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Abstract

To blend be~ween simple implicit surfaces, such as the sphere, the
cone, the cylinder and the torus, we propose La locally employ the
zero set of a serendipitous trivariate box spline. This box spline is
defined by seven directions that form a regular partition of space into
tetrahedra. The resulting blend surface is curvature continuous. An
approxlmateparametrization of the piecewise implicit surface of degree
four is obtained by subdivision and sign comparison.



Blending basic implicit shapes using
trivariate box splines

§L Introduction

Geometric shapes with a dual representation are essential building blocks
of many geometric modeling systems. Planar facets, the sphere, the cone, the
cylinder and the: torus have both a simple parametric representation that al­
lows for easy display and an implicit equation that facilitates point classifica­
tion. Attempts to enrich either type of representation beyond the basic shapes
to encompass, say surfaces that smoothly join the basic primitives lead to a
number of challenges. For example, extending the parametric representation
leads to the problem of surface-surface intersection for point classification.
More complex implicit surfaces on the other hand are difficult to trace out
and usually have to be approximated by a piecewise linear parametrization
(see e.g. [BlSS]).

Blending, i.e. the smooth join of several primitives, is one of the classical
pl'oblems of modeling with implicit representations [HHS7, HoIS?, LHH90,
K089J. Our approach to blending is to rerepresent the implicit primitives
locally as the zero set of a trivariate spline and to apply any Boolean operation
(join, intersection, etc.) between the primitives to the coefficient space of
the spline representations. Since the result is a spline over a uniform grid,
smoothness is guaranteed. Specifically, we replace a box encompassing the
region of contact. of the primitives by a 7-direetion box spline that partitions
the box into Hubboxes and the subboxes into tetrahedra of one type. The
resulting spline is curvature continuous and of total degree four, i.e. the spline
is a polynomial of degree four on each tetrahedron, The level surfaces taken
from each tetrahedron are therefore curva.ture continuous and of algebraic
degree four, the minimal degree for representing the torus.

The paper is structured as follows. After a review of related literature in
the second section, and of challenges when modeling with implicits in the third
section, we review box splines with unit directions, followed by the definition
of the 7-direetion box spline, its evaluation and reproducing properties. The
paper concludes with a set of examples.

§2. More earlier work

There are currently two main approaches to defining the individual pieces of
a function whose zero set represents a surface. The first is to locally generate
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a shell-like structure consisting of polygonal cells that follow the outlines of
and enclose the intended surface. TIllS approach is illustrated by the recent
work in [Sed90], [DahS9], [Guo93], [DT93], [BCX94] and [MD94]. Creating
the appropriate shell structure can be challenging and sometimes leads to
special cases, say in the case of coplanar pieces.

The alternative, regular lattice approach goes back to spatial enumeration
and oettrees. It. consists of defining a function all a regular, global lattice.
A straightforward choice of such a function to allow for smooth shapes is,
for example, a piecewise triquadratic, C 1 tensor-product spline ([MW91]).
Vilorking with a regular lattice has the advantage that non rectilinear features
of the surface do not require special treatment. However, the representation
is not very efficient, because potentially n 3 values at the lattice points have
to be stored, compared to O(n2 ) plus the shell structure in the case of a
surface-following implicit approach.

53. Two challenges of implicit modeling

3.1. Single, mu.ltiple and unconneetedness. The real zero set of a trivariate
function consist in general of several connected components. Thc components
may touch one another yielding a non-unique surface continuation, and they
may contain handles and holes that do not reflect the design intent [Guo93].
A guarantee of existence and uniqueness, i.e the identification of a singly
connected sheet in the region of interest, is therefore a main concern when
choosing an implicit surface representation [BCX94]. Constraining the im­
plicit representation to be monotone is only a partial solution, because such
nonlinear constraints imply loss of the lineru.· vector space property, i.e. aver­
ages of the constrained representation may not satisfy the constraints. The
algebraic degree of the surface pieces is of interest in this context, because a
higher degree allows for more complex zero sheets. Triquadratic 0 1 splines of
total polynomial degree six are therefore less desirable than the 0 2 box spline
of total degree four that we are about to develop.

3.2 Cube ambigu.ity. As is well-known from the marching cubes algorithm,
specifying values at the vertices of a cube and invoking the intermediate value
theorem for continuous functions to deduce the connectivity of the I':;cro sheet
is not a well-defined operation. Already looking at one cube-face with the sign
pattern ±=F allows for two different piecewise linear zero sheet approximations
attached to the midpoints of edges with changing sign pattern: one with two
sheets running from the upper left to the lower right and the other with
two sheets running from the upper right to the lower left. For uniqueness
of the zero sheet, it is desirable to have tetrahedral regions associated with
the regulru.· mesh, because a tetrahedron defines a unique connectivity of the
midpoint based zero sheet for any given plus-minus pattern at the vertices: the
least degree zero sheet separating positive and negative values at the midpoint
of the corresponding edge is either empty, a triangle or a bilinear quadrilateral
patch.
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§4. Box splines with unit directions
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Box splines are defined by a set of n directions which determine both the
support of the piecewise polynomials and their continuity properties. For the
purpose of this paper it suffices to look at box splines whose direction set
contains all unit vectors of the domain of the box spline. Examples of this
cla..<;s of box splines are all univariate B-splines over uniform knot sequences,
the bivariate Zwart-Powell element and the 7-din:et.ion box spline which is
the subject of this paper. For a detailed discussion of box splines in a general
setting it useful to consult [BHR94].

We define the box spline with respect to the m unit vectors of IRm as
the characteristic function of the unit cube spanned by the vectors. This box
spline has degree zero and is discontinuous. To obtain a box spline with a
larger direction set, the lower order box spline is successively convolved in each
of the remaining directions, thus increasing the degree and the support but not
necessarily the continuity. The degree increases by one with each direction,
and the support. grows by forming the Minkowski sum of the previous support
with the unit <:ube shifted in the direction. To determine the continuity of
the resulting box spline we need to determine the number fl, which counts the
minimal number of directions that need to be removed from the direction set
to obtain a reduced set that does not span lRm

. Then the continuity class is
Ca - 2

• The zero set of such a function is of the same smoothness class since
the expansions of the derivatives agree in all directions.

Example 1. The univariate uniform cubic spline has the direction set {
1, 1, 1, 1 } (cf. Figure 5.1, right). Hence m = 1, n = 4, and a = 4 since all
elements of the set have to be removed to make it Ilonspanning. The degree
is therefore n - 1 = 3 and the continuit.y is of order a - 2 = 2.

-~'------ ~ ~ ~1,1

Fig. 5.1. Uniform univariate splines.

Example 2. The bivariate Zwart Powell clement is the box spline with the
direction set {(I, 0), (0, 1), (1, I), (-1, I)}. We have Tn = 2, n = 4, a = 3 and
hence the degree of the element is 2 .md the order of continuity is 1. Figure
5.2 shows the support of box splines for a given set of directions.

Example S. The continuity of the box spline with the direction set
{(I, 0), (1, .5), (1, 1),(.5, 1),(0, I)} is a maximal 4 - 2. However, the result­
ing tesselation of the domain consists of both triangles and quadrilaterals
which makes it difficult to represent the polynomial pieces in standard form.

§5. The 7-direction box spline

The Zwart-Powell element is special among the low degree box splines defined
over the plane, in that it has maximal smoothness n - 1 and is piecewise
polynomial over a regular triangulation. The 7-direction box spline is a similar
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The support regions of some bivariate box splines.
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Fig. 5.2.
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serendipity element among the trivariate box splines. The seven directions

1 0 0 1 -1
0,1,0,1,1
o 0 1 1 1

1 -1
, -1,-1

1 1

cut lR3 into a symmetric regular arrangement of tetrahedra.

Fig. 6.1. The 7 directions of the box spline and its domain tetrahedra.

The simple count yields m = 3, n = 7 and a = 4. Thus the polynomial
piece defined over each tetrahedron is of degree four and the spline formed as
a linear combination of box splines is C 2

• The support has the shape of an
octahedron, consisting of 5 cubes along the diagonals.

§6. Reproduction of basic implicit shapes

To model blends with the zero set of the 7-direetion box spline, we re­
place a cube enclosing the contact region of the implicit primitives by a cube
containing the spline on a regular tetrahedral lattice. Each lattice point has
a real number associated with it, the box spline coefficient. We may interpret
this in a way similar to (d. [WPW]) as creating a field that defines a function.
Even though the 7-direetion box spline is itself only of degree fOUT, [BHR94,
(59) Propositon, p 53] assures us that its linear combinations can reproduce,
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i.e. model exactly, all tI'ivariate cubics and some additional surfaces of degree
four. The actual coefficients arc computed from Marsden's identity [BHR94,
(11) p 67]. For example, when representing the cylinder

(x-y)'+z'=l

we need to associate with the 3D lattice point (i,i, k) the value

(i' + i - ~) - 2(ij + i/2 + j /2 + ~) + (j' + j - ~) + (k' + 5k + 3
6
5) - 1

~ i' + i' - 2ij + k' + 5k + 4.

§7. Approximate parametrization of the zero set

A unique approximate evaluation of the surface is achieved as follows. Con­
sider the tesselation of each cube into tetrahedra and associate the average
of the values at the vertices with the center of each cube and cube face.
This allows the construction of a continuous piecewise linear approximation
to the zero sheet. For each edge whose endpoints have an opposite sign,
mark the midpoint. Each tetrallcdron has either zero, three or four marked
edge-midpoints. Correspondingly, we add no, one or two (coplanar) triangles
connecting the midpoints to a list of triangles. The union of the triangles in
the list then form the surface approximation.

The surface approximation is refined by averaging according to the sub­
division rules of the 7-dircction box spline. That is, each value is replicated
over a cube of half the edge length and then the values on this refined lat­
tice are averaged consecutively in each of the four diagonal directions of the
box spline. The quadratic convergence of the coefficients of the box spline
to the surface [BHR94, (30)Theorem] assures us that the sequence of linear
approximations converges quadratically to the surface. That is, \\'e need not
evaluate the box spline explicitly ever, but rather evaluate approximately up
to a tolerance defined by the output requirements. The simple averaging of
the coefficients also guarantees stability of evaluation to high accuracy.

The evaluation by averaging implies also that features are smoothed out
at each step. TIns has the desirabIc effect that no additional features are
introduced and hence the shape of the surface can be inferred from the first
approximation. In particular, no additional zero sheets at a given location can
be generated so that the surface is single-sheeted if the first approximation is
single-sheeted.

§8. Fixed grid implicits and general purpose modeling

\'\Thile the generation of smooth surfaces as the zero set of a piecewise polyno­
mial function on a fixed-grid is conceptually simple and capable of modeling
free-form objects (see e.g. [M\iV91], [Pet95]), the simplicity of the approach
is offset by a lack of efficiency. The efficiency of the global approach can be
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improved by maintaining only the lattice points close to the intended surface,
but it is unclear how one can get a viable general purpose modeling paradigm
that supports generic operations like rotation for arbitrary shapes, because a
rotated regular lattice will not match up with the original.
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Examples of page 8 (Rows arc numbered, columns are lettered.)
la-c Evaluation by subdivision: zero, one and two subdivision applied to a

cylinder intersection. The evaluation process is presently not fast: gener­
ating the second subdivision took 3 minutes on a Sun Spare 5.

2a-c The blending process: two (Inventor) primitives, their union and their
smooth blend. The highlighted region is the surface represented by the
7-direetion box spline.

3a-c Various implicit primitives blended.
4a-c .Join of two tori: the torus primitive, the box spline blend and the complete

blended object.
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