)) ∈ L(s, t)3

be a rational proper parametrization of S. Let L be a plane not passing through the apex P0

of S, and we assume its implicit equation is given as L(x, y, z) = 0. Substituting P(s, t) into

L(x, y, z) = 0, one can solve s = q(t) ∈ L(t) because (p11(t), p12(t), p13(t)) 6= (0, 0, 0) and s is

linear in the equation. Then, the curve C, given by the intersection of L and S, has a proper

rational parametrization defined as P̃(t) = P(q(t), t) ∈ L(t)3 (note that P(s, t) is proper and L
does not pass through the apex).

For the sufficiency, we first consider P̃(t) ∈ L(t)3 a rational proper parametrization of C.
Note that according to the arguments, the apex P0 is not on C. Thus, P(s, t) := (1 − s)P0 +

sP̃(t) ∈ L(s, t)3 is a rational proper parametrization of S, since P(s, t) defines a conical surface

covering S.

For the cylindrical surface, we have an equivalent property.

Lemma 3.3 Let S be a cylindrical surface with the ruling direction P1 ∈ L3. Let L be a

plane not parallel to P1, and let C be the intersection curve of S and L. S has a rational proper

parametrization of the form P0(t) + sP1 ∈ L(s, t)3 if and only if C is rational over L.
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Proof For the necessity, let S be a cylindrical developable surface, and let

P(s, t) = (p01(t), p02(t), p03(t)) + s(p11, p12, p13) ∈ L(s, t)3

be a rational proper parametrization of S. Let L be a plane not parallel to P1, and we assume

its implicit equation is given by L(x, y, z) = 0. Substituting P(s, t) into L(x, y, z) = 0, one

can solve s = q(t) ∈ L(t) because (p11(t), p12(t), p13(t)) 6= (0, 0, 0), and s is linear in the

equation. Then, the intersection curve C has a proper rational parametrization defined by

P̃(t) = P(q(t), t) ∈ L(t)3 (note that P(s, t) is proper and L is not parallel to the rulings).

For the sufficiency, we first note that C is not a ruling since L is not parallel to the ruling

direction. If C has a rational proper parametrization P̃(t) ∈ L(t)3, then P(s, t) := P̃(t)+sP1 ∈
L(s, t)3 is a rational proper parametrization of S, since P(s, t) defines a cylindrical surface

covering S.

A tangential developable surface is generated by the tangent lines of a space curve. The

intersection of a tangent developable with the normal plane at a point P of the curve generally

has a cusp at that point. Thus the tangential developable surface of a space curve has a cuspidal

edge along the curve, and the cuspidal edge is a singular curve of the tangential developable

surface (see [21]). In this paper, the space curve is assumed not to be a planar curve in L3

(note that the tangential surface with a planar cuspidal edge is just a plane).

Lemma 3.4 Let S be a tangential surface with the cuspidal edge C. S has a rational

proper parametrization of the form P0(t) + sP1 ∈ L(s, t)3 if and only if C is rational over L.

Proof For the necessity, let S be a tangential surface with a rational proper parametrization

P(s, t) = (p01(t), p02(t), p03(t)) + s(p′01(t), p′02(t), p′03(t)) ∈ L(s, t)3.

Then, the cuspidal edge C ⊂ S is defined by the parametrization P0(t) = (p01(t), p02(t), p03(t)) ∈
L(t)3. Hence, it is a rational curve. In addition, since (s, 0) is always singular, we have that C
is a singular curve of S.

For the sufficiency, if C has a rational proper parametrization P̃(t) ∈ L(t)3, then P(s, t) :=

P̃(t) + sP̃′(t) ∈ L(s, t)3 is a rational proper parametrization of S, since P(s, t) defines a tan-

gential surface sharing the common cuspidal edge of S.

We observe that if S is a tangent developable surface, then the cuspidal edge is a singular

curve. Therefore, it is included in the singular set defined by the algebraic system S := {F =

0, Fx = 0, Fy = 0, Fz = 0}.

In the following, we summarize Theorem 3.1, and Lemmas 3.2, 3.3, 3.4, and we get the

following theorem.

Theorem 3.5 Let S be an algebraic surface implicitly defined by the polynomial F (x, y, z) ∈
L[x, y, z]. S is a rational developable surface if and only if the following statements hold:

1. K(x, y, z) = 0, for all points (x, y, z) of S.
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2. One of the following statements holds:

2.1. S is a conical surface with apex P0 ∈ L3, and there exists a planar curve C ⊂ S
not passing through P0 and having a proper rational parametrization P̃(t) ∈ L(t)3.

Furthermore, (1− s)P0 + sP̃(t) ∈ L(s, t)3 is a proper parametrization of S.

2.2. S is a cylindrical surface with ruling direction P1 ∈ L3, and there exists a planar

curve C ⊂ S not parallel to P1 and having a proper rational parametrization P̃(t) ∈
L(t)3. Furthermore, P̃(t) + sP1(t) ∈ L(s, t)3 is a proper parametrization of S.

2.3. S is a tangential surface, and there exists a space singular curve C ⊂ S having a ra-

tional proper parametrization P0(t) ∈ L(t)3. Furthermore, P0(t) + sP′
0(t) ∈ L(s, t)3

is a proper parametrization of S.

Parameterize the developable surfaces

By Theorem 3.5, before parametrizing the rational developable surface S implicitly defined

by F (x, y, z) ∈ L[x, y, z], we need to determine the type of the surface: conical, cylindrical or

tangential surface. The normal vector of S at (x, y, z) is N(x, y, z) = (Fx, Fy, Fz), where Fvar

is the partial derivative of F with respect to the variable var. Then, the tangent surface of S at

the point (u, v, w) is given by the equation T (x, y, z) = Fu(x− u) +Fv(y− v) +Fw(z−w) = 0,

where (Fu, Fv, Fw) = (Fx, Fy, Fz)|(x=u,y=v,z=w). Under these conditions, we have the following

proposition.

Proposition 3.6 Let (Fx, Fy, Fz) and T (x, y, z) = 0 be the normal vector and tangent

surface of the developable surface S, respectively. It holds that:

1. If T (x, y, z) = 0 passes through a fixed point P0 ∈ L3, then S is a conical surface with the

apex P0.

2. If there exists (0, 0, 0) 6= P1 = (p11, p12, p13) ∈ L3 such that p11Fx + p12Fy + p13Fz = 0,

then S is a cylindrical surface with the ruling direction P1.

3. Otherwise, S is a tangential surface, and its cuspidal edge is included in {F = 0, Fx =

0, Fy = 0, Fz = 0}.

Proof We know that S is a developable surface, and there are three different types of these

surfaces (see Lemma 2.1). According to the definitions, the conical surface is the only that

has an apex such that any tangent surface T (x, y, z) = 0 passes through it (see Lemma 3.2).

The situation of the normal direction orthogonal with a constant vector can only happen with

the cylindrical surface (see Lemma 3.3). The remain developable surfaces are the tangential

surfaces (see Lemma 3.4).

Algorithm 1 Input: An algebraic surface S implicitly defined by the polynomial F (x, y, z) ∈
L[x, y, z].
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Output: A proper rational parametrization over L of the rational developable surface S or a

message for S.

1. Compute K(x, y, z) of the form (2). If it is zero on S go to Step 2. Otherwise, return “S
is not a developable surface.”

2. If the tangent surface defined by the equation T (x, y, z) = 0 passes through a fixed point

P0 ∈ L3, compute a plane L not passing through P0, and the intersection curve, C, of S
and L.

2.1. If C has a rational proper parametrization P̃(t) ∈ L(t)3, return (1− s)P0 + sP̃(t) ∈
L(s, t)3 is a rational proper parametrization of the conical surface S.

2.2. Otherwise, return “S is a conical developable surface but not rational.”

3. If there exists (0, 0, 0) 6= P1 = (p11, p12, p13) ∈ L3 such that p11Fx + p12Fy + p13Fz = 0,

compute a plane L not parallel to P1, and the intersection curve, C, of S and L.

3.1. If C has a rational proper parametrization P̃(t) ∈ L(t)3, return P̃(t) + sP1 ∈ L(s, t)3

is a rational proper parametrization of the cylindrical surface S.

3.2. Otherwise, return “S is a cylindrical developable surface but not rational.”

4. Solve the algebraic system S := {F = Fx = Fy = Fz = 0} by applying for instance Wu’s

zero decomposition (see [22]). Compute a rational proper parametrization P̃(t) ∈ L(t)3

of a curve C ⊂ S applying for instance the resolvent method in [23].

4.1. If P̃(t) + sP̃′(t) ∈ L(s, t)3 parametrizes S, return P̃(t) + sP̃′(t) is a rational proper

parametrization of the tangential surface S.

4.2. If there does not exist any curve C ⊂ S satisfying the condition of Step 4.1, return

“S is a tangential developable surface but not rational.”

Remark 3.7 We here give some details for computation.

a. To find the fixed point P0 in Step 2, we need to solve S := {T (x, y, z;u, v, w) = 0, F (u, v, w) =

0} with respect to {x, y, z}. In order to simplify the computation, we can solve the linear

system T (x, y, z;ui, vi, wi) = 0 for some random selected points (ui, vi, wi) ∈ S, and check

the solutions lying in S. Observe that one also may use the arithmetic in the quotient field

of rational functions K(S), and to compute remainders with the polynomial F (u, v, w).

b. To find the ruling direction P1 in Step 3, we only need to consider the coefficient vectors

of Fx, Fy and Fz. It holds that for a cylindrical surface, P1 is linearly dependent with the

vector (p11, p12, p13).

c. In step 4, S may has different curves since it is the collection of singular curves. To

determine cuspidal edge C from S, one needs to check two conditions: C is rational and

P̃(t) + sP̃′(t) ∈ L(s, t)3 parametrizes S, where P̃(t) is a rational proper parametrization

of C.
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Examples of Algorithm 1

Example 3.8 Let S be the algebraic surface defined by the polynomial

F (x, y, z) = 4x2 + 9y2 − 4x− 6y − z2 + 2 ∈ R[x, y, z].

In Step 1, we compute K(x, y, z) = 576F (x, y, z), which implies that S is a developable

surface. In Step 2, we get that the tangent plane at (u, v, w) is

(8u− 4)(x− u) + (18v − 6)y − v)− 2w(z − w) = 0, where F (u, v, w) = 0.

One has that some random tangent planes pass through the point P0 = (x0, y0, z0) =

(1/2, 1/3, 0) ∈ R3. We check that P0 is a common point of {T (x, y, z;u, v, w) = 0, F (u, v, w) =

0}. Then, S is a conical surface.

Let L(x, y, z) = x − z = 0 be the plane L not passing through P0. Then, the intersection

curve, C, of the surface S and the plane L is defined by the equation 3x2 +9y2−4x−6y+2 = 0

(we eliminate the variable z). The curve C can be regarded as a planar curve, and it has a

rational proper parametrization given by

(q1(t), q2(t)) :=

(
9 + t2

27 + t2
,
t2 − 6t+ 27

3t2 + 81

)
∈ R(t)2.

We substitute (q1, q2) into the plane x− z = 0, and solving the variable z, we get the rational

proper parametrization of the space curve C

P̃(t) =

(
9 + t2

27 + t2
,
t2 − 6t+ 27

3t2 + 81
,

9 + t2

27 + t2

)
∈ R(t)3.

Therefore, a parametrization of S is given by

(1− s)P0 + sP̃(t) = (1− s)(1/2, 1/3, 0) + s

(
9 + t2

27 + t2
,
t2 − 6t+ 27

3t2 + 81
,

9 + t2

27 + t2

)
∈ R(s, t)3.

Example 3.9 Let S be the algebraic surface defined by the polynomial

F (x, y, z) = x4 + 4x3y+ 6x2y2 + 4xy3 + y4− 10x3− 27x2y− 3x2z− 18xy2− 18xyz+ 6xz2−
2 y3 − 12 y2z + 3 yz2 + z3 + 16x2 + 8xy + 24xz + 16 y2 − 24 yz + 24 z2 + 64x− 32 y + 96 z.

We have that K(x, y, z) = 0 on S which implies that S is a developable surface. There is

not a fixed point that belongs to all the tangent planes. Then, we go to Step 3.

The normal vector N(x, y, z) of S is orthogonal to P1 = (1,−1,−1) ∈ R3, i.e., Fx−Fy−Fz =

0, which implies that S is a cylindrical surface.

Let L(x, y, z) = x+ y + z = 0 be the plane not parallel to P1. The intersection curve, C, of

S and the plane has a rational proper parametrization

P̃(t) = (−554752 t2 +439520 t+311296 t3−65536 t4−130606, 65536 t4−307200 t3 +540160 t2−
422240 t+ 123804, 14592 t2 − 17280 t− 4096 t3 + 6802) ∈ R(t)3.

Then, a parametrization of the surface S is given by P̃(t) + s(1,−1,−1) ∈ R(s, t)3.
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Example 3.10 Let S be the algebraic surface defined by the polynomial

F (x, y, z) = 11+16 z−12 y−36x−4 z2−48 yz+12 y2−36xz+36xy+42x2+48 y2z+72xyz−
24xy2 + 24x2z− 36x2y− 20x3− 32 zy3− 48 y2zx− 24 zyx2 + 12x2y2− 4 zx3 + 12x3y+ 3x4 ∈
R[x, y, z].

We follow Steps 1,2 and 3, and we get that S is neither a conical surface nor a cylindri-

cal surface. Thus, S is a tangential developable surface. We go to Step 4, and we solve the

algebraic system S := {Fx = 0, Fy = 0, Fz = 0, F = 0}. For this purpose, we use WSOLVE

(http://www.mmrc.iss.ac.cn/ dwang/wsolve.htm) which is a maple package to solve the char-

acteristic set. We get

S =



{2xy + 2 yz − 2 y − 3 z + xz, 4 y3 − 2 z + 6 yz + z2};

{3 + x2, y − 1, z + 2};

{2x− 3, 4 y − 1, 4 z − 1};

{x− 3, y, z − 2};

{x− 1, y, z}.


Only the first component has dimension one, and then it should be the cuspidal edge. Thus,

the cuspidal edge is the algebraic curve C defined by two surfaces of equations

{2xy + 2 yz − 2 y − 3 z + xz = 0; 4 y3 − 2 z + 6 yz + z2 = 0}.

We can determine its rationality and we parameterize it by applying for instance the resolvent

method in [23]. Actually, in this example, one has that the cylindrical surface 4y3−2 z+6 yz+

z2 = 0 can be regarded as a planar curve (in R2), and it has a rational parametrization given

by

(q1(t), q2(t)) =

(
(t+ 2)(t− 4)

4(t− 1)2
,

(t+ 3)3

4(t− 1)3

)
∈ R(t)2.

We substitute (q1, q2) into the surface defined by the equation 2xy + 2 yz − 2 y − 3 z + xz = 0,

and we solve the variable x. Then, we get a parametrization of the cuspidal edge C given by

P̃(t) =

(
3(t2 + 2)

2(t− 1)2
,

(t+ 2)(t− 4)

4(t− 1)2
,

(t+ 3)3

4(t− 1)3

)
∈ R(t)3.

Therefore, a rational parameterization of S is P̃(t) + sP̃′(t) ∈ R(s, t)3.

Refine the parameterizations

Reparametrizing a rational surface such that it does not contain any base point is usually

a cumbersome task, even for a ruled surface. An affine base point of a rational surface pa-

rameterized by P(s, t) is a parameter pair (s0, t0) such that the numerator and denominator of

each component of P(s, t) at (s0, t0) are zero. The µ-basis technique in [24] provides a simple

and elegant way to reparameterize a rational ruled surface such that it does not contain any

non-generic base point. Furthermore, the directrices of the reparameterized surface have the
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lowest possible degree. Thus there are both geometrical and computational advantages to be

gained from such a reparametrization. Here we refine the parametrization using the µ-basis

method in [24]. The more efficient algorithm to compute µ-basis can be found in [25]. Continue

to Example 3.10 of the tangential surface, one can get the refined rational reparametrization

P(u, v) = P0(u) + vP1(u) ∈ R(u, v)3 where

P0(u) =

(
− 5u− 8

2(u2 − 2u+ 1)
,
u2 + 7u− 11

4(u2 − 2u+ 1)
,−7(u2 + 4u+ 4)

8(u2 − 2u+ 1)

)
∈ R(u)3

and

P1(u) = (2u2 + 2u− 4,−3u+ 3, 3u2/2 + 6u+ 6) ∈ R(u)3.

4 Parametrically developable surfaces

In this section, we consider a surface S defined by a parametrization (not necessarily proper),

P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) ∈ L(s, t)3. (3)

We give the necessary and sufficient condition so that S represents a developable surface. The

following theorem can be deduced from Theorem 3.1, and the details also was proposed in [19].

Theorem 4.1 A given parametric surface S defined by P(s, t) of the form (3), is devel-

opable if and only if K(s, t) = 0, where

K(s, t) =

∣∣∣∣∣∣∣∣
ls lt l

ms mt m

ns nt n

∣∣∣∣∣∣∣∣ , (4)

and l = p2sp3t − p3sp2t, m = p3sp1t − p1sp3t and n = p1sp2t − p2sp1t.

Since we can tell whether S is a developable surface, we compute a proper reparametrization

in standard form for the affirmative case. For this purpose, let N(s, t) = (n1, n2, n3) = Ps×Pt

be the normal vector of the parametric surface S, and we denote X = (x, y, z). Then, the

tangent plane of S is T (x, y, z) = N(s, t) · (X − P(s, t)) = 0. According to the three types of

developable surface (see Theorem 3.5), we have the following algorithm.

Algorithm 2 Input: An algebraic surface S defined by the parametrization P(s, t) ∈
L(s, t)3.

Output: A proper rational parametrization over L of S or the message of “S is not a devel-

opable surface”.

1. Compute K(s, t) of the form (4). If it is zero go to Step 2. Otherwise, return “S is not a

developable surface.”

2. If T (x, y, z) = 0 passes through a fixed point P0 ∈ L3, compute P̃(t) ∈ L(t)3 a rational

proper parametrization of the curve C which is the intersection curve of S and a plane
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not passing through P0. Then, return (1 − s)P0 + sP̃(t) ∈ L(s, t)3 is a rational proper

parametrization of the conical surface S.

3. If there exists (0, 0, 0) 6= P1 = (p11, p12, p13) ∈ L3 such that p11n1 + p12n2 + p13n3 = 0,

compute P̃(t) ∈ L(t)3 a rational proper parametrization of the curve C which is the

intersection of S and a plane not parallel to P1. Then, return P̃(t) + sP1 ∈ L(s, t)3 is a

rational proper parametrization of the cylindrical surface S.

4. Solve the algebraic system S := {X−P(s, t) = (0, 0, 0), N(s, t) = (0, 0, 0)}, and consider

a rational curve C ⊂ S. Compute a rational proper parametrization P̃(t) ∈ L(t)3 of C
(apply for instance the resolvent method in [23]), and check whether P̃(t) + sP̃′(t) ∈
L(s, t)3 parametrizes S. In the affirmative case, return P̃(t) + sP̃′(t) is a rational proper

parametrization of the tangential surface S. Otherwise, consider a new rational curve

C ⊂ S.

Remark 4.2 We give some necessary remarks for Algorithm 2.

a. The point P0 in Step 2 can be obtained from the coefficient set of the tangent plane

T (x, y, z; s, t) = 0 with respect to {s, t}. To compute P1 in Step 3, we just need to find

the linearly dependent coefficient vector of n1, n2 and n3.

b. In Step 4, it is known that the cuspidal edge is included in the singular set S of the surface

S. The cuspidal edge is a prime set and then, it can be separately solved by the resolvent

method in [23].

c. For the intersection curve in Step 2 or Step 3, or the singular curve in Step 4, we may

get an improper parameterized curve if the given parametrization P(s, t) is improper. In

this case, we check out the improper case (apply for instance the method in [26]), and we

properly reparameterize the curve by some methods such as [27, 28].

d. In Step 4, we should check whether P̃(t) + sP̃′(t) parametrizes S. Here, we recommend

to compute the implicit polynomial F (x, y, z) defined by the parametrization P̃(t) +

sP̃′(t) (observe that P̃(t) + sP̃′(t) defines a ruled surface and then it has an efficient

implicitization method; see for instance [29]). If F (P(s, t)) = 0, one concludes P̃(t) +

sP̃′(t) parametrizes S.

Examples of Algorithm 2

Example 4.3 Let S be a surface defined by the parametrization

P(s, t) = (p1(s, t), p2(s, t), p3(s, t)) =(
4 s2 + t+ 1− 2 s+ t2 + 2 ts

1− 2 t− 2 s+ t2 + 2 ts+ s2
,

6 ts2 + 7 t2 + 6 s3 + 8 ts− s2 − 4 t+ 1− 2 s

1− 2 t− 2 s+ t2 + 2 ts+ s2
,

t2s2 + 2 ts3 + 6 ts2 + t3 + 2 t2s+ 5 t2 + s4 + 5 s3 + 5 ts

1− 2 t− 2 s+ t2 + 2 ts+ s2

)
∈ R(s, t)3.
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Following Step 1, we have that S is a developable surface since K(s, t) = 0. We observe

that this parametrization is improper (apply the method in [26]).

In Step 2, solving the coefficient set of T (x, y, z; s, t) with respect to {s, t}, we get a fixed

point P0 = (1, 1, 0) ∈ R3 of the tangent planes. Therefore, S is a conical surface with the apex

P0.

Let L(x, y, z) = 0 be the equation defining a plane L not passing through P0. To simplify the

computation, one considers the plane defined by the polynomial L(x, y, z) = z − 1 ∈ R[x, y, z],

and we compute a proper parametrization of the curve C that is the intersection curve of S and

L. That is, C is included in {x = p1(s, t), y = p2(s, t), z = p3(s, t), p3(s, t) − 1 = 0}. By the

classical properties of the resultant (see for instance [30] or [31]), the implicit equation of the

projected curve of C on the (x : y) plane is a factor of

Ress(Rest(num(x− p1),num(p3 − 1)),Rest(num(y − p2),num(p3 − 1))),

where num(·) returns the numerator of a rational function, and Resvar returns the resultant of

two polynomials with respect to var. We get that the implicit equation of the projected curve

is

283− 338x+ 64x2 − 120 y + 102xy + 9 y2 = 0.

We find a rational parametrization, and we lift it to get the parametrization of C. We have that

P̃(t) =

(
−283 + 120 t− 9 t2

−258 + 90 t
,

283− 507 t+ 144 t2

−387 + 135 t
, 1

)
∈ R(t)3.

Finally, we obtain a rational proper reparametrization (1− s)P0 + sP̃(t) ∈ R(s, t)3 for the

surface S.

The computation process is similar as above if the surface has a ruling direction.

Example 4.4 Let S be an algebraic surface defined by the parametrization

P(s, t) = ((−1+2 t+2 s+3 t2s2−2 ts−ts2+2 ts3+4 s5−t6+4 s4t2−3 t4s2−2 t2s3−2 t4s+4 s4t−
2 t3s2−2 t3s− s3− s4−2 t5− s2)/

(
t2 + s+ t− 1

)2
, (−3 t4s−2 t2s2 + 3 t2s+ 4 ts3−5 t5− ts2−

t2+3 t3+2 s4−s3−3 s4t−6 t3s+2 t4s2−6 t3s3+6 t3s2+2 t2s3+6 t5s−s5−2 s6−3 t4s4+3 t2s6+

3 s7+3 t6s−3 t5s2−t6s2+3 s6t−3 s4t3+t8−3 t4s3+3 t7−3 t2s5)/
(
t2 + s+ t− 1

)3
, 2 s4(3 t2s2+

3 s3 + 3 ts2 − 2 s2 − 3 t4 − 3 t2s− 3 t3 + 3 t2)/
(
t2 + s+ t− 1

)3
) ∈ R(s, t)3.

S is a developable surface because K(s, t) = 0. In addition, S is a rational tangential surface

since it is neither a conical surface nor a cylindrical surface.

In Step 4, we solve the algebraic system S := {X−P(s, t) = (0, 0, 0),N(s, t) = (0, 0, 0)} using

Maple package WSOLVE. We get a rational space curve defined by the proper parametrization

P̃(t) = (2 t2 − 3 t,−t3 + 3/2 t2 + 1/4 t− 3/8,−2 t3 + 3 t2 − 3/2 t+ 1/4) ∈ R(t)3.

Now, we consider the parametrization P̃(t) + sP̃′(t) ∈ R(s, t)3. Using univariate resultant

(see [29]), we can get its implicit equation
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F (x, y, z) = 32 + 96 y + 96x− 48 z + 96x2 + 32x3 + 48 y2 − 64 y3 − 48 y4 − 48 y2x2 + 96x2y +

192xy− 96xy3− 20 z2 + 32 z3 + 13 z4 + 48 zy+ 12 z3x− 12 z2x2− 48 z2x− 144 z2y+ 120 z2y2−
72 z3y − 32 zy3 + 192 zy2 − 48 zx2 − 72 z2xy + 144 y2xz + 96 zyx+ 48 zx2y − 96 zx = 0.

It holds that F (P(s, t)) = 0, and hence P̃(t) + sP̃′(t) is a rational proper parametrization

of the tangential surface S.

5 Conclusion

Taking into account that the developability of an algebraic surface is associated with the

Gaussian curvature, and that there are three different types of developable surfaces, we deal

with the (re)parametrization problem for rational developable surfaces. More precisely, given

an implicitly algebraic surface S, we analyze whether S is a rational developable surface and in

the affirmative case, we compute a rational proper parametrization of S. For this purpose, we

analyze the three types of developable surfaces, and we prove the main theorem constructively.

Finally, for a given algebraic surface defined by a parametrization (not necessarily proper), we

determine its developability and we find a proper reparametrization.
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