64 research outputs found

    Labyrinth weir hydraulics : validation of CFD modelling

    Get PDF
    Thesis (MScEng)--Stellenbosch University, 2014.ENGLISH ABSTRACT: The use of computational fluid dynamics (CFD) as a design tool is becoming increasingly popular in the water resources field. This thesis aims to extend the knowledge of CFD and determine the usefulness of current CFD programs as a modelling tool. This thesis also seeks to determine the accuracy of CFD modelling when compared to physical modelling, the more established form of model testing. It is important that research is conducted on the validation of CFD because with an increase in computer power, processing speed and continual development in the programs used to generate the models, CFD could become an essential tool for the hydraulic engineer. A current key difficulty faced by CFD programs is the mapping of the free surface level of a body of fluid in a two-phase (water and air) flow condition. This is further complicated by the existence of three-dimensional flow over a labyrinth weir and a fluctuating nappe, which at times requires a free surface level to be mapped both above and below the nappe. This thesis begins by detailing the design methods and actual design of a typical labyrinth weir. It then describes the construction of a 1:20 scale physical model, testing procedures, goals, and the results of the physical model tests. Following the physical model study, the thesis discusses the development of a three-dimensional CFD model, designed in a way that matched the physical model. Simulation results obtained from the CFD model are then compared to those from the physical model study and the accuracy and suitability of CFD modelling as a design tool are evaluated. This evaluation considers the surcharge upstream of the weir and transient pressures on the weir. The thesis concludes with recommendations for further research in this field. The results achieved show that the CFD model was able to accurately map the movement of particles within the domain, to fully develop a flow profile, and to accurately predict the water surface level. The pressure readings obtained during CFD modelling were in the same order as those obtained during physical modelling. However, the CFD modelling pressure readings did not often accurately correspond with the physical modelling data, with the average error being 92%. These results indicate that there is still further development required in CFD before it can be relied upon as a design tool independent of other experimental methods. The difficulty and the length of time taken to generate the results also indicate that, at this stage and in this particular scenario, the engineer would be better served through the use of a physical model.AFRIKAANSE OPSOMMING: Die gebruik van gerekenariseerde vloeidinamika (CFD) as ’n ontwerpinstrument het toenemend gewild begin raak op die gebied van waterhulpbronne. Die doel van hierdie verslag is om kennis van CFD uit te brei en die nut van huidige CFD-programme as ’n modelleringsinstrument te bepaal. Daar word voorts ook gepoog om die akkuraatheid van CFD-modellering te bepaal in vergelyking met fisiese modellering – die meer gevestigde vorm van modeltoetsing. Dit is noodsaaklik dat navorsing gedoen word oor die bekragtiging van CFD, want met ’n toename in rekenaarkrag, verwerkingsnelheid en deurlopende ontwikkeling in die programme wat gebruik word om die modelle te genereer, sal CFD ’n noodsaaklike instrument vir die hidroulika-ingenieur word. ’n Belangrike probleem wat CFD-programme tans inhou, is die kartering van die vry oppervlak van ’n liggaam vloeistof in ’n tweefasse vloeitoestand (water en lug). Dit word verder bemoeilik deur die bestaan van driedimensionele vloei oor ’n labirint-stuwal en ’n skommelende “nappe”, wat by tye vereis dat ’n vry oppervlak sowel bo as onder die “nappe” gekarteer met word. Die verslag begin met ’n uiteensetting van die ontwerpmetodes en fisiese ontwerp van ’n tipiese labirintstuwal. Die bou van ’n 1:20-skaal- fisiese model, toetsprosedures, doelwitte en die resultate van die toetse op die fisiese model word dan beskryf. Ná die studie van die fisiese model, word die ontwikkeling van ’n driedimensionele CFD-model bespreek, wat ontwerp is om by die fisiese model te pas. Die simulasie-resultate van die CFD-model word dan vergelyk met dié van die studie van die fisiese model en die akkuraatheid en geskiktheid van CFD-modellering as ’n ontwerpinstrument word geëvalueer. In hierdie evaluering word die opdamming stroomop van die stuwal en druk op die stuwal ondersoek. Die verslag word afgesluit met aanbevelings vir verdere navorsing op hierdie gebied. Die resultate toon dat die CFD-model die beweging van partikels in die domein akkuraat kon karteer ten einde ’n volledige vloeiprofiel te ontwikkel en die watervlak akkuraat te voorspel. Die drukke wat tydens CFD-modellering verkry is, stem egter nie ooreen met die lesings wat tydens fisiese modellering verkry is nie. Die gemiddelde fout is 92%. Hierdie resultate toon dat verdere ontwikkeling in CFD nodig is voordat daarop staat gemaak kan word as ’n ontwerpinstrument wat onafhanklik van ander eksperimentele metodes gebruik kan word. Die moeilikheidsgraad en die lang tydsduur betrokke by die generering van resultate is ook ’n aanduiding dat die gebruik van ’n fisiese model die ingenieur op hierdie stadium en in hierdie spesifieke scenario beter tot diens sal wees

    Translational Bioinformatics for Human Reproductive Biology Research: Examples, Opportunities and Challenges for a Future Reproductive Medicine

    Get PDF
    Since 1978, with the first IVF (in vitro fertilization) baby birth in Manchester (England), more than eight million IVF babies have been born throughout the world, and many new techniques and discoveries have emerged in reproductive medicine. To summarize the modern technology and progress in reproductive medicine, all scientific papers related to reproductive medicine, especially papers related to reproductive translational medicine, were fully searched, manually curated and reviewed. Results indicated whether male reproductive medicine or female reproductive medicine all have made significant progress, and their markers have experienced the progress from karyotype analysis to single-cell omics. However, due to the lack of comprehensive databases, especially databases collecting risk exposures, disease markers and models, prevention drugs and effective treatment methods, the application of the latest precision medicine technologies and methods in reproductive medicine is limited.This research was funded by Project of Natural Science Foundation of Gansu Province (20JR5RA363); Project of Gansu Provincial Education Department (2020B-003)

    Topological Equivalence and Similarity in Multi-Representation Geographic Databases

    Get PDF
    Geographic databases contain collections of spatial data representing the variety of views for the real world at a specific time. Depending on the resolution or scale of the spatial data, spatial objects may have different spatial dimensions, and they may be represented by point, linear, or polygonal features, or combination of them. The diversity of data that are collected over the same area, often from different sources, imposes a question of how to integrate and to keep them consistent in order to provide correct answers for spatial queries. This thesis is concerned with the development of a tool to check topological equivalence and similarity for spatial objects in multi-representation databases. The main question is what are the components of a model to identify topological consistency, based on a set of possible transitions for the different types of spatial representations. This work develops a new formalism to model consistently spatial objects and spatial relations between several objects, each represented at multiple levels of detail. It focuses on the topological consistency constraints that must hold among the different representation of objects, but it is not concerned about generalization operations of how to derive one representation level from another. The result of this thesis is a?computational tool to evaluate topological equivalence and similarity across multiple representations. This thesis proposes to organize a spatial scene -a set of spatial objects and their embeddings in space- directly as a relation-based model that uses a hierarchical graph representation. The focus of the relation-based model is on relevant object representations. Only the highest-dimensional object representations are explicitly stored, while their parts are not represented in the graph

    Essays on Optimization and Modeling Methods for Reliability and Reliability Growth

    Get PDF
    This research proposes novel solution techniques in the realm of reliability and reliability growth. We first consider a redundancy allocation problem to design a system that maximizes the reliability of a complex series-parallel system comprised of components with deterministic reliability. We propose a new meta-heuristic, inspired by the behavior of bats hunting prey, to find component allocation and redundancy levels that provide optimal or near-optimal system reliability levels. Each component alternative has an associated cost and weight and the system is constrained by cost and weight factors. We allow for component mixing within a subsystem, with a pre-defined maximum level of component redundancy per subsystem, which adds to problem complexity and prevents an optimal solution from being derived analytically. The second problem of interest involves how we model a system\u27s reliability growth as it undergoes testing and how we minimize deviation from planned growth. We propose a Grey Model, GM(1,1) for modeling reliability growth on complex systems when failure data is sparse. The GM(1,1) model\u27s performance is benchmarked with the Army Materiel Systems Analysis Activity (AMSAA) model, the standard within the reliability growth modeling community. For continuous and discrete (one-shot) testing, the GM(1,1) model shows itself to be superior to the AMSAA model when modeling reliability growth with small failure data sets. Finally, to ensure the reliability growth planning curve is followed as closely as possible, we determine the best level of corrective action to employ on a discovered failure mode, with corrective action levels allowed to vary based upon the amount of resources allocated for failure mode improvement. We propose a Markov Decision Process (MDP) approach to handle the stochasticity of failure data and its corresponding system reliability estimate. By minimizing a weighted deviation from the planning curve, systems will ideally meet the reliability milestones specified by the planning curve, while simultaneously avoiding system over-development and unnecessary resource expenditure for over-correction of failure modes

    Mathematical Modeling with Differential Equations in Physics, Chemistry, Biology, and Economics

    Get PDF
    This volume was conceived as a Special Issue of the MDPI journal Mathematics to illustrate and show relevant applications of differential equations in different fields, coherently with the latest trends in applied mathematics research. All the articles that were submitted for publication are valuable, interesting, and original. The readers will certainly appreciate the heterogeneity of the 10 papers included in this book and will discover how helpful all the kinds of differential equations are in a wide range of disciplines. We are confident that this book will be inspirational for young scholars as well

    An allocation based modeling and solution framework for location problems with dense demand /

    Get PDF
    In this thesis we present a unified framework for planar location-allocation problems with dense demand. Emergence of such information technologies as Geographical Information Systems (GIS) has enabled access to detailed demand information. This proliferation of demand data brings about serious computational challenges for traditional approaches which are based on discrete demand representation. Furthermore, traditional approaches model the problem in location variable space and decide on the allocation decisions optimally given the locations. This is equivalent to prioritizing location decisions. However, when allocation decisions are more decisive or choice of exact locations is a later stage decision, then we need to prioritize allocation decisions. Motivated by these trends and challenges, we herein adopt a modeling and solution approach in the allocation variable space.Our approach has two fundamental characteristics: Demand representation in the form of continuous density functions and allocation decisions in the form of service regions. Accordingly, our framework is based on continuous optimization models and solution methods. On a plane, service regions (allocation decisions) assume different shapes depending on the metric chosen. Hence, this thesis presents separate approaches for two-dimensional Euclidean-metric and Manhattan-metric based distance measures. Further, we can classify the solution approaches of this thesis as constructive and improvement-based procedures. We show that constructive solution approach, namely the shooting algorithm, is an efficient procedure for solving both the single dimensional n-facility and planar 2-facility problems. While constructive solution approach is analogous for both metric cases, improvement approach differs due to the shapes of the service regions. In the Euclidean-metric case, a pair of service regions is separated by a straight line, however, in the Manhattan metric, separation takes place in the shape of three (at most) line segments. For planar 2-facility Euclidean-metric problems, we show that shape preserving transformations (rotation and translation) of a line allows us to design improvement-based solution approaches. Furthermore, we extend this shape preserving transformation concept to n-facility case via vertex-iteration based improvement approach and design first-order and second-order solution methods. In the case of planar 2-facility Manhattan-metric problems, we adopt translation as the shape-preserving transformation for each line segment and develop an improvement-based solution approach. For n-facility case, we provide a hybrid algorithm. Lastly, we provide results of a computational study and complexity results of our vertex-based algorithm

    Safety system design optimisation

    Get PDF
    This thesis investigates the efficiency of a design optimisation scheme that is appropriate for systems which require a high likelihood of functioning on demand. Traditional approaches to the design of safety critical systems follow the preliminary design, analysis, appraisal and redesign stages until what is regarded as an acceptable design is achieved. For safety systems whose failure could result in loss of life it is imperative that the best use of the available resources is made and a system which is optimal, not just adequate, is produced. The object of the design optimisation problem is to minimise system unavailability through manipulation of the design variables, such that limitations placed on them by constraints are not violated. Commonly, with mathematical optimisation problem; there will be an explicit objective function which defines how the characteristic to be minimised is related to the variables. As regards the safety system problem, an explicit objective function cannot be formulated, and as such, system performance is assessed using the fault tree method. By the use of house events a single fault tree is constructed to represent the failure causes of each potential design to overcome the time consuming task of constructing a fault tree for each design investigated during the optimisation procedure. Once the fault tree has been constructed for the design in question it is converted to a BDD for analysis. A genetic algorithm is first employed to perform the system optimisation, where the practicality of this approach is demonstrated initially through application to a High-Integrity Protection System (HIPS) and subsequently a more complex Firewater Deluge System (FDS). An alternative optimisation scheme achieves the final design specification by solving a sequence of optimisation problems. Each of these problems are defined by assuming some form of the objective function and specifying a sub-region of the design space over which this function will be representative of the system unavailability. The thesis concludes with attention to various optimisation techniques, which possess features able to address difficulties in the optimisation of safety critical systems. Specifically, consideration is given to the use of a statistically designed experiment and a logical search approach

    Measurement Technologies for up- and Downstream Bioprocessing

    Get PDF
    This book is devoted to new developments in measurement technologies for upstream and downstream bioprocessing. The recent advances in biotechnology and bioprocessing have generated a number of new biological products that require more qualified analytical technologies for diverse process analytical needs. These includes especially fast and sensitive measurement technology that, early in the process train, can inform on critical process parameters related to process economy and product quality and that can facilitate ambitions of designing efficient integrated end-to-end bioprocesses. This book covers these topics as well as analytical monitoring methods based either on real-time or in-line sensor technology, on simple and compact bioanalytical devices, or on the use of advanced data prediction methods
    • …
    corecore