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Geographic databases contain collections of spatial data representing the variety
of views for the real world at a specific time. Depending on the resolution or scale of the
spatial data, spatial objects may have different spatial dimensions, and they may be
represented by point, linear, or polygonal features, or combination of them. The diversity
of data that are collected over the same area, often from different sources, imposes a
guestion of how to integrate and to keep them consistent in order to provide correct
answers for spatial queries. This thesis is concerned with the development of a tool to
check topological equivalence and similarity for spatial objects in multi-representation
databases. The main question is what are the components of a model to identify
topological consistency, based on a set of possible transitions for the different types of
spatial representations. This work develops a new formalism to model consistently spatial
objects and spatial relations between several objects, each represented at multiple levels
of detail. It focuses on the topological consistency constraints that must hold among the
different representation of objects, but it is not concerned about generalization operations

of how to derive one representation level from another. The result of this thesis is a



computational tool to evaluate topological equivalence and similarity across multiple
representations. This thesis proposes to organize a spatial-scepe of spatial objects

and their embeddings in spacéirectly as a relation-based model that uses a hierarchical
graph representation. The focus of the relation-based model is on relevant object
representations. Only the highest-dimensional object representations are explicitly stored,

while their parts are not represented in the graph.



Acknowledgements

| gratefully acknowledge the guidance and support from the members of my advisory
committee, Max Egenhofer, Kate Beard, Dr. Peggy Agouris, Robert Franzosa, and David
Mark. In particular, I would like to thank my thesis advisor Max Egenhofer whose
encouragement and advice were always present when needed. To all my friends at the
Department of Spatial Information Science and Engineering | would like to thank you for
making my study life a wonderful time. Some of these friends | would like to mention for
having a close relationship in classes or developments of research topics: Andreas Blaser,
John Florence, Doug Flewelling, Andrea Rodriguez, Kathleen Hornsby, Nectaria
Tryfona, Roop Goyal, Dieter Pfoser, Michela Bertolloto, and Jayant Sharma. | would also
like to thank Ubirajara Freitas, Virginia Ragoni Correia, and Marisa da Motta, members
of my Division at National Institute for Space Research (INPE - Brazil) who were part
time at NCGIA in Maine.

The successful completion of this thesis would not have been possible without the
support and love of my wife Marici Paiva, my sons Gustavo and Gabriel, and my
daughter Camila.

Special thanks go to Brazilian Government and INPE for giving me four years to
complete this program, and to Conselho Nacional de Desenvolvimento Cientifico e

Tecnologico (CNPq) that granted a scholarship under number 200073/94-0. This work



was partially funded by the National Center for Geographic Information and Analysis
under NSF grants SBR-8810917 and SBR-9700465, and by a Massive Digital Data
Systems contract sponsored by the Advanced Research and Development Committee of

the Community Management Staff (Principal Investigator: Max J. Egenhofer).



Table of Contents

ACKNOWIEAGEMEIE. ... ..ot e e e e e e e e e e e e eeeeeeeeeennnnnnd I
LISE OFf FIQUIES ... e e e e e e e e e e Xuveren
LIST Of TaDIES......eeeeee et e e e e e e e e e e e e eeeeebeane Xiii......
(@ gF=T o (=] g I [ 1 0 To (1 [ 1 1 TR 1.
1.1 Multiple RePreSENtati@N..........uuuuuuuiieiee ettt e e e e e e e e eeeeeeaeeem 3.....
1.2 Typical Changes through Multiple Represent&tion............ccccoevvveeeeeeiiieeeen 5.
1.3 Assessing Equivalence and SIMIlAKIL...........ooooiiiiiiiiii 6...
IV To 1AV 7= {6 3 PRSPPI 9.......
1.5 HYPOINESE. ..ottt e e e e e e e e e e eeaeaea 10.....
1.6 APPIOAD . ... 11.....
1.7 RESUB. ... e e ettt a e e e e e ean 14......
1.8 INtenNded AUIEIEE..........ceeiiiieiiiiiee ettt e e e e e e e e e eeeeeeenena 15....
1.9 TheSiS OrganiZali...........ooeeieeeeeeeieiieeeeeiiiiiies e e e e e e e e eeeeeeee e 15....
Chapter 2: Multiple RepresSentatiin..............uuuuiiiiiiiinieeeee e 18..
2.1 DAtabase DESIG.......uuuuuiiiiaiiiee et 19....
2.1.1 GEODYSSEY Database DESBig........cuuuuuuuiiiiaaieeeeeeeaieeeeeeiiiiinninnnnns 20.
2.1.2 Links Between RepresentaBan..........ooooeveiiiiiiiiiiiiiiiiiiiiiee e 21.
2.2 Automated GeneraliZalio..............uuueuuiiiiiee e 23...
2.2.1 Spatial Knowledge for Generalizatio...............oouvvvviiiiiiniiiiiiiiiieiiee 25



2.2.2 Model GeneraliZatioN........o..ee e 28......

2.2.3 Cartographic Generalizatio...............couuuuuuiiiiiiiiieeeee e 31.
2.2.3.1 LIN€AN FEALAN.......euieiiiiiiiiiiiieeee e 34...
2.2.3.2 Area fRALEY.........ueeeieiiiiiiiiie e 35...
2.2.3.3 Graph APProdiC........ccooeeiiiiiiiiiieiee e 37..
2.3 Consistency Among RepresentationsS. ... eeiiiiieeiiiiiiiiiiiieee e 38........
2.4 SUIMIMIGY ..ottt e ettt e e e ettt e e e e e e eat e e e e ee et e e e e eeebnn s eeeeenrnnnnsd 40......
Chapter 3: Mathematical Background for Assessing Topological Consistenc......42
3.1 TOPOIOGICAl SP@E... .o eeeeeeeiiiieeeeee e 43....
3.2 POINt-Set TOPOIOG . ...ceeeeeeeieiiiitiiieee et e e e e e e e e e eeeeeaeeee 43....
o2 L INEEIID ..t 44.....
.22 ClOSUR. ...ttt e e 44.....
.23 BOUNAN. ...ttt e e e e e e e eeeenanaad 45....
3.2.4 Relationships between interior, closure, and boyndar.................... 45
3.3 Cell COMPIEXB.... oo e e e e e e e 45....
3.4 Topological HOMEOMOIPITE. .......uuiiiieiie et 46..
3.5 Topological Relation MOde..............ueiiiiiiii e 47...
3.5.1 Content INVANABL........cooiiiiiiiiii e 48...
3.5.2 Component INVAriaBit........coooeeieeeeiiiiiiiiiiiiiiiiee e 50..
3.6 SIMIlArity ANAIYSS........ueeiiiiieee e b2....
3.7 Graph MOGE........co o e e e e 54.....
3.7.1 Isomorphism and HOMeomOorphis...........ooouuviiiiiiiiiniieeeeeeeeeeeeeeeiiieae 55
3.7.2 SUDGIAD. ..o 56.....



3.8 Association graph for scene Mat@Nin..........cceeeeeeeiieeiiiiiiiieei e 56.

3L SUMIMIGY et e e e et e e e e e e r e e e e e eeraa s 59.....
Chapter 4: A Qualitative Spatial Model for Multiple Representation..................... 60
4.1 Relation-Based MOUEL...........ooooiiiiiiii e 61.......
4.1.1 Hierarchical Graph Representasion.............ccccceeeiiieeeeeeeeeeeeeeeeiiiiiiiens 63
4.1.2 Graph MOGEII. .......eveeieiiieiee e 63...
4.1.3 Adding Symbolic Geometric Informatio.............cccoeeeeeeiiiiieiiiiiiiinnnnns Qa9

4.2 Equivalence Between Cell Complexes and the Relation-Based.Made....71
4.3 Mapping Cell Complexes into the Relation-Based Mode......................... 12

4.3.1 Algorithm to Convert a Cell Complex into a Relation-Based Mode 73

4.3.2 Converting Individual FEatl®e. ..........coeeiiiiiiiiiiiiiie e 4.
A. 3.3 EXAMB ... 75.....
4.4 Mapping the Relation-Based Model onto Cell Com@exe...............cccceee.e 9

4.4.1 Algorithm to Convert the Graph Representation onto the Cell Conif9e

4.4.2 Converting Individual Nodes Representing Region.............cccccc... 81
A 4.3 EXAMB ... a e e 81....
A5 SUMMIGYT ..ttt ettt e e e e et et e e e e e e et b e e e e e eenaan e eeeeennnn e aeens 82.....
Chapter 5: Assessing Topological EQUIVaERINC............coooeiiviiiiiiiiiieee e 83.
5.1 Spatial ODJEGL.......ccoiiiiieee e 84....
5.1.1 SIMPIE ODJEGL....uuiiieie e 84...
5.1.2 Relation Between ODJBCL..........uuuuruiiiiiiiieee e 84..
5.1.3 Complex Objects - Region with HBIle.............oooooiiiiiiiiiiiie 84
5.1.3.1 Hole CharacteriSHE...........uuuuuriiiiiiiiiiieiee e 85.

Vi



5.1.3.2 Characteristics of the Generalized Region.................ccccce. 817.

5.1.3.3 Checking EQUIVAIEAC............uuuuuiiiiiiieieeeieeeeeeeee e 38.
5.2 SPALIAl SCRITE.....ceviiiiiiiiii e 89.....
5.2.1 Building Graph Structure and Association Grap..............cccccvvvnnnnm Q0
5.2.2 Finding Isomorphic Configurati®n................uuevveuiiiiinnneeeeeeeeeeeeeeeiiiens 92
5.2.3 Validating Isomorphic Configurati®on...........ccoeeeeeeiiiiiiiiiiiiiiiiiine 95
5.2.4 GEeNEral PrOCEMRIN........cciiiiiieei ittt 96...
5.3 SIMIlArity MEASUIR........ceiiiiiiiiieeiiitiee et e e e e e e e e eeees 98....
5.3.1 Individual RepresentatiQ................uuuuuuuniiinienieee e 99..
5.3. 1.1 DIMENSID. ...t e e e e e e e e e 99...
5.3.1.2 Number of Adjacent ElemenL..............ooooviiiiiiiiiiiiiineeeeeeeeem Q9
5.3.1.3 AdJaCEeNt SIUCHEL.......cceeeeeieeiieeeeiiiiiee e 101
5.3.1.4 Hierarchical StruCteIr.............cccvviiiiiiiiiiieeeeeeeeeeee 101
5.3.2 Spatial SCEIBE.......cciiiiiiieeiiee e 102.
5.3.2.1 Detailed Similamt...........ccoooereiiiiiiii e 102
5.3.2.2 Topological SImilamft............coooriiiiiimiiiiii e 103
5.3.2.2.1 Valid MatChig.........cccoooeiiiiiiiiiiiicee e 104
5.3.2.2.2 Feature DIMENSIBN..........cooviiiiiiiiiiiiiiie e 105
5.3.2.2.3 Spatial Relation between Feadure.............ccccceeeeeeeeees 106
5.3.2.2.4 Graph StrUCHRIL..........oiiiiieieie e 108
5.4 Topological Changes.........oooi i 109.....
o N RV [T o TSRS 109...
5.4.2 DIOPPIIT ...cceeieeieeieiiiitiieee e e e e e e e e e e e e et e e e eeeeeabassaa e e e e e e e e e e e e eaaeeeeeeerennnnns 114..
5.5 SUMMIGY .. e e e e e et e e e e eeenes 114

vii



Chapter 6: Software Implementatio.............coouuuiiiiiiiiiii e 116

6.1 UML NOTALIGN. ....ceiiiiiiiieeeeeeeee et e e e e e 118..
6.1.1 Class DIagraB........ccuuuuuuuuuumiiiaiieee e e e e e e ettt e e e e e e e e e e aeeeeems 118.
6.1.2 RelatioNShER. .....coviiiiiiiiiie e l119.

6.2 Relation-Based Model Class Struetur...............ccooccciiiiiiiiieiiiiiecceeeeeee 120
B.2.1 FRAME ......ciii it 123...
B.2.2 BOUNG@S ... e e e, 124..
R I €] =1 + [T 125...
6.2.4 Spatial SCEIN........ouueiiiiii e 126..

6.3 AAItIONAl CIASSES.......uuiiiiiiiiiiiiii e e e 127.....
6.3.1 MatChing P@l........cooviiiiiiiiiiiiiiie e 128.
6.3.2 Isomorphic Configuratii............ccoviiiiiiiiiiiiiiaae e 129
6.3.3 ASSOCIAtION GIAD......ceeieeiririiiiiiiaee e e e e e e e e eeee et e e e e e e e eeeeen 129.

6.4 SPRING MOUGE..... ..ot 130..

6.4.1 Converting SPRING'’s Vector Model into the Relation-Based Made3

6.4.2 Database SCh@m............coooiiiiiiiiiii e 136.
5.5 SUMIMGY ..t e e e et e e e e e et e e e e e eeenas 139...
(O gF=T o] (= gl A @] o [od 0 1S [ o S PR 140..
7.1 SUMIMIGY et e e ettt e e e e e et e e e e e e e et e e e e e eesan e e eeeennnns 14Q...
7.2 MAJOr FINAING. ...ttt e e e e e e e e 141..
T. 3 FULUIE WK ...ttt e e e e e e e e e e e e eeeeennes 144...
7.3.1 Integration of Spatial RelationsHip...........ccoovvvviiiiiiiiiiiii e 145
7.3.2 Extension to Linear FEatBI...........ovvvviiiiiiiiiiiiiee 146

viii



7.3.3 Integration with Model Generalizatio................cooevvvieiiiiiiiiniiinenne 147

7.3.4 Interaction with Multi-Modal Language..........ccccoeveeeeeeiiiiiiiiiiiiiiinnns 148
REFEIENCE. ...ttt 150..
Appendix: Classes SPECIfICAID. ..........uuuuuueiiiiieee e 166.

AL FRALUB.......coviiieiieee e 166....
A2 POINTFEATUE ...ttt e e e e e 169...
A3 LINEAIFEAIUE ........oi it 169..
A4 AreaFatUB. ..o 170...
F N ST = To 18] o = TSRO 171
F N I €1 - ¢ ) PSSR 174....
A7 SPALIAISCEBL......oeeiiiieiiee e 171...
A.8 MAtCRINGPEIL.......cccoiiiiiei e e e eeeeeeee 182..
A.9 1SOMOIPNICCONT. .. 183....
A.10 ASSOCIAtONGIEMD......cciieeieeeieiie e e e e 185..
Biography of the AULNIO.........coooi i 188..



List of Figures

Figure 1.1: Multiple representation fOrmats............cccoeviviiiiiieiiiiiiiiie e 3...
Figure 1.2: Multiple representations for spatial objects...........ccccovvvvviiiiiiiciciinneen 3.
Figure 1.3: Multiple representation ChaBge............ccoevviiiiiiiiiiiiiiiei e 6....
Figure 1.4: Multiple representation framework................cvviiiiiiiiiiee e 9...
Figure 2.1: GEODYSSEY multi-scale database design...............ccccveeiiiiiiieneeeenn. 21
Figure 2.2: Multiple topological views for Brazil: country, regions, states............ 22
Figure 2.3: Some generalization Operasion............covvvvvuiviiiiiiiiseeeeeeeeeeeeeeeeeeeennnnens 24..
Figure 2.4: Constraint-based framework (Beard 1991)........cccccevvviviiieeiiniiiininiinnns 26

Figure 2.5: Framework for automated generalization (Brassel and Weibel, 198827

Figure 2.6: Original line and itS BLG-rEe...........uuvviiiiiiiee e 35..
Figure 2.7: Acceptable topological transformations............ccccceevveeiiieeeeeeiiieeeciiiii 36
Figure 2.8: HOMeomorphiSm CONEEP........uuvrrieiiiiiiee e e e eee e e e e e e e e 40..

Figure 3.1: Point, line, and region: (a) interior; (b) closure; (c) set-theoretic boundry

Figure 3.2: Topological homeomorphiSm..........ccceevviiiiieeiiiiiiiiiiicceeeee e AL
Figure 3.3: Eight topological relations between two regions’in............c..cceevveve.e 49
Figure 3.4: Amed relation with three boundary-boundary components................. 51
Figure 3.5: Component invariants of topological relaion................cccccovvvvviviiiiiiim 52

Figure 3.6: Conceptual neighborhoods of topological relations between simple rggions
Figure 3.7: Graph and its adjacenCy MatliX.........cccovvrireriiiiiiiiiiiiiae e e e e e e e e eeeereeenens 55.

Figure 3.8: Homeomorphic and isomorphic giaph...........coeeeeiiiiiiiieeiiiceee e 56



Figure 3.9: A graph and two of its subgraphs...........cccii 56.
Figure 3.10: Two spatial scenes, their graphs, and the equivalent association.gra@h
Figure 4.1: A spatial scene and its equivalent graph...........ccccoeveeeiiiiiiiiiiiiiiiiiiiiin 63

Figure 4.2: Hierarchical levels of a spatial scene and their graph representation$4

Figure 4.3: Spatial scene and its graph simplifications..................eveiiiiiinnnneeenenn 66
Figure 4.4: A spatial scene withcaverrelation ................coeiiiieeieiiiieeeeeeiiinn 69.
Figure 4.5: Dropping points from a region boundary...............coeeeiiieiiiiiiiviiiinnnnnns 12
Figure 4.6: Spatial scene: (a) cell features, and (b) graph representation............76
Figure 5.1: Region With NOIES...........uuuiiii e 87....
Figure 5.2: HoléH, has a multi-meeL.............ccccooviiiiiiii 87...
Figure 5.3: Adjacent circles representing two spatial SCeNes.............cveeveeiinnnnns 91
Figure 5.4: Association graph between scenes of Figure.5.3...........cooovvviiiiiiinnnnns 92
Figure 5.5: Selected feature and its adjacent features.............vveciiiiiiiineennenenn. 100
Figure 5.6: Political States Of Brazil.........cccooovviiiiiiiiiiiiiei e 110

Figure 5.7: Adjacent features for: (a) merged features; (b) individual feature.....112....

Figure 6.1: Class icons with attributes and operations............cccceevvveeieeeeeeeeeneneee. 118
Figure 6.2: Types of UML relationSHEp.........couvvuuiiiiiiiieeeeeeceeeeeei e 120
Figure 6.3: Class hierarchy for the relation-based madel............cccccoooviiiiinn 122
Figure 6.4: List and its node Class StrUCILIe. ..........eiiiiiiiiiieeeee e 122
Figure 6.5: Diagram for thEeature class and its child classes.........cccccceeviiiiinn 124
Figure 6.6: Diagram foBoundaly Class............coooviiiiiiiiiiiiiiiiii e 125
Figure 6.7: Diagram fOGraphClass ............uuuuuiiiiiiiiiiieeeeeeeei e 126
Figure 6.8: Diagram foBpatialSCeNelass.........cooeuvvvieiiiiiiiiiiiiiic e 127

Figure 6.9: Class diagrams of additional classes used for the topological check&28

Xi



Figure 6.10: Diagram with attribute and operationdMatchingPairclass................ 129

Figure 6.11: Diagram fdisomorphicCoNntIass.........ccoovveiiiiiiiiiiiiiiiei e 130
Figure 6.12: Diagram for th&ssociationGraj class..............eviiiiiiiiiiiiiiiiieie 130
Figure 6.13: SPRING abstraction levels.............oooiiiiiii e 132
Figure 6.14: SPRING’s conceptual madel..............iiiiiiiii 133
Figure 6.15: Representation model of SPRING.............ooouiiiiiiiiiiieeeeeei 134
Figure 6.16: Vector data structure in SPRING..........cccooiiiiiiiiiiiiiiieiie 136
Figure 6.17: Modified representation model for SPRING.............cccccviiiiiiiiieenen 137

Figure 6.18: SPRING database schema to support the relation-based represerita8on

Xii



List of Tables

Table 2.1: Topological generalization operators and object properties and selati@®
Table 2.2: Weibel’'s (1996) constraints for cartographic generalization................ 33
Table 4.1: Relation-based modiB for Figure 4.3a...........oovvvvviiiiiiiiiiiiiieeeeeeeeeeee 68

Table 4.2: Complementary row to Table 4.1 that describes scene of Figure 4.4.69

Table 4.3: Relation-based modi&" for Figure 4.3a.....ccccooeeiiieeiiiiee 71
Table 4.4: Equivalent graph nodes for 2-cells of Figure 4.7..........cooovvvevvvvvvvnnnnennnn dd
Table 4.5HG" model components for FIgure 4.6.............cocvveeeiiieeeeiiieeeecciieee e, 78
Table 5.1: Relation-based model information for scenes of Figure.5.3................. 91
Table 5.2: Isomorphic configuration process based on Figure.5.4..............cvvvvveen 95
Table 5.3: Boundary components sequence for nodes of Table 5...............evveee 96

Table 5.4: Difference matrix for the conceptual neighbors between regians......107
Table 5.5: Similarity values between features...........cccceeveeiiiieiiiiiiieeee 111

Table 5.6: Meet and adjacent structure similarity values between fature.......... 113

Xiii



Chapter 1

Introduction

Geographic databases contain collections of spatial data representing a variety of views of
the real world at a specific time. The tespatial refers to the location of objects
positioned in geographic spa&patial objectsare representations of the elements of the
real world such as rivers, countries, railways, and schools. Depending on the level of
detail, such spatial objects may have different spatial dimensions, and they may be
represented by point, linear, polygonal features, or combinations of these features. For
example, the source of a river may be represented by a point feature, some channels of
this river may be represented by linear features, and in parts where the river widens it
may be represented by a polygonal feature. Each spatial object is described by spatial and
non-spatial attributes. Spatial attributes, such as shape, area, length, perimeter, and
volume, are usually derived from the positional and metric information of the object.
Spatial objects share spatial relationships, which destogmdogical properties such as
connectivity, orientation, adjacency, and containment.

Topological information is an essential component of any geographic database and
geographic information systems (GISs). GISs are computational systems that deal with
spatial objects. A GIS can be considered a toolbox that contains modules for acquisition,

storage, maintenance, analysis, and display of spatial objects (Burrough 1986). Generally



geographic databases store topological information, which permits users to derive the
spatial relationships between objects. Such topological information is usually stored at
the representational level of the objects. For example, a line feature would include
information about which other lines are connected with it and to which polygons it
belongs. Topological representations have become the common method for organizing
spatial objects in GISs. Topological models have been described by Corbett (1979),
Frank and Kuhn (1986), (Kuijpers et al. 1995), and their implementational aspects by
Egenhofetet al. (1989) and by Jackson (1989). Most current GISs only deal with a single
model of the world. Spatial queries are based on the topological properties of the objects,
and a single topological representation may take a long time to answer topological
queries about large-scale objects. Because at a single level, a geographic database
contains much more information than necessary to answer a spatial query. Advanced
geographic databases have been proposed using the approach of multiple topological
representations (Bruegger and Kuhn 1991) that allow access to topological information at
different levels of detalil.

The term multiple representations in GIS can be viewed in two different ways. The
first one refers to the use of multiple spatial data models for the same data, and the second
one refers to multiple geometric representations of individual spatial objects represented
in the spatial data model (Camara et al. 1988ure 1.1shows theconceptof multiple
spatial data models for one type of information. For example, thematic data such as land
use can be stored as a thematic image in the form of a regular raster or it can be recorded
as vector data, containing the geometric features of the map. For data that correspond to
a digital terrain model, such as the topography of a study area, the representation may

vary betweenisolatedsamplesyegularor irregular grids, and contour lineSigure 1.2



illustrates the concept of multiple representations for spatial objects. The objects
Amazonas and Xingu rivers have multiple geometric representations that may be stored
in one or several map layers. This thesis addresses the problem of topological equivalence

and similarity for spatial objects across these multiple geometric representations.

Land Use Topography

Y\ 7 \ .

Thematic | | Polygons Contour| | Regular| |Triangular
Image + Lines Samples Lines Grid Grid

Figure 1.1: Multiple representation formats.

Rivers

name

Amazonas
Xingu

Object maps

1 Map 236

2 Map 237

Figure 1.2: Multiple representations for spatial objects.

1.1 Multiple Representations

Multiple representations of geographic objects in spatial databases have started to emerge

as a research topic in the geographic information community in the 1980s (Buttenfield



1989). The amount of spatial data available has grown considerably and they are
available in different formats, in different scales, and they are usually generated by
different procedures. Such multiple representations imply a considerable increase in the
amount of data to be stored, introducing additional problems for the maintenance and
integration of these data at different levels of detail. Progress in this field has been
concentrated in three different areas: database issues, generalization, and spatial modeling
(Buttenfield 1993). Database issues include concerns about organization of topological
and metrical information for efficient access (Bruegger and Frank 1989); about linking
and maintaining among consistently different representations of spatial data that are
stored in a collection of maps for a specific area (Beard 1989); and about incorporating
expert knowledge to produce spatial rules in order to preserve the database consistency
(Mark 1991). Generalization issues are related to simplification of cartographic lines
(Douglas and Peucker 1973) in general with regard to display objectives. Initial efforts in
generalization have concentrated on geometric filtering and smoothing, but some new
generalization algorithms or post-processing algorithms are trying to preserve the general
structure of the data. Miiller (1990), for instance, proposed a post-processing procedure to
clean up self-intersections generated by line simplification algorithms lacking topologic
control. Wang and Miiller (1993) proposed a combination of procedural algorithms and
predicate logic formalisms to generalize complex coastlines. Other approaches include
the automated generalization of area patches over a two-dimensional space (Muller and
Zeshen 1992) and a polygon mosaic simplification (de Berg et al. 1995), which considers
objects from different classes and avoids self-intersections and the overlapping of
neighboring lines. Some recent work about model generalization (Puppo and Dettori

1995; Tryfona and Egenhofer 1997), is more concentrated about topological properties



than metric information. Spatial modeling issues are concerned with the scale at which

several geographic processes are likely to impact the structure of geographic features.

1.2 Typical Changes through Multiple Representations

Multiple representations of spatial data encompass changes in the geometric and
topological structure of a geographic object. These changes may occur with the value of
the resolution at which the object is encoded for computer storage, analysis, and depiction
(Buttenfield 1989). The concept of multiple representation in GIS means that the
geographic object may be represented in several different ways, each one to satisfy the
needs of different users or analysis operations. Spatial representations at different scales
can differ both in accuracy and resolution (Dettori and Puppo 1996). A less precise
representation means that the data contain simplifications of the original representation,
but the topology should not be changed. On the other hand, the reduction of the map
resolution may change the topological structure of a spatial object, as well as the shape.
Variations in resolution may affect the metric and topological aspects of a spatial
representationFigure 1.3shows some possible changesaimultiple representation
environment. Metric changes are related to reduction in size and simplification of shape,
while topological changes corresponds to the removal of small parts, merging of parts,
and changes in the dimension representation of a spatial object. Shea and McMaster’s
(1991) cartographic generalization operators for simplification and smoothing are related
to changes of the shape of the geographic feature, while operators for aggregation,
amalgamation, merging, and collapsing are related to topological changes on the

geographic feature.
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Figure 1.3: Multiple representation changes: (a) metric (simplification);
(b) topological (merging); and (c) topological (collapsing).

1.3 Assessing Equivalence and Similarity

Ideally, multiple representation databases should be automatically derived from a single
detailed representation in order to answer some specific user queries (Beard 1988). This
automatic approach would avoid the problem of maintaining additional information for
the same data. The National Spatial Data Infrastructure (NSDS 1993) makes this
assumption as well. Unfortunately, this is not feasible at this time due to the inadequacy
of automated generalization procedures. In general, the generalization algorithms are
based only on the geometric part of linear elements, ignoring the fact that this linear
feature may carry some topological structure, which should be preserved during
simplification. The generalization procedures should take into consideration other
constraint types such as metrical, topological, semantical, and gestalt (Weibel 1996).
Muller et al. (1995) identified two conceptual levels for map generalization: cartographic
generalization, which attempts to eliminate visual conflicts; and model generalization,
which addresses reduction in detail at the representational level, relying on semantic

abstraction mechanisms. Within the realm of model-based generalization, Tryfona and



Egenhofer (1997) developed a systematic model for the constraints that must hold with
respect to spatial objects when two parts of an object are aggregated.

McMaster and Veregin (1996) described some approaches to provide multiple
representation of a database:

* Creation of multi-scale versions for the same data by acquiring the
information for different scales. Multi-scale databases have multiple
representations for one object, each one for the respective scale.

» Development of robust data structures to support multiple representations,
such as simplicial data structure (Jones et al. 1995).

» Application of generalization algorithms to create multiple versions of a

database.

Multiple resolution databases have a close relationship with cartographic
generalization. By applying generalization algorithms, new data can be generated, and it
is important that the generalization procedure preserves the general structure of the data
in order to avoid incorrect answers for queries performed at different levels of detail. We
expect to maximize the database integrity between different levels of information for a
multi-scale database. The creation of multiple representation data derived from automated
generalization procedures requires a better knowledge of the mathematical and geometric
behavior of these operations. It is necessary to develop computational tools that permit us
to verify the overall quality of the generalization result in terms of topological, directional
and semantical properties. Figure 1.4 shows a framework for creating multiple
representations of spatial data. Original data may be processed through different

generalization algorithms, which generate different data for the same area. In order to test



the quality of these multiple data, a similarity checker may be applied to verify if the new
data are equivalent or similar to the original one. Equivalence means that the resultant
data preserve all the properties of the original data. Similarity is a deviation from
equivalence. In this thesis 100% of similarity corresponds to the term equivalence. This
similarity checker should include topological, directional, metrical, and semantical
procedures. This thesis focuses on the topological properties. Equivalence between
different levels of detail rarely occurs in practice after a simplification of the data, and a
relaxation model may be applied in order to identify levels of similarity between the new
data and the original one. In this thesis, the equivalence and similarity analysis are based
on a relation-based model that represents a spatial scene as a hierarchy of graphs. This
relation-based model is built from the topological relationships between the spatial object
representations.

The term generalization can be associated with cartographic generalization, which is
concerned with shape of the geometry, or it can be associated with model generalization,
which is concerned with qualitative topologic information. Therefore, model

generalization is more closely related with the qualitative model developed in this thesis.
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Figure 1.4: Multiple representation framework.

1.4 Motivation

Users have diverse needs that require geographic data at different levels of detail.
Cartographic maps at different scales are examples of applications that need multiple
representation levels. One critical point in geographic databases with multiple levels of
detail is to maintain the topological consistency between the spatial objects. The term

consistency is abstract and depends on the constraints applied. In this thesis, equivalent



representations are considered consistent, and less similar representations do not
necessarily are inconsistent. Inconsistencies among multiple representations may be fatal
as high-level decisions that were based in one model of geographic reality are passed
down to detail planners who have contradictory information at hand, or vice versa. In this
case, recommendations are made with map information that does not agree with the
information available at the decision level.

Current GISs lack methods to maintain consistent multiple representations of
geographic objects. There has been research in recent years on various aspects of multiple
representations. Some of them are related to data models (Bruegger and Frank 1989;
Timpf et al. 1992), cartographic generalization (Buttenfield 1991), and modeling and
querying (Rigaux and Scholl 1994), but all of them exclude the analysis of the
topological consistency of objects related with their spatial relations. It is important to
have consistent object characteristics through different levels of representations, to allow
a query at a coarser level to give the same, or at least a very similar result as the

evaluation on a detailed level.

1.5 Hypothesis

The initial research efforts concerning multiple representation databases in general differ
from the main objective of this thesis, which is to develop a qualitative model to support
the implementation of a topological checker to evaluate equivalence and similarity in a
multi-resolution spatial database. Consistency across multiple representations refers to
the lack of any logical contradictions within a model of reality. Databases with multiple
levels may be a result of complex transformations, called generalization operations in

cartography. Known generalization operators in the literature include simplification,
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smoothing, aggregation, amalgamation, merging, collapse, refinement, exaggeration,
enhancement, and displacement (Shea and McMaster 1991). Each transformation reduces
the complexity of a representation level and generates a representation level that is at
most as general as the original representation. Each representation level represents a
spatial scene, which corresponds to a set of objects that are related by topological
relations, distance relations, and direction relations. Given two spatial scenes, they are
considered equivalent if the spatial relations between all the object representations and
the structure of individual complex objects are preserved. The scenes are considered
similar if the spatial relations and object structure are somewhat equivalent.

The hypothesis of this thesis is: “A qualitative spatial data model for evaluating
topological equivalence and similarity in multi-representation databases simplifies the
processing of topological queries in a GIS”. The hypothesis is proven by developing a
topological qualitative model that supports the multiple representations of spatial objects,
and by designing and implementing an algorithm to identify equivalence and similarity
between different representations. The major task is to identify what are the components
of this qualitative model that supports the development of tools to verify topological
equivalence or similarity between spatial scenes, based on a set of possible transitions for

the different types of spatial representations.

1.6 Approach

To prove the hypothesis, this thesis develops a new formalism to model spatial objects
and spatial relations between several objects, that may be represented at multiple levels of
detail. This work focuses on the topological consistency constraints that must hold among

the different representations of objects; however, it is not concerned with generalization
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operations related to deriving one representation level from another (Beard and
Mackaness 1991; McMaster and Shea 1992). Topological consistency is considered at a
higher level, independent of the way that spatial objects are encoded. Usually, topology in
GIS is concentrated at the conceptual level of nodes, lines, and areas (Corbett 1979;
Herring 1987; Egenhofer et al. 1989) and the topological consistency is treated by
counting the number of arcs and nodes to guarantee that a map topology is complete
(Laurini and Milleret-Raffort 1992). This method is appropriate to evaluate topological
structure changes by metric changes on the object. However, it does not capture relations
among the objects and sometimes changes in the topology, such as a change in the
dimension of a topological element, the aggregation of several parts into a single object,
or the elimination of holes. Other works in multiple representation have focused on
cartographic line generalization (Buttenfield and McMaster 1991) and algorithms to
derive a coarser line from a line with more detail (Douglas and Peucker 1973; Muller
1990; Beard 1991; Wang and Muller 1993).

The term spatial scene this thesis applies to the spatial object representations for
some geographic area. These representations may be points, lines, or regions. Every line
has two end points (just one end point if closed line), and each region is composed by a
list of connected lines or just one line. The set of lines and points of the spatial scene
form a planar graph, and the regions of the scene correspond to faces of the graph.

The proposed approach to identify topological equivalence or similarity between
spatial scenes consists of representing the spatial scene as a hierarchical graph model and
then applying an algorithm to identify isomorphism configurations between graphs.
Current GISs organize the information about objects using the definitions of the standard

for digital cartographic data (NCDCDS 1988). This data structure stores the points, lines,
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and regions of a spatial scene with additional topological information that make it
possible to derive adjacency and connectivity relationships between objects, without
needing to use the geometric information. This structure is formally defined as cell
complexes (Bruegger and Kuhn 1991), in which an object is represented by a set of cells
describing their interior and boundary elements. The cell complex theory has been
extended to represent complex objects, such as regions with holes (Puppo and Dettori
1995). This thesis proposes to organize a spatial scene directly as a relation-based model
that uses a graph representation. The focus of the relation-based model is on relevant
object representations. Only the highest-dimensional object representations are explicitly
represented, while their parts are not represented in the graph. The relation-based model
stores all connectivity relations, making it possible to answer topological queries more
efficiently than the cell complex structure. The relation-based structure is a better
cognitive model as it represents the natural meaning people would give to features in a
spatial scene. Cell complexes, on the other hand, are a better computational model
composed of building blocks that are put together, with the objective of representing the
topology of the scene from a computational point of view.

In this thesis, a spatial scene is described by a graph representation composed of a
set of graphs describing connected elements and isolated elements. The graph nodes
represent the objects and their attributes, while the graph arcs store the spatial
relationships between these objects. The topological equivalence between two scenes is
evaluated through a scene matching process, which tries to find a one-to-one
correspondence between elements of both scenes. A perfect match between the object
representations of two scenes identifies two isomorphic configurations. Isomorphism

between graphs representing spatial scenes means that both representations can be
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topologically equivalent, and the isomorphism occurs if and only if there is a one-to-one
mapping of all graph nodes (object representations) such that all adjacent relationships
are preserved. The simple fact of finding isomorphic configurations does not guarantee
that the scenes have the same topology. Once a one-to-one mapping is found, the
boundary sequence of intersections for each object representation is analyzed in order to

validate these mappings.

1.7 Results

The result of this thesis is a comprehensive formalism to evaluate topological
consistencies across multiple representations. An object-oriented prototype in C++ has
been developed as a checker to assess topological equivalence and similarity between
spatial scenes composed by objects with multiple representations. The method employed
is based on an existing categorization of topological relations (Egenhofer and Herring
1991), and is extended to cope with legal and illegal geometric changes across the
multiple representations. This new theory supports consistent topological changes for
different configurations of objects like points, lines, and regions, and complexly
structured objects such as regions with holes, objects with separations, and
heterogeneously composed objects. The result of this thesis work is important in the
process of developing multi-representation GISs as it frees databases developers from the
tedious task of manually comparing geographic databases that are represented at different
scales, and finding discrepancies among the different representations. It also enables
database designers to test whether the implementations of new generalization operations
perform as desired. Besides, the qualitative information for the spatial scenes can be used

as spatial metadata description in digital libraries. Meta information in a library allows
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users to retrieve and use data. A subset of a spatial digital library should include spatial
concepts such as multiple representations and spatial relations (Beard and Smith 1997). A
set of topological similarity measures between object representations and isomorphic
configurations is derived in this thesis. These similarity measurements and the qualitative

information can be used in digital libraries to allow users to retrieve spatial data.

1.8 Intended Audience

This thesis is intended for anyone involved in working with design of spatial database
systems. These include researchers involved with geographic database design,
cartographic generalization, as well computer scientists who are concerned with

implementation aspects of object-oriented models in GIS.

1.9 Thesis Organization

The remainder of this thesis is organized into six chapters.

Chapter 2 reviews previous work in the area of topological relations and multiple
representations in GIS. The description involves topics related with database design of
multi-scale databases, links between multiple representations of data, topological
consistency for spatial objects with multiple representations, and general constraints that
should be incorporated into generalization processes. Characteristics of some
generalization algorithms are presented and analyzed in terms of how they preserve the
general structure of the data.

Chapter 3 describes the technical background necessary to understand the
formalism of working with legal and illegal changes of topological relations. It focuses

on the concepts of homogeneity of individual elements and the homogeneity of spatial
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relations between objects. The basic definition of topology is presented as well the notion
of point-set topology. The topological-relation model with its content and component
invariants is described as a basis to model the spatial scene in the form of a graph
representation. Finally, some basic concepts of graph theory applied to scene matching
are presented, with the main objective of clarifying the concepts of isomorphism and
homeomorphisms.

Chapter 4 develops a relation-based model to represent spatial scenes. This chapter
concentrates on describing the characteristics of this model, and making a comparison
with the cell complexes structure that is widely used in some GIS implementations. Cell
complexes represent the geometry of spatial objects through points, lines, and areas and
derive spatial relationships from coincidence and inclusion. Qualitative spatial models
abstract away the details of the geometry and focus primarily on the spatial relations
among objects by modeling them explicitly. While cell complexes are tailored to
cartographic representations, the relation-based model captures geometry without
requiring a map-like representation. The relation-based model is the basis for the
implementation of the topological checker between two different spatial scenes.

Chapter 5 describes the necessary elements to check topological equivalence or
topological similarity between spatial scenes. Topological equivalence is analyzed in
terms of individual objects, simple or complex, and then in terms of the complete scene.
The rules to guarantee equivalence are relaxed by evaluating the conceptual
neighborhood of the component invariants of spatial relations. With a new set of
constraint rules we are able to identify not just equivalence between graphs, but also to

identify levels of similarity between two configurations.
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Chapter 6 describes the implementation aspects of the topological checker
developed. The class structures and operations for the graph model are introduced. A
more detailed description of the attributes and operations can be found on Appendix. This
chapter also describes how to integrate this qualitative representation model into the GIS
software called SPRING (INPE/DPI 1997), developed by the National Institute of Space
Research (INPE 1997). This software organizes the vector data as a cell complex
structure.

Chapter 7 concludes this thesis work with further considerations. The results are
analyzed, as well as the main contributions of this thesis. Possible future work is also

mentioned.
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Chapter 2

Multiple Representations

The National Center for Geographic Information and Analysis (Abler 1987) began the
discussion of objectives and the process of developing a research agenda in multiple
representation databases in the late 1980s (Buttenfield 1989). The research addressed the
need to formalize object descriptions at different levels of detail, and to formalize how to
link these different levels such that changes applied at one level can carry over to others,
allowing multiple representations to be deduced automatically. In terms of cartographic
generalization, the research addressed the need that generalization algorithms should
incorporate additional constraints in order to preserve the general structure of the objects
and to keep them consistent through different levels. As a result of this research, the
conceptual focus on automating scale-change operations and map simplification moved
toward a formalization of the entire cartographic design process. Categories of research
developed from this initiative include such topics as scale-dependent geometry
(Buttenfield 1989), digital terrain issues (Weibel and DeLotto 1988), map generalization
(Mark 1989), hierarchical data structures (Bruegger and Frank 1989), formalizing
databases links (Bruegger and Kuhn 1991), and conceptual frameworks for geographical

knowledge (McMaster 1991). Some recent work in this field has been concerned with
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modeling and querying multi-resolution databases (Rigaux and Scholl 1994; Puppo and
Dettori 1995), multiple paradigms for automating map generalization (Ruas 1995), data
and knowledge modeling for generalization (Ruas and Lagrange 1995), an object-oriented
model to handle multiple representations (Kidner and Jones 1994), development of multi-
scale structure to link representations (Devogele et al. 1996), database design for multi-
scale GIS (Jones et al. 1996), and consistency among multiple representations of spatial
data (Egenhofer et al. 1994; Tryfona and Egenhofer 1997). The remainder of this paper

describes some previous work related to multiple representations.

2.1 Database Design

Database issues in multiple representations are concerned with how to accommodate the
different sources of information in a single or multi-version data management strategy.
These multiple sources of information need to be maintained consistently, and it is
important to organize the multiple topological and metrical information for efficient
access and to implement links between these multiple representations (Buttenfield 1993).
A transformation from a large-scale map to a small-scale map involve changes that may
introduce inconsistencies among representations, which may affect the answers to
queries. Due to the inadequacy of automated generalization software, it is infeasible at
this time to store a single representation and then to derive other representations that
satisfy user queries at specific scales (Beard 1988). As a result, multiple representations
for the same data exist, and we expect consistency among them. Multi-scale databases
generate multiple representations of data, and some main goals during the design of a

multi-scale database are (Jones et al. 1996):
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* maximize the database integrity with multiple representations;
* reduce the need of interactive intervention in update operations; and
* automate the retrieval of spatial information relating to phenomena with

multiple representation.

2.1.1 GEODYSSEY Database Design

A conceptual design for a multi-scale database has been proposed and implemented by
Jones et al. (1996). This system uses object-oriented, deductive, and procedural
programming techniques to maintain database integrity to reduce manual intervention of
userandto efficiently retrieve spatial informatiorfrigure 2.1shows the components of

the GEODYSSEY system. The intensional database contains rule-based and procedural
knowledge required to perform updates and queries, while the extensional database
contains stored data items. Semantic, temporal, and spatial data, are represented in the
extensional database. The Real-World Object Directory (RWOD) records all real-world
objects in the database and provides links to their geometric representations to facilitate
the process of updating the geometry. The metadatabase contains information about the
quality of the stored geometry. The geometry may be organized into a single or multi-
resolution data structure, and it is a component of the spatial database block. The spatial
relations are derived from the geometry. The intensional database contains spatial,
temporal, and non-spatial rules to support the processes of updating and querying. The
database integrity of the geometric representation uses attributes such as minimum
bounding rectangle, dimensions, line length, anchor line length, and bandwidth, in order
to match multiple geometric representations during the process of updating or querying

the database. The topological consistency for spatial relations is implemented on a system
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called MAGE (Bundy et al. 1995), in which the generalization is applied on large scale
maps that are represented by a triangular data structure called Simplicial Data Structure.
The triangulation topology is maintained after applying generalization operators such as

simplification and enlargement.

Intensional Database Extensional Database

Rulebases

e Real-World Object
Directory

e Update rules
® Semantic

e Query rules

®  Spatial
Procedures
®  Temporal

Geometric

Generalization e Metadatabase

Figure 2.1: GEODYSSEY multi-scale database design.

2.1.2 Links Between Representations
Most current Geographic Information Systems use only one level of abstraction to
represent the real world. This single level of abstraction reduces the system utility as
topological queries can take a long time to be answered due to the great amount of data
stored. Solutions have been proposed in order that GISs support multiple levels of
abstraction by linking the different representation levels through hierarchical relations.
Bruegger and Kuhn (1991) introduced the largest homogeneous cells (LHCs) to
support the hierarchical structure to link multiple representations. In GIS the concept of
cells is used to characterize objects with different dimensions. A 0-dimensional cell

represents a point, a 1-dimensional cell represents a line, and a 2-dimensional cell
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represents a region. LHC is defined as the largest possible set of cells that is able to
distinguish between the interior, the boundary, and the exterior of objects. The proposed
approach consists of several single topological representations featuring different levels
of abstraction, and the link between these single representations is achieved by
connecting the set of LHCs of one topological representation with the set of LHCs of
another one. The transition between a less detailed representation to a more detailed
representation refines the cell contents. nAdimensional cell at a less detailed
representation may be representednglimensionatells at a more detailed level, withn

varying fromn to 0. Therefore, at a more detailed representation, a 2-dimensional cell
may be represented by a set of 2, 1, and 0-cells; a 1-dimensional cell may be represented

by a set of 1 and 0O-cells; and a O-dimensional cell is again a 0-cell.

Figure 2.2: Multiple topological views for Brazil: country, regions, states.

Figure2.2 shows a structure for multiple topological representations to organize the

political subdivision of Brazil. The first level contains the country boundary, the second
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level incorporates the country regions, and the third level incorporates the region states.
The single 2-cell of the higher level is decomposed into several cells, as the

representation is refined.

2.2 Automated Generalization

The need to keep the consistency at different levels of detail in a multiple representation
database puts additional constraints on the process of automating cartographic
generalization. Cartographic generalizations require the application of both spatial and
attribute transformations in order to maintain data clarity and appropriate content for a
resultant scale. Digital generalization includes intrinsic objectives (why we generalize)
(McMaster and Shea 1988), situation assessment (when we generalize), and spatial and
attribute transformations (how we generalize) (Shea and McMaster 1991). The process of
how to generalize as defined by Shea and McMaster (1991) corresponds to a set of
generalization operators to be applied in maps in order to solve possible spatial conflicts.
Operators to reduce the number of objects, spatial operators, attribute operators, and
display operators have been proposed to specifically respond to conflict resolution (Beard
and Mackaness 1991). Those operators are referred struasural operators which

simplify or abstract the level of detail, adésplay operatorswvhich adjust the graphic
display to ensure legibilityFigure 2.3shows some geralization operators(Sheaand
McMaster 1991) that may affect the general topological structure of the data. Aggregation
corresponds to joining a group of different features into a higher-order feature. Collapse
means to represent a feature as a lower-order feature, such as representing a region as a
line or a line as a point. Amalgamation joins features of the same class into a larger

element of this class. Simplification and smoothing may change the general shape of an
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individual line, which may cause changes in the relationship of this line with other

components of the map.

O
U5

(€)) (b) (©)

Figure 2.3: Some generalization operations: (a) aggregation, (b) collapse, and (c)
amalgamation.

Generalization can be viewed as a set of metric transformations on the geometric
representations of spatial objects, intended to improve data legibility and understanding.
It is also viewed as an interpretation process that leads to a higher level view of some
phenomena (Muller et al. 1995). These two different views have motivated the concepts
of cartographic generalization that deals with geometric information, and model
generalization or model-oriented generalization that deals with the development of data
models to support spatial data at multiple scales and level of details. Model generalization
abstracts away the geometric aspects of the spatial data. Some work related to model
generalization has been proposed to support updates and queries for different scales
(Becker et al. 1991), as well as to develop data structure for “scaleless” geographic
databases (Oosterom 1989) and hierarchical structures to divide and merge data with

generalization purposes (Jones and Abraham, 1986). More recently Ruas and Lagrange
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(1995) presented some work related with data and knowledge modeling for
generalization, and Buttenfield (1995) presented an object-oriented solution to multi-scale
data modeling using the Digital Line Graph (DLG-E) data model developed at U.S
Geological Survey (Guptill 1990). Techniques of Atrtificial Intelligence have also been
used to implement rule-based generalization systems, which incorporate geometric
knowledge, structural knowledge, and procedural knowledge (Armstrong 1991; Muller

1991).

2.2.1 Spatial Knowledge for Generalization

The development of automated software for cartographic generalization must contain a
formal description of the conceptual framework for digital generalization, a set of
procedures and generalization operators, and a set of cartographic knowledge rules
(McMaster 1991). The integration of expert systems with object-oriented technology has
been proposed for object representation and software development (Mark 1991).
Generalization incorporates subjective components that do not readily decompose into
logical rules. Rules developed for one application (e.g., a network) may not be applicable
to another (e.g., a vegetation map). The spatial and attribute relationships between objects
should be considered and they can be very diverse, which complicates the process of
generating rules. Integration of multiple paradigms such as topology, geometry,
hierarchical partitioning, and local triangulation, has been proposed to automate

generalizations based on conflict detection and resolving (Ruas 1995).
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Figure 2.4: Constraint-based framework (Beard 1991).

Since it is difficult to generate rules for generalization, Beard (1991) proposed an
interactive approach based on the use of additional constraints as substitutes for rules
(Figure 2.4. Thea priori constraints are derived from generalization controls, while the
remaining constraints can be specified interactively by users and varied to reflect
different objectives or purposes. These types of constraint include graphic constraints
derived from display configurations, structural constraints such as spatial relationships
and attributive values, application constraints related with a specific map purpose, and
procedural constraints to control the order of an interaction of operations. Conflicts can
occurs between the structural, graphic, and application constraints, and procedural
constraints are used to control the order and interaction of operations and the order in
which the constraints are satisfied.

Brassel and Weibel (1988) proposed a model for automated generalization

incorporating techniques of expert systems. The rules and procedures for generalization
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are stored in a process library, which contains operators, knowledge, and tolerance

values. Five processes are presented in this framework, and their connections are

represented ifrigure 2.5

e Structure recognition: identify specific cartographic objects or aggregates, as

well as spatial relations, and measures of importance. Controlled by original

database quality, target map scale, and communication rules.

* Process recognition: identify generalization operators.

* Process modeling: compile rules and procedures to apply from the process

library.

* Process execution: execute generalization operators.
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Figure 2.5: Framework for automated generalization (Brassel and Weibel, 1988).
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2.2.2 Model Generalization

Model generalization is concerned with map reduction and derivation of spatial data at
multiple levels of accuracy and resolution. This different view of generalization has
produced the classification of generalization operators that are model-oriented or not
(Dettori and Puppo 1996, Ruas and Lagrange 1995). As in cartographic generalization,
different applications of model generalization will require different methods. Weibel
(1995) specified some general requirements that should be met by all procedures for

model generalization:

Produce predictable and repeatable results;

* minimize deviations from original model;

* maximize data reduction;

» do not violate topological consistency of spatial objects;
e minimize procedure complexity; and

* minimize computations.

Ruas and Lagrange (1995) presented a detailed study about data and knowledge
modeling for generalization. Generalization should be seen as a process allowing us to
perform a change in the perception level of geographic data, and it must preserve as much
as it can the geometric properties, spatial relations, and semantic relations while
respecting graphic limitations. Related to geometric properties are needs to identify
specific algorithms for generalization based on the characteristic of the objects, to
describe the linear elements based on the nature of the objects that they represent, and to
apply geometric modeling for the whole linear element or just part of it. Related to spatial

relations are issues of connectivity and spatial arrangement relations. Connectivity
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relations should be preserved to propagate shifting and deformation between connected
objects, and to allow identification of objects that share identical local geometry. In terms
of spatial arrangement relations, constraints should be applied in order to preserve
proximity and geometric distribution of objects, and tools such as detection of spatial
conflicts, elimination and aggregation of objects, should be provided to keep the data
topological structure. Related to semantic relations the modification of object geometry
may generate conflicts that may be solved through aggregation, elimination, or change in
dimension (collapse) of objects. Besides, the notion of simple and complex objects
shouldbe established in order to enable efficient modeling of objdcible 2.1shows

topological generalization operators and the equivalent object properties and relations.
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Operation Geometry Connectivity Proximity / Semantic
inclusion Properties
selection T: elimination| T: selection of T: Importance
of too small objects which of object
objects implement a depends on
connectivity their nature
link
aggregation C: Maintenance C: Topologic C: The new C: Objects of
of characteristiq changes must| objects must be similar nature
local shapes. | be restricted to| contained in the may be
The geometric| aggregated same face aggregated
class of the objects T: Close T: Components
resulting object T: Adjacent | objects may bg of a complex
has to be the | objects may bg aggregated object can be
same as befor¢ aggregated aggregated
collapse T: Detection of C: Topology C: Update of | T: Definition of
small objects update structure of applicable
proximity symbolization
relations
displacement | C: Maintenanc¢e C: Angles of | C: Maintenance C: Important

of characteristidg

global shapes
T: Irregular

shapes have tqg

be moved first

sections must
be maintained
T: Propagation
throughout the

network

of distribution
structures
T: Propagation

on close object$

objects are
displaced by
others

Table 2.1: Topological generalization operators and object properties and
relations (Ruas and Lagrange, 1995). T= tool, C= constraint.
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Buttenfield (1995) proposed an object-oriented multi-scale data model based on the
extended Digital Line Graph (DLG-E) data model developed at U.S Geological Survey
(Guptill 1990). It extends the DLG-E model with multiple representation schemes for a
single record within a single database, providing links between these representations. The
multi-scale extension follows the hierarchical and object-oriented form of the DLG-E
model. Each object contains spatial attributes and non-spatial attributes that refine the
object definition. Relational links between objects are defined based on the
dimensionality of the objects, and they allow feature definitions for compound objects.
Scale variations may cause changes on geometry and topology, and it is important to note
that a model to support transformations between scales of 1:X to 1.Y may not be

appropriate for changes between scales 1:Z to 1:W.

2.2.3 Cartographic Generalization

Map generalization is usually associated with line generalization. Line generalization
refers to the reduction of the original number of points in a line in order to simplify the
data at lower scales. The basic criteria for point reduction includes minimizing
displacement and distortion, minimizing new vertices, and minimizing the computational
complexity. A standard algorithm for line generalization is the work developed by
Douglas and Peucker (1973), which produces some good results, however, due to the lack
of topological control, it may produce self-intersecting lines when it eliminates several
points from the original line. Several new methods try to incorporate procedures to avoid
self-intersections and to keep the general data structure (Muller 1990; Li and Openshaw

1992; de Berg et al. 1995).
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Most of the line simplification algorithms analyze only the line points and do not
take into consideration that a line may be part of a polygonal subdivision, which is the
common approach of commercial GIS. Categorical maps, such as political boundaries or
land use, are made up of a group of polygons. A recent work developed by Weibel (1996)
attempts to identify further constraints in relation to established cartographic principles in
order to form a basis for the development of extended line generalization algorithms that
try to preserve the general structure of the data. Four different types of constraints are
discussed in terms of an individual line, in terms of a feature class (represented by
polygon), and in terms of different feature classes:

* Metric constraints: mainly influenced by aspects of perceptibility such as
minimal separation, minimal size, or minimal width.

* Topologic constraints: maintenance of topologic consistency, including
avoidance of self-intersections, mutual overlaps, containment of point
features.

e Semantic constraints: relates to semantic modeling, preservation of class
memberships, or the domain of existence in the spatial context.

» Gestalt constraints: can only be met if the other constraint types are satisfied.
Maintenance preservation of original line character or of the distribution and

arrangement of map features.
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CONSTRAINTS

CONTEXT Description Type
Within a line avoid small crenulations metric
avoid self-coalescence metric
minimize shape distortion metric
avoid self-intersections topologic
preserve line character gestalt
Within a feature class minimum polygon size metric
minimum polygon width metric
preserve ratios between polyp. metric
avoid line intersections topologic
preserve categorical class semantic
maintain visual balance gestalt
Within feature classes preserve ratios between metric
feature classes
preserve proximity relations metric
preserve polygon containment topologic
preserve shared lines topologic
preserve domain of spatial semantic
context
preserve interplay of elements gestalt

Table 2.2: Weibel’s (1996) constraints for cartographic generalization.

Table2.2 summarizeshe basicconstraints defined by Weibel (1996) and identifies
which types of constraints affect an individual line, an individual feature class, or a set of
feature classes. Constraints within a line include avoiding very small crenulations,
keeping distance between consecutive bends inside a minimum tolerance (avoid
coalescence), preserving line length and angularity, preserving line as a polyline, and

preserving the original line characteristic. Constraints within a feature class include

33



keeping the polygon size compatible with minimum area (eliminate or exaggerate),
keeping polygon width above minimum distance, preserving area ratio of each category,
avoiding intersection between lines, preserving polygon adjacency, connectivity and
containment, preserving polygon attributes, and maintaining the overall map pattern.
Constraints between feature classes include preserving the ratios between classes,
preserving distance relations (parallel lines, point in polygon), preserving polygon
hierarchy, preserving shared boundary lines, preserving the domain of existence in the

spatial context, and maintaining the interrelationships between the elements.

2.2.3.1 Linear Feature

There are several algorithms developed to simplify lines, and many authors divide them
into different categories. Basically these algorithms apply to each individual line
separately and do not take into consideration the context of the lines in a map
representation nor do they avoid self-intersections. McMaster (1989) divided the
algorithms into five categories: (1) independent point algorithms, which do not take into
account the mathematical relationship between neighboring pairs of points; (2) local
processing routines, which utilize the characteristics of the immediate neighboring points
to determine selection/rejection; (3) constrained extended local processing routines,
which use distance, angles, or number of points to search beyond neighbor points; (4)
unconstrained extended local processing routines, which use the geomorphologic
complexity of the line to search beyond neighbor points; and (5) global routines, which

consider the entire line or specified line segment.
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Hierarchical methods for line generalization have been proposed in order to speed
up the visualization of maps at different scales (Cromley 1991). The binary line
generalization tree (BLG-tree) stores the result of the Douglas-Peucker (1973) line
generalizatioralgorithmin a binary treeFigure 2.6shows an original line an its binary
tree. The original polyline consists of the points tp p, and the most coarse
approximation is the line segmemgl] pn]. The next approximation is defined by the
point that has the largest perpendicular distance to segmepfl,[ which generates two
new segmentsp[, p] and p,, pJ]. This process is recursively applied with the new
segments until all points are inserted in the tree. This structure speeds up the process of
retrieving a line for an specific scale, but it is not concerned with other features that are

part of the whole map.

Figure 2.6: Original line and its BLG-tree.

2.2.3.2 Area feature

Usually the generalization algorithms are applied to linear features, but they are not taken
into consideration if the linear feature is part of an area feature. An automatic
generalization approach for area features has been proposed by Miller and Zeshen
(1992), with data display objectives for different scales. This method includes the
following steps: data pre-processing, area expansion and contraction, elimination,

reselection, aggregation, displacement, topological integrity check, smoothing, and
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reduction. The generalization rules defined put emphasis on larger patches over smaller
ones, and try to preserve the overall pattern of the relationships between objects by
keeping the topological integrity. Data pre-processing determines which patches are to be
expanded or contracted by ranking the patch sizes. The elimination process erases all
areas below a pre-defined tolerance, and some areas are reselected afterwards as they may
be part of a significant cluster. Aggregation between features occurs due to overlaps
generated by expansion process. Elimination and merging lead to change in topology.
Figure 2.7shows some acceptable and unacceptable changes in topology condidering

all area patches represent the same type of object. Neighboring patches are displaced if
they are separated by a distance too small to be visible after expansion. Finally the

contour of patches are smoothed using the triad angle thinning algorithm (Zycor 1984).

(@) (b) () (d)

Figure 2.7: Acceptable topological transformations (from top to bottom): (a) object
elimination, (b) object aggregation—and unacceptable topological transformations—(c)
object addition, and (d) connectivity addition.
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2.2.3.3 Graph Approach

In map generalization the appropriate use of generalization operators such as merging,
exaggeration, and selection requires information at the geometric and attribute levels.
Graph theory has been used in several areas of geographical analysis such as transport
planning (James et al. 1970) and spatial reasoning about flow directions in river networks
(Paiva et al. 1992). Mackaness and Beard (1993) have described the use of graph theory
to support map generalization. The graph representations provide the topological
information necessary for effective application of generalization operators. The graph-
theoretic approach allow us to detect and to preserve the topological characteristics of
map objects such as adjacency, connectivity, and isolation.

A graph corresponds to a set of vertices and a set of edges that connect those
vertices. The degree of a vertex is the total number of edges connected at this vertex. For
a directed graph, the out-degree of a vertex is the total number of edges leading out from
it, while the in-degree is the total number of edges leading toward it. An auxiliary vertex
in a graph has degree 2 with edges of the same type (for example, same river separated
into two pieces). A weighted graph has attribute values assigned to arcs or even to
vertices. These graph properties of weight assigned to graph elements, connectivity
between edges, and direction of edges have immediate use in generalization. Weights
assigned to a stream network by using Strahler’s stream-ordering model (Strahler 1960)
can be used to define a rule for lakes. If a lake before the generalization has a degree
greater than zero then after generalization the degree should remain greater than zero
(assuming that the lake still exists). Connectivity between edges helps in identifying a
simplified representation in which the objects are still connected. Directed graphs permit

to collapse two edges of the same type connected at an auxiliary vertex.
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Based on the graph properties, Mackaness and Beard (1993) defined a set of
cartographic generalization rules and described how the graph theory could be used to aid

in applying the following generalization operators:

Simplification: remove auxiliary vertices, maintaining connectivity.

» Aggregation: identify group of the same type.

* Merging-refinement: select essential network components, maintaining
connectivity.

» Displacement: identify dense areas, check consistency after.

» Selection: identification of information that is contextual due to the local
proximity to salient features.

» Exaggeration: identification of features in isolation or in possession of topological

characteristics requiring cartographic emphasis.

2.3 Consistency Among Representations

Multiple representations of spatial data encompass changes in the original geometric
representation of objects. The objects are represented from basic geometric primitives
such as points, lines, and polygons. Homogeneous objects are represented by one or more
primitives of the same type, while more complex structured objects may be represented
by a combination of different geometric primitives. These several representations for the
same object at different levels should be maintained consistently in order to avoid
contradictions in the database. Contradictions would lead to erratic behavior as queries
for which a user expects to receive the same result, may produce different results.
Consistency must preserve the topologic, distance, direction, and semantic properties of

individual objects, as well must preserve the spatial relations between them.
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Egenhofer et al. (1994) have proposed a framework to assess topological
consistency of multiple representations. The topology of any object and any topological
relation between objects must stay the same or continuously decrease in complexity and
detail through different levels. This approach uses the model for topological relations
(Egenhofer and Herring 1990), with its content invariants (empty/non-empty) for the
intersections between the boundary, interior, and exterior of objects, and with its
component invariants that describe in more detail the boundary-boundary intersections
between the objects (Egenhofer and Franzosa 1995). The necessary component invariants
to consider are the sequence of boundary-boundary intersections, the boundary type, the
boundary dimension, and whether a boundary is next to a bounded or unbounded exterior
union of objects. The consistency is based on the concept of homeomorphism
representations. Given two topological spaXeandY related by a functiorf : X - Y,
and if the functiorf and its inversef " :Y _. X are continuous, then this functidris
called ahomeomorphismTwo representations are object-homeomorphic if the general
structure of the objects is preserved.Higure 2.8athe topology of all corresponding
objects at different levels is the same; therefore, the generalization is object-
homeomorphic. Two representations are relation homeomorphic if the general structure
of the spatial relations between the objects is preservegigure 2.8bthe topological
relations between all objects have been retained, therefore, the generalization is relation-
homeomorphic. An object-homeomorphic representation does not necessarily preserve
the spatial relation between objects, as well as a relation homeomorphic representation
does not necessarily preserve the object structure. Different degrees of similarity are
described by more or less deviations from the homeomorphism concept. Object similarity

and relation similarity are formally expressed as changes in the component invariants that
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can be measured, such as boundary-boundary intersection dimensions, number of
boundary-boundary components, and number of holes for regions with holes (Egenhofer
et al. 1994). For spatial relations between objects, the boundedness of a component

invariant may sometimes change its value.

(@) (b)

Figure 2.8: Homeomorphism concept: (a) object homeomorphic and (b) relation
homeomorphic.

2.4 Summary

Topological consistency in multi-representation geographic databases is one of the major
goals of database design. The users expect to get consistent answers for their queries
independent of the level of representation of the spatial data. The different levels of

representation should be linked, as well as the presence of integrity rules is important
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during the process of updating or querying the database. It is also relevant that
generalization operators analyze the objects not just as individual entities, but take into
consideration the relationships between these objects in order to preserve the general
representation of the spatial data. The following chapter describes the mathematical
background to assess the topological consistency in multi-representation spatial

databases.
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Chapter 3

Mathematical Background for Assessing Topological

Consistency

This chapter reviews the technical background used in this thesis to assess topological
consistency in geographic databases with multiple representations. A database with
multiple representations of data means that the same object is represented in several
different ways depending on the scale of analysis. Consistency means the lack of any
logical contradiction within a model of reality. Two representations for the same spatial

region are considered topologically consistent if the topological relationships fulfill

certain consistency constraints. The representations can be equivalent if the topological
relations are preserved, as well they can be somewhat similar where they satisfy some
similarity constraints. The theories that support this thesis are based on a model for binary
topological relations (Egenhofer and Herring 1990; Egenhofer and Franzosa 1995), and
on graph theory used for scene matching (Ranganath and Chipman 1991). The remainder
of this chapter describes the general concepts of topology (Munkres 1975), as well as

general concepts about the theory of topological graphs (Gross and Tucker 1987).
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3.1 Topological Space

Topology is the study of the properties of geometric figures that are not normally affected
by changes in size or shapetdpologyon a seX is a collectionT of subsets oK having
the following properties:

* The empty set @ and s¥tbelong toT;

e The union of the elements of any subcollectioi &f inT;

* The intersection of the elements of any finite subcollectichisfin T.

A setX for which a topologyl has been specified is calledagpological spaceA
topological space is an ordered p&ir ) consisting of a seX and a topologyl on X. A
subsetU of X is considered aapen sebf X if U belongs to the topology. Therefore, a
setX with a collection of subsets of called open sets, represents a topological space. A
subsetA of a topological spack is said to be alosed setif the set differenc& - A is
open. Open sets represent the sets in a topologX, avhile the closed sets are their
complements. The collection of closed sets is closed under arbitrary intersections and

under finite unions, and it contains the empty setand

3.2 Point-Set Topology

Point-set topology is a theory applied to topological spatial relations between sets in
which the relations are defined in terms of the intersections of the boundaries and
interiors of two sets (Alexandroff 1961). Using the concept of open sets defined in the
previous section, a set-theoretic notion of closeness can be establishedl & satd to

be aneighborhoof element, if U is an open set andbelongs tdJ. The definitions of
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interior, closure, and boundary of an element are based on the concepts of open and

closed sets.

[ ) [ )
N N
(@) (b) (c)

Figure 3.1: Point, line, and region: (a) interior; (b) closure; (c) set-theoretic boundary.

3.2.1 Interior

Given a set elemerX, the interior ofX is defined as the union of all open sets that are
contained inX, which corresponds to the largest open set contain¥dTime interior of
setX is denoted by°. An individual elemenk is considered in the interior of if and
only if there is a neighborhood &fcontained inX, i.e.,x belongs to the interior of (x
[0X°) if and only if there is an open ddtsuch thai belongs tdJ, andU is contained in

X (x O U O X). Figure 3.1ashows the interiors for the geometric primitiyesnt, line,

and region.

3.2.2 Closure
The closure of a setis defined as the intersection of all closed sets that coXtaitich
represents the smallest closed set contaiXinghe closure oK is denoted by)_<. An

elementx is in the closure oKX if and only if every neighborhood afintersectsX, i.e.,x
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belongs to the closure of (x 0X) if and only if for every open sét containingx, the
intersedion between U andX is not empty(U n X # @). Figure 3.1bshows the closures

of a point, a line, and a region.

3.2.3 Boundary

The boundary of a set elemefjtdenoted by, corresponds to the intersection between
the closure oX and the closure of the complementXo{dX = X n ﬁ) and it is a
closed set. An elementis in the boundary oK if and only if every neighborhood af
intersects botlX and its complemenEigure 3.1cshows the set-theoretic boundarés

point, a line, and a region.

3.2.4 Relationships between interior, closure, and boundary
The previous concepts of interior, closure, and boundary are the basis for the definition of
topological spatial relations between sets. The relationships between these three elements
are:
» the intersection between the interior of a set and its boundary is equal to the
empty setX’°n X = @); and
» the union of the interior of a set with its boundary results in its closure set

(X°OdX = X).

3.3 Cell Complexes

Algebraic topology (Alexandroff 1961) is a branch of geometry that deals with the

algebraic manipulation of symbols that represent geometric relationships and their
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relationships to one another. The algebraic-topology spatial data model is based on
primitive types, calleaells which are defined for different spatial dimensions:

» a0-cell represents a O-dimensional object,

* al-cellis the link between two distinct 0-cells, and

» a2-cellis the area described by a closed sequence of non-intersecting 1-cells.

A face of a n-celA is any (0...n)-cell that is containedAn The closure of an n-cell
Ais the set of all (0...n)-faces that are contained. ihe set-theoretic boundary of a n-
cell Ais the union of all (0...n-1)-faces that are contained. ifhe interior of a celA is
the set difference betweéys closure and\'s boundary. The exterior of a cdllis the set
of all cells in the universe that are not elements of the closure. The combination of
primitive cells generates more complex ones, catlell complexesBy embedding all
cells into the same universe it is possible to perform topological operations on a purely
symbolic level, without any consideration of metric if the topological structure fulfills the
following two completeness axioms (Frank and Kuhn 1986):
* Incidence: The intersection of two cells is either empty or a face of both cells
(no two objects must exist at the same location). The 1-cell representing the
adjacent boundary of two 2-cells is recorded only once;
* Inclusion: Every n-cell is a face of a (n+1)-cell. A O-cell is either a start or an

end node of a 1-cell, and every 1-cell is in the boundary of a 2-cell.

3.4 Topological Homeomorphism
Given two topological spacesandy, a functionf : X - Y is said to becontinuousif

for each open subsktof Y, the setf *(U) is an open subset & The functiorf is said
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to beinjectiveif there is a one-to-one correspondence of elemenksiofY, in which
each pair of distinct elements Xfhave different images underThe functionf is said to
besurjectiveif every element oY is the image of some elementotinder the functiom
If fis both injective and surjective, then there is a one-to-one correspondence Bétween
andY, and the functiofis calledbijective

The inverse of functiohis denoted byf * : Y - X, and iff is a bijective function,
and bothf andf™ are continuous, then the functibms called ahomeomorphismFor a
homeomorphic representation, each opetJsait X has an equivalent open setyimnder
the inverse mapping. The concept of a homeomorphism in topology means that the
general topological structure of some data is preserved under some types of
transformation. Topological homeomorphism is analogous to the notion of isomorphism
in algebra. Isomorphism is a bijective correspondence that preserves the algebraic
structure.Figure 3.2 shows two topological homeomorphic configurations at different
scales. The generalization proc&gpreserved the topological structure and there is a

one-to-one correspondence between the elements.

- | &

Y

Figure 3.2: Topological homeomorphism.

3.5 Topological Relation Model

The topological relation model (Egenhofer and Herring 1991) formalizes the different

topological relations that may exist between spatial objects. Topological relations are
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preserved under topological transformations such as translation and rotation. Topological
information is a qualitative property and excludes any consideration of quantitative
measures. For example, two objects are considered neighbors if they share a common
boundary, but the neighborhood relationship is independent of the boundary length. The
topological model formalizes the concept of adjacency and containment between objects,
which is described by a set of intersections between the interior, boundary, and exterior of
these objects. Topological transformations do not necessarily preserve direction and
distance relations. Spatial objects may be represented by primitive geometric features
such as regions, lines and points. These primitives are usually referred to as cells, which

are defined for different spatial dimensions.

3.5.1 Content Invariants

The binary topological relatioR between two cellé& andB is based on the comparison

of the interior, boundary, and exterior of each cell. More specifically, the six object parts
are combined to define the matrix of intersections, which characterizes the spatial relation
between two cells. The interior of céllis denoted byA°, the boundary byA, and the
exterior by A. The matrix of intersections between two cells is defined as the 9-
intersection matrix€quation 3.}

OB ANndB AnBLO

RAB)=HAnB 0AndB JAnBH (3.1)

A nB A noB AnB0O

Different combinations for the intersection values describe different topological

spatial relations. The topological relations are characterized by topological invariants of
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the nine intersection values, i.e., some properties that are preserved under topological
transformations. The content invariant which expresses emptiness or non-emptiness for
the intersection value, is the most general topological invariant (Egenhofer and Franzosa
1991) and it characterizes each of the nine intersections by a value empty (&) or non-
empty 6 9).

The nine empty/non-empty intersections describe a set of relations that provides a
complete coverage. Five hundred-twelve topological relations are possible between two
regons however, oty sane of them can be relezedin a 2-dmendgond spaceFigure3.3
shows the nine intersection matrices for the eight topological relations that can be

realized between simple regions.

disjoint meet overlap contains
Oo O =00 Oo o -og| o -0 -og | kO -0 -0Q
bo -0 -oOd oo -0 -o0 oo -0 -g0 | Uo o -o0

equal coveredBy inside covers
O O 0O O O 0O -0 0o opg | ko -0 -0Q
oo -0 0g +0 -0 0 -0 O Op |00 -0 -0g
Oo o -ogO o -0 -o0 0o -0 -g0 | Oo0 o -oO

Figure 3.3: Eight topological relations between two regions’i(Egenhofer and
Herring, 1991).
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The content invariant is too general to capture topological differences in more
complex configurations. In this cases other types of topological invariants need to be

considered.

3.5.2 Component Invariants
The 9-intersection model with its content invariant of empty and non-empty intersections
is a comprehensive model—the resulting topological relations provide complete coverage
and are mutually exclusive—but it is sometimes too generic to support the different views
people might want to make.

If the topological relation betweelx andBy in X is equivalent to the topological
relation betweerAy and By in Y, then the associated 9-intersections are the same, but
conversely, the same 9-intersection set does not mean that the topological relations are
the same. In order to assess whether two topological relations between two objects are the
same or not, additional topological invariants are considered for simple regions, based on
the boundary-boundary intersection components (Egenhofer and Franzosa 1995). A
boundary-boundary component is a separation inbihendary.Figure 3.4 shows a
configuration with ameet relation and three boundary-boundary components. The
boundary-boundary components sequedescribes the order in which the components
of the boundary-boundary intersection occur. The equivalence of two boundary-boundary
sequencesS1landS2 is obtained when the sequer&Ematches with at least one of all
sequences db2obtained by its cyclic permutation. Therefore, the component invariants
that will be necessary to distinguish topological details between connected elements are

(assuming that the space is partitioned and no overlap occurs):
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The boundary-boundary sequenceaptures the order of the boundary-
boundary components of the boundary-boundary intersection. It requires an
agreed-upon orientation of the plane—clockwise or anti-clockwise. For
example, the clockwise boundary-boundary sequence for dbjectFigure
3.5ais 1, 2, 3.

Theboundary dimensiorepresents the dimension of each boundary-boundary
component. A point intersection has dimension 0, and a line intersection has
dimension 1. FofFigure 35a the boundary-boundary components labeled 1
and 3 are 1-dimensional, and component 2 is 0-dimensional.

The complement relationshigescribes how a boundary-boundary component
is related to the complement of the union of two regi@esn(mon exterigr

The complement relationship is consideredboundedif it touches the
common exterigrand is considerebloundedf it does not touch thisommon
eXerior. Figure 3.5bstresses the complement relationship of objaciadB:

the boundary components 1 and 3 ardounded,while component 2 is

bounded

Figure 3.4: Ameetrelation with three boundary-boundary components.
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(@) b(b)

Figure 3.5: Component invariants of topological relations: (a) the boundary-boundary
seqguence of the dimension and intersection type: {(he#}, (2, 0,mee}, (3, 1,mee}}
and (b) the boundary-boundary sequence of the complement relationship: {(1,
unbounded), (2, bounded), (3, unbounded)}.

3.6 Similarity Analysis

A spatial scene corresponds to a set of geographic objects that are related through such
spatial relations as topological, directional, and metrical relations. The application of
generalization operators in one scene generates a second scene, which in general has a
different structure than the original one. Rarely do two scenes match exactly and it is
important to evaluate how similar the two configurations are in order to guarantee
consistency. Similarity is the assessment of deviation from equivalence (Tversky 1977).
A derived scene may have topological relations that are slightly different from the
original scene, as well it may have directions and distances that are not exactly the same,
and it may have a considerably different shape. Bruns and Egenhofer (1996) proposed a
computational method to formally assess the similarity of spatial scenes based on the
ordering of spatial relations. The method is based on the concept of gradual changes of
spatial relations and it applies to topological relations (Egenhofer and Al-Taha 1992),

cardinal directions (Freska 1992), and approximate distances (Hong 1994). Given two
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scenes with an equal number of objects, there is a minimum set of gradual changes to
transform one scene into another, and the spatial similarity is assessed by counting the
number of different spatial relations and by counting the gradual changes in spatial
relations.

Topological relations are considered first-class information in spatial scenes, which
has to prevail in the case of a conflict between two different representations—topology
matters, metric refines (Egenhofer and Mark 1995). The concept of gradual changes has
been used to model the conceptual neighborhoods of topological relations (Egenhofer and
Al-Taha 1992). This neighborhood concept facilitates an ordering of topological relations
and supports the determination of similar relatidgAgure 3.6showsthe conceptual
neighbors for the eight topological relations for simple objects represented as regions
(Egenhofer and Franzosa 1991). A gradual transformation changes a relation into any of
its conceptual neighbors, and statements like “covered by is similar to inside” or “meet is

more similar to overlap than to contains” can be made.
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equal

Figure 3.6: Conceptual neighborhoods of topological relations between simple regions
(Egenhofer and Al-Taha 1992).

3.7 Graph Model

In topological graph theory, a graph represents a network of nodes and straight or non-
straight arcs connecting these nodes. Therefore, a @apimsists of a set of vertices or
nodesN and a set of aro&. Each arc has one or two end points that are equal to some of
the nodes iN. A simple graph has no loops or cycles. A graph is said fdver if it

can be drawn in a plane so that none of its arcs intersect except at its nodes. Tvig) nodes
andN, are said to be connected or adjacent if there is at least one arc in which the end
points are equal tN, andN,. If there is no arc with end points equaNpandN,, thenN,

andN, are said to be disconnected. Usually an adjacency matrix is used to characterize
the connectivity of a graph. This adjacency matrix is square with the number of rows and
number of columns equal to the number of nodes in the graph. Each cell of this matrix

has the value 1 if the nodes are connected, and is O if the nodes are disconnected. Figure
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3.7 shows a graph and its equivalent adjacency matrix. Depending on the type of
application the nodes and arcs of a graph may carry some specific properties. For
example in applications related with network analysis, such as allocation problems or
shortest path analysis, the nodes may carry some demand information, while the arcs may

carry some impedance values related with the cost to traverse those arcs.

N2 N1 N2 N3 Ng
N1 NgJlo 1 1 0
N3 N2l1 o 1 o
N3|1 1 o0
N4 Nalo O 0

Figure 3.7: Graph and its adjacency matrix.

3.7.1 Isomorphism and Homeomorphism

Two graphs are said to heomorphicif and only if there is a one-to-one mapping
between the nodes of the two graphs, such that all adjacent relationships are preserved.
Given two graph configurations it is possible to find many isomorphic configurations, but
for each configuration the one-to-one mapping is present. Two graphs are said to be
homeomorphic if both of them can be combined from the same graph by a sequence of
operations that sequentially introduce a new vertex to dividarth&igure 3.8 showsa

set of graph representations illustrating the concepts of isomorphism and
homeomorphism. This concept of isomorphism between graphs is equivalent to the

concept of topological homeomorphisms between topological spaces.
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Figure 3.8: Homeomorphic and isomorphic graphs (Chetcah 1979).

3.7.2 Subgraph

The identification of sub parts of graphs is important in the process of finding similarity
between representations. Usually transformations of original data may generate derived
data that are not exactly the same as the original data, but they are still consistent. A
graphG’ is called a subgraph of a gra@hif and only if the nodes and arcs®f are a

subset of the nodes and arc€ofigure 3.9shows a graph and some of its subgraphs.

Figure 3.9: A graph and two of its subgraphs.

3.8 Association graph for scene matching

Scene matching is the process of finding a correspondence between elements of two
different representations. Some categories of scene matching are template matching

methods, feature matching, and graph theoretic matching (Ranganath and Chipman
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1991). The graph approach is useful for scale changes and, therefore, fits well in
geographic analysis of equivalency and similarity between spatial scenes. It may use the
properties of objects and relationships between them to model the graph. A general
procedure for graph matching consists of finding a vertex mapping matrix, which
indicates all possible equivalent nodes, and then apply a backtracking algorithm to check
all possibilities of matching. This approach is used to find isomorphic configurations, and
is inappropriate to handle temporal changes.

Another approach to scene matching is cadlesbciation graphsGiven two scenes
SlandS2 the nodes of the association graph correspond to the pair of eldfpeansl
E,, that satisfy some property constraints. The arcs between nodes of the association
graph exist if the relationship between the elements of s8&nand the relationship
between elements of scel®® satisfy the relation constraints. To assess topological
equivalency or similarity of spatial scenes, the association graph can be built based on the
spatial relations between objects. If the objective is to find equivalent representations,
then the nodes and arcs of the association graph correspond to equal elements in terms of
topology. Otherwise, there is a problem of inexact matching, in which the relation
constraints are relaxed and the association graph represents elements that are equal or at
least similar to the relaxation level defined. For example, if there are two spatial scenes
composed by regions, we can use the binary topological spatial relations between the
regions (Egenhofer and Herring 1991) and the conceptual neighborhood for spatial
relations between regions (Bruns and Egenhofer 1996) to build the association graph.
Figure 3.10shows two spatial scenes and the association graph built tiasedivalent
representations. Each node of the association graph has a pair of elements or object

representations that contain the same number of adjacent objects with equivalent
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relations, and each arc connects nodes in which the spatial relation for the objects in each

scene is the same.

) @9 @Y (D (B (D-(9-CA ED D (P

Figure 3.10: Two spatial scenes, their graphs, and the equivalent association graph.
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3.9 Summary

Consistency between two data sets depends on the constraint rules that are used to
compare both data sets. If two datasets are equivalent or equal, then they are considered
consistent, as well if there are differences in those two data sets that are supported by the
constraint rules. The topological consistency between two spatial scenes is guaranteed if
the objects preserve their general structure, and the spatial relations are preserved or some
valid changes have occurred. A graph representation of a spatial scene captures the
topological concepts of adjacency and isolation between spatial objects. The association
graph is used in this thesis as the basis to start the process of finding isomorphism
between the graph representations. By using spatial relations as constraints, the
association graph contains just the information that satisfies these constraints and,
therefore, it simplifies the number of possibilities when evaluating the isomorphism
problem. The pair of nodes represent possible matches and the arcs represent the possible
paths to search. The next chapter describes the relation-based model to represent a spatial
scene, including all necessary topological invariants that are used to evaluate equivalence

between two representations.
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Chapter 4

A  Qualitative  Spatial Model for  Multiple

Representations

Traditionally, data models for geographic information systems have been map-based,
attempting to represent geometry as it would appear on a cartographic map. These
cartographic spatial data models are the foundation for digital spatial representations that
require a graphical presentation. Such models have been extensively investigated in the
GIS literature and have found their way into today’s GIS Standards (SDTS 1992; SAIF
1995; OGC 1998). The most sophisticated cartographic spatial data models are based on
cell complexes, which originated in algebraic topology (Maunder 1996).

Complementary to cell complexes are representations of spatial configurations and
geometry that do not require a graphical presentation. Such models are necessary when
no visual information is available, for instance if spatial information was collected from
verbal descriptions. They focus on the representation of the spatial relations among
objects, rather than on the geometry of individual objects, and are at a higher level of
abstraction than the geometric elements of points, lines, and areas. Such relation-based

models also enable fast spatial inferences, allow for representations of incomplete
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information, and link closely to generating verbal instructions and verbal descriptions of
spatial configurations.

Although most current geographic information systems are based on the
cartographic model, the linkage to and integration with relation-based models is a
pressing need. People usually make abstraction of a spatial representation, thinking about
multiple views for real objects and relationships between them. They are more concerned
about the relationships between objects than the too detailed information provided by the
cartographic model. Besides, relation-based models can be used to represent information
from multi-media information systems and multi-modal interactions through voice and
sketch (Egenhofer 1996). This chapter introduces the relation-based model, and
investigates the mapping from cell complexes onto a relation-based model, and vice

versa.

4.1 Relation-Based Model

Qualitative spatial models abstract away the details of geometry and focus primarily on
the spatial relations among objects by modeling them explicitly. This section introduces
the relation-based model to handle geographic data, which uses the graph representation
as basis to represent the spatial scene.

The graph representation provides the topological information necessary for an
effective application of generalization operators in spatial configurations. The graph
theoretic approach has the ability to detect and to preserve such topological
characteristics of map objects as adjacency, connectivity, and isolation. A spatial scene
may be described by a graph or by a set of graphs (one for each connected set of

elements) in cases where we have disjoint sets of connected elements, or even connected
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sets contained or covered by others. The nodes of each graph represent the object
representations, and will be referred to as features, and the graph arcs represent the spatial
relationships between these object representations. Each node stores the object attributes
and each arc represents relationships between objects such as angle, adjacency, or
distance. For the purpose of this thesis, the arc attributes represent the topological spatial
relations between objects, considering the content and component invariants of spatial
relations.
Each graph for a spatial scene is described through &p@¥\, A), and initially the

node and arc properties are formally defined as follows:

» Associate to each node a label by means [&#baling functiondefined as

|, :N - ID xGR that, given a nod®&.(0 N, returns a pairlD,,GR), where
ID, denotes an identifier of the entity ar@R its graphical or geometric

representation.
« Similarly we associate a label to each arc by means of the labeling function

I, :NxN - SR, that, given an a(®\,N;) OA, returns the spatial relation

SR, betweenN;and N;.

Figure 4.1 showsa simple spatial scene with its equivalent graph repratgant
Each feature is mapped into a graph node, and the spatial relations between these nodes
are mapped by the arcs that connect them. If two features have more than one boundary in
common, then the complete graph must map each common boundary as one arc

connecting the elements.
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meet
meet meet

meet

Figure 4.1: A spatial scene and its equivalent graph.

In general a spatial representation of some specific data, such as administrative
boundaries, is characterized by a topological structure, in which the topological spatial
relations between features are well defined. A spatial scene may contain a connected set
of features that share some common boundaries, sets of features disjoint from other
elements, as well as features contained or covered by some other element. The next
section explains how the topology of a spatial scene may be described by a graph or by a
set of graphs. Each graph corresponds to a set of connected features. A hierarchical
structure of graphs is specified, such that the descendant features from a higher order area
feature are constrained by the topological proped@#ainsand coveredby i.e., the

higher order feature always must contain or cover its descendants.

4.1.1 Hierarchical Graph Representations

A spatial scene can be described by sets of graphs. These graphs may be composed of
disjoint sets of connected features or by sets of features containing or covering others.
The former situation is modeled using disjoint graphs, while the latter situation involves
spatial relations between the two sets of connected features (namely, one is contained or

covered by the other). This section describes how to model such situation. First, each
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connected set of features is mapped onto a graph representation. The obtained graphs are
then joined through containment links, thereby generating a layered structure. The idea is
to represent the containing or covering set and the contained or covered set at different
levels in a hierarchy of graphs. Given a gr&pthat belongs to a level in the hierarchy,

the next level contains graphs that correspond to connected sets or even isolated features

that are contained or covered by an area featu®e in

{2,area} {3area} | | - = = = —
- - — {7 area} {6,areai o
I o I Bl e G
- = — — > | {9,area} | | {5.area} |
meet {1,area} | I
- - - {8,area} - - -
L — = — — Level 3
Level 2
{4,area} Level 1

Figure 4.2: Hierarchical levels of a spatial scene and their graph representations.

Figure 4.2shows a spatial scene in which different levels dfieaarchycan be
identified, and the corresponding graph representation. Features 1, 2, 3, and 4 represent
one connected set, and this set is in the higher level of the hierarchy. In this example, just
feature 1 at the higher level contains some other features, so the second level of the
hierarchy is defined by the connected set of features 6, 7, 8 and the isolated feature 9. The
third and last level of this scene corresponds just to the feature 5, which is contained by

feature 6.
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The hierarchical representation can be formally defined in the following way. A
hierarchy of graphBIG is a sequenc{Gm,...,Gm},...,{Gkvl,...,Gk'nk}of k sets of graphs.

Each setk represents the number of levels in the hierarchy, such that for each

G (1<i<Kk) there exists agrapB _, , (1< p< n,_,) that contains a node. The region
that corresponds thl contains or covers the portion of scene correspondirg to By

using this hierarchical structure we are able to reduce the complexity of representations
such as region with holes, into simple features that are analyzed at their respective levels.
For each level in the hierarchy, the relationships may be modeled by using the content
and component invariants applied to the internal holes of an object (Paiva and Egenhofer

1995).

4.1.2 Graph Modeling

The graph modeling uses the concepts of content and component invariants of topological
spatial relations presented in chapteFigure 4.3ashows a set of connected areas and the
correspondingraph representatiofriure 4.3). Each adjacent boundary corresponds to
one arc in the graph representation. The final graph structure can be simplified by
abstracting the boundary intersections between two features into just one arc in the graph
(Figure 4.38. In this case the arc labeling property is modddgdising the boundary
sequence of the intersections. By reducing the number of arcs, the complexity of the

graph structure is automatically reduced.
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Figure 4.3: Spatial scene and its graph simplifications.

The spatial relation of the arc labeling functipp:Nx N - SR can now be

defined as an ordered (for instance, clockwise) sequence of boundary components

(Equation 4.}

where:

I,] = represent the respective nodes

n= number of boundary intersections betwégnN,
boundtype= boundary type (0 - meet or 1- meet)

comprel= complement relationship (bounded or unbounded)

(4.1)

In the following, the information encoded in the arcs is maintained by defining for
each node the sequence in which the intersections occur. This corresponds to the so-
called adjacency-lists data structure used for encoding graphse€tAab 1974). The

formal definition for his node sequence is expressedegnation 4.2
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NS = %I\L,(SR,M)E,--E N Sﬁw)n%m@

m= varies from 1 to number of boundary intersections 4.2)
k = some node element connected to nidde
n = one of the boundary components between nddes Nand

The node sequence set contains the information stored in the arc labeling function,
S0 it is not necessary to store both sets. The spatial scene is completely described in terms
of topology by using the node labeling function and the node sequence set. This model is
called the relation-based model. It generates a hierarchical graph and is referrd&to as
model. Table 4.1 showsthe equivalentnode properties and node sequence sets for the
spatialconfigurationrepresented ifrigure 4.3aThe node definition contains the object

identifier and geometric representation, and the node sequence includes the arc properties.

67



Node

Def. Sequence of the boundary components

{A,area} {(Nc, (1-meetunbounded) ),Ng,(1-meet unbounded) ),
(Nc, (0-meetbounded) ),Np, (1-meet unbounded)), Nc,
(1-meet unbounded) )}

{C,area} {(Na, (1-meetunbounded) ),Np, (1-meetunbounded) ),
(Np, (O-meetbounded) ),Ng, (1-meetunbounded) ), Na,
(1-meet unbounded) )}

{B,area} {( Na, (1-meetunbounded) ),Nc, (1-meetunbounded) ),
(Np, (0O-meetunbounded) )}

{D, area} {( Na, (1-meetunbounded) ),Ng, (0-meetunbounded) ),
(Nc, (1-meetunbounded) )}

A 2-dimensional feature in a higher order graph moaptain all features in a
descendent graph, or in some cases it amersome of these features. If several cover
relations occur, a boundary sequence with tloeser relations should be added to the
HG model.Figure4.4 showsa scene similar té-igure 4.3abut with an additional region

G that covers regioQ. Table 4.2shows the additional information that must be added to

Table 4.1: Relation-based mod® for Figure 4.3a

Table 4.1in order to define thelG model.
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Figure 4.4: A spatial scene witlrcaverrelation.

Node Def. Sequence of the boundary components

Ng {G, area } { N¢, (1-cover unbounded) }

Table 4.2: Complementary row T@ble 4.1that describes scenelféfjure
4.4

4.1.3 Adding Symbolic Geometric Information

The main characteristics of the graphs in the hierarchical relation-basedHii®eegt:

* Each graph node corresponds to a cell with order equivalent to the geometrical
representation of the graph node. Therefore, if a node represents an area then it
corresponds to a 2-cell; if it represents a line then it corresponds to a 1-cell; and if it
represents a point then it corresponds to a 0-cell.

* The boundary sequence for one node does not contain any geometric information.
This sequence defines the clockwise intersections using only the adjacent features.
Therefore, if a 1-cell of a 2-cell is not part of another 2-cell, then any information
related to such 1-cell is lost in this model. If a transformation betwednGhaodel
to the cell complexes is needed, additional information is necessary in order to restore

all elements of the cell complex structure.
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In order to get the cell complex representation from the relation-based khGdel
spatial coordinate symbols referent to the intersections are added for each adjacent
boundary component. For a O-dimensional boundary, the point coordinate for the 0-cell is
added, while for a 1-dimensional boundary both start and end points of the 1-cell are
stored. By using those spatial coordinates, it is possible to rebuild the 2-cell using the

clockwise sequence of boundary intersectiégu@tion 4.3

Ns:ﬁl\L,(SRi,Nk)n,( SQ,Nk)n)ll---'( M s, | §i("\“k)n)mﬁ

where:
SG, , defines the 0-cell coordinates for the adjacent points, (4.3)

andC  will have one coordinate for a 0 - dimensional
adjacency, and 2 coordinates for a 1-dimensional
adjacency.

Each graph augmented with the symbolic geometric information is called an
enhanced graph. The obtained hierarchical relation-based model is referred tbl@s the

model.Table 4.3shows theHG" for the scene ilfrigure 4.3a
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Node Def. Sequence of the boundary components

Na {A, area} {[ N¢, (1-meetunbounded), (1,2)]Ng,(1-meet
unbounded),(2,3)], Nc, (0-meet bounded),(3)],Nlp, (1-meet
unbounded),(3,4)]Nc, (1-meetunbounded),(4,5)]}

Nc {C, area } {[Na, (1-meetunbounded),(5,4) INp, (1-meet
unbounded),(4,3) ]Na, (0-meet bounded),(3)],Nlz, (1-meet
unbounded),(3,2) ]Na, (1-meetunbounded),(2,1)]}

Ng {B, area} {[ Na, (1-meetunbounded), (3,2) INc, (1-meet
unbounded),(2,3) ]Nb, (0-meetunbounded),(3)]}

Np {D, area} {[ Na, (1-meetunbounded), (4,3)]Ng, (0-meetunbounded), (3)
I, [N, (1-meetunbounded), (3,4)]}

Table 4.3: Relation-based modi#G" for Figure 4.3a

4.2 Equivalence Between Cell Complexes and the Relation-Based Model

Given a cell complexC, there exists a cell complek’ that contains the minimal
information (in terms of number of cells) to describe the topology of the scene
represented bg. In the simplified cell complex representation, the 2-cells are maintained
and their boundary is simplified by dropping points and merging lines only if this does
not affect the boundary of other cells in the compleig@re 4.9. Therefore, a function
called Strip: C- C’ maps the set of cells of a cell compléxonto the set of cells of
another simplified cell comple®’. The result of this process is a cell complex whose 2-
cells are homeomorphic to the cells@fbut whose global number of cells is reduced.
Two cell complexesC, andC, are equivalent iStrip(C)=Strip(C,). The representative

element of an equivalence class for a given cell con(pleStrip(C) (called the minimal
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element).Strip corresponds to the projection function that, given a cell complex, returns

the representative of its equivalence class.

p
p3 drop(pl) drop(p2) drop(p3)
e —> e
p4

Figure 4.5: Dropping points from a region boundary.

The graph-based representation can be seen as a minimal representation of a spatial
scene described by a given cell complex. It is the canonical representative of an
equivalence class obtained through an equivalence relation defined on the set of cell
complexes. This relation is based on the concept of a homeomorphism between cells. In
this way we drop unnecessary information and keep only the minimal cell information in
order to describe the topology of the spatial scene. This corresponds to converting a cell
complex into a graph structure. GraphToCellis the function that converts a graph
structure into a cell complex, ar@ellToGraphis the function that converts the cell

complex into a graph representation, teeuation 4.4hould hold.

GraphToCeI( CellToGraph 92) = Stp)C (4.4)

4.3 Mapping Cell Complexes into the Relation-Based Model

This section describes an algorithm to transform the structure of cell complexes into the
relation-based model. The relation-based métigl is a simplified representation of the

cell complexes. Lower-order cells that are part of the boundary of a higher order cell are
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not represented in the graph. The graph nodes correspond to higher-order cells. Therefore,
the O-cells of a 1-cell are not in the graph. Likewise the 1-cells of a 2-cell are missing.
The 1-cells are part of the graph only it they do not belong to a 2-cell or 1-cell boundary.

The O-cells are part of the graph if they represent isolated points.

4.3.1 Algorithm to Convert a Cell Complex into a Relation-Based Model

Assuming a spatial scene with regions, we may have isolated elements and connected
elements. Each isolated element corresponds to a graph with an isolated node, and each
set of connected elements corresponds to one graph. Given a cell caiphxrh

regions, and the regions being hierarchically ordered from higher to lower levels, the
basic algorithm to convert this cell complex into the relation-based m&lgorithm

4.0).

HGraph CellToHGraph CellComplex CC)
Begin
For each regiomR of CC
TransformR into a graph nodll and add td\graph
Add N to the corresponding graph level and set hierarchical links;
If R has adjacent element(s)
Generate boundary sequenceNdrom R;
return hgraph;
End

Algorithm 4.1: Convert cell complex structure into relation-based model
(graph model).
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4.3.2 Converting Individual Features
An isolated region, 2-cell composed byR) é&énd 1 ) cells, generates a node equal to an

area feature in the graph representatR{P,L) - N., whereNi is a node such that
Iw(N,) = (ID, Area). Each region of a connected set of regions is a node in the graph

representation, and each common line (i.e., line shared by two regions) and each common
point (i.e., point shared by two or more regions) between regions defines a boundary
component in the boundary sequence for a node. In order to check if two 2-cells share a
common point, the information stored in the cell complex is used. First, consider
boundary lines of both regions and then retrieve their endpoints (combinatiegiai-

line andline-point relations). Similarly, to get all regions incident at a given point we
must combingoint-line andline-regionrelations. For each regiarcomposed of points
(O-cellsP) and lines (1-celld), the equivalent graph node and boundary sequence are

generatedEquation 4.}

R(P.L -~ N

-~ BoundarySequencéclockwise sequence of adj. features df (%'5)

Again | (N.) = (ID,Area).
A 2-cell, composed of 1-cells hash O-cells. The boundary sequence components

for one region may be generated usiigorithm 4.2
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For k=1 ton 1-cells of a 2-cell
Begin
For each clockwise 2-cell featuBthat shares the common potatell[k] with R
Create the boundary descriptiddoundary(0-meetxCompRelationshig
XY(0-cell[K] ));
Create the boundary componeBtundaryComponer{s x Boundary;
Add BoundaryComponenid boundary sequence [&f;

If 1-cell[K] is part of a 2-cell featur®’ that is different fronR
Create the boundary farcell[k] : Boundary(1-meetx
CompRelationshipXY(1-cell[K] ));
Create boundary componeBioundaryComponerfR’ x Boundary;

Add BoundaryComponerib boundary sequence &f
End

Algorithm 4.2: Converting the 2-cell boundaries into the graph model.

4.3.3 Example

Figure 4.6shows a spatial scene with its cells. Applyiigorithm 4.2to convertthe cell
complex to the relation-based structure we use the three lists of 0-, 1-, and 2-cells

(Equations 4.6, 4.7, and 4.8

75



14

Rq — 0-meet,unbounded
v — 1-meet,unbounded

(@) (b)

Figure 4.6: Spatial scene: (a) cell features, and (b) graph representation.

0-cel={P,F,.P.R.R R B} (4.6)

L.(P.P)

1-cell= Ls,(Ps,P4)
Lo, (P,

|
)
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(R P L(r.R)]{ Llr.R].O
AP R LA P R)|| Ll R P) 0@
Lo (P P)| | L P P)] [ Lo P P

L
L
[

9

2-cell= gRl’(Ll’ L3)]’[R2’( A La)] [ Rg( b b Ll)]

3
Re.(Les Lo L] | Re( oo L] | Ref 1, )] - (4.8)

Next, transforms each region into a graph nodd®fmodel Table 4.3.
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Cell Graph Node

[Ry, (Ly,L3)] {Ry, area}
[Rz, (LaLaLs)] {R,, area}
[Ra, (L12,L11,L10)] {R3 area}
[Ras (Ls,LeL12)] {R,, area}
[Rs, (Lg,Lo)] {Rs, area}
[Re, (L7,Lg)] {Rg, area}

Table 4.4: Equivalent graph nodes for 2-cells of Figure 4.7.

Finally generate the boundary sequence for each regiahlg 4.5. The boundary

sequence for region, ks generated as follows:

Region Ris formed by two lines, therefore we have two iterations:
Iteration 1:
Current O-cell is P

The clockwise regions that sharewith R are R and R then:

Create boundary components: { R,, (0O-meet, unbounded), (P}
{ R, (R, (O-meet, unbounded), jB

Current 1-cell is |, and it is just part of region,Rhen

do not create this boundary component and go to next iteration.
Iteration 2:
Current O-cell is P

There are no regions that sharetRen do not create any boundary component

Current 1-cell is L, which is part of region Rhen
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Create boundary component: {{ RR,, (1-meet, unbounded), (P) }

lteration 3: end.

Table 4.5shows the boundary sequence for each regyaepeatingAlgorithm 4.2,
In order to avoid repetitions of boundary components, we can store all boundary
components in one list, and access the boundary sequence of each node through pointers

to the elements that describe the sequence.

Region Boundary Sequence

R {[R4, (O-meet,unbounded), {}f, [R3, (0-meet,unbounded) {1},
[R,, (1-meet,unbounded), {P,)] }

R> {[R4, (1-meet,unbounded), {IP,)], [R3, (0O-meet,unbounded), {},
[R1, (1-meet,unbounded), {)] }

R3 {[R1, (O-meet,unbounded), {ff, [R,, (0-meet,unbounded), {}},
[R4, (1-meet,unbounded), {f")], [Rs, (0-meet,unbounded), )},
[Rs, (1-meet,unbounded), {P-)] }

R4 {[R>, (1-meet,unbounded), {P,)], [Res, (1-meet,unbounded), ()],
[Rs, (0-meet,unbounded), {P, [Rs, (1-meet,unbounded), {?,)],
[R1, (0-meet,unbounded), {P}

Rs {[R3, (1-meet,unbounded), {P)], [R4, (0O-meet,unbounded), £},
[Re, (1-meet,unbounded), {P)] }

Re {[R 4, (1-meet,unbounded), {P,)], [R5, (1-meet,unbounded)¢Ps)],
[R3, (0-meet,unbounded), {}

Table 45: HG" model components féfigure 46.
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4.4 Mapping the Relation-Based Model onto Cell Complexes

This section defines a functidBraphToCell: HG - CC, mapping an enhanced graph

onto the corresponding cell complex (i.e., mapping a set of features and a set of
incident/adjacent relations between them). The function maps each node onto a region,
line, or point, depending on its corresponding geometric representation. Also, each arc is

mapped onto a line or a point depending on the kindeddtrelation it represents.

4.4.1 Algorithm to Convert the Graph Representation onto the Cell Complex

Each node oHG' representing a region generates several cells. The algorithm to convert
the whde HG" into a cdl complex CC (Algorithm 4.3 basically picks each node and
transforms it into a list of cells, and then if this node contains internal elements, then the

algorithm recursively converts these internal elements.

CellComplex HGraphToCell HGraph hg)
Begin
For each nod&l of the higher level olfig
Call procedure NodeToCelNj and add result toellcomplex
return cellcomplex
End

ListOfCells NodeToCell Nodenodg
Begin
Transformnodeinto a list of cells and add tistofcells
For each internal featudeof node
Call procedure NodeToCell)(and add result to listofcells;
return listofcells
End

Algorithm 4.3: Converting the hierarchical graph onto the cell complex.
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ListOfCells AreaFeatureToCelAreaFeature R)
Begin
Createnew-2-cellfor R and makesurrent-0-cellandfirst-0O-cell equal to null;
For each boundary compone®€ of R
If BC(dimension) equal to 0
If current-0-cellequal null
Createnew-0-cellequalBC(0-cell)and add td.istOfCells
Makefirst-0-cell andcurrent-0-cellequalnew-0-celj
Else
If current-0-cellnot equaBC(0-cell)
Createnew-1-cell(current-0-cell,BC(0-cell))
Add new-1-cellto ListOfCellsand tonew-2-celj
Make current-0-cellequalBC(0-cell)
If BC(dimensiongqual to 1
If current-0-cellequal null
Createnew-1-cell(BC(start-0-cell),BC(end-0-cell))
Add new-1-cellto ListOfCellsand tonew-2-celj
Makefirst-0O-cell equalBC(start-0-cell)
Make current-0-cellequalBC(end-0-cell)
Else
If BC(start-0-cell)not equakturrent-0-cell
Createnew-1-cell (current-0-cell,BC(start-0-celf))
Add new-1-cellto ListOfCellsand tonew-2-celj
Createnew-1-cell (current-0-cell,BC(end-0-cell))
Add new-1cellto ListOfCelland tonew-2-celj
Make current-0-cellequalBC(end-0-cell)
If current-0-cellnot equafirst-0-cell
Createnew-1-cell (current-0-cell,first-0-cell)
Add new-1-cellto ListOfCellsand tonew-2-celj
Add new-2-cellto ListOfCellsandreturn ListOfCells;
End

Algorithm 4.4: Converting a graph node (region) into a list of cell
complexes.
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4.4.2 Converting Individual Nodes Representing Regions

Algorithm 4.4shows in more detail how to convert each node representing an area feature
into a list of cells. It follows the clockwise sequence of boundary intersections, and
creates the necessary 0O-cells and 1-cells that close the region. When there is no
connection between two boundary intersections (look at the symbolic coordinates of the
boundaries) , a 1-cell is created to link them. These 1-cells correspond to lines of a region
that are not shared by other region. Remember that these 1-cells are lost during the

conversion of the 2-cell into the graph model.

4.4.3 Example
Applying Algorithm 4.4for region R of Figure 4.4we have:
The boundary sequence foy iR

{[R,, (O-meet,unbounded),]P[R., (0-meet,unbounded),]P

[R,, (1-meet,unbounded), {P,)] }

For the first boundary intersection,[R0-meet,unbounded),]P

Create 0-cell Pand make it the current 0-cell, and the first O-cell of the 2-cell.
For the next boundary intersection,[R0-meet,unbounded),]P

P, already exists and is the current O-cell. Therefore nothing to do. Go to next step.
For the next boundary intersection,[RL.-meet,unbounded), {P,)]:

P, is not equal to current O-cel],Rhen create 1-cell(fP,), and

make current O-cell equal tq.P

Finally, current O-cell is equal to first O-cell, then nothing to do and end processing.
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4.5 Summary

This chapter introduced a qualitative model for topological representation based on
hierarchical graphs, and compared it with the cell complex structure. The cell complex
can be seen as a more cartographic model composed of building blocks put together with
only a descriptive aim (representation of the topology from a computational point of
view). For the graph scene the focus is on “important” object representations. This
assumes that some sort of semantics is associated with features in the scene. People make
abstractions about the real world. They don’t capture all the details when looking at a
spatial scene. There is a need for computational algorithms that behave similarly. The
relation-based model captures such properties by focusing on the most important features
of a spatial configuration. It disregards such detail as metric and topological issues
necessary for drawing a picture. From this point of view the graph structure seems to be a
more cognitive model with respect to the cell complex representation. It is of great
importance for analyzing scenes at a coarse level. Although the chapter explained the
model using polygonal data, the same reasoning can be applied to homogenous and
heterogeneous networks. The next chapter shows how this relation-based model can be

used in order to check topological equivalence between spatial scenes.
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Chapter 5

Assessing Topological Equivalence

In order to compare multiple topological representations and assess whether they
contradict each other or not, sophisticated tools are needed. The mechanisms for these
assessments differ depending on certain properties of the spatial objects. This chapter
uses the relation-based model (Chapter 4) as a basis to develop a computational tool to
assess topological equivalence between two spatial scenes. Topological equivalence is
analyzed in terms of individual representations for spatial objects, as well as considering
spatial scenes composed of a collection of these individual object representations.
Although equivalence occurs rarely when some generalization procedure is applied, the
equivalence concept can be relaxed in order to support similarity analysis between spatial
scenes (Bruns and Egenhofer 1996). The topological equivalence between two scenes is
achieved if both scenes have the same hierarchical structure, if the graph representations
are isomorphic, and if there is a match between each element of one scene and a unique
element on the other scene, respecting the orientation of boundary intersections between

the adjacent elements.
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5.1 Spatial Objects

Spatial objects may be represented by using the three geometric primitives region, line,
and point. These primitives can be used alone or in combination to represent one object.
Simple objects have a single geometric representation, while complex objects, such as
regions with holes, are represented by a collection of individual regions. Simple objects
are topologically equivalent if they are homeomorphic. Complex objects are topologically
equivalent if the concepts of object homeomorphism and relation homeomorphism apply

(Egenhofer et al. 1994).

5.1.1 Simple Objects

Simple objects contain just one representation, which could be 2-dimensional (region), 1-
dimensional (line), or O-dimensional (point). If after a transformation process the
dimension structure of the object representation is preserved, then the two instances of the

object are considered equivalent in terms of topology, and they are object homeomorphic.

5.1.2 Relation Between Objects

Spatial relations between objects are topologically equivalent if the content invariants,
and the component invariants of spatial relations are preserved (Egenhofer and Franzosa
1995). These invariants are the dimension of the components, their types, their

relationships with respect to the exterior, and the boundary sequence of intersections.

5.1.3 Complex Objects - Region with Holes
A region with holes is a homogeneously 2-dimensional object with a connected interior,
and disconnected boundaries and exteriors. There existaitareboundarythat contains

all other boundaries, called thener boundaries Each inner boundary delimits one
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hole—in a degenerate case, a region with one hole, filling the region’s interior, becomes a
1-sphere, i.e., a closed line separating two parts of the exterior from each other
(Egenhoferet al. 1994).

Holes have to fulfill certain topological constraints: (1) They must be mutually
exclusive such that any two holes that are part of the same region cannot overlap, nor
may one hole contain another hole. Holes may, however, touch along their boundaries.
(2) Holes must be in the region, either fully surrounded by the region’s interior or inside
but located along the boundary.

In order to capture these properties, a region with holes is represented as a set of
individual, simple regions for which the eight binary topological relations apply that are
realized with the 4-intersection. The structure of a regiavith holes consists of (1) its
generalized regiorA*, defined as the union of the region and its holes, and (2) each

individual holeH* (Equation 5.}
A=(A \(_L:Jl H*) O (L:Jlo"HiA> (5.1)

5.1.3.1 Hole Characteristics
Holes have the following characteristics:

« [Each hole is a separate entity.

A *
» Since each hole is contained in the generalized region Kl.e[] A ), the

topological relation that must hold between a hole and the generalized region
L . . AL *
is inside or coveredBy or equal (i.e., 0Oi: H; inside A or

* A *
H” coveredBy A" or H, equal A).
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 Since any pair of holes cannot have common interiors (Hg.nH;°=0),
the types of topological relations that may occur between holedigoent

. C o AL A A A
andmeet(i.e., 0i, jli # j: H; disjoint H; or H meet H).

The dimension of the relatiomeetbetween two adjacent holes is based on the
boundary-boundary component:

» If the dimension of all boundary-boundary components between two holes is
0, then the topological relation is call@ddimensional meefor simply O-
mee}.

» If the dimension of all boundary-boundary components between two holes is
1, then the topological relation is callédlimensional medi-mee).

« If the dimension of some boundary-boundary components between two holes
is 0, and of some others 1, then the topological relation is callgdd-
dimensional megmixed-me#). Figure 5.1shows a region with holeés which
the dimension of the intersections between hélgsand H,* is 0 and 1,
therefore, they have anixed-meetrelation. If there occurs anixed-
dimensional meedr ann-dimensional meetith more than one component,
then anisolated holegets created, i.e., a hole thadisjoint from the interior
part of the object. If¥igure 5.1 the holedH,* andH.* are examples a$olated

holesas they have no connection with the interior of obfect
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Figure 5.1: Region with holes.

A hole may have several adjacent holes. If it has more thameetrelations, then
the hole has anulti-meetwith respect to the other holes. This property is not necessarily

symmetric since aulti-meetfrom Hy to H; and H, does not imply the existence of a
multi-meeffor H, or H,. Figure 5.2shows a configuration in which hold, has amulti-

meet

Figure 5.2: HoleH, has a multi-meet.

5.1.3.2 Characteristics of the Generalized Region

. . . : * A . .
Since the generalized region contains each hole A.e[J H, ), the topological relation

that must hold between the generalized region and each hotatiginsor coversor

equal These properties follow immediately from the characteristics of the holes, as they
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describe the relations converse to those between the hole and the generalized region
(Section 5.1.3.1).

Similar to the dimension of thmeetrelation between holes, the dimension of the
relation covers between the generalized region and a hole is based on the boundary-
boundary component:

e If the dimension of all boundary-boundary components is 0, then the
topological relation is called-dimensional cover@-covers.

» If the dimension of all boundary-boundary components is 1, then the
topological relation is calletl-dimensional coverél-covers.

e If the dimension of some boundary-boundary components is 0, and of some
others 1, then the topological relation is calladked-dimensional covers

(mixed-coverp

5.1.3.3 Checking Equivalence
Paiva and Egenhofer (1995) presented an incremental algorithm to check equivalence
between two regions with holes. The basic criteria to identify topological equivalence
between two regions with holes are:
» the same number of holes exists in both region with holes;
» corresponding holes in both scenes have the same number and same type of
meetintersections related with their adjacent holes and generalized region;
» corresponding holes in both scenes have the same topological relations with
respect to other holes;
» corresponding holes in both scenes have the same topological relations with

respect to their generalized region;

88



« the boundary sequence dfieetrelations among corresponding holes are
equivalent; and
« the boundary sequences @dver relations among corresponding holes and

their generalized regions are equivalent.

The region with holes corresponds to a collection of individual entities and can be
seen as an individual hierarchical spatial scene. The higher level contains the generalized
region and the lower level contains the holes. Therefore, the region with holes can be
modeled using the relation-based model (Chapter 4). The next section introduces an
algorithm to identify the topological equivalence between spatial scenes. It uses the
relation-based model and the basic criteria’s to identify equivalence between region with
holes, as a way to build an association graph. This association graph contains possible
matches between individual representations, that are used during the process of

equivalence analysis.

5.2 Spatial Scenes

The process of checking the topological equivalence between two spatial scenes
corresponds to a spatial matching process. It tries to find for each object representation or
feature in one scene an equivalent feature in the other scene. A graph is composed of
several features, and a perfect match between the features of two graphs generates an
isomorphic configuration. The isomorphism occurs if and only if there is a one-to-one
mapping of all representations of the two graphs such that all adjacency relationships are
preserved. The association graph structure is used to identify the possible initial matches

based on the topological structure of each individual representation, and then a recursive
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procedure is applied to identify isomorphic configurations and the equivalent matches.

The association graph is built using the relation-based model extracted from the spatial
scenes. It is assumed that no semantics or any other type of information is provided,
although they may be easily incorporated into the system as additional constraints. The
process involves the following steps for each hierarchical level of the scene:

* Model the adjacent object representations and spatial relations between them
into a graph representation, with their respective node and arc property sets
(relation-based model), and build the association graph with possible matches
between representations with the same characteristics.

e Identify an isomorphism between graph representations and map all possible
matches for each object representation. This process is not concerned with the
order in which the intersections occur between adjacent elements.

* Check the boundary sequence for each match in order to validate it.

5.2.1 Building Graph Structure and Association Graph

Figure5.3 shows two simple scenes that are going to be used to illustrate the topological
checking process. First, the equivalent relation-based model should be extracted from the
scenes.Table 5.1shows the equivalent graph nodes and boundary sequence. In this

example, almeetrelations are of type 0-dimensional.
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(b)

Figure 5.3: Adjacent circles representing two spatial scenes.

Node Def. Sequence of the boundary components

Ny {1, area } {(N,, (O-meetunbounded) }

N, {2,area} {(N;, (O-meetunbounded) ),Ns, (0O-meetunbounded) )}

N3 {3,area} {(N,, (0O-meetunbounded) ),N4, (0O-meetunbounded) )}

Ny {4,area} {(Ns (0O-meetunbounded) ),Ns, (0O-meetunbounded) ),
(Ns, (O-meetunbounded) )}

N5 {5, area } {(N4, (O-meetunbounded) }

Ne {6,area} {(N4, (O-meetunbounded) ),N;, (0O-meetunbounded) )}

N {7, area } {(Ng, (O-meetunbounded) }

Na {A, area } {(Ng, (0O-meetunbounded) }

Ng {B,area} {(Na, (0O-meetunbounded) ),Nc, (0O-meetunbounded) )}

Nc {C,area} {(Ng, (0O-meetunbounded) )Np, (0O-meetunbounded) )}

Np {D, area} {( Nc, (0O-meetunbounded) ),Ng, (0O-meetunbounded) ),
(Ng, (0O-meetunbounded) )}

Ne {E,area} {(Np, (0-meetunbounded) ),Ng, (0O-meetunbounded) )}

N {F, area } {(Ng, (0O-meetunbounded) }

Ng {G, area } {(Np, (0-meetunbounded) }

Table 5.1: Relation-based model information for scenes of Figure 5.3.
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Once the characteristics of each feature are identified in the graph model, the
association graph is built. It is constructed based on the number and type of boundary
components that each feature contains. Each node of the association graph corresponds to
a pair of features with the same characteristics (i.e., it satisfies the constraint model), and
each link in the association graph means that the features in each scene are adjacent.
Figure 5.4shows the equivalent association graph for scen&ggafe 5.3 in which the
constraint applied isquivalenceFor example, there is a link between nodes {1,A} and
{2,B}, because feature {1} is adjacent to feature {2} and feature {A} is adjacent to

feature {B}.

b © o o
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Figure 5.4: Association graph between scenésgifre 5.3 using the spatial relations.

5.2.2 Finding Isomorphic Configurations
When comparing two graphs, topologically equivalent scenes may generate one or more
isomorphic configurations. A recursive procedure with backtracking, similar to the

connect labeling problem (Haralick and Shapiro 1979; Haralick and Shapiro 1980)
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applied to networks (Haralick et al. 1985), has been developed. Basically, for each node
in the association graph, the algorithm tries to find one isomorphic configuration. The
procedure starts with one node of the association graph composed by one feature of both
graphs (FeatFeat,), which is considered the current node. Then a forward search routine
is called to find if it is possible to map the adjacent elements of, leeda the adjacent
elements of Feat The next adjacent node is assigned if it is present in the association
graph, and if there is a link between it and the previous node. For each new combination
found the node is taken as the current node, and the forward search routine is called again
to analyze now the adjacent elements of this current node. If at some point the procedure
is not able to find an equivalent situation, then it backtracks to the initial adjacent node
and tries another combination between the adjacent elements. The basic search-forward
procedure is described ilgorithm 5.1 It has asinput parameterghe current node
containing a pair of features, the actual current list of node matches, and the association
graph used as reference.

Table 5.2shows the only isomorphic configuration thedn be found for the
association graph dfigure 5.4 Starting with node {1,A}the processcontinuesto the
next adjacent pair {2,B}, and so on. At node {4,D} there are more adjacent elements to
analyze, and the algorithm permutes the node combinations in order to find equivalence.
First the pair {5,E} is tested, but as it does not belong to the association graph, it is
discarded and the algorithm backtracks to the next combination from node {4,D}. The
next test is done on node {5,G}, which is accepted because it belongs to the association
graph and it is connected with node {4,D}. As there are no more adjacent elements for
features 5 and G, the algorithm backtracks to node {4,D} and tries to match the remaining

nodes. The next selection is node {6,E}, which is valid because it belongs to the
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association graph and it is connected to node {4,D}. Next, node {7,F} is analyzed which
is also valid, and this completes the isomorphic configuration as all features of one scene

have a different match with the other scene.

boolean
SearchForwardNode NodePair PairList ListOfPairs,AssociationGraph AssGraph
Begin
If (NodePair[J AssGraph
return FALSE;
If ListOfPairsis not nulland there is no link orAssGraph
between last node aistOfPairsandNodePair
return FALSE;
Add NodePairto ListOfPairs
Get adj. boundaries dfodePaig, (first scene), anlodePait, (second scene)
For each adjacent boundatylj,, of NodePai, that is not inListOfPairs
For each adj. boundarkdj.,of NodePait, that is not irListOfPairs
NewNode~ (Adj.,Adj,);
If (SearchForwardNewNodé.istOfPairs,AssGrap))
Set flag thatAdjS1 andAdjS2are inListOfPairs
If all adjacent boundaries BiodePait,, andNodePaig,are inListOfPairs
return TRUE;
Else
RemoveNodePairfrom ListOfPairs;
return FALSE;
End

Algorithm 5.1: Recursive procedure to identify isomorphic configurations.
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{1,A} -> {2,B} -> {3,C} -> {4,D} -> {5,E} failed, then backtracks

{4,D} -> {5,G} ok, then backtracks

{4,D} -> {6,E} -> {7,F} then ends.

Table 5.2: Isomorphic configuration process baseBigare 5.4

5.2.3 Validating Isomorphic Configurations
Topologically equivalent scenes generate isomorphic configurations, but the fact that two
configurations are isomorphic does not mean that the configurations are topologically
equivalent. In order to guarantee that the scenes or configurations are equivalent in terms
of topology, one last test, checking the boundary sequences for the features in each node,
needso be performed.The boundary sequences are showiiable 5.1 Each boundary
component has the feature identifier, the relation type, and the complement relationship
value. The boundary sequences of a matching,paill be equivalent if:
» they have the same number of boundary elemerssd
« for each boundary componen{ 1< k< n) ofi andj the feature identifiers
corresponds to a node in the isomorphic configuration, and the boundary type
and complement relationship values are equal. The boundary sequence of the
feature in one scene is kept constant, while the other boundary sequence for
the feature of the second scene is clockwise permuted until an equivalence is

found, or all permutations are analyzed.

The combination between the isomorphic configurationTable 5.2 and the
boundary sequences Béble 5.1generate§able5.3, whichidentifiesvalid matchesafter

analyzing the boundary sequences. For simplification the boundary types are not
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represented in this table, as they are all of the same Qypeet,unbounded If all
matchesarevalid, thenthe two spatial configurations have the same topold@ble 5.3

shows that the boundary sequences for node (4,D) is invalid, because for each possible
combination there is at least one pair of feature identifiers that does not belong to the

isomorphic configuration found.

Node Sequence of boundary components
(1,A) {(2) (B) - valid }

(2,B) {(1,3) (A,C) - valid } { (1,3) (C,A) - invalid }
(3,0) {(2,4) (B,D) - valid } { (2,4) (D,B) - invalid }

4,D)  {(3,56) (C,E,G) - invalid } { (3,5,6) (G,C,E) - invalid }
{(3,5,6) (E,G,C) - invalid }

(5,6) { (4,D) - valid }
(6,E) {(4,7) (D,F) - valid } { (4,7) (F,G) - invalid }
(7,F) { (6,E) - valid }

Table 5.3: Boundary components sequence for nodeshdé 5.2

5.2.4 General Procedure

The procedure to identify isomorphismlgorithm 5.1) uses theassociationgraph
between two graphs of spatial scenes. A spatial scene may have several graphs, at
different levels of detail. Therefore, when comparing two spatial scenes, the isomorphism
process should be applied between graphs at the same level of hierarchy, starting at the
higher levels and going towards the lower levels. At lower levels of the hierarchy, the
isomorphism check is performed just between graphs in which the parent graphs

correspond to a node in one isomorphic configuration. A collection of isomorphic
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configurations represents a global match between two scenes, and several collections may

be found Algorithm 5.2.

ColllsomConfList  EvaluateTopology§patialSceneS, SpatialScenes)
Begin
Make collection list of isomorphic configuratio@®lllsoListequal null;
For each level of Scenes:
Begin
Make a temporary list of isomorphic configuratidresmplsolLequal null;
Get graphs of andS at levelL and put them into graph lis&istlandGlist2;
For each combination of grapl® andG, from Glistl andGlist2:

Begin
If same number of features betwé&zrandG,
Begin
If levelL > 1
If father graphs oG, andG, are not part o€olllso then
go to next combinatidd, ehdG,;
Build an association gragkssGrwith G, andG,,
Find the isomorphic configurations AssGrand add them
tdemplsol.
End
End

Add the contents of temporary lisémplsoLinto the current collection list of
isomorphic configurationSolllsoList, avoiding repetition of graph component

U7

Look for all possible combinations;
End
Return the collection list of isomorphic configuratio@®llisoList
End

Algorithm 5.2: Procedure to compare topology between two scenes.

97



Algorithm 5.2 describes the process to compare topological aspects between
different representations. It is based on the relation-based model that contains all the
necessary topological information. There is no need for deriving any other information.
Representation models based on pure geometry would require the derivation of all
topologicalrelationshipseforeusingAlgorithm 5.2 For the cell complex representation
model, which contains geometry and some topological information, it would be also
necessary additional processing in order to derive topological relationships related to O-
dimensional adjacencies. Therefore, the development of topological tools based on the
relation-based model simplifies the analysis of comparing different spatial

representations, and supports the hypothesis of this thesis.

5.3 Similarity Measures

The previous section presented an algorithm to determine equivalence between two
spatial scenes by identifying the matching of features in both configurations. Spatial

scenes may be affected by some transformations that may change their general
topological structure. With some changes it is possible to consider that both scenes are
similar. Similarity is the assessment of deviation from equivalence (Bruns and Egenhofer
1996). Using some similarity constraints based on comparison of number of intersections,
dimension of intersections, and changes in spatial relations, we are able to relax the
equivalence model and use the same approach as for identifying the isomorphic
configurations. This section describes similarity measures for individual features in

spatial scenes, similarity measures for the general structure of a spatial scene, and

similarity measures for isomorphic configurations between two spatial scenes.
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5.3.1 Individual Representation

Each spatial object may be described by one or more spatial representations. These
representations are nodes on the relation-based model. Each node on the graph may
contain links that relate to the adjacent representations, as well to the hierarchy levels of
the spatial scene. Some similarity measures can be extracted for each individual

representation considering its individual characteristics and its adjacent features.

5.3.1.1 Dimension

The representation dimension may vary from a 2-dimensional region, to a 1-dimensional
line, to a O-dimensional point. The dimension similarity value between two
representations j may be obtained by using the absolute difference of the representation
dimensionsdivided by 2 (which is the maximum possible differendgyuation 5.2
represents the similarity value in which values close to 1 mean more similarity.

_ _ _ [abgdim ensiop—dim ensionQ
DimensionSim) =1- E > i

(5.2)

5.3.1.2 Number of Adjacent Elements

The graph is modeled using the spatial relations between the scene’s object
representations or features. Adjacent elements are related by 0- or 1-dimensional meets,
and a similarity measure between two individual graph features can be obtained by
computing tke ratio between minimumand maeximum values of O-dimensioral (Equation

5.3) and 1-dimensionahees (Equation 5.4 and getting the averagedquation 5.5
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min(#0 — meets,#0— meety
max(#0 — meets, - meets)

0-meetSim (5.3)

1 i min(#.— meets,#- meety £ 4
- meetSim = :
i max(# - meets,A—- meets) (54)

0-meetSin +1- meetSim
2

MeetSim, = (5.5)

Figure 5.5shows several regions withsalectedeatureandits adjacentelements.
For this selected feature, iigure 5.5ahe total number of O-dimensionaleds is zero,
and the total number of 1-dimensiomagds is 5, while inFigure 5.5htwo featureshave
been merged and the number of 1-dimensiomattsis now 4. Therefore, the similarity

measure between the selected features for the number of adjacent elements, based on

Equations 5.3, 5.4, 5i8: > =09.

(@) (b)

Figure 5.5: Selected feature and its adjacent features.
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5.3.1.3 Adjacent Structure

The adjacent structure of a feature can be described by the spatial relations between its
adjacent elements. These spatial relations maydsetor disjoint, and the measure for

the adjacent structure is defined as the numbenesdtrelations between the adjacent
elements. For example, iigure 5.5ahere are fivanee reations béweenthe adacent
elementsof the selected feature {(1,2), (1,5), (2,3), (3,4), (4,5)}, whileRmure 5.5b

there are fourmeet relations {(A,B), (A,D), (B,C), (C,D)}. The adjacent structure

similarity measure between two featurgsis measured biquation 5.6

min(#adjacentmeet# adjacentmegt

AdjacentStrutureSim = (5.6)

max(#adjacentmeet, # adjacentmeset

5.3.1.4 Hierarchical Structure

The hierarchical structure of an area feature can be measured by the number of internal
graphs that it contains. Each graph on the relation-based model represents a set of
connected features or an isolated feature. Therefore, the basic measure for the hierarchical
structure of an area featuhds equal to the number of graphs for which the parent feature

is A. This measure for the number of lower levels graphs is called the number of
childgraprs. Equation 5.7represents the hierarchicstructuresimilarity betweentwo

features.

min(#childraphs ,# childgraphs)
max(#childgraphs ,# childgraphs)

HierarchicaIStructureSim =

(5.7)
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In Figures 5.5a and 5.5b the selected features have one lower level lgrap
representing the internal region, therefore, the similarity value for the hierarchical

structure is 1 for these selected features.

5.3.2 Spatial Scenes

The previous measurements were concerned about individual features. A spatial scene
may contain several objects with many representations, and it is possible to extract some
similarity values in terms of the general structure of the scene, referreddetaged
similarity, as well as measures for isomorphic configurations between different scenes,

referred to asopological similarity

5.3.2.1 Detailed Similarity
Detailed similarity measures refer to the general structure of the spatial scene. Two
detailed similarity values may be obtained:

» the number of hierarchical levels on the scene; and

» the number of graphs per level of hierarchy.

The detailed similarity between two sceng$ considering the number of levels
may be computed witlEquation 5.8 which calculates the ratio between the number of

levels in both scenes.

min(#levels, #levels)

HierarchicalSim; = (5.8)

maxlevels , #levels)
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The similarity based on the number of graphs per level of hierarchy can be obtained
by computing the similarity between each level, and then dividing the total by the
maximum numi@r of levels between scenes i, j. Equation 5.9computes the similarity
between eachevd | with the ratio between the number of graphs at leveahdEquation
5.10computes the total similarity between the sceassyuming as the maximum level.

These equations are very simple, and they do not capture how the lower level graphs are
related to their parent graphs, but they give an idea of the graph structure. Several
different methods to compare graph structures can be found in standard graph theory

(Balakrishan 1997).

min(#graphs , #graphs)

LevelSim ., = :
SVEISIR max@graphg , #graphs) (5-9)
|
z LevSim ;,
GraphLevelSim = *~*——— (5.10)

5.3.2.2 Topological Similarity

The topological similarity between two scenes applies to isomorphic configurations. Each
isomorphic configuration represents a match of features between two graphs. This match
corresponds to a 1:1 mapping between features of both graphs. For scemegrajiths
(n>1), there may exist a collection of isomorphic configurations describing the matching
of features between the graphs. Each collection of isomorphic configurations describes
one possible matching of features between the two scenes. Several collections of

isomorphic configurations may be found when comparing the spatial scenes. The
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following measurements can be extracted from each collection of isomorphic
configurations:

e using the nodes of the isomorphic configurations, compute the number of
valid matching, where valid means that the boundary sequences between the
node features satisfy the constraints applied;

» using the nodes of the isomorphic configurations, compute the dimension
similarity between the node features;

» using the nodes of the isomorphic configurations, compute the spatial relation
similarity between the node features; and

e using the number of features, the number of O-dimensiowmadtsand the
number of 1-dimensionaheetsthat each graph contains, compute the graph

structure similarity between the graphs of the isomorphic configurations.

5.3.2.2.1 Valid Matching

Each isomorphic configuration is characterized by a set of nodes, with each node
containing a feature of one scene and the equivalent matching feature on the other scene.
The matching is considered valid if the boundary sequence of both features follow the
similarity constraints. In cases of equivalence, the boundary sequences must be the same.

Each isomorphic node may be defined by a pair of features and a flag identifying if the

boundary sequence is vaIIdoNodez{(FSI,FZ)IsVaIid}. Each isomorphic

n
configuration contains a collection of nodesoConf= Z IsoNode, wheren is the
-1

number of nodes. An isomorphic collection is a list of isomorphic configurations,

|SOCO||:Z|SOC0nf, where m is the number of isomorphic configurations. The
i-1
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similarity value for valid matching on an isomorphic configuration is the number of valid

matching divided by the number of nod&sj@ation 5.1).

> k(k=1if IsoNode- IsValid otherwise k = 0)

ValidSimy . = - (5.11)

Using Equation 5.11 the valid similarity for each collection asomorphic
configurations is the average of all valid similarity owerisomorphic configurations

(Equation 5.1

S ValidSim,

ValidSim, ., =2 - (5.12)

5.3.2.2.2 Feature Dimensions

The dimension similarity measure for each isomorphic configuration is determined by
computing the dimension similarity between features of each node, divided by the

number of nodes) (Equation 5.1R

Z DimSimSOConf-. Ny

DiImSim, ., =% - (5.13)

Using Equation 5.13the dimension similarity foeachcollection of isomorphic
configurations is the average of the dimension similaritpnagomorphic configurations

(Equation 5.1%
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m

Z DimSimsoConf

DimSim, ., =+ - (5.14)

5.3.2.2.3 Spatial Relation between Features

Topological changes may occur for individual objects, such as dropping parts or reducing
dimension, but they may also occur with the topological spatial relations between the
objects. Topological relations capture the characteristics of the spatial configurations, and
gradual changes in topology may cause two equivalent scenes to become less similar
(Bruns and Egenhofer 1996). The conceptual neighborhood of topological relations has
been modeled with the concept of gradual changes (Egenhofer and Al-Taha 1992), and it
supports the determination of similar relations by using an ordering scheme for
topological relations. Bruns and Egenhofer (1996) described the conceptual neighbors of
topological and direction relations between regions, and Egenhofer and Mark (1995)
modeled the conceptual neighborhoods of topological line-region relaliabée 5.4

shows the conceptual neighborhood distances for the content invariants of spatial
relations between two simple regions. For example, dvg@int regions turn into an

insideor containsrelation if four units of gradual changes occur.
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Disjoint Meet Overlap Covers CBoveredContain Inside Equal
y
Disjoint 0 1 3 3 4 4 3
Meet 2 2 3 3 2
Overlap 1 1 2 2 1
Covers 0 2 2 2 1
Covered 0 2 1 1
By
Contain 0 1
Inside
Equal

Table 5.4: Difference matriD{ffTopo) for the conceptual neighbors
between regions.

Given two regionsA and B that exist in both scene§ and S, the topological
similarity for the spatial relation betwedmandB considering both scenes is expressed as

the ratio between the distance of the spatial relations and the maximum distance i.e., 4,

Equation 5.15

DiffTopd SR, S
Topolog icalSim , =1- ({ 4F§1'B %B] (5.15)

For an isomorphic configuration the topological similarity measure is calculated by
taking the equivalent pair of features in both scenes, and then computing the topological

similarity using Equation 5.15The total similarity is the sum of the measure for each

feature pair, divided by the number of feature pairs.
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5.3.2.2.4 Graph Structure

The previous three similarity measures took into consideration the pair of features found
on the isomorphic configurations, but they did not account for features of graphs that may
not be matched, or for features that may be merged, split, or dropped. These kind of
situations may change the graph structure. Given a graph, three measures can be extracted
from it:

» the number of O-dimensional meets;

» the number of 1-dimensional meets; and

* the number of features.

The similarity measure for the graph structure between two giaphsan be
computed adding the ratio between minimum and maximum values for the above
parameters(Equations5.16, 5.17, 5.18 This similarity measure is represented on

Equation 5.19

min(#0 — meets,#H0— meet

Graph0— meetSim = max(#0— meets - meets (5.16)
~ . min(#1- meets,#—- meegt3
GraphL— meetSim = max (- meets - meets (5.17)
in(# features,# feature
GraphFeatSin) = min(#features, # featurgy (5.18)

max(#features ,# features)

Graph0— meetSim + Gragh- meetSim  GraphFeatSim
: 3 : (5.19)

GraphSim, =
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Given a collection of isomorphic configurations representing a match between two
scenes, the graph similarity measure for one of the s&meslefined as the sum of the
graph similarity for each isomorphic configuration that is part of the collection, divided

by the number of graphs in sceéagEquation 5.2

n
Z G raphSirrILOGraph - G,,IsoGraph -G,

GraphSimcog = == Faraphs, (5.20)

5.4 Topological Changes

The proposed procedure to identify isomorphigigorithm 5.2) compares graphs with

the same number of features. However, topological changes such as merging, splitting, or
dropping may change the number of features in one configuration. In order to use this
algorithm, in cases of merging for example, it is necessary first to identify possible
merges of features, second to perform a merge operation on the relation-based model, and
third to apply the procedure for checkingomorphism (Algorithm 5.1). The
identification of possible merges can be done by using the similarity measures presented

in the previous section.

5.4.1 Merging

Given two graphsG, andG, with m andn features respectivelym(> n), the problem
consists in identifying pair of features @) that may correspond to one featureGn A

merge operation on the relation-based model corresponds to eliminating the boundary
components between the features to be merged. After merging features, the structure of
the adjacent elements for the merged feature is modified in terms of the total number of

adjacent elements, and how they are related. The similarity values for individual features
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(Equations 5.25.5, 5.6, and5.7) are used to verify if a pair of features@feature are
candidate to be a feature®). Figure 5.6shows a merge example with two situations for
the political subdivision of Brazil, in whiclirigure 5.@ contains one more feature than

Figure 5.6b

Figure 5.6: Political States of Brazil.

The procedure to identify possible pair of features that may result in a union is:

» Select a feature in the graph with less featu®) (

» Look for similar features in grap®, using the similarity values for individual
representations: dimension similaritfequation 5.2, number of meés
similarity (Equation 5.} adjacent structure similaritfEquation5.6), and
hierarchical similarity Equation 5.7.

» Foreachsimilar feature that satisfies a tolerance value, calculate how simila

is the merge of this feature with one of its adjacent elements, compared with
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the selected feature. This is done by using the similarity values for the number
of mees (Equation 5.pand for the adjacent structutequation 5.5
* Merge with high values of similarity are performed on the graph model and

the isomorphism procedur@lforithm 5.2 is executed.

The following examines the example for the selected featuFégafe 5.6b Table
5.5 shows the features Figure 5.6ahat are ateast85% similar to the selectedeature.
The total similarity value is the average of the four or three (not considering hierarchy

similarity) similarity values between individual representations.

Similarity
Feature | Dimension Meet Adjacent Hierarchy Total
9 1 0.7143 0.7143 1 0.8571
8 1 0.8571 0.7143 - 0.8571
6 1 0.8571 0.8571 - 0.9048
10 1 0.8571 0.8571 - 0.9048
11 1 0.8750 1 - 0.9583

Table 5.5: Similarity values between feature&iglure 5.6aand selected

feature inFigure 5.6b

With the identification of the similar features, the next step corresponds to evaluate
themeetsimilarity and adjacent structure similarity between the selected feature and each
possible merge for the similar features. For each similar feafufable 5.5, performa
merge wth each ofits adacen feaures and cmpareit with the sdeded feaure. Figure
5.7adisplaysthe adjacentfeaturesfor the merging between features 9 and 7, REiggire

5.7bhighlights the adjacent features for the selected element.
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Figure 5.7: Adjacent features for: (a) merged features; (b) individual feature.

Table 5.6shows the similarity values when merging feature gigtire 5.6awith
eachof its adjacent features and comparing it with the selected featurigune 5.6b
Similarity values close to 1 should be taken into consideration, and the merge operation is
performed in the graph before the analysis of equivalence. One important point is to
identify which is the similarity threshold value to be used as reference in this case. When
the compared graphs have just one feature of difference, it is expected that the merged
features have the same structure of the selected feature, and in this case the similarity
threshold value would be 1. However, as the difference in terms of number of features
between the graphs increases it is possible that adjacent merges occur and in this case the
adjacent similarity value for comparison may not be 1 but a little less.

The relation-based model should provide a merge operation. The merge procedure
betweertwo area features on the graph model is detail@dgorithm 5.3 The approach
taken to analyze merge situations can be used in situations of splitting, by making the

analysis with the scenes in the reverse order.
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Similarity
Merge #Meets Adj. Meet Adjacent Total
Structure

{9,10} 7 7 1 1 1
{9,6} 7 7 1 1 1
{9,8} 7 6 1 0.857 0.9375
{9,11} 9 8 0.7777 0.875 0.8263
{9,7} 6 5 0.8571 0.7143 0.7857

Table 5.6: Meet and adjacent structure similarity values between merge of
features fronfigure 5.6aand selected feature kigure 5.6b

End

AreaFeature* SpatialScene::MergéfeaFeature *first, AreaFeature *secondl

Begin

Create new area featunewAreaFeature
Generate boundary list foewAreaFeatur@xcluding the common boundaries
betweerfirst andsecondeatures;

Update boundary list of adjacent and cover features by excluding the
boundary components related witet andsecondand by
adding the boundaries witewAreaFeature

Update graph hierarchy if necessaryfi(gt andsecondchave more
than one boundary in common);

Removefirst from its graplhG;

Removesecondrom its graphs;

Add newAreaFeaturd¢o graphG;

return newAreaFeature

Algorithm 5.3: Merge operation between two area features in the graph
model.
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5.4.2 Dropping

The operation drop corresponds to the elimination of some isolated feature from a spatial
scene. It results in one graph less on the resultant scene, altering the hierarchical
configuration. Therefore, when comparing scenes where dropping of features has
occurred, there will be no match for some graphs, which will result in a less similar
measure for graph structure between the collections of isomorphic configurations.

Algorithm 5.4shows the procedure for dropping an isolated feature in the graph mode

booleanSpatialScene::Dropgature *feature

Begin
If featuretype is equal to AREAhen update graph hierarchy if necessary;
Removefeaturefrom its graphG;
return true;

End

Algorithm 5.4: Drop operation in the graph model.

5.5 Summary

A recursive procedure to identify equivalence between spatial scenes has been presented.
It is based on the information extracted from the relation-based model that describes a
spatial scene. The association graph is created using the spatial relations between the
graph features. To analyze equivalence, the association graph nodes should contain a pair
of features with the same characteristics. However, the association graph can be built
using some degree of similarity between features, which allows for similarity analysis
between spatial scenes. A set of similarity measures between individual representations,

between scene structures, and between isomorphic configurations can be used as a way to

114



relax the concept of equivalent scenes into the concept of similar scenes. The measures
presented do not use weights, however weights can be assigned depending on the type of
analysis. For example, when analyzing scenes at the same level, dimension and adjacent
parameters may be more important, while for scenes at different levels the hierarchical

structure may be an important parameter to consider. The information captured by the

relation-based model can be stored in the database as the metadata description for the
spatial relations between object representations and the similarity measures between

individual representations can be used as a search procedure in digital libraries.
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Chapter 6

Software Implementation

This chapter describes an object model that supports the implementation of a topological
consistency checker that is based on the relation-based model (Chapter 4). Object
orientation is a software modeling methodology that facilitates the design and
construction of complex systems from individual components. It provides concepts and
tools that permit developers to model and represent the real world as closely as possible.
The object-oriented approach is characterized by objects and abstraction mechanisms to
deal with them. Each data object contains operations that describe its behavior. Groups of
data objects that have the same operations are implemented through classes. A class
describes and implements all the operations to manipulate its instances. Abstraction tools
such as classification, generalization, association, and aggregation, are basic concepts for
the design of object-oriented models (Brodie 1984). The abstraction concept of
classification corresponds to mapping an object onto a common class. Generalization
groups several classes of objects with common operations and properties into a more
general class. These abstraction tools, combined with the concepts of inheritance and
propagation, permit us to model complex spatial objects and represent them at different

abstraction levels better than the relational model (Egenhofer and Frank 1989). The
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concept of inheritance means that the properties and operations of a parent class are
inherited by all related children classes. The inheritance is simple when the child class
has just one parent class. If the child class has more than one parent class then the
inheritance is called multiple. Some of the major benefits of the object-oriented approach
is that the software components can be easily reused, modified, and extended.

Object-oriented design methods help developers to exploit the expressive power of
object-based and object-oriented programming languages, using the classes and objects as
basic building blocks (Booch 1994). The object model has been influenced by object-
oriented programming languages, and the object-oriented analysis and design represents
an evolution for the development of systems. Object-oriented analysis identifies the
system requirements in terms of objects and classes, and this result serves as a model for
the object-oriented design process. Object-oriented design leads to an object-oriented
decomposition and uses different notations to express the different models of the class
and object structure. This chapter uses the Unified Modeling Language (UML) (Booch et
al. 1996) as a software engineering tool that supports the development of the topological
consistency checker classes. UML is a third-generation method for specifying,
visualizing, and documenting the components of an object-oriented system. It represents
the unification of Booch (Booch 1994), Objectory (Jacobson 1992), and OMT
(Rumbaugh 1991) methods.

This chapter is organized as follow: the first part introduces the UML notation and
describes the classes and relationships for the relation-based model, and the second part
describes how to convert SPRING’s (INPE/DPI 1997) vector model, which is based on

the cell complex structure, into the qualitative model presented in this thesis. SPRING is
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a GIS and remote sensing image processing system that integrates raster and vector data,

using the object-oriented approach.

6.1 UML Notation

UML distinguishes between the notions of model and diagram. A model contains all the
elements of the system, and the diagram is a particular visualization of certain types of
elements from a model, exposing in some cases detailed information. There are several
diagram types in the UML definition, but this text uses only the class diagram and

describes how to represent relationships between several class diagrams.

6.1.1 Class Diagrams

The class diagram is the core for a UML model, and it shows the important abstractions
in the system and how they relate to each other. The basic elements found in class
diagrams are class icons and relationship icons. UML represents individual classes as
solid rectangles that may be divided into three parts or compartments. The first part
contains the name of the class. The second and third parts are optional and may be used to
list the attributes and operations of the cl&sgure 6.1shows the class diagrafor the

class Point.

Point

Xcoord

Q>Ycoo rd

wDefine()
#GetXCoord()
$GetYCoord()

Figure 6.1: Class icons with attributes and operations.
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6.1.2 Relationships

Besides the individual classes with their attributes and operations, class diagrams also
represent the relationships that exists between dependent classes. UML identifies several
types of relationships with their respective graphic representations. An association
between two classes is depicted by connecting the classes with a straight line. The values
of role-1 and role-2 specify how many instances are to participate in an association.
Associationsare bi-directional by defaultKigure 6.23 but UML uses an arrowhead to
represent an unidirectional associatiéimg(ire 6.2h. Aggregation is a special form of
association that is used to show that one object is at least partially composed of another.
Figure 6.2c showsan aggregation with a hollow diamond, which represents that the
whole object maintains a pointer or a reference to its parts. If the diamond is filled
(Figure 6.2¢l, then the diagram shows that the aggregasdmy value,i.e., the whole

object declares an actual instance of the part object within itself. When one class shares
the structure and behavior defined by another class, a diagrantigsiia 6.2ds used,

showing that the subclass inherits all the attributes and operations of the superclass.
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association name association name
Class 1 Class 2 Class 1 Class 2
role-1 role-2

(a) (b)

By-reference By-value
Superclass
whole whole
Part Part Subclass
(©) (d) (e)

Figure 6.2: Types of UML relationships: (a) bi-directional association; (b) unidirectional
association; (c) aggregation by reference; (d) aggregation by value; and (e) inheritance.

6.2 Relation-Based Model Class Structure
The relation-based model represents a spatial scene as a collection of hierarchical graphs.
There are four basic classes:

* A feature describes the object representations. Derivations from this class are

point, linear, and area features.
* A boundary describes the adjacent intersection between two features.
* A graph describes a collection of connected features or isolated features.

* A spatial scene describes all object representations and relationships of one

map.
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Figure 6.3 shows the UML diagram that describes the relation-based model. The
spatial scene clagpatialScenés composed by a list of graphs, the clasaphList This
list of graphs may be empty or not, and there is an aggregation betweeGrelpbkist
with classGraph Each graph represents a set of connected features or an isolated feature.
In case of connected features, the boundary components between these adjacent features
are part of the graph class. The diagram shows that theGtaph contains one list of
features,FeatureListclass, and one list of boundari@jundaryListclass. In order to
represent the hierarchical structure of the spatial scene, each graph has pointers to its
parent graph and parent feature, which will be null if the graph is on the higher level of
the hierarchy. Each list of featuré®atureListclass, may have O orfeatures. Likewise
each list of boundarieBBoundaryListclass, may have 0 an boundaries. The class
Feature is the generalized representation for the spatial objects. The subclasses
PointFeature LinearFeature and AreaFeatureare derived from the clas®atureand
inherit all the attributes and operations of this class. The area feature is a special case,
because it may contain or cover other graphs. The diagram shows thatdfeature
class contains a pointer to the lower-level graphs that it contains, and it also contains an
extra list of boundaries that describes ¢begersrelations with the lower-level features.

In order to handle a list of instances of a class, all basic classes may be derived from
a general class that is manipulated by a generic list. Implementations of double-linked list
can be found in text books of datructures(e.g.(Knuth 1968)).Figure 6.4 shows the
class diagrams for a double-linked list implemented in SPRING (INPE/DPI 1997), in
which the clas$SObjectrepresents a generic object that is part of a node of the list. Each
node points to the next and to the previous node, and the list class has two pointers to

nodes that represents the root and the current items of the list.
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SpatialScene

1

GraphlList

BoundaryList

1

FeatureList Ko

1 1
0.
Boundary

Feature |

1

AreaFeature

_ | LinearFeature

PointFeature

Figure 6.3: Class hierarchy for the relation-based model.

List
1
0.1 0
LNode
0.1
1 1

122

SObject

Figure 6.4: List and its node class structure.




6.2.1 Feature
The classFeatureis the core of the definition of the spatial scene. It describes the
representation types that the spatial objects may have. In an environment with multiple
representations, one spatial object may be represented by geometric primitives or symbols
describing these primitives with different dimension&igure 6.5 shows the class
diagrams for thé&eatureclass and its derivation classes. The basic €laaturecontains
three attributes, a boundary list, and a set of operations that are inherited by its children’s
classes. The attributes are the feature identifier, the feature representation, and the
geometry identifier. Although the relation-based model uses symbolic geometry, the
geometry identifier attribute is provided for situations where the geometry is available
and it is desirable to link the symbolic information with the geometry. The derived
classes represent the feature with different dimensionsAfided-eatures a special case,
because it may contain other features inside it, or it may cover a set of features.
Therefore, it provides an additional boundary list that stores the boundary components
related tocoversrelations, and it also contains a pointer to a list of graphs that are
immediately under it in the hierarchy structure.

The complete specifications for these feature classes, as well for the future classes
to be presented in this chapter, are described in Appendix A. The specifications describe

in detail the attributes and operations for each class.
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Feature
FeFid tlong
FoFrepres : char 1
FeFgeoid :long

BoundaryList

®Feature()

¥~Feature()

id()

®Appe ndMeetBoundary()
®RemoveMeetBoundary() 1
“Representation()
#Geometryld()
®NumberofBoundaries ()
$Boundaries() PointFeature LinearFeature AreaFeature
#TotalMeets()
%TotalBoundaries()

1

N ; %PointFeature() %LinearFeature () @AreaFeature()
TotalMeetRelations () %-PointFeature() @-~LinearFeature() ¥-~AreaFeature()
“AdjacentFeatures() @FirstGraph()
#NumberofAdjacentFeatures () ¥NextGraph()
‘IsAdJa.\cenIO @AppendGraph()
PRelation() ¥Sons()

®Similar()
®AdjacentStructure ()
®DimensionSimilarity()

@CoverBoundaries()
@AppendCoverBoundary()

o QNumberOfCoverBoundaries()
QMe.elS|m|I§r|Fy(). @GeneralizedRelation()
%AdjacentSimilarity()

1
W¥HierarchySimilarity()
¥SimilariyMeasure() 01
Z} GraphList

Figure 6.5: Diagram for théeatureclass and its child classes.

6.2.2 Boundary

A boundary describes the intersection between two features. The attributes type and
complement relationship are related to the component invariants of topological relations
(Egenhofer and Franzosa 1993). The boundary type between connected features at the
same level of a hierarchy will be some of theetrelations, while the boundary type
between an area feature and its covered features will be some aovéraelations.

Figure 6.6shows the specification féhe Bounday class.Besidesthe panter to the two

adjacent features, this class has a list of identifiers that point to the geometric coordinates.
The relation-based model uses just symbolic information, but this list of coordinates is

provided for situations where the geometry is available for visualization purposes. The
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topologic checker uses the symbolic information of the relation-based model to analyze

the equivalent relations.

Boundary

&Bid :long
&kBtype : char
&sBcomprel : char 2

Feature

“Boundary() _—
“~Boundary()
¥Define()
id() e
WFirstFeature() 1 T ~[ sidList
“#SecondFeature()

%Type()
%ComplementRelationship()
¥Geometrylds ()

WAddGeom etryld()

Figure 6.6: Diagram foBoundaryclass.

6.2.3 Graph

Each graph descrbes the conneted sd of feaures or anisolated fedure. Figure 6.7

shows the class diagram for a graph. It contains an attribute describing its identifier, a list
of features, and a list of boundaries describing the adjacent intersections. Furthermore, it
contains two pointers that permit us to navigate the hierarchical structure of the spatial
scene. The first pointer points to the parent graph in the hierarchy, while the second

pointer points to the area feature on the parent graph that contains this graph.
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Graph

@Gid :long

@Graph()

4~Graph()

Bid()

WFirstFeature ()

%N extFeature ()
@AppendFeature()
%Num berOfFeatures ()
WFeatures()
“Boundaries()
WFirstBoundary()
$NextBoundary()
WAppendBoundary()
%N um berOfBoundaries ()
@FatherGraph()
$FatherFeature()
WGetFeature()
$RemoveFeature()
$GetBoundary()

%R em oveBoundary()
WFeatureDimension()
$Relations ()
“GeneralizedRelations()
%BuildBoundaries()
@HasSubGraphs()
WHierarchyLevel()

$GetNumberOfBoundaries()

FeaturelList

1 BoundaryList

\
0.1 Feature

0.1

Appendix.

Figure 6.7: Diagram foGraphclass.

6.2.4 Spatial Scene

A spatial scene contains a collection of spatial objects that may have multiple
representationgsigure 6.8 shows the diagram with the components of $paitial®ene

class. It is basically composed of a list of graphs that describe each level of the hierarchy,
and attributes that describes the next available identifiers for graph, feature, and
boundary. There are some operations for comparing the topology and for comparing the

detailed similarity between different spatial scenes, which are described in more detail in
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SpatialScene

SSnextsetid : long
&y SSnextfeatid : long
%SSnextboundid :long

BuildGraphs()
gAddAdjacentElem ents()
%SpatialScene()
%~SpatialScene()
@AppendGraph()
WFirstGraph()
$NextGraph()
¥GetGraph()
%Graphs()
#NumberOfGraphs()
¥Read() L
WWrite ()
¥GetFeature()
®Build()
“BuildBoundaries()
@BuildFeatures()
“Clear()
¥Merge()
%Drop()
@NumberOfLevels()
$NumberOfGraphsAtLevel()
$GetGraphsAtLevel()
$GetNumberOfBoundaries()
BlLevelSimilarity()
$GraphSimilarity()
@EvaluateTopology()

[y
[y

GraphList

Figure 6.8: Diagram foBpatialScenelass.

6.3 Additional Classes

The previous classes describe the relation-based model. The topological consistent
checker uses some additional classes to represent isomorphic configurations and to
represent the association graph. An isomorphic configuration is composed of nodes that
containpairs of features(one featureof each scene) that represent a mafcpure 6.9a

shows a class representing a matching between two featuresiganel 6.9bshows the
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isomorphic configuration class, as well the association graph class, which contains the

possible initial matches based on the spatial relations between the spatial representations.

MatchingPairList

Matching Pair
1
1 IsomorphicConf
PairOfFeature 1
1 2 L
Graph 2 1 AssociationGraph
2 1
Feature
1
PairOfFeatureList
(a) (b)

Figure 6.9: Class diagrams of additional classes used for the topological checker.

6.3.1 Matching Pair
The topological checker finds isomorphic configurations, but these configurations are not
necessarily equivalent. ThdatchingPair class Figure 6.1 providesan attribute that

identifies if the matching is valid in terms of the boundary sequence.
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MatchingPair
%MPvalid :short

$MatchingPair()
%~MatchingPair()
WFirstFeature()
®SecondFeature() o
$PairofFeature() 1 1
$FirstFeatureld()
WFirstFeatureType()
%#SecondFeatureld()
¥SecondFeatureType()
$isvalid()

PairOfFeature

Figure 6.10: Diagram with attribute and operationdMatchingPairclass.

6.3.2 Isomorphic Configuration

Figure 6.11shows the operations for a clagpresentingan isomorphicconfiguration.

Each isomorphic configuration is related to two graphs (one for each spatial scene in the
analysis). Operations to compare similarity between isomorphic configurations are
available, as well as an operation to verify if the boundary sequences for the features in

each node are compatible.

6.3.3 Association Graph

The associationgraph Figure 6.12 describes the initial possible matches between
representations of both scenes. It is built based on spatial constraints defined for the
specific analysis. The association graph is composed of a list of feature pairs that are part
of the graphs being compared. Once the scene graphs are defined, this class provides
operations to build the possible matching pairs, as well to find the isomorphic

configurations.
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IsomorphicConf

@isomorphicConf()
%~IsomorphicConf()
WisValid()

#SetGraphs()
WFirstGraph()
#SecondGraph()
@IsPresent()

“ValidSim ilarity()
“TopologicalSimilarity()
“¥DimensionSimilarity()
“EvaluateBoundarySequence()
¥GetPair()
¥PairwithFirst()
“¥HasAsFirstFeature()
“¥HasAsSecondFeature()
WHierarchyLevel()

Graph

Figure 6.11: Diagram fdsomorphicContlass.

AssociationGraph

¥AssociationGraph()
%-~AssociationGraph()

@CheckGraph() 1 1
DefineGraphs() PairOfFeatureList

$Build()
%Findisomorphism ()
%NumberOfNodes()
WFirstNode(
%NextNode(
%AppendNode ()

N
[

Graph

Figure 6.12: Diagram for th&ssociationGrapltlass.

6.4 SPRING Model

SPRING (INPE/DPI 1997) is a GIS and Remote Sensing Image Processing system

developed by the National Institute for Space Research (INPE 1997) in Brazil. It
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integrates models for raster and vector data in one environment. It is implemented using
the object-oriented paradigm. The vector model is based on the theory of cell complexes.
This section is intended to show how to convert this GIS model into the relation-based
model proposed in this thesis. The conceptual model of SPRING is divided into four

abstraction levelsHigure 6.13:

* Real world level, which contains the real world categories of data to be
modeled, such as soil maps, cadastral maps, geophysical and topographical
data.

* Mathematical or conceptual level, which contains the formal definitions for
entities of different models. It is based on the concept of geographic fields and
geographic objects (Goodchild 1992). Classes for geographic features (fields
and objects) and their specializations (digital terrain models and images,
thematic and cadastral maps are defined at this level.

* Representation level, which maps the formal entities onto their geometric
representations (one or multiple) that may vary through different scales and
cartographic projections.

* Implementation level, which contains the data structures and algorithms to

manipulate the data.
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User Interface

Mathematical ;
| | ion | Implementation
Real World or Conceptual —» Representation ———»{ IMp

Figure 6.13: SPRING abstraction levels.

The conceptual class hierarchy of SPRING is showhigare 6.14 The database
contains a collection of workspaces representing projects of different areas and different
projections. It may contain spatial and non-spatial objects with attributes. Each project
may have several information layers describing the geographic data. Each layer
represents a geographic field or a geographic collection of objects (object map).
Specializations of geographic fields are thematic images, digital terrain models, and

satellite images. Specialization of object maps are networks, and cadastral objects.
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Non-Spatial Object

Database

Information Layer

Geographic Field

Thematic Map

Image

Figure 6.14: SPRING’s conceptual model.
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6.4.1 Converting SPRING’s Vector Model into the Relation-Based Model

The relation-based model deals with the multiple representations of spatial objects.
SPRING’s model supports multiple representations in terms of data format and for spatial
objects.Figure 6.15shows the representation modéISPRING.Eachinformationlayer

may have multiple representations in terms of data format. The raster representation is
related to continuous space, and the vector representation describes contours of spatial
objects. Within the vector representation, each spatial object may have several geometric

representations, which can be translated into the symbolic representation of the relation-

based model.
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Figure 6.15: Representation model of SPRING.

The vector model of SPRING may describe the following data:

Thematic Maps, containing regions that are geographically defined by one or
more polygons associated to only one theme.
e Cadastral Maps, whose elements are regions, lines, and points for the
representations of spatial objects.
* Network Maps, containing linear representations for spatial objects.
» Digital Terrain Models, as digital representations of a continuously distributed
phenomenon referred as TIN (triangular network).

The SPRING vector model uses the cell complexes structure to describe the object
representations, and the relationship between the representations are explicitly stored in
the geometric cells. For example, a 2-cell (region or polygon) points to its 1-cells, and
each 1-cell points to the two 2-cell to which it may belong. Each 1-cell points to the start

and the end O-cell that are the initial and final points of the 1-cell. The vector data
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structure is organized into sets for each primitive geometry. These sets implement
persistentelements.Figure 6.16 shows the data structure for the vector model of
SPRING. There are relationships between nodes and lines (0-cells and 1-cells), and
between polygons and lines (2-cells and 1-cells). The polygons store the other polygons
that they contain, which defines a hierarchical structure. The hierarchy exists between
polygons. To include into the hierarchy lines that do not belongs to polygons and isolated
points, additional computation is necessary. The multiple representations of the objects
are obtained through anchors that point to the primitive representations.

When converting this vector structure into the relation-based structure the basic
procedures presented in Chapter 4 are used. A vector class of the SPRING model
generates a spatial scene class of the graph model. The procedure to build graphs is
implemented in a recursive way using the adjacent polygons of one polygon. Considering
a vector model representing regions the following steps need to be addressed in the
implementation of a converter:

» Each polygon of the polygon set is a graph feature of type area;

» Building the graphs: for each polygéhcheck if it is already assigned to one
graph. If not, create a grapgh, create an area featuhd- representing this
polygon, and insert it into gragh. Pick an adjacent polygon for this current
polygon P, make it the current polygoR, create an equivalent area feature
AF, and add it to current gragh Build the complete grap@ by recursively
picking the adjacent polygons for the current poly§orJpdate hierarchical
links (graph parent and area feature parent) when necessary;,

» Building the graph boundaries: for each feature on the grapmlgeathm

4.2to convert a region into an area feature.
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Figure 6.16: Vector data structure in SPRING.

6.4.2 Database Schema

The information in the relation-based model can be used as a metadata description for the
spatial relations between spatial objects. The symbolic information incorporated into the
model allow us to answer topological queries without access to geometric information.
This symbolic model can be incorporated into the SPRING model as an additional
representation typd-igure 6.17shows the modified representatischemafor SPRING

with the addition of theRelationBasedrepresentation, which is equivalent to class
Spatial®ene of Figure 6.3 This type of representation is useful in situations where the
geometry is missing. In cases where the geometry exists, it can be used as metadata
description of spatial relations to speed up the processing of topological queries, as well

as to perform high-level analyses of similarity or equivalence.
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Figure 6.17: Modified representation model for SPRING.

The database schema to support this relation-based representation in SPRING is
shownon Figure 6.18 with links between relations. Each information layer may have
several representations, and there is a link betwednftbhrenationLayerrelation and the
Representationrelation through the identifier of the layer. TheelationBased
representation is described by the relati@raph, Feature andBoundary The Graph
relation contains the identifier of the graph, the representation identifier to which it
belongs, and the feature identifier that contains or covers this graph (if it exists). The
Featurerelation attributes are the identifier of the feature, its type (area, line, or point),
and the graph identifier. ThBoundary relation describes the intersections between
features. Its attributes are the boundary identifier, the first feature identifier, the second
feature identifier, the sequence order of this boundary in the list of boundaries for the first
feature, the sequence order of this boundary in the list of boundaries for the second
feature, the boundary type, the complement relationship value, the geometry identifier,
and the vector identifier that contains this geometry. The two last attributes may be

provided as a way to link the symbolic information with the geometry. The two boundary
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features are not necessarily in the same information layer, therefore, the boundary type
may vary for meet, covers, and crosses relations. The multiple representations of the
spatial objects can be obtained by linking the relaBpatialObjectwith the Feature
relation through the identifier of the feature. This is a simpler and faster connection

between objects and representations than the actual connection used with objects and

anchors in the vector model of SPRING.

Information Layer

1 identifier ‘ ‘ identifi <
Llh'de““f'eff
‘ name 1 - information layer

Spatial Object father feature < type
identifier complement
”””””””” relationship
feature
T Feature - geometryid ‘
,,,,,,,,,,,,,, ‘ ] — ‘ vector ‘
L"L - jd??t[f'?t - ai representation «
type
—> graph

Figure 6.18: SPRING database schema to support the relation-based representation.
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6.5 Summary

This chapter described the class structure for the relation-based model using object-
oriented techniques. The UML notation leads to a clean design and specification. In
addition to the basic classes that support the relation-based structure, this chapter showed
how to integrate this representation into the existing GIS and Image Processing software
SPRING, developed by the Image Processing Division of National Institute for Space
Research (INPE) in Brazil. The addition of this type of representation into the system
enables fast spatial inferences, allows for representations of incomplete information, and
links closely to generating verbal instructions and verbal descriptions of spatial

configurations.
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Chapter 7

Conclusions

The main motivation of this work was to identify the model components to support the
analysis of topological equivalence between spatial objects with multiple representations.
There is a large amount of spatial data available for the same geographic areas, which
originated from different sources, and current GISs lack methods to maintain consistency
among multiple representations of geographic objects. Inconsistencies among multiple
representations create contradictory information, which when passed to the decision level

may result in wrong interpretations.

7.1 Summary

This thesis developed a qualitative model to represent spatial scenes composed of spatial
objects with multiple representations. This qualitative model abstracts away the details of
the geometric representations for spatial objects and focuses primarily on the spatial
relations among the object representations or features. It translates a vector representation
structure into a symbolic representation that captures the notion of the geometry based on
the spatial relations modeled. A spatial scene is organized into a hierarchical structure of

graphs, in which the nodes represent the object representations and the links describe the
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topological relations between these representations. A topology checker has been
developed based on this model, which supports the analysis of equivalence and similarity
between spatial scenes. A set of similarity measurements between individual
representations allows us to reason about changes that may affect spatial objects and
consequently spatial scenes. The topology checker uses an association graph that contains
initially possible matches between features of two scenes. These initial possible matches
reflect the constraint model applied, which may vary from equivalence to some degree of

similarity.

7.2 Major Findings
The major results related with the qualitative model developed in this thesis are
* Expressive power of relation-based model versus Cell complexes

The relation-based model is a simplified representation of the cell complex
structure. It stores the necessary topological information for checking
topological similarity or to answer topological queries. The graph
representation only stores the highest-dimensional object representations,
while in a cell complex representation all cartographic elemguusts, lines,
areas are explicitly stored. When converting a 2-cell into an area feature of
the graph, only those 1-cells of this 2-cell that are part of another 2-cell are
translated into boundary components in the graph structure. Considering a
map representing polygonal areas, the total number of boundaries df-type
meet is equal to the number of 1-cells on the cell complex minus the number
of 1-cells that are part of just one 2-cell. The space savings on the graph

structure are more significant for a map with several isolated regions. In this
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case these regions are translated as isolated features on the graph model

without boundary components.

Complexity of updates

The relation-based model saves space compared to the cell complex structure,
however, in terms of operations complexity for merging or splitting elements
they are similar. The topological structure of cell complexes is affected by
changes on 1-cells, which is equivalent to changing 1-dimensional boundaries
in the graph model. There is a direct relationship between 1-cells that are part
of two 2-cells and 1-dimensional boundaries of area features in the graph. A
merge operation in the cell complex structure corresponds to deleting the 1-
cell(s) between the two 2-cells. This operation in the graph model corresponds
to deleting the common boundaries between the two area features. When
merging two regions in a cell complex, it is necessary to replace them by a
single one, and to update the border of the resulting region as well as the
border of its adjacent regions. In a equivalent way, the merge operation in the
graph corresponds to substituting the two area nodes by one area node and
updating the boundary sequence for the new node as well as for its adjacent
nodes. Therefore, there is an equivalence between the sequence of 1-cells that
describe a 2-cell, and the sequence of boundary components that describes an
area feature in the graph. Similarly to the merge operation, the updated
topology after a split operation can be derived using the 1-cells for the cell

complex, and using the boundaries for the graph structure.
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Use as metadata description for spatial relations

The relation-based information is an effective way for representing spatial
objects, and not just as a temporary representation to help on the process for
comparing topology between spatial scenes. It can be easily incorporated into
an existing GIS, as explained for SPRING (INPE/DPI 1997) case, and it can
be used as metadata descriptions of spatial relations in digital libraries,
avoiding the expensive computation of spatial relations using the geometric

information.

Reasoning capabilities

The relation-based model enables fast spatial inferences, allows for
representations of incomplete information, and links closely to generating
verbal instructions and verbal descriptions of spatial configurations. Cell
complexes are more a computational model composed of building blocks to
represent the topology from a cartographic point of view, while the relation-

based model comes closer to non-geographical languages.

Computational complexity

The topology checker developed based on the relation-based model looks for
isomorphic configurations in spatial scenes. Isomorphism is an NP-complete
problem, i.e., there is no optimal solution in a reasonable amount of time when
considering all mappings fan nodes in both scenes. The computation is
proportional ton! if all possible node mappings are tried. However, by

modeling the graph with the spatial relationships between features and
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applying constraints of equivalence and similarity to build the association

graph, it is possible to find matches in a reasonable amount of time, as the
number of possible matches is restricted to a small amount. This computation
time is related to the number of nodes in the association graph and how these
nodes are linked. This topological checker is an important tool, because it

provides an automatic analysis of geographic databases containing multiple
representations for spatial objects, that may be represented at different scales,

giving support for the test of new generalization algorithms.

7.3 Future Work

Progress has been made in defining and developing qualitative models to represent
geographic phenomena. However, there are several areas that need more intensive
investigation or development. Future work should concentrate on the integration of
topological models with others types of spatial relations such as metric, directional, and
semantic. Use of the relation-based model for linear representations such as homogeneous
and heterogeneous networks should be investigated. Another important topic for future
investigation is how to formalize and translate human knowledge about cartographic
generalization into information and constraints for the qualitative models. Finally, it is
important to put attention on the aspects of multi-modal spatial querying (Egenhofer
1996), and identify how to translate information from sketches and verbal descriptions
into spatial qualitative models, as well as how to generate a sketch from the qualitative

information. These interesting research questions are addressed below.
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7.3.1 Integration of Spatial Relationships
The relation-based model expresses topological relationships between spatial object
representations. In order to characterize the essence of spatial relations, it is necessary to
develop a global model that integrates information about topology, direction, metric, and
semantic aspects. The metric information may be represented in a quantitative way.
Qualitative metric relations , for example, can be specified based on a range of discrete
distance values (Hong 1994). Topologic information is important during searches in a
spatial database, however, parameters related to distances, directions, and semantic values
can be used as refinements for the spatial search. For example, topological information
permits us to identify containment relations between object representations, but we do not
know how much of the contained object representations are inside the object
representation that contains them. Shariff (1996) introduced a set of metric refinements,
which describe relationships between boundaries, that can be used to identify measures
between the inner and outer object representations. For situations between disjoint object
representations, the topological information captures neither the relative position between
them nor how far apart they are they. Qualitative information about directions between
objects, known as cardinal directions (Frank 1991), can be used to refine the position
relationship, while the metric refinements can be used again to identify more precisely the
distance relationships. In terms of object attributes, a semantic network describing
relationships between feature types can be built, with weights at nodes that will indicate
the degree of difference between linked features.

The integration of these four elementspology, direction, metric, and semantics
should take into consideration the idea of conceptual neighborhoods in order to define

levels of similarity between spatial scenes. Similarity analysis gradually replaces spatial
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relations in a scene by their conceptual neighbors, in an attempt to construct one scene
from another. Conceptual neighbors describe the gradual changes for spatial
relationships. They have been studied for each of these individual elements separately. It
is of interest to analyze if the combination of these four elements generates new sets of
conceptual neighbors. Additional testing needs to be done to verify if such gradual
changes match with human intuition, in the tradition of earlier evaluations and
calibrations of natural-language spatial relations (Mark et al. 1995). These conceptual
neighbors can be used as relaxation rules during the process of creating nodes for the

association graph containing possible feature matches for different spatial scenes.

7.3.2 Extension to Linear Features

The relation-based model has been described using polygonal data, however, it can be
used in a similar way to describe homogeneous or heterogeneous networks. A
homogeneous network is characterized by connected linear elements, and the equivalent
cell complex contains 1-cells representing these linear elements, and O-cells (extreme
points of 1-cells) that correspond to junctions between the linear elements or even an end
or start point of some linear element. When converting this cell complex structure into the
relation-based model, the 1-cells become linear features on the graph model, and the 0-
cell intersections become the boundary components in the graph model. For networks that
contain linear and polygonal elements (heterogeneous network), the 1-cells that are not
part of an area element should be converted into the graph model in the same way as the
homogenous network. The area elements should be converted into area features in the

graph model with the boundary components being described by the intersections of its 1-
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cells with other 1-cells of the network. The topological invariants for lines (Clementine

and Di Felice 1998) can be used to model the arc properties of the graphs.

7.3.3 Integration with Model Generalization

Map generalization is usually associated with simplification of line shapes. However, in
several maps many of these lines together represent different features that are associated
through spatial relations. It is important that line generalization algorithms try to take into
consideration the general structure of the data, and not over simplify each individual line
at a time without considering if it is a part of more complex feature. This generalization
approach is essentially metric, as it concentrates on simplification of line shapes, and
consists of several transformations at the geometrical level that are traditionally
performed by cartographers. Another type of generalization, called model generalization,
is based on topological aspects concerning the map structure and topological relationships
between entities. The model generalization approach should include spatial relations and
semantic information, and give support to the development of rules to check
inconsistencies of data represented at different scales.

The cartographic generalization is a quantitative approach based on metric
information extracted from line shapes, while model generalization is a qualitative
approach more concerned with the general structure of the data. There has been some
work related to model generalization (Buttenfield 1995; Ruas and Lagrange 1995), and
this is an area of continuing research. It is important to clearly identify conceptual
operators and rules associated with them that are shape-independent. Since this thesis
work developed a qualitative model to describe spatial objects with multiple

representations, it would be interesting to use the development of conceptual models of
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generalization as information and constraints to describe qualitative models for

representing spatial data.

7.3.4 Interaction with Multi-Modal Languages

Users often have different conceptual views for the same geographic objects, which
makes it difficult to model spatial queries. Current spatial queries are mostly based on
non-spatial alphanumeric command languages such as SQL, which requires lots of time
during training. Extended versions of SQL have been described to perform spatial queries
(Ingram and Philips 1987; Herring et al. 1988; Egenhofer 1994). Egenhofer (1992)
identified some drawbacks about using SQL for spatial queries, and the use of graphics
described by sketches and speech, promises to be a more intuitive and precise way to
specify spatial queries (Egenhofer 1996).

Sketch-and-talk is a new way to query spatial databases, and it uses graphic and
voice supporting more directly human spatial thinking. Natural language descriptions
(Talmy 1983) captures the topological properties of a spatial scene, but abstracts away
details about directions and distances. Sketch-and-talk is an alternative form to specify
spatial queries, as it incorporates additional constraints related with direction and metric
properties. An interesting research topic to address is how to efficiently translate sketch
and talk descriptions into the relation-based model, as well how to generate a sketch from
the relation-based information for visual purposes. There may be situations in which only
the qualitative information is available, and a graphical representation is needed. The
resultant sketch from the qualitative information will not be metrically accurate, but
would capture the topological aspects of the scene. Considering a polygonal data, each

node feature of the graph will correspond to a region in the sketch, and each component
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of the boundary sequence of a feature will defimeegtrelation between two regions in

the sketch. The sketching process gets more complicate if the number of adjacent
components between two regions is more than one. Finally, the levels of hierarchy in the
graph will define containment relations in the sketch, and a higher-order area feature in

the graph willcontainsor coversall of its lower-level features in the sketch.
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Appendix: Classes Specification

A.1 Feature

Derived from SObject

Protected Attributes:

Fid : long
feature identifier.
Frepres : char
feature representation (‘0’=undefined,’1’=point,’2’=linear,’3’=area).
Fboundary : BoundaryList
meet boundary components.
Fgeoid : long

geometry identifier.

Public Operations:
Feature () : Feature
Constructor.
~Feature () :
Destructor.
Id (i : long) void
Sets the feature identifier.
Input:
i: identifier.
Id () : long
Returns the feature identifier.
AppendMeetBoundary (b : Boundary*) : Boundary*
Adds a new boundary to feature list of boundaries, and returns this

boundary pointer.
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Input:
b: boundary pointer.
RemoveMeetBoundary () : Boundary*
Removes the current boundary from the list of boundaries and returns its
pointer.
Representation () : char
Returns the feature representation type.
Geometryld () : long
Returns the geometric representation identifier.
Geometryld (id : long) : void
Sets the geometric representation identifier.
Input:
id: geometry identifier.
NumberOfBoundaries () : long
Returns the number of boundaries.
Boundaries () : BoundaryList*
Returns a pointer to the list of boundaries.
TotalMeets (meetO : long&, meetl : long&, mixmeet : long&) : void
Gets the number of meet types related with its adjacent elements.

Output:
meetO: number of O-dimensional meets.
meetl: number of 1-dimensional meets.
mixmeet: number of mixed meets.

TotalBoundaries (meetO : long&, meetl : long&) : void
Gets the number of boundary types.
Output:
meetO: number of O-dimensional boundaries.
meetl: number of 1-dimensional boundaries.
TotalMeetRelations () : long
Returns the number of meet relations.
AdjacentFeatures (flist : FeatureList*) : void
Gets the list of adjacent features.
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Output:
flist: list of adjacent features.
NumberOfAdjacentFeatures () : long
Returns the number of adjacent features.
IsAdjacent (finput : Feature*) : short
Verifies if input feature is adjacent to this features.
Returns TRUE or FALSE.
Input:
finput: input feature.
Relation (finput : Feature*) : char
Returns the spatial relation with input feature.
Input:
finput: input feature.
Similar (finput : Feature*) : short
Returns TRUE if identifier and representation type are the same.
Input:
finput: input feature.
AdjacentStructure () : long
Returns how many meet relations exist between the adjacent features.
DimensionSimilarity (finput : Feature*) : double
Returns the dimension similarity measure compared with input feature.
Input:
finput: input feature.
MeetSimilarity (finput : Feature*) : double
Returns the number of meets similarity measure compared with input
feature.
Input:
finput: input feature.
AdjacentSimilarity (flist : FeatureList*) : double
Returns the adjacent similarity measure using the adjacent elements
of the input features.
Input:
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flist: list of features.
HierarchySimilarity (finput : Feature*) : double
Returns the hierarchy similarity measure compared with input feature.
Input:
finput: input feature.
SimilarityMeasure (finput : Feature*) : double
Returns the total similarity measure compared with input feature.
Input:
finput: input feature.

A.2 PointFeature

Derived from Feature

Public Operations:

PointFeature () : PointFeature
Constructor.
~PointFeature () :
Destructor.

A.3 LinearFeature

Derived from Feature.

Public Operations:

LinearFeature () : LinearFeature
Constructor.

~LinearFeature () :
Destructor.
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A.4 AreaFeature
Derived from Feature.
Private Attributes:

AFgraph : GraphList*
set of connected and isolated elements contained by this area feature.

AFboundary : BoundaryList

covers boundary components.

Public Operations:

AreaFeature () : AreaFeature
Constructor.
~AreaFeature () :
Destructor.
FirstGraph () : Graph*
Returns pointer to first graph at the lower level of the
hierarchy (if it exists, otherwise returns NULL).
NextGraph () : Graph*
Returns pointer to next graph at the lower level of the
hierarchy (if it exists, otherwise returns NULL).
AppendGraph (g : Graph*) : Graph*
Adds a new graph on the lower level hierarchy and returns the
pointer to this input graph.
Input:
0 graph pointer.
Sons () : long
Returns the number of lower level graphs.
CoverBoundaries () : BoundaryList*
Returns a pointer to the list of cover boundaries.
AppendCoverBoundary (b : Boundary*) : Boundary*
Adds a new boundary on the list of cover boundaries and returns the
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pointer to this input boundary.
Input:
b: boundary pointer.
NumberOfCoverBoundaries () : long
Returns the number of cover boundaries.
GeneralizedRelation (finput : Feature*) : char
Returns the spatial relation - cover type - with the input feature,
which must be in one of the lower level graphs under this area feature.
Input:

finput: pointer to lower level feature.

A.5 Boundary

Derived from SObject.

Private Attributes:

Bid : long

identifier.
Bfeatfirst : Feature*

first feature pointer.
Bsecfeat : Feature*

second feature pointer.
Btype : char

boundary type.
Bcomprel : char

complement relationship.
Bgeoids : SldList

geometric representations of the boundary.
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Public Operations:

Boundary () : Boundary
Constructor.
~Boundary () :
Destructor.
Define (id : long, first : Feature*, second : Feature*, type : char, comprel :
char, geom : long) : void
Defines the boundary attributes.

Input:
id: identifier.
first: pointer to first feature.
second: pointer to second feature.
type: boundary dimension and type.
cmprel: complement relationship.
geom: first geometry identifier (may be 0).

Id (id : long) void
Sets the boundary identifier.
Input:
id: identifier.
Id () : long
Returns the boundary identifier.
FirstFeature (f : Feature*) : void
Sets the pointer to first feature.
Input:
f: first feature pointer.
FirstFeature () : Feature*
Returns the pointer to first feature.
SecondFeature (f : Feature*) : void
Sets the pointer to second feature.
Input:
f: second feature pointer.

SecondFeature () : Feature*
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Returns the pointer to second feature.
Type (t: char) : void
Sets the type (contains the spatial relation and dimension type).

Input:

t: boundary type.
‘1’=MEETO
2'=MEET1
‘5’ = COVERO
‘6’ = COVER1

Type () : char
Returns the boundary type.
ComplementRelationship (cr: char) : void
Sets the boundary complement relationship.
Input:
cr: complement relationship.
‘1’ = BOUNDED
‘2" = ‘UNBOUNDED
ComplementRelationship () : char
Returns the complement relationship.
Geometrylds () : SldList*
Returns a pointer to the list of geometry identifiers.
AddGeometryld (id : long) : short
Adds a new geometry that represents this boundary.
Input:
id: geometry identifier.
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A.6 Graph

Derived from SObject.

Private Attributes:

Gid : long

graph identifier.
Gfeature : FeatureList

list of features.
Gboundary : BoundaryList

list of boundaries.
Gfather : Graph*

higher level graph.
Gsuperior : Feature*

higher level area feature.

Public Operations:

Graph () : Graph
Constructor.

~Graph () :
Destructor.

Id (id : long) : void
Sets the graph identifier.

Input:
id: identifier.

Id () : long

Returns the graph identifier.
FirstFeature () : Feature*

Returns pointer to the first feature.
NextFeature () : Feature*

Returns pointer to the next feature.

AppendFeature (f : Feature*) : Feature*
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Adds the input feature into graph, and returns the feature pointer if
successful, otherwise returns NULL.
Input:
f: feature pointer.
NumberOfFeatures () : long
Returns the number of features.
Features () : FeatureList*
Returns pointer to feature list.
Boundaries () : BoundaryList*
Returns pointer to boundary list.
FirstBoundary () : Boundary*
Returns pointer to first boundary.
NextBoundary () : Boundary*
Returns pointer to next boundary.
AppendBoundary (b : Boundary*) : Boundary*
Adds the input boundary into graph, and returns the boundary pointer if
successful, otherwise returns NULL.
NumberOfBoundaries () : long
Returns the number of boundaries.
FatherGraph (g : Graph*) : void
Sets the father graph from the hierarchical structure.
Input:
o: father graph pointer.
FatherGraph () : Graph*
Returns the father graph pointer.
FatherFeature (f : Feature*) : void
Sets the father feature from the hierarchical structure.
Input:
f: father feature pointer.
FatherFeature () : Feature*
Returns the father feature pointer.
GetFeature (id : long, type : char) : Feature*
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Returnts the pointer to the feature that matches the input
parameters. If none found, returns NULL.
Input:
id: feature identifier.
type: feature representation type.
RemoveFeature (id : long, type : char) : Feature*
Removes from the graph the feature that matches the input parameters,
and returns the pointer to this feature.
Input:
id: feature identifier.
type: feature representation type.
GetBoundary (id : long) : Boundary*
Returns the boundary pointer that matches the input identifier.
Input:
id: boundary identifier.
RemoveBoundary (id : long) : Boundary*
Removes from the graph the boundary that matches the input parameter,
and returns the pointer to this boundary.
Input:
id: boundary identifier.
FeatureDimension (point : long&, line : long&, region : long&) : void
Counts the number of each feature dimensions present on graph.

Output:
point: number of point features.
line: number of linear features.
region: number of area features.

Relations (meetO : long&, meetl : long&, mixmeet : long&, disjoint : long&) :
void
Counts the number of spatial relations present on graph.
Output:
meetO: number of 0O-dimensional meets.

meetl: number of 1-dimensional meets.
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mixmeet: number of mixed meets.
disjoint: number of disjoint relations.
GeneralizedRelations (covO : long&, covl : long&, mixcov : long&, contain :
long&, equal : long&) : void

Counts the number of spatial relations related with father graph.

Output:
covO: number of O-dimensional covers.
covl: number of 1-dimensional covers.
MixXcov: number of mixed covers.
contain: number of contain relations.
equal: number of equal relations.

BuildBoundaries (pset : PolygonSet&, ndset : NodeSet&, next : long&) : short
Builds the graph boundary from SPRING vector model.
Input:
pset: reference to SPRING polygon set.
ndset: reference to SPRING node set.
HasSubGraphs () : short
Returns if exist lower level graphs.
HierarchyLevel () : short
Returns the level of this graph on the general hierarchy.
GetNumberOfBoundaries (zdbound : long&, odbound : long&) : void
Counts the number of meet boundaries per type.
Input:
zdbound: number of O-dimensional meets.

odbound: number of 1-dimensional meets.

A.7 SpatialScene

Private Attributes:

SSnextsetid : long
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next available graph identifier.
SSnextfeatid : long

next available feature identifier.
SSnextboundid : long

next available boundary identifier.
SSsets : GraphList

list of graphs.

Public Operations:

SpatialScene () : SpatialScene
Constructor.
~SpatialScene () :
Destructor.
AppendGraph (g : Graph*) : Graph*
Adds a new graph to spatial scene, and returns its pointer.
Input:
0 graph pointer.
FirstGraph() : Graph*
Returns the first graph pointer for this scene.
NextGraph () : Graph*
Returns the next graph pointer for this scene.
GetGraph (id : long) : Graph*
Returns the graph pointer from input identifier.
Input:
id: graph identifier.
GetGraph (id : long, type : char) : Graph*
Returns the pointer to the graph that contains the feature
specified by the input parameters.
Input:
id: feature identifier.
type: feature representation type.
Graphs () : GraphList*
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Returns the pointer to the list of graphs of this scene.
NumberOfGraphs () : long
Returns the number of graphs in this scene.
Read (filename : char*) : short
Reads the scene contents from an ascii file.
Input:
filename: disk file name.
Write (filename : char*) : short
Write the scene contents into an ascii file.
Input:
filename: disk file name.
GetFeature (id : long, type : char) : Feature*
Returns the feature pointer that has the input parameters.
Input:
id: feature identifier.
type: feature representation type.
Build (Iset : LineSet&, ndset : NodeSet&, pset : PolygonSet&) : short
Transforms the SPRING model into the relation-based model.

Input:
Iset:  line set of SPRING vector model.
ndset: node set of SPRING vector model.
pset: polygon set of SPRING vector model.
Print () : void
Prints the scene contents into the standard output device.
Clear () : void

Clears the scene contents.
Merge (first : AreaFeature&, second : AreaFeature&) : AreaFeature*
Performs a merge operation between two area features,
and returns the merged feature.
Input:
first: area feature reference.

second: area feature reference.
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Drop (feat : Feature&) : short
Drops input feature from scene.
Input:
feat: feature reference.
NumberOfLevels () : short
Returns the number of levels of this scene.
NumberOfGraphsAtLevel (level : short) : short
Returns the number of graphs at a specified level of hierarchy.
Input:
level: hierarchy level.
GetGraphsAtLevel (level : short, glist : GraphList&) : short
Gets the graphs at a specified level.
Input:
level: hierarchy level.
Output:
glist: list og graphs.
GetNumberOfBoundaries (zdbound : long&, odbound : long&) : void
Gets the number of boundary components.
Output:
zdbound: number of O-dimensional boundaries.
odbound: number of 1-dimensional boundaries.
LevelSimilarity (input : SpatialScene*) : double
Returns the similarity measure based on the number of hierarchical levels.
Input:
input: scene to be compared.
GraphSimilarity (input : SpatialScene*) : double
Returns the similarity measure based on the number of graphs per level
of hierarchy.
Input:
input: scene to be compared.
EvaluateTopology (input : SpatialScene*, miso : MultilsomorphicConfList&)
: short
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Evaluates the topological equivalence between scens.
Input:

input: scene to be compared.
Output:

miso: collection of isomorphic configurations.

Private Operations

BuildBoundaries (pset : PolygonSet&, ndset : NodeSet&) : short
Generates the boundary components on the relation-based model,
using the polygon and node sets of SPRING vector model.

Input:
pset: reference to SPRING polygon set.
ndset: reference to SPRING node set.

BuildFeatures (pset : PolygonSet&, ndset : NodeSet&) : short
Generates the graph nodes (features) from SPRING vector model.
Input:

pset: reference to SPRING polygon set.
ndset: reference to SPRING node set.

BuildGraphs (gfather : Graph*, ffather : Feature*, plist : SPolygonList&,
ndset : NodeSet&) : short

Generates the scene graph representation.

Input:
gfather: pointer to father graph.
ffather:pointer to father feature.
plist: SPRING polygon list.
ndset: SPRING node set.

AddAdjacentElements (g : Graph&, poly : SPolygon&, plist : SPolygonList&,
ndset : NodeSet&) : short
Adds adjacent elements of input polygon into input graph.
Input:
O reference to current graph.
poly: reference to input SPRING polygon.
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plist: SPRING polygon list.
ndset: SPRING node set.

A.8 MatchingPair

Derived from SObject.

Private Attributes:

MPpair : PairOfFeature
pair of features.
MPvalid : short
identifies if pair is a valid match.

Public Operations:

MatchingPair () : MatchingPair

Constructor.
~MatchingPair () :

Destructor.
PairofFeature (p : PairOfFeature*) : void

Defines the pair of features.

Input:

p: pair of features pointer.

PairofFeature () : PairOfFeature*

Returns pointer to pair of features.
FirstFeature () : Feature*

Returns pointer to first feature.
SecondFeature () : Feature*

Returns pointer to second feature.
FirstFeatureld () : long

Returns the first feature identifier.

FirstFeatureType () : char
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Returns the first feature representation type.
SecondFeatureld () : long
Returns the second feature identifier.
SecondFeatureType () : char
Returns the second feature representation type.
IsValid (v : short) : void
Sets if pair of features is a valid association considering the boundary
sequence.
Input:
V: valid flag - TRUE or FALSE.
IsValid () : short
Returns if pair of features is a valid association considering the boundary
sequence.

A.9 IsomorphicConf
Derived from SObject, MatchingPairList.
Private Attributes:

ICfirst : Graph*
pointer to first feature.

ICsecond : Graph*
pointer to second feature.

Public Operations:

IsomorphicConf () : IsomorphicConf
Constructor.
~IsomorphicConf () :
Destructor.
IsValid () : short
Returns (TRUE or FALSE) if this configuration contains
all valid pair of features.
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SetGraphs (first : Graph*, second : Graph*) : void
Defines the graph pointers.
Input:
first: first graph pointer.
second: second graph pointer.
FirstGraph () : Graph*
Returns pointer to first graph.
SecondGraph () : Graph*
Returns pointer to second graph.
IsPresent (pflist : PairOfFeatureList&) : short
Verifies if the input pair of features list is part of this
isomorphic configuration. Returns TRUE or FALSE.
Input:
pflist: reference to list of pair of features.
IsPresent (pair : PairOfFeature&) : short
Verifies if the input pair of features is part of this
isomorphic configuration. Returns TRUE or FALSE.
Input:
pair: reference to pair of feature.
ValidSimilarity () : double
Calculates the valid similarity measure. It counts how many
valid pair of features are, and divide by the size of this configuration.
TopologicalSimilarity () : double
Calculates the topological similarity measure.
DimensionSimilarity () : double
Calculates the dimension similarity measure.
EvaluateBoundarySequence () : short
Evaluates the boundary sequence components of each pair of features,
and returns TRUE (if they are ok) or FALSE.
GetPair (pair : PairOfFeature&) : MatchingPair*
Returns the matching pair associated with input pair of feature.
Input:
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pair: reference to pair of features.
PairWithFirst (pair : Feature&) : MatchingPair*
Returns the pointer to the pair of features that contains as a
first feature the input parameter.
Input:
pair: reference to pair of features.
HasAsFirstFeature (id : long, type : char) : Feature*
Returns a pointer to a feature, if the configuration has one pair
in which the first feature is equivalent with input parameters.
Input:
id: feature identifier.
type: feature representation type.
HasAsSecondFeature (id : long, type : char) : Feature*
Returns a pointer to a feature, if the configuration has one pair
in which the first feature is equivalent with input parameters.
Input:
id: feature identifier.
type: feature representation type.
HierarchyLevel () : short
Returns the hierarchical level of this configuration.

A.10 AssociationGraph

Private Attributes:
AGfirst : Graph*

pointer to first feature.
AGsecond : Graph*

pointer to second feature.
AGnodes : PairOfFeaturelList

list of pair of features.
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Public Operations:

AssociationGraph () : AssociationGraph
Constructor.
~AssociationGraph () :
Destructor.
DefineGraphs (first : Graph*, second : Graph*) : void
Sets the graph pointers.
Input:
first: first graph pointer.
second: second graph pointer.
Build (dimdist : short = 0, sptreldist : short = 0, cinvdist : short = 0) : short

Builds the association pair of features between the graphs.

Input:
dimdist: dimension distance relaxation.
sptreldist: spatial relations distance relaxation.
cinvdist: component invariant distance relaxation.

Findlsomorphism (isolist : IsomorphicConfList&) : short
Finds the isomorphic configurations based on the current pair
association.
Output:
isolist: reference to list of isomorphic configurations.
NumberOfNodes () : long
Returns the number of nodes in this association graph.
FirstNode () : PairOfFeature*
Returns the pointer to the pair of features that corresponds to the first node
of this association graph.
NextNode () : PairOfFeature*
Returns the pointer to the pair of features that corresponds to the next node
of this association graph.
AppendNode (pair : PairOfFeature*) : PairOfFeature*

Adds a new node on this association graph using the input pair
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of features.
Input:
pair: pair of features pointer.

Private Operations

CheckGraph (pair : PairOfFeature&, iso : IsomorphicConf&) : short
Recursively check the equivalence between features and builds the
isomorphic configurations.

Input:
pair: reference to current pair of features.
Output:

iSO: isomorphic configuration
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