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Abstract

This research proposes novel solution techniques in the realm of reliability and reliability growth.

We first consider a redundancy allocation problem to design a system that maximizes the reli-

ability of a complex series-parallel system comprised of components with deterministic relia-

bility. We propose a new meta-heuristic, inspired by the behavior of bats hunting prey, to find

component allocation and redundancy levels that provide optimal or near-optimal system reli-

ability levels. Each component alternative has an associated cost and weight and the system is

constrained by cost and weight factors. We allow for component mixing within a subsystem, with

a pre-defined maximum level of component redundancy per subsystem, which adds to problem

complexity and prevents an optimal solution from being derived analytically.

The second problem of interest involves how we model a system’s reliability growth as

it undergoes testing and how we minimize deviation from planned growth. We propose a Grey

Model, GM(1,1) for modeling reliability growth on complex systems when failure data is sparse.

The GM(1,1) model’s performance is benchmarked with the Army Materiel Systems Analysis

Activity (AMSAA) model, the standard within the reliability growth modeling community. For

continuous and discrete (one-shot) testing, the GM(1,1) model shows itself to be superior to the

AMSAA model when modeling reliability growth with small failure data sets.

Finally, to ensure the reliability growth planning curve is followed as closely as possible,

we determine the best level of corrective action to employ on a discovered failure mode, with

corrective action levels allowed to vary based upon the amount of resources allocated for fail-

ure mode improvement. We propose a Markov Decision Process (MDP) approach to handle the

stochasticity of failure data and its corresponding system reliability estimate. By minimizing a

weighted deviation from the planning curve, systems will ideally meet the reliability milestones

specified by the planning curve, while simultaneously avoiding system over-development and

unnecessary resource expenditure for over-correction of failure modes.



c©2016 by Thomas Talafuse
All Rights Reserved



Acknowledgments

First and foremost, I thank God for all the gifts bestowed upon me that have enabled my under-

taking of a doctoral program. All the glory and honor belongs to Him. I would like also like to

thank my advisor Dr. Ed Pohl for all his guidance and support. The chance to work and study

with him is truly a great privilege. I have been incredibly fortunate to have him as an advisor who

challenged me, kept me engaged, and gave me the perfect level of freedom and guidance to en-

sure that I completed my program on time. I am forever grateful for his great mentorship and

support.

I would like to thank my committee members, Drs. Chase Rainwater, Shengfan Zhang, and

Raymond Hill for their guidance, encouragements and invaluable advice throughout my doctoral

studies. Their feedbacks have taught me great lessons and made this dissertation more solid. I

am also grateful to all my professors for consistently sharing their knowledge without any hesi-

tation to enable me succeed in my studies. I specifically thank Dr. Kelly Sullivan for his support

and collaboration. I also wish to express my sincere gratitude to the wonderful Industrial Engi-

neering staff, Karen Standley, Carrie Pennington, Sandy Sehon, and Tamara Ellenbecker for their

tremendous help along the way.

Finally, I’d be remiss if I didnt acknowledge the immeasurable sacrifices made by my wife,

Valerie, for her unfailing love and support and for shouldering far more than her fair share of the

family burdens while I pursued this final degree.



Dedication

To my loving wife, Valerie, and my daughters, Madelyn and Abigail, without whose patience and

support this would not have been possible.



Contents

1 Introduction 1

Bibliography 5

2 A Bat Algorithm (BA) For the Redundancy Allocation Problem (RAP) 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The BA Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Mainframe of BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Recent Adaptations and Applications of BA . . . . . . . . . . . . . . . . . 12

2.2.3 BA Modification for RAP . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Experimentation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Bibliography 20

Appendices 23

2.A Certification of Student Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Small Sample Continuous Reliability Growth Modeling Using a Grey Systems Model 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Grey Model for Reliability Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Grey Systems Background . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 The GM(1,1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Modification of GM(1,1) Model . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Application to Reliability Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Numerical Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Initial Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Response Surface Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 38



3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

Appendices 47

3.A Confidence Bounds for Difference Between GM(1,1) and AMSAA Monte Carlo

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.B Certification of Student Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Small Sample Discrete Reliability Growth Modeling Using a Grey Systems Model 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Grey Model for Reliability Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Grey Systems Background . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 The GM(1,1) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Modification of GM(1,1) Model . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Application to Reliability Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Numerical Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

Appendices 71

4.A Confidence Bounds for Difference Between AMSAA and GM(1,1) Monte Carlo

Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.A.1 Lower Confidence Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.A.2 Upper Confidence Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.B Reliability Growth Plots Across Configurations . . . . . . . . . . . . . . . . . . . 74

4.B.1 Assumed 50% FEF Growth Curves . . . . . . . . . . . . . . . . . . . . . 74

4.B.2 Assumed 60% FEF Growth Curves . . . . . . . . . . . . . . . . . . . . . 78

4.B.3 Assumed 70% FEF Growth Curves . . . . . . . . . . . . . . . . . . . . . 82



4.B.4 Assumed 80% FEF Growth Curves . . . . . . . . . . . . . . . . . . . . . 86

4.C Certification of Student Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 A Markov Decision Process Approach for Optimizing Reliability Growth According to

Reliability Growth Planning Curves 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Background Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 MIL-HDBK-189 Planning Model . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 AMSAA System-Level Planning Model . . . . . . . . . . . . . . . . . . . 94

5.2.3 Ellner-Hall PM2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.4 Other Pertinent Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Numerical Experimentation and Results . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 110

Appendices 111

5.A Frontier Policies by Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.A.1 Instance 1: Epochs Weighted Equally, Deviations Weighted Equally . . . . 111

5.A.1.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.A.1.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.A.1.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 114

5.A.1.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 115

5.A.2 Instance 2: Epoch Weights Equal, Deviations Above Curve Weighted at 0.5 117

5.A.2.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.A.2.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.A.2.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 120



5.A.2.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 121

5.A.3 Instance 3: Epoch Weights Equal, Deviations Above Curve Weighted at 0.1 123

5.A.3.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.A.3.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.A.3.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 126

5.A.3.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 127

5.A.4 Instance 4: Epoch Progressively Weighted, Deviations Weighted Equally . 130

5.A.4.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.A.4.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.A.4.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 133

5.A.4.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 134

5.A.5 Instance 6: Epoch Progressively Weighted, Deviations Above Curve

Weighted at 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.A.5.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.A.5.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.A.5.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 139

5.A.5.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 140

5.A.6 Instance 7: Only Last Epoch Weighted, Deviations Weighted Equally . . . 143

5.A.6.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.A.6.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.A.6.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 150

5.A.6.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 153

5.A.7 Instance 8: Only Last Epoch Weighted, Deviations Above Curve Weighted

at 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.A.7.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.A.7.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.A.7.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 167



5.A.7.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 171

5.A.8 Instance 9: Only Last Epoch Weighted, Deviations Above Curve Weighted

at 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.A.8.1 System MTBF=25 . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.A.8.2 System MTBF=50 . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.A.8.3 System MTBF=105 . . . . . . . . . . . . . . . . . . . . . . . . 185

5.A.8.4 System MTBF=205 . . . . . . . . . . . . . . . . . . . . . . . . 189

5.B Certification of Student Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6 Conclusions and Future Work 195

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



List of Figures

2.1 Series-parallel system configuration . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Range of Performance Over 10 Replications. (a) ACO; (b) BA . . . . . . . . . . 19

3.1 Lower Bounds for Difference Between GM(1,1) and AMSAA - 50% FEF . . . . 36

3.2 Lower Bounds for Difference Between GM(1,1) and AMSAA - 60% FEF . . . . 36

3.3 Lower Bounds for Difference Between GM(1,1) and AMSAA - 70% FEF . . . . 37

3.4 Lower Bounds for Difference Between GM(1,1) and AMSAA - 80% FEF . . . . 37

3.5 Standard Deviation in Differences Across Parameter Sets - 60% FEF . . . . . . . 43

3.6 Standard Deviation in Differences Across Parameter Sets - 70% FEF . . . . . . . 43

4.1 Lower Bounds for Difference Between GM(1,1) and AMSAA - 50% FEF . . . . 65

4.2 Lower Bounds for Difference Between GM(1,1) and AMSAA - 60% FEF . . . . 65

4.3 Lower Bounds for Difference Between GM(1,1) and AMSAA - 70% FEF . . . . 66

4.4 Lower Bounds for Difference Between GM(1,1) and AMSAA - 80% FEF . . . . 66

4.5 Reliability Across Configurations - 7 Failure Modes and 50% FEF . . . . . . . . 67

4.B.1 Reliability Across Configurations - 5 Failure Modes and 50% FEF . . . . . . . . 74

4.B.2 Reliability Across Configurations - 6 Failure Modes and 50% FEF . . . . . . . . 74

4.B.3 Reliability Across Configurations - 7 Failure Modes and 50% FEF . . . . . . . . 75

4.B.4 Reliability Across Configurations - 8 Failure Modes and 50% FEF . . . . . . . . 75

4.B.5 Reliability Across Configurations - 9 Failure Modes and 50% FEF . . . . . . . . 76

4.B.6 Reliability Across Configurations - 10 Failure Modes and 50% FEF . . . . . . . 76

4.B.7 Reliability Across Configurations - 15 Failure Modes and 50% FEF . . . . . . . 77

4.B.8 Reliability Across Configurations - 20 Failure Modes and 50% FEF . . . . . . . 77

4.B.9 Reliability Across Configurations - 5 Failure Modes and 60% FEF . . . . . . . . 78

4.B.10 Reliability Across Configurations - 6 Failure Modes and 60% FEF . . . . . . . . 78

4.B.11 Reliability Across Configurations - 7 Failure Modes and 60% FEF . . . . . . . . 79



4.B.12 Reliability Across Configurations - 8 Failure Modes and 60% FEF . . . . . . . . 79

4.B.13 Reliability Across Configurations - 9 Failure Modes and 60% FEF . . . . . . . . 80

4.B.14 Reliability Across Configurations - 10 Failure Modes and 60% FEF . . . . . . . 80

4.B.15 Reliability Across Configurations - 15 Failure Modes and 60% FEF . . . . . . . 81

4.B.16 Reliability Across Configurations - 20 Failure Modes and 60% FEF . . . . . . . 81

4.B.17 Reliability Across Configurations - 5 Failure Modes and 70% FEF . . . . . . . . 82

4.B.18 Reliability Across Configurations - 6 Failure Modes and 70% FEF . . . . . . . . 82

4.B.19 Reliability Across Configurations - 7 Failure Modes and 70% FEF . . . . . . . . 83

4.B.20 Reliability Across Configurations - 8 Failure Modes and 70% FEF . . . . . . . . 83

4.B.21 Reliability Across Configurations - 9 Failure Modes and 70% FEF . . . . . . . . 84

4.B.22 Reliability Across Configurations - 10 Failure Modes and 70% FEF . . . . . . . 84

4.B.23 Reliability Across Configurations - 15 Failure Modes and 70% FEF . . . . . . . 85

4.B.24 Reliability Across Configurations - 20 Failure Modes and 70% FEF . . . . . . . 85

4.B.25 Reliability Across Configurations - 5 Failure Modes and 80% FEF . . . . . . . . 86

4.B.26 Reliability Across Configurations - 6 Failure Modes and 80% FEF . . . . . . . . 86

4.B.27 Reliability Across Configurations - 7 Failure Modes and 80% FEF . . . . . . . . 87

4.B.28 Reliability Across Configurations - 8 Failure Modes and 80% FEF . . . . . . . . 87

4.B.29 Reliability Across Configurations - 9 Failure Modes and 80% FEF . . . . . . . . 88

4.B.30 Reliability Across Configurations - 10 Failure Modes and 80% FEF . . . . . . . 88

4.B.31 Reliability Across Configurations - 15 Failure Modes and 80% FEF . . . . . . . 89

4.B.32 Reliability Across Configurations - 20 Failure Modes and 80% FEF . . . . . . . 89

5.1 Notional Idealized Growth Curve . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 102

5.3 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 104

5.4 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 106

5.5 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 107

5.A.1 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 112



5.A.2 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 114

5.A.3 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . 115

5.A.4 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . 116

5.A.5 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 118

5.A.6 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 120

5.A.7 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 121

5.A.8 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 122

5.A.9 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 124

5.A.10 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 126

5.A.11 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 127

5.A.12 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 129

5.A.13 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 131

5.A.14 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 133

5.A.15 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 134

5.A.16 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 135

5.A.17 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 137

5.A.18 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 139

5.A.19 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 140

5.A.20 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 142

5.A.21 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 145

5.A.22 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 150

5.A.23 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 153

5.A.24 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 156

5.A.25 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 162

5.A.26 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 167

5.A.27 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 171

5.A.28 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 174



5.A.29 Constant FEF Policies and Policy Frontier: β = 25 . . . . . . . . . . . . . . . . 180

5.A.30 Constant FEF Policies and Policy Frontier: β = 50 . . . . . . . . . . . . . . . . 185

5.A.31 Constant FEF Policies and Policy Frontier: β = 105 . . . . . . . . . . . . . . . . 189

5.A.32 Constant FEF Policies and Policy Frontier: β = 205 . . . . . . . . . . . . . . . . 193



List of Tables

2.1 Input Data for RAP (Fyffe et al., 1968) . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Comparison of ACO and BA Results . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Failure Mode (FM) Parameter Data . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Failure Mode Parameters for Designed Test Points . . . . . . . . . . . . . . . . 39

3.3 Average Difference of GM(1,1) Model and AMSAA Model Across Parameter

Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Lower Confidence Bounds on Average Difference of GM(1,1) and AMSAA

Models Across Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Upper Confidence Bounds on Average Difference of GM(1,1) and AMSAA

Models Across Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.A.1 Terminating Condition: 3 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.A.2 Terminating Condition: 4 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.A.3 Terminating Condition: 5 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.A.4 Terminating Condition: 6 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.A.5 Terminating Condition: 7 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.A.6 Terminating Condition: 8 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.A.7 Terminating Condition: 9 Failures . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.A.8 Terminating Condition: 10 Failures . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Failure Mode (FM) Parameter Data . . . . . . . . . . . . . . . . . . . . . . . . 63

4.A.1 Assumed 50% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.A.2 Assumed 60% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.A.3 Assumed 70% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.A.4 Assumed 80% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.A.5 Assumed 50% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



4.A.6 Assumed 60% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.A.7 Assumed 70% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.A.8 Assumed 80% FEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Weights for Decision Epoch and Deviation From Goal MTBF . . . . . . . . . . 100

5.2 True System MTBF at Start of Testing Efforts . . . . . . . . . . . . . . . . . . . 100

5.3 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.A.1 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.A.2 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.A.3 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.A.4 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.A.5 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.A.6 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.A.7 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.A.8 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.A.9 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.A.10 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.A.11 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.A.12 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.A.13 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.A.14 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.A.15 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.A.16 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.A.17 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.A.18 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



5.A.19 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.A.20 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.A.21 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.A.22 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.A.23 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.A.24 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.A.25 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.A.26 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.A.27 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.A.28 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.A.29 Frontier Policies: β = 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.A.30 Frontier Policies: β = 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.A.31 Frontier Policies: β = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.A.32 Frontier Policies: β = 205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



List of Published Papers

Chapter 2:

Talafuse, T.P. and Pohl, E. A., “A Bat Algorithm (BA) For the Redundancy Allocation

Problem (RAP),” Engineering Optimization, 2016, Vol. 48, No. 5, pp. 900-910.

Chapter 3:

Talafuse, T.P. and Pohl, E.A., “Small Sample Continuous Reliability Growth Modeling

Using a Grey Systems Model,” Reliability Engineering and System Safety (in review)

(2016).



The views expressed in this dissertation are those of the author and do not reflect the official pol-
icy or position of the United States Air Force, Department of Defense, or the United States Gov-
ernment.



1. Introduction

This research considers problems dealing with the design and test of complex systems undergo-

ing developmental testing for purposes of reliability growth. In general, optimizing a system’s re-

liability, planning its growth, and modeling that growth throughout testing has been widely stud-

ied over the past several decades. In this research, we contribute to this field by considering a new

method for determining optimal design for a system comprised of components with determinis-

tic reliabilities, as well as introduce a new method for modeling reliability growth and allocating

resources to corrective actions during developmental testing.

During development of a new complex system, prototypes produced will generally contain

design, manufacturing and/or engineering deficiencies. Chapter 2 is dedicated to a meta-heuristic

approach for developing and designing such a system. Because of these deficiencies, the initial

reliability of the prototypes may be below the system’s reliability goal or requirement. In order

to identify and correct these deficiencies, the prototypes are often subjected to a rigorous testing

program to expose them to stresses that are likely to be encountered in the operational environ-

ment. During testing, problem areas, or failure modes, are identified and appropriate corrective

actions or redesign are taken to mitigate the occurrence of the failure mode and improve the sys-

tem’s reliability. This improvement is referred to as reliability growth, and is formally defined as

the positive improvement in a reliability parameter over a period of time due to changes in prod-

uct design or manufacturing processes (Department of Defense, 2011).

In the field of reliability growth, there are three major areas including: planning, tracking,

and projection. Reliability growth planning focuses on the construction of a reliability growth

planning curve, which identifies the planned reliability achievement as a function of test duration,

in addition to other program resources. Reliability growth tracking focuses on the analysis of

a systems current demonstrated reliability. Reliability growth projection focuses on estimating

system reliability following implementation of corrective actions to known failure modes. Each

of these areas of reliability growth apply to complex systems whose test durations are continuous,
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as well as to complex systems whose test durations are discrete. Chapter 3 focuses on reliability

growth tracking and how a system’s reliability demonstrated reliability is modeled for continuous

testing, while Chapter 4 will focus on reliability growth tracking for discrete (one-shot) testing.

Chapter 5 is dedicated to determining how resources are allocated to corrective actions to most

closely follow the reliability growth planning curve initially developed during reliability growth

planning.

In Chapter 2, we introduce the Bat Algorithm (BA), a fairly new meta-heuristic that can

be used for optimizing initial system design. For this specific research effort, we use this meta-

heuristic to provide high quality solutions to the reliability redundancy allocation problem (RAP).

The BA was previously introduced as a powerful meta-heuristic for continuous functions but was

not originally formulated for handling combinatorial problems. Modeled after the behavior of

bats hunting prey, the virtual bats search the feasible and near-feasible region for component allo-

cation and redundancy levels that provide optimal or near-optimal system reliability levels. Each

component alternative has a known, deterministic reliability with an associated cost and weight.

The system is constrained by cost and weight factors. We allow for component mixing within

a subsystem, with a pre-defined maximum level of component redundancy per subsystem. We

ensure the feasible boundary of our search space is explored by allowing the meta-heuristic to

consider infeasible solutions at a penalized value. Designed experimentation was conducted to

determine parameter settings for the virtual bat behavior. The impact of parameter sensitivity

on solution quality was evaluated, along with how the algorithm performed as the system’s cost

constraint was tightened. The work on generating the BA can be generalized as a suitable meta-

heuristic for any type of combinatorial problem whose optimal solution cannot be analytically

derived.

Chapters 3 and 4 study the way in which reliability growth is modeled and focuses on sys-

tems whose test duration is continuous, and discrete, respectively. Since the 1950’s, a multitude

of models have been developed for reliability growth tracking and is the most well-developed

area of reliability growth (Hall, 2008). However, when failure data are sparse, as is often the case
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when performing system-level testing, the estimated reliability parameters from these models

have a great level of uncertainty. We therefore introduce a model based upon Grey Systems The-

ory, the GM(1,1) model, for prediction of system reliability growth parameters. The GM(1,1)

model has shown to be effective for handling small data sets, making it a plausible candidate for

modeling reliability growth. Chapter 3 introduces a GM(1,1) model tailored for modeling re-

liability growth for systems undergoing continuous testing, with effectiveness compared to the

AMSAA model. Results from Monte Carlo simulation on a system whose failures follow a poly-

Weibull distribution demonstrate the GM(1,1) model’s superiority across the response surface

when handling small samples of failure observations. Likewise, chapter 4 focuses on using the

GM(1,1) model for reliability growth modeling of discrete (one-shot) systems when failure data

are not ample. Simulation demonstrates its capability for providing more accurate growth model-

ing parameters more reflective of true reliability growth.

Chapter 5 introduces a Markov Decision Process (MDP) methodology for modifying the

level of corrective action taken to improve discovered failure modes. Given an initial reliability

growth planning curve, it is likely that developmental testing will produce system reliability es-

timates that deviate from the desired milestone reliability levels. Should demonstrated reliability

fall below the planned level for a given milestone, there is a greater risk of the system not meet-

ing reliability requirements at the end of developmental testing, resulting in additional time and

resources needed to ensure the final product meets its stated reliability requirements. On the other

hand, should demonstrated reliability exceed the planned level for a given milestone, employ-

ing corrective actions on observed failure modes may be unnecessary to meet the stated require-

ments, and could potentially be a waste of resources that could be better served in some other

area. We propose a dynamic approach to determine the optimal level of corrective action to em-

ploy to ensure the system’s reliability growth follows the initial reliability growth planning curve

as closely as possible. The costs of employing a corrective action rise as the level of corrective

action increases to reflect the greater level of effort needed to provide a higher quality improve-

ment. This research indicates that this dynamic approach can produce a system whose reliabil-
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ity growth follows the desired plan more accurately than assuming a fixed level of corrective ac-

tion, and do so at a lesser cost. When determining optimal corrective action policy, penalties are

considered for exceeding the stated reliability milestones, however, we consider application of a

more heavily weighted penalty for deviations falling below the desired reliability level to encour-

age systems to exceed reliability milestones in lieu of falling short of the desired levels. We also

consider weighting deviations from the desired reliability more heavily in each progressive phase

of testing to more accurately reflect the realistic desire for reliability to be as close to the planned

level as developmental testing ends.
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2. A Bat Algorithm (BA) For the Redundancy Allocation Problem (RAP)

Thomas P. Talafuse Edward A. Pohl

Abstract: This paper uses a recently developed Bat Algorithm (BA) meta-heuristic optimization

method to solve the reliability redundancy allocation problem (RAP). The RAP is a well-known

NP-hard problem which has been the subject of much prior work, generally of a restricted form

where each component must consist of identical components in parallel to make computations

tractable. Meta-heuristic methods overcome this limitation and allow for larger instances to be

solved for a more general case where different components can be placed in parallel. The BA

has not yet been used in reliability design, as it was a method initially designed for continuous

problems. A BA is devised and tested on a well-known suite of problems from the literature. It is

shown that the BA is competitive with the best known heuristics for redundancy allocation.

2.1 Introduction

The reliable performance of a system for a predefined time under various conditions is very im-

portant in many industrial applications. To maximize the reliability of a system, which is typi-

cally comprised of a number of components, either the component reliability can be enhanced,

or redundant components can be added in parallel (Kuo and Prasad, 2000). In many real-world

problems, the reliability of components utilized to construct a system are fixed, meaning the only

way to improve system reliability is to increase the redundancy of utilized components. However,

increasing the redundancy of components requires more resources. Thus, it is imperative to op-

timally allocate redundancy to components under some resource constraints, referred to as the

redundancy allocation problem (RAP) (Fyffe et al., 1968). The RAP is one of the most important

reliability optimization problems with regards to improving the reliability of real-world systems

in the design phase. It has attracted many researchers in the past several decades due to reliabili-

tys critical importance in various kinds of systems, such as electrical systems, mechanical system,
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and software systems (Kuo and Prasad (2000); Kuo and Wang (2007)).

Figure 2.1: Series-parallel system configuration
A well-studied design configuration for the RAP is a parallel-serial system with s inde-

pendent k-out-of-n:G subsystems, as illustrated in Figure 2.1. Components in each subsystem

are parallel and a subsystem i is functioning properly if at least ki of its ni components are opera-

tional, and a series-parallel system is where ki = 1 for all subsystems. For parallel-serial systems,

the RAP is always formulated as a nonlinear integer programming problem with the objective to

select the optimal combination of components and redundancy to maximize the system reliability

under some constraints, such as cost, volume, and weight. Initially, RAPs were relatively simple

as all the components of a subsystem were considered to be of the same type. Later, extensions

were made to consider different types of components in one subsystem, significantly increasing

the difficulty of RAPs. The RAP is known to be NP-hard (Chern, 1992), and has been thoroughly

studied in many forms (Tillman et al., 1977b; Kuo and Prasad, 2000).

The RAP can be formulated to maximize system reliability, R, given restrictions on system

cost C and system weight W . It is assumed that system weight and system cost are linear combi-

nations of component weight and cost, resulting in:

max R =
s

∏
i=1

Ri(yi|ki) (2.1)
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subject to the constraints

s

∑
i=1

Ci(yi)≤C, (2.2)

s

∑
i=1

Wi(yi)≤W. (2.3)

where yi is a vector of the quantity of each component type used in subsystem i, Ri(yi|ki) is the

reliability of subsystem i given ki: the minimum number of components in parallel required for

subsystem i to function, and Ci(yi) and Wi(yi) are the total cost and weight, respectively, of sub-

system i.

We assume the following for the problem:

• The state of the components and the system are either good or failed;

• Failed components are not repaired and have no impact on other component performance;

• Component attributes (reliability, cost, weight) are known and deterministic;

• Component supply is unlimited.

Traditional exact optimization approaches to the RAP, including dynamic programming

(e.g. Bellman and Dreyfus, 1958; Fyffe et al., 1968; Nakagawa and Miyazaki, 1981) integer

programming (e.g. Bulfin and Liu, 1985; Gen et al., 1993; Ghare and Taylor, 1969; Misra and

Sharma, 1991), and mixed-integer nonlinear programming (e.g. Tillman et al., 1977a) have been

investigated. However, the exponential increase in the search space with problem size makes

heuristic approaches a viable alternative for the RAP.

Coit and Smith (1996a) first proposed a GA which searches over feasible and infeasible

regions to identify a final, feasible optimal, or near optimal solution to a relaxed version of the

RAP. Coit and Smith (1996b) also constructed a hybrid algorithm using a combination of GA and

neural network approaches. Hsieh (2003) developed a linear programming approach to approx-

imate the integer nonlinear RAP. Ramirez-Marquez et al. (2004) reformulated the objective of
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this problem, maximizing the minimum subsystem reliability, and then solved using integer pro-

gramming. Liang and Smith (2004) used ant colony optimization (ACO) to effectively explore

the feasible region and the infeasible region near the border of the feasible area.

A number of other methods have been investigated for solving the RAP, including tabu

search (Kulturel-Konak et al., 2003), simulated annealing (Kim et al., 2004), immune algorithm

(Chen and You, 2005), heuristic method (You and Chen, 2005), variable neighborhood descent

algorithm (Liang and Wu, 2005), variable neighborhood search (Liang and Chen, 2007), hybrid

algorithm (Nahas et al., 2007), memetic algorithm (Safari and Tavakkoli-Moghaddam, 2010),

and an exact method based on the improved surrogate constraint method (Onishi et al., 2007).

Because of the large search space size of the RAP and the lack of a dominant solution technique,

it is a good candidate for other meta-heuristic approaches including the focus of this paper, BA

optimization.

2.2 The BA Approach

2.2.1 Mainframe of BA

Meta-heuristic algorithms are powerful methods for solving many tough optimization prob-

lems. There are many emerging meta-heuristic algorithms derived from the behavior of biolog-

ical and/or physical systems found in nature, including simulated annealing, genetic algorithms,

particle swarm optimization (PSO), harmony search, and the firefly algorithm. Each of these al-

gorithms possesses certain advantages and disadvantages. For example, simulated annealing can

almost guarantee to find the optimal solution if the cooling process is slow enough and the simu-

lation is running long enough (Granville et al., 1994). However, the fine adjustment in parameters

affects the convergence rate of the optimization process. The BA is a meta-heuristic optimization

method, inspired by the behavior of real bats, which seeks to combine the major advantages of

other algorithms to develop a potentially better algorithm.

There is a vast array of bat species, with each varying in its use of a type of sonar, called

echolocation. Micro-bats use echolocation extensively, allowing them to detect prey, avoid ob-
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stacles, and discriminate different types of insects, even in complete darkness. These bats emit

a very loud sound pulse, generally at a constant frequency, and listen for the echo that bounces

back from the surrounding objects. As bats identify and converge toward their prey, the rate of

pulse emission is increased and the loudness of the pulse decreased to effectively hone in on their

prey.

First introduced by Yang (2010), the BA demonstrated effective results on a benchmark set

of unconstrained problems with continuous and real search spaces. The BA idealizes some of the

echolocation characteristics of bats, which are following a set of idealized rules:

• All bats use echolocation to sense distance and they know the difference between food/prey

and background barriers.

• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying wave-

length λ and loudness A0 to search for prey. They can automatically adjust the wavelength

(or frequency) of their emitted pulses and adjust the rate of pulse emission r ∈ [0,1] de-

pending on the proximity of their target.

• Loudness varies from a large (positive) A0 to a minimum constant value Amin.

Each bat is defined by its position xt
i , velocity vt

i, frequency fi, loudness At
i, and emission pulse

rate rt
i in a d-dimensional search space. New solutions xt

i and velocities vt
i at time step t are given

by:

fi = fmin +( fmax− fmin)β (2.4)

vt
i, j = vt−1

i, j +(xt−1
i, j − x∗( j)) fi ∀ j ∈ d (2.5)

xt
i = xt−1

i + vt
i (2.6)

where β ∈ [0,1] is a random vector drawn from a uniform distribution and x∗( j) is the jth element

of the best solution at that iteration. Once a solution is selected among the current best solutions,

10



a new solution for each bat is generated locally using a random walk

xnew = xold + εAt (2.7)

where ε ∈ [−1,1] is a scaling factor which is a random number, while At =< At
i > is the average

loudness of all the bats at time step t.

Velocity and position updates are similar to the procedure used in PSO, as fi essentially

controls the pace and range of the movement of the bats, just as it does the movement of the

swarming particles. Beji et al. (2010) provides additional information on how a PSO can be ap-

plied to solve the RAP. Loudness Ai and pulse rate emission ri update accordingly as the itera-

tions proceed using

At+1
i = αAt

i, rt+1
i = r0

i [1− exp(−γt)], (2.8)

where α and γ are constants, with α being similar to the cooling factor in simulated annealing.

Kim et al. (2004) provides additional details on the application of simulated annealing to the

RAP.

The BA uses a frequency-tuning technique to increase the diversity of solutions while si-

multaneously using automatic zooming to try to balance exploration and exploitation during the

search process by mimicking the variations of pulse emission rates and loudness of bats when

searching for prey. One of the main advantages of the BA is that it can provide very quick con-

vergence at a very initial stage by switching from exploration to exploitation, making it an effi-

cient algorithm when a quick solution is needed. If switching to an exploitation stage too quickly

leads to solution stagnation after some initial stage, loudness and pulse rates can be varied at a

slower rate to encourage greater exploration. This robustness allows the BA to efficiently find

high quality solutions across a vast array of applications.
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2.2.2 Recent Adaptations and Applications of BA

The efficient nature of the BA has led to a wide range of variants. These include the Fuzzy Logic

BA (FLBA), the Multi-Objective BA (MOBA), K-Means BA (KMBA), Chaotic BA (CBA),

Binary BA (BBA), Differential Operator and Levy Flights BA (DLBA), and the Improved BA

(IBA) (Yang and He, 2013). With numerous variants, the applications of the BA are quite di-

verse; it has been applied in areas of optimization, classifications, image processing, feature se-

lection, scheduling, data mining, and more. The BA has shown to be a very effective and efficient

search algorithm and is competitive with other highly efficient algorithms, such as Cuckoo Search

(Natarajan et al., 2013).

Of particular mention, Gandomi et al. (2013) expanded Yang’s original work to solve com-

plex constrained nonlinear optimization problems. Yang (2012) extended the BA to solve multi-

objective optimization problems, such as welded beam design, via the MOBA. Mallick et al.

(2015) applied the MOBA to obtain the optimal design point for trailing edge flap configura-

tion and flap location to simultaneously achieve minimum hub vibration levels and flap actuation

power. Nakamura et al. (2012) and Mirjalili et al. (2014) developed the BBA which restricted bat

position and movement to only binary values and applied it to solve classification and feature se-

lection problems. While there has been significant expansion of the literature on the BA in the

past five years, there has been no variant developed for application to large-scale discrete prob-

lems, such as the RAP, which is the motivation for this paper.

2.2.3 BA Modification for RAP

In order to solve the RAP directly, one of the key issues is to transform the bat position to only

allow discrete values. Using an approach similar to that used in the BBA (Mirjalili et al., 2014;

Nakamura et al., 2012), frequency and velocity are calculated using (2.4) and (2.5). If ρ< | 2
π

tan−1(π

2 )∗

vi, j|, where ρ ∈ [0,1] is a random draw from a uniform distribution, then position is updated using

xt
i, j = x∗( j)+ k, (2.9)
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where k ∈ [−1,0,1] is a discrete random variable. Furthermore, if ρ > ri, then xi, j is set to x∗( j).

Bat fitness is calculated and penalizes infeasible solutions using the method described in Liang

and Smith (2004), via

Rxi p = Rxi ·
(

W
Wxi

)η

·
(

C
Cxi

)η

(2.10)

where Rxi p is the penalized objective function value, Rxi is the unpenalized objective function

value, Wxi and Cxi are the total system weight and cost of solution xi, and η is a preset amplifica-

tion parameter. This encourages the algorithm to explore the feasible region and the infeasible

region that is near the border of the feasible area and discourages, but permits, search further into

the infeasible region.

The new bat position is accepted if there is improvement in the objective function and ρ <

Ai. Loudness and pulse rate emission are updated via (2.8), but are reset to their initial values if

an improved feasible solution is found. The BA algorithm for the RAP is expressed as follows:
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Begin
Initialization: Set generation counter t = 1. Initialize population of N bats

randomly, with each bat corresponding to a potential solution of the given

problem; define loudness A0 and pulse rate r0; set penalty parameter η

While termination criteria not satisfied or t < max generation

Calculate fitness and identify best bat x∗

For each bat:

Assign frequency and update velocity using 2.4 and 2.5

Update position using 2.9

Set xi, j = x∗( j) if ρ > ri

Calculate fitness

If fitness improves and ρ < Ai then

Accept new position

End if

If new position is feasible then

Update loudness and pulse rate, setting Ai = A0 and ri = r0

Reset t = 1

Else update using 2.8

End if

Set t = t +1

End

End while

End

2.3 Experimentation and Results

To evaluate the performance of the proposed BA, a typical example taken from Fyffe et al. (1968)

is solved. A series-parallel system is connected by 14 subsystems, with each subsystem having

three or four components of choice. Component mixing is allowed in each subsystem so in or-
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der to reduce the size of the search space, a maximum of 8 of each component type is allowed

per subsystem, still resulting in a search space size larger than 7.6× 1033. For each subsystem,

component reliability (Ri), cost (Ci), and weight (Wi) are given for each component alternative i,

in Table 2.1, with the objective of maximizing system reliability given the constraints for system

cost and weight. 33 test instances as devised by Nakagawa and Miyazaki (1981) were generated,

where system cost C = 130, and system weight W is decreased incrementally from 191 to 159.

Table 2.1: Input Data for RAP (Fyffe et al., 1968)

Component Alternatives
1 2 3 4

Subsystem R1 C1 W1 R2 C2 W2 R3 C3 W3 R4 C4 W4
1 0.9 1 3 0.93 1 4 0.91 2 2 0.95 2 5
2 0.95 2 8 0.94 1 10 0.93 1 9 * * *
3 0.85 2 7 0.9 3 5 0.87 1 6 0.92 4 4
4 0.83 3 5 0.87 4 6 0.85 5 4 * * *
5 0.94 2 4 0.93 2 3 0.95 3 5 * * *
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4
7 0.91 4 7 0.92 4 8 0.94 5 9 * * *
8 0.81 3 4 0.9 5 7 0.91 6 6 * * *
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8

10 0.83 4 6 0.85 4 5 0.9 5 6 * * *
11 0.94 3 5 0.95 4 6 0.96 5 6 * * *
12 0.79 2 4 0.82 3 5 0.85 4 6 0.9 5 7
13 0.98 2 5 0.99 3 5 0.97 2 6 * * *
14 0.9 4 6 0.92 4 7 0.95 5 6 0.99 6 9

The bat population was initialized to ten bats. Preliminary investigation on population size

discovered that use of a smaller population did not adequately cover the search space, resulting in

degradation of solution quality, while an increase in the number of bats provided no improvement

of solution quality to warrant the corresponding increase in computational effort. The maximum

number of iterations without an improvement to system reliability was set to 30,000 to ensure

ample examination of the search space. Each instance was replicated ten times using different

random number seeds to enhance exploration of the search space. The BA was coded in MAT-

LAB and run using an Intel i7 2.80GHz PC with 4.0GB of RAM, with final system reliability

rounded to four places after the decimal. Results from the BA are compared with those of Liang
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and Smith (2004), as they are the heuristic benchmark for the RAP when component mixing is

allowed.

Due to the unknown behavior of the BA on combinatorial problems, designed experimenta-

tion was performed to tune maximum frequency fmax, initial loudness A0 and its update parame-

ter α, and initial pulse emission rate r0 and its update parameter γ, for each test instance. This led

to setting parameters fmax = 4, A0 = 5, and r0 = 0.05. The loudness update parameter α took on

values ranging from 0.7-0.99, taking on larger values as total system weight W decreased. Like-

wise, γ took on values ranging from 0.3-0.35, increasing as W increased. The penalty parameter

η was initialized between 0.1-0.5, taking on larger values for less constrained instances, and was

incrementally decreased to a minimum of 0.05 as the number of iterations increased and the bats

converged to a feasible solution.

Two special cases of the BA were also considered: for the first case, frequency is replaced

by a random parameter, Ai = 0, and ri = 1, making this equivalent to a PSO. For the second case,

velocities were not used, and loudness and pulse rate were fixed to constants, reducing the BA to

a Harmony Search. As expected, these more restrictive cases of the BA limited the flexibility and

robustness of the BA, resulting in inferior performance without a significant decrease in computa-

tional efforts. For brevity, these results have been omitted.

Results from the BA are summarized in Table 2.2, where the comparisons between the re-

sults from the ACO and BA are divided into three categories: maximum, mean, and minimum

system reliability. In 13 of the 33 instances the ACO outperformed the BA, but with never more

than a 0.075% gap. The BA was equivalent or superior to the ACO in 20 (60%) of the cases. In

general, the ACO performed better on the lesser constrained problems and performance was sim-

ilar as the instances became more constrained. By allowing infeasible solutions to be considered

at a penalty, high quality solutions can be discovered quickly, with a solution generated for these

instances in roughly 60 seconds. This rapid exploration, coupled with the ability to simultane-

ously exploit good solutions, allows the bats to converge to locally optimal solutions in a short

time. However, across the ten replications, there was significantly more variation in BA than the
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ACO, as can be seen in Figure 2.2. Due to variations in hardware, software, and coding, coupled

with no published computational times for the ACO, it is impossible to compare if the increase

in variability for the BA is worth the trade-off in computational speed. However, due to the short

computational time required for the BA, multiple replications of the BA can be run and a maxi-

mum reliability on par with benchmark solutions can be found.

2.4 Conclusions

In this paper, we have proposed an adaptation of the Bat Algorithm (BA) to solve a mathematical

model of a redundancy allocation problem for a series-parallel system with component mixing.

This problem is not easy to solve, especially for large sizes, motivating the use of meta-heuristic

methods. The BA has demonstrated its effectiveness on continuous problems and our adaptation

for discrete problems provides a robust method for obtaining quality solutions. From our com-

putational results, we have demonstrated that our proposed BA provides solutions on par with

that of benchmark meta-heuristics, and in a few cases, outperforms them. Because the BA has

attributes of flexibility, robustness, and implementation ease, it seems a very promising general

method for other NP-hard reliability design problems. Future research will seek to investigate

further tailoring of model parameters and bat population size, as well as investigate applicability

of the BA to other problem types.
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Table 2.2: Comparison of ACO and BA Results

L&S ACO-RAP - 10 Runs BA - 10 Runs
No C W Max R Mean R Min R Max R Mean R Min R Gap %
1 130 191 0.9868 0.9862 0.9860 0.9866 0.9844 0.9824 0.020%
2 130 190 0.9859 0.9858 0.9857 0.9856 0.9839 0.9821 0.029%
3 130 189 0.9858 0.9853 0.9852 0.9854 0.9838 0.9809 0.037%
4 130 188 0.9853 0.9849 0.9848 0.9850 0.9834 0.9803 0.030%
5 130 187 0.9847 0.9841 0.9837 0.9844 0.9833 0.9794 0.034%
6 130 186 0.9838 0.9836 0.9835 0.9842 0.9833 0.9824 –
7 130 185 0.9835 0.9830 0.9828 0.9834 0.9798 0.9782 0.007%
8 130 184 0.9830 0.9824 0.9820 0.9826 0.9797 0.9763 0.035%
9 130 183 0.9822 0.9818 0.9817 0.9815 0.9795 0.9777 0.075%

10 130 182 0.9815 0.9812 0.9806 0.9812 0.9795 0.9777 0.024%
11 130 181 0.9807 0.9806 0.9804 0.9807 0.9790 0.9770 –
12 130 180 0.9803 0.9798 0.9796 0.9803 0.9785 0.9770 –
13 130 179 0.9795 0.9795 0.9795 0.9795 0.9780 0.9762 –
14 130 178 0.9784 0.9784 0.9783 0.9784 0.9771 0.9755 –
15 130 177 0.9776 0.9776 0.9776 0.9776 0.9761 0.9747 –
16 130 176 0.9765 0.9765 0.9765 0.9767 0.9758 0.9747 –
17 130 175 0.9757 0.9754 0.9753 0.9757 0.9751 0.9741 –
18 130 174 0.9749 0.9747 0.9741 0.9749 0.9742 0.9741 –
19 130 173 0.9738 0.9735 0.9731 0.9738 0.9728 0.9727 –
20 130 172 0.9730 0.9726 0.9714 0.9730 0.9713 0.9708 –
21 130 171 0.9719 0.9717 0.9710 0.9719 0.9701 0.9674 –
22 130 170 0.9708 0.9708 0.9708 0.9708 0.9691 0.9674 –
23 130 169 0.9693 0.9693 0.9693 0.9693 0.9670 0.9651 –
24 130 168 0.9681 0.9681 0.9681 0.9681 0.9644 0.9627 –
25 130 167 0.9663 0.9663 0.9663 0.9663 0.9642 0.9627 –
26 130 166 0.9650 0.9650 0.9650 0.9650 0.9638 0.9627 –
27 130 165 0.9637 0.9637 0.9637 0.9636 0.9596 0.9571 0.014%
28 130 164 0.9624 0.9624 0.9624 0.9618 0.9595 0.9566 0.065%
29 130 163 0.9606 0.9606 0.9606 0.9602 0.9566 0.9566 0.044%
30 130 162 0.9592 0.9592 0.9592 0.9589 0.9579 0.9565 0.026%
31 130 161 0.9580 0.9580 0.9580 0.9580 0.9561 0.9544 –
32 130 160 0.9557 0.9557 0.9557 0.9557 0.9553 0.9544 –
33 130 159 0.9546 0.9546 0.9546 0.9546 0.9542 0.9534 –
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Figure 2.2: Range of Performance Over 10 Replications. (a) ACO; (b) BA
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3. Small Sample Continuous Reliability Growth Modeling Using a Grey Systems Model

Thomas P. Talafuse Edward A. Pohl

Abstract: When performing system-level developmental testing, time and expenses generally

warrant a small sample size for failure data. Upon failure discovery, redesigns and/or corrective

actions can be implemented to improve system reliability. Current methods for estimating relia-

bility growth, namely the Crow (AMSAA) growth model, stipulate that parameter estimates have

a great level of uncertainty when dealing with small sample sizes. For purposes of handling lim-

ited failure data, we propose the use of a modified GM(1,1) model to predict system reliability

growth parameters and investigate how parameter estimates are affected by systems whose fail-

ures follow a poly-Weibull distribution. Monte-Carlo simulation is used to map the response sur-

face of system reliability, and results are used to compare the accuracy of the modified GM(1,1)

model to that of the AMSAA growth model. It is shown that with small sample sizes and mul-

tiple failure modes, the modified GM(1,1) model is more accurate than the AMSAA model for

prediction of growth model parameters.

3.1 Introduction

Reliability growth is the progressive improvement of reliability performance measures over time

through the discovery of failure modes via testing and implementation of solutions to mitigate

these failure modes (IEC 61014, 2003). During developmental testing of a complex system, there

is considerable interest in assessing how system reliability grows to ensure the finished product

meets user reliability requirements. Developmental testing is typically limited by cost, schedule,

resource, and other constraints, often resulting in small data samples and making it imperative to

identify and correct reliability deficiencies in a new design.

A number of models are available for systems undergoing testing in both the continuous

and discrete (one-shot) cases. These models include both parametric and non-parametric methods
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for modeling reliability growth. Continuous models are prolific and include (but are not limited

to): AMSAA (Crow, 1975), Cox & Lewis (Cox and Lewis, 1996), Duane (Duane, 1964), and the

nonparametric-Bayes (Robinson and Dietrich, 1987). With small samples, however, it proves dif-

ficult for these models to confidently obtain accurate parametric estimators and reliability growth

prediction results. For system-level testing, it is reasonable to assume that a system contains an

unknown number of independent competing failure modes whose respective failure times fol-

low Weibull failure rates, resulting in failure data following a poly-Weibull distribution (Freels,

2013). Furthermore, the AMSAA model, one of the most popular models, assumes failures oc-

cur according to a non-homogeneous Poisson process (NHPP) with a Weibull intensity function,

expressed as λ(T ) = λβT β−1. To date, little investigation has been conducted on how this as-

sumption impacts reliability growth modeling on system-level testing for systems following a

poly-Weibull failure distribution.

In this paper we present a new reliability growth model for continuous systems based on

a modified GM(1,1) model. The model may not be suitable for application to all continuous de-

velopment programs but it is useful in cases where budgetary and/or time constraints result in a

small set of failure data. This model can obtain better prediction results, especially for data of

small sample sizes. We focus on developmental testing at the system level, as schedule and cost

constraints often preclude sufficient testing to generate a meaningful reliability estimate from the

data obtained in these tests.

The remainder of this paper is organized as follows: an introduction to Grey systems the-

ory, the original GM(1,1) model and the modified GM(1,1) model will be presented in section

3.2. Section 3.3 tailors the modified GM(1,1) model for reliability growth modeling, with sec-

tion 3.4 applying the GM(1,1) model on systems undergoing failure-terminated reliability growth

testing with a varying number of failure modes, different assumed fix effectiveness factor (FEF)

levels, and the number of failures observed for test termination. Conclusions and future work are

provided in section 3.5.
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3.2 Grey Model for Reliability Growth

3.2.1 Grey Systems Background

In systems theory, a system can be defined with a color that represents the amount of clear infor-

mation about that system. For instance, a system can be called a black box system if its internal

characteristics or mathematical equations that describe its dynamics are completely unknown. On

the other hand if the description of the system is, completely known, it can be named as a white

system. Similarly, a system that has both known and unknown information is defined as a grey

system (Liu and Lin, 2006). In real life, every system can be considered as a grey system because

there are always some uncertainties. Information that can be obtained from a system is always

uncertain and limited in scope due to noise from both inside and outside of the system of concern

(Liu and Lin, 2006). Systems achieving reliability growth in developmental testing are no excep-

tion, making investigation of modeling reliability growth using grey models warranted.

First proposed by Deng (1982), Grey systems theory has become increasingly popular with

its ability to deal with systems that have partially unknown parameters. Unlike conventional sta-

tistical models, grey models require only a limited amount of data to estimate the behavior of an

unknown system (Deng, 1989), and has been widely applied to a broad spectrum of fields, in-

cluding social, economic, agricultural, industrial, ecological, and biological arenas (Wang, 2002;

Chang et al., 2007; Hsu, 2003; Hsu and Chen, 2003; Jović et al., 2005; Mao and Chirwa, 2006;

Huang and Jane, 2009). These previous studies have shown that grey system theory-based ap-

proaches can achieve good performance characteristics when applied to real-time systems, since

grey predictors adapt their parameters to new conditions as new outputs become available. Be-

cause of this reason, grey predictors are more robust with respect to noise and lack of modeling

information when compared to conventional methods.

The main task of grey system theory is to extract realistic governing laws of the system

using available data. This process is known as the generation of the grey sequence. It is argued

that even though the available data of the system, which are generally white numbers, is too com-
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plex or chaotic, they always contain some governing laws. If the randomness of the data obtained

from a grey system is somehow smoothed, it is easier to derive any special characteristics of that

system. (Liu and Lin, 2006). Grey models predict the future values of a time series based only on

a set of the most recent data depending on the window size of the predictor. It is assumed that all

data values to be used in grey models are positive, and the sampling frequency of the time series

is fixed (Kayacan et al., 2010).

In grey systems theory, GM(n,m) denotes a grey model, where n is the order of the differ-

ence equation and m is the number of variables. Although various types of grey models can be

studied, most research has focused attention on GM(1,1) models because of its computational

efficiency. This is mainly due to most applications valuing computational efforts second only to

model performance (Kayacan et al., 2010).

3.2.2 The GM(1,1) Model

The Grey Model First Order, One Variable, or GM(1,1), has been the most widely model dis-

cussed in literature. This model is a time series forecasting model in which the differential equa-

tions of the GM(1,1) model have time-varying coefficients, meaning that the model is renewed

as new data become available to the prediction model. The GM(1,1) model can only be used in

positive data sequences (Deng, 1989). In this paper, system failure times are used as the raw data

points and are positive, allowing grey models to be used to forecast the future values of the raw

data points. In order to smooth the randomness, the raw data obtained from the system to form

the GM(1,1) is subjected to an operator, named the Accumulating Generation Operator (AGO)

(Deng, 1989). The differential equation (i.e. GM(1,1)) is solved to obtain the n-step ahead pre-

dicted value of the system. Finally, using the predicted value, the Inverse Accumulating Genera-

tion Operator (IAGO) is applied to find the predicted values of the original data sequence. Given

that

X (0) = (x(0)(1),x(0)(2), ...,x(0)(n)) (3.1)
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is a non-negative sequence of raw data, then

X (1) = (x(1)(1),x(1)(2), ...,x(1)(n)) (3.2)

is a sequence generated from applying the first-order AGO to X(0), where,

X (1)(k) =
k

∑
i=1

x(0)(i), k = 1,2, ...,n. (3.3)

The least square estimate sequence of the grey differential equation of GM(1,1) is defined

as follows (Deng, 1989):

X (0)(k)+az(1)(k) = b, (3.4)

where the generated mean sequence of X (1) is defined as:

Z(1) = (z(1)(1),z(1)(2), ...,z(1)(n)) (3.5)

and z(1)(k) is the generated mean value of adjacent data, calculated as:

z(1)(k) = 0.5x(1)(k)+0.5x(1)(k−1), k = 2,3, ...,n. (3.6)

The GM(1,1) whitening equation is then given by:

dx(1)

dt
+ax(1) = b. (3.7)

Least squares estimators can be derived using:

û = [a,b]T = (BT B)−1BTY, (3.8)
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where

Y =



x(0)(2)

x(0)(3)
...

x(0)(n)


,B =



−z(1)(2) 1

−z(1)(3) 1
...

−z(1)(n) 1


, (3.9)

and parametric estimators can be obtained as follows (Liu and Lin, 2006):


a =

n
∑

k=2
x(0)(k) ·

n
∑

k=2
z(1)(k)−(n−1) ·

n
∑

k=2
x(0)(k) ·z(1)(k)

(n−1)
n
∑

k=2

[
z(1)(k)

]2
−
[ n

∑
k=2

z(1)(k)
]2

b = 1
(n−1) ·

[ n
∑

k=2
x(0)(k)+a ·

n
∑

k=2
z(1)(k)

]2
. (3.10)

By equation 3.7, the time response solution can be expressed as:

x̂(1)(k+1) =
(

x(0)(1)− b
a

)
e−ak +

b
a
. (3.11)

Predicted values of the original raw data sequence can then be obtained by applying the IAGO,

resulting in:

x̂(0)(k+1) = x̂(1)(k+1)− x̂(1)(k)

= (1− ea)

(
x(0)(1)− b

a

)
e−ak. (3.12)

3.2.3 Modification of GM(1,1) Model

Wang et al. (2010) introduced a modification to the original GM(1,1) model to take better advan-

tage of new pieces of information in the raw data sequence. The time response solution of the

whitened equation is expressed as:

x(1)(k) = ce−ak +
b
a

t = 1,2, ...n (3.13)
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where c is a constant, and parameters a and b are derived according to equation 3.8. For equation

3.13, if k = 1, then

x(1)(1) = ce−a +
b
a

(3.14)

and for k = n

x(1)(n) = ce−an +
b
a
. (3.15)

In order to fully use new information in the raw data sequence while also maintaining the

initial conditions of the original GM(1,1) model, a new initial condition is set to

0.5
(

x(1)(1)+ x(1)(n)
)

(3.16)

and c is derived to be:

c = 2(e−a + e−an)−1

(
x(1)(1)+ x(1)(n)

2
− b

a

)
. (3.17)

This results in a new time response solution of

x(1)(k) =
2

1+ e−a(n−1)

(
x(1)(1)+ x(1)(n)

2
− b

a

)
e−a(k−1)+

b
a

(3.18)

and predicted raw data values as:

x̂(0)(k) = 2(1− ea)(1+ e−a(n−1))−1× (
x(1)(1)+ x(1)(n)

2
− b

a
)e−a(k−1). (3.19)

The new initial condition derived in equation 3.19 from the first and last observations in the raw

data sequence preserve the format of the initial condition for the original GM(1,1) model and

make full use of new observations and can be utilized to more accurately predict raw observation

values.
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3.3 Application to Reliability Growth

It was desired to see how the modified GM(1,1) model performed when applied to continuous

reliability growth modeling. Some assumptions are made regarding testing and evaluation:

• The system has a fixed number of independent competing failure modes whose respective

failure times follow Weibull failure rates.

• Multiple system prototypes are undergoing concurrent testing.

• Failure of any one failure mode results in system failure.

• Upon failure, discovery is immediate and the corresponding failure mode is known with

certainty.

• All failure modes are classified as type BD. That is, corrective action was implemented

during test.

• Upon any given failure, testing on all system prototypes is halted and corrective action

taken to improve the identified failure mode for all systems. Upon completion, testing on

all systems is resumed.

• Corrective action does not remove a failure mode. Rather, it improves the characteristic

life, ηi, by an assumed constant FEF.

• Testing is terminated once a predetermined number of failures are observed.

For purposes of assessment, system MTBF (MT BFi) is calculated upon termination of test-

ing and is compared to the instantaneous MTBF estimates derived from the AMSAA model and

the GM(1,1) model. Since it is common practice to assume that failures will continue at a con-

stant rate once improvements stop being made to the system, instantaneous MTBF is an appropri-

ate metric to use for assessment. It is assumed that upon test termination and after final corrective
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actions are taken that the system is as good as new. Then the MT BFi for the true system, with

failures following a poly-Weibull distribution with J failure modes, can be expressed as:

MT BFi =
∫

∞

0
t× f (t|η,β)dt =

∫
∞

0
t×

{
exp

[
−

J

∑
j=1

(
t

η j

)β j
]}
×

J

∑
j=1

β jtβ j−1

η
β j
j

dt, (3.20)

and derived using numerical integration.

For a sequence of n observed failures with cumulative failure times (T1,T2, ...,Tn), we de-

rive parameter values for the AMSAA model using unbiased estimators, as the number of obser-

vations is small. The parameters for the AMSAA model are estimated using maximum likelihood

estimation (MLE) with likelihood function:

L = λ
n
β

ne−λT ∗β
n

∏
i=1

T β−1
i (3.21)

where T ∗ = Tn is test termination time for failure-terminated testing. The resulting parameter

estimates are then:

β̂ =
N−2

N
n

n lnT ∗−
n
∑

i=1
lnTi

(3.22)

λ̂ =
n

T ∗β̂
(3.23)

With the parameter estimates obtained in equations 3.22 and 3.23, the Weibull intensity function

is used to calculate the instantaneous MTBF at time T ∗, resulting in:

MT BFAMSAA =
1

λi(t)
=

1

λ̂β̂T ∗(β̂−1)
. (3.24)

For the modified GM(1,1) model, the raw data sequence is the cumulative time between

failures, X (0) = (x(0)(1) = T1,x(0)(2) = T2−T1, ...,x(0)(n) = Tn−Tn−1). The modified GM(1,1)

model is applied to obtain X̂ (0), or the predicted cumulative time between observed failures. As-
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suming that the number of failures observed follows a power law process based upon the cumula-

tive time between failures, we have:

E [N(t)] = λtβ. (3.25)

Defining

F(λ,β, x̂(0)(i)) =

(
x̂(0)(i)

λ

)( 1
β

)
i = 1, ...,n, (3.26)

we derive estimates parameters λ̂ and β̂ via nonlinear least squares using the following:

minimize
λ,β

n

∑
i=1

(
F
(

λ,β, x̂(0) (i)
)
−N

(
x̂(0) (i)

))2
(3.27)

Instantaneous MTBF can then be estimated as:

MT BFGM =

(
T ∗

λ̂

)( 1
β̂

)
. (3.28)

3.4 Numerical Experimentation

3.4.1 Initial Investigation

The quality of modeling reliability growth via the GM(1,1) model was initially explored to deter-

mine if it provided more accurate estimates than the AMSAA model. Via Monte-Carlo simula-

tion, failure data were generated for a hypothetical system undergoing continuous developmental

testing with a fixed number of independent competing failure modes whose respective failure

times follow Weibull failure rates. The number of failure modes in the system ranged from one,

equivalent to testing on an individual component, to as many as ten failure modes. Failure mode

parameters were randomly generated with each βi drawn from a uniform distribution in the range

(1, 3.5) and each ηi from a uniform distribution in the range (1,000, 10,000). These values were

chosen to reflect parameters that may be seen in real-world failure modes undergoing develop-

mental testing. Table 3.1 lists the parameter values for the failure modes initially investigated.
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The impact of assuming a constant level of corrective action was also investigated by assuming

FEF values of 50%, 60%, 70%, and 80%. Test termination conditions varied from as few as three

failures to as many as ten failures.

Table 3.1: Failure Mode (FM) Parameter Data

FM(i) βi ηi
1 2.3585 3505.3245
2 2.0613 8602.9852
3 1.0118 2094.1221
4 2.6769 8432.6748
5 1.3418 6175.8399
6 3.2283 2882.8191
7 1.4633 1975.3920
8 1.5492 9807.6141
9 3.0292 2547.4691
10 3.0406 3466.6637

Test instances were developed for all possible combinations of failure modes, corrective

action levels, and termination conditions. To account for the stochastic nature of failure times and

its impact on MTBF estimates, each test instance was replicated n = 1000 times. Both models

were evaluated using the absolute relative error between MT BFi and their respective estimate

for instantaneous MTBF, with no preference being shown for either conservative or optimistic

estimates, and are expressed as:

δAMSAAk =
|MT BFik−MT BFAMSAAk |

MT BFik
, k = 1, ...,n (3.29)

δGMk =
|MT BFik−MT BFGMk |

MT BFik
, k = 1, ...,n (3.30)

From these replications, we derive sample means and standard deviations:

δ̄AMSAA =
1
n

n

∑
k=1

δAMSAAk (3.31)

SAMSAA =

√
1

n−1

n

∑
k=1

(
δAMSAAk− δ̄AMSAAk

)
(3.32)
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δ̄GM =
1
n

n

∑
k=1

δGMk (3.33)

SGM =

√
1

n−1

n

∑
k=1

(
δGMk− δ̄GMk

)
(3.34)

Using the values calculated in equations 3.31 through 3.34, confidence intervals were con-

structed to assess if any statistical difference existed between the AMSAA and modified GM(1,1)

when estimating the true system MTBF. Because of the large number of replications, the central

limit theorem permits use of the z-statistic for computing interval half-widths. The confidence

interval is then calculated as:(δ̄AMSAA− δ̄GM
)
± z1−α/2×

√(
SAMSAA√

n

)2

+

(
SGM√

n

)2
 , (3.35)

with intervals strictly above zero indicating superiority of the GM(1,1) model, and intervals strictly

below zero indicating superiority of the AMSAA model. To convey the instances where the GM(1,1)

model outperforms the AMSAA model, figures 3.1 through 3.4 show the lower confidence bounds

for the various combinations of assumed FEF, number of failure modes, and terminating con-

dition, with results above zero indicating the statistically superior performance of the GM(1,1)

model. The complete list of the lower and upper confidence bounds can be found in the tables of

Appendix 3.A.
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Figure 3.1: Lower Bounds for Difference Between GM(1,1) and AMSAA - 50% FEF
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Figure 3.2: Lower Bounds for Difference Between GM(1,1) and AMSAA - 60% FEF
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Figure 3.3: Lower Bounds for Difference Between GM(1,1) and AMSAA - 70% FEF
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Figure 3.4: Lower Bounds for Difference Between GM(1,1) and AMSAA - 80% FEF

Initial analysis of the randomly generated set of failure mode parameters indicates the as-
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sumed FEF level has insignificant impact on the relative performance of the GM(1,1) model, as

results are fairly consistent across all assumed FEF levels. With terminating conditions of five

or less observed failures, performance of the GM(1,1) model was on par or superior to the AM-

SAA model for all FEF levels and number of failure modes. As the number of observed failures

increased beyond five, the AMSAA model tended to provide better estimates, especially for sys-

tems with few failure modes. It is of significance to note the drastic superiority of the GM(1,1)

model for systems with four failure modes. When compared to the parameters of other failure

modes in the system, the relatively larger beta and eta values result in highly sparse observed fail-

ures stemming from this failure mode. As a result, it has impact on calculating the system’s true

MTBF, but virtually no impact on parameter estimates determined via the AMSAA and GM(1,1)

models. While an outlier, this instance is particularly useful in showing how system reliability

estimates may be drastically biased by the presence of one failure mode whose relative reliabil-

ity prevents it from being observed in testing, and demonstrates the superiority of the GM(1,1)

model for deriving these estimates under these conditions.

3.4.2 Response Surface Mapping

The promising results from the single set of randomly generated failure mode parameters war-

ranted investigation of a larger area of the response surface. Due to the highly variable nature

of the response surface, a designed grid search with four values of β and three values for η was

established, with ten combinations considered for simulation to determine if any general conclu-

sions could be drawn on the performance of the GM(1,1) model. Table 3.2 lists the failure mode

parameter values and the order in which each of these values occurred.
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Table 3.2: Failure Mode Parameters for Designed Test Points

β η Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10
1.5 2000 1 10 2 2 5 10 9
1.5 5000 8 6 6 10 6 7 1 8 8
1.5 8000 10 5 7 6 7 3 10 2
2 2000 7 2 7 5 1 9 4 5
2 5000 2 1 2 4 8 2 6 5
2 8000 4 3 10 9 4 4 6 1 3

2.5 2000 6 5 8 6 5 3 5 3 6
2.5 5000 9 1 9 8 10 4 7 9
2.5 8000 5 9 1 7 2 10 9 2 6 10
3 2000 3 7 4 3 1 3 7 7
3 5000 8 9 3 10 4 9 2 1
3 8000 4 3 8 5 8 8 1 4

In order to reduce the computational time needed to map the response surface, only FEF

values of 60% and 70% were investigated, and the number of replications for each combination

of failure mode, terminating condition, and assumed FEF level was reduced to n = 500. Param-

eter estimates for the AMSAA model and GM(1,1) model were formulated for each replicate via

the methodology in Section 3.3, with equations 3.29 through 3.34 providing a sample mean and

standard deviation for each of the ten failure mode parameter sets.

Results from simulation show that across the response surface, on average, the GM(1,1)

model is superior to the AMSAA model when estimating reliability growth parameters for all test

instances, except for the case of one failure mode with terminating conditions of seven or more

failures. Table 3.3 contains the average difference between the GM(1,1) model and the AMSAA

model across the ten sets, with shaded cells indicating where AMSAA performance was supe-

rior. Furthermore, confidence interval construction on the average difference via the t-distribution

with α = 0.05, demonstrate the GM(1,1) model is on par or superior to the AMSAA model for

all instances except the aforementioned cases where the average difference favored the AMSAA

model. The lower and upper bounds on the confidence intervals can be seen in Tables 3.4 and 3.5,

respectively. Highlighted cells indicate those instances where the GM(1,1) model fails to statis-

tically dominate the AMSAA model. In general, the relative performance of the GM(1,1) model

follows a decreasing trend as either the number of failure modes or the terminating number of
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failures increases. Standard deviation of the differences is minimally impacted by the assumed

FEF level and terminating conditions, but is greatly impacted by the number of failure modes in

the system. The standard deviations see a noticeable increase when testing a system with two or

three failure modes, but decrease and appear to stabilize to a constant level as more failure modes

are introduced. Figures 3.5 and 3.6 illustrate this trend.

Table 3.3: Average Difference of GM(1,1) Model and AMSAA Model Across Parameter Sets

60% FEF
# Failure Modes

# Fails 1 2 3 4 5 7 9 10
3 175.94% 246.96% 234.72% 200.90% 135.64% 124.28% 106.54% 107.20%
4 72.69% 118.60% 111.62% 85.74% 46.95% 38.81% 29.66% 38.56%
5 27.15% 78.63% 92.87% 62.90% 61.23% 23.60% 13.73% 18.68%
6 16.58% 63.98% 62.11% 75.18% 51.27% 18.52% 13.02% 16.22%
7 0.97% 31.21% 55.26% 56.74% 41.15% 19.82% 11.48% 10.18%
8 -18.45% 48.23% 31.23% 44.27% 36.35% 15.44% 9.94% 10.53%
9 -10.95% 25.85% 30.07% 31.60% 33.36% 18.70% 9.94% 10.68%

10 -39.01% 20.88% 14.29% 34.47% 25.79% 18.61% 8.46% 8.27%

70% FEF
# Fails 1 2 3 4 5 7 9 10

3 162.79% 223.40% 218.16% 189.58% 127.92% 119.53% 103.29% 104.18%
4 64.02% 106.82% 99.61% 83.93% 52.86% 37.69% 31.44% 40.08%
5 20.00% 61.74% 79.21% 53.15% 54.74% 20.78% 11.92% 16.85%
6 9.79% 47.51% 49.42% 62.29% 44.60% 15.53% 10.78% 14.30%
7 -5.22% 19.04% 40.28% 44.88% 34.92% 16.53% 8.51% 7.48%
8 -24.02% 33.43% 18.75% 34.55% 30.25% 13.02% 7.07% 7.99%
9 -15.86% 11.63% 20.31% 22.51% 26.50% 15.69% 6.67% 7.91%

10 -34.50% 9.92% 7.13% 26.50% 20.00% 15.64% 5.29% 5.40%

40



Table 3.4: Lower Confidence Bounds on Average Difference of GM(1,1) and AMSAA Models
Across Parameter Sets

60% FEF
# Failure Modes

# Fails 1 2 3 4 5 7 9 10
3 133.38% 82.86% 115.24% 147.26% 78.95% 101.28% 96.21% 84.61%
4 48.16% 10.34% 40.62% 43.60% 20.26% 21.04% 19.88% 26.11%
5 12.43% -4.71% 42.52% 32.59% 17.71% -0.41% 5.91% 11.41%
6 7.42% 3.70% 23.61% 31.40% -6.50% -3.94% 1.83% 8.75%
7 -4.09% -13.98% 17.12% 17.69% -11.02% -6.04% -0.57% 0.49%
8 -19.77% -4.96% 4.60% 10.68% -7.20% -1.70% 1.34% 3.78%
9 -12.72% -10.71% 4.31% 6.23% -10.24% -2.82% 2.73% 1.28%

10 -47.93% -8.60% -7.50% 6.85% -8.67% 0.32% 1.86% -2.66%

70% FEF
# Fails 1 2 3 4 5 7 9 10

3 123.90% 77.92% 106.90% 140.08% 74.76% 97.98% 93.16% 82.20%
4 44.80% 14.73% 39.77% 45.54% 17.29% 22.81% 22.19% 29.41%
5 9.16% -6.53% 36.36% 28.04% 16.10% -0.66% 4.56% 10.33%
6 4.37% 0.90% 17.28% 25.77% -6.96% -4.11% 0.69% 7.65%
7 -6.78% -15.69% 9.41% 12.89% -9.66% -5.85% -2.49% -1.49%
8 -28.08% -5.86% 0.37% 7.82% -4.65% -1.02% -0.10% 2.36%
9 -19.57% -12.07% 1.30% 3.31% -7.60% -1.53% 0.41% -0.22%

10 -46.12% -9.22% -9.88% 5.65% -6.89% 1.28% -0.53% -4.05%

41



Table 3.5: Upper Confidence Bounds on Average Difference of GM(1,1) and AMSAA Models
Across Parameter Sets

60% FEF
# Failure Modes

# Fails 1 2 3 4 5 7 9 10
3 218.50% 411.07% 354.19% 254.53% 192.33% 147.29% 116.87% 129.78%
4 97.21% 226.85% 182.61% 127.88% 73.63% 56.58% 39.45% 51.00%
5 41.87% 161.97% 143.22% 93.21% 104.75% 47.61% 21.53% 25.95%
6 25.73% 124.26% 100.60% 118.96% 109.03% 40.98% 24.22% 23.69%
7 6.03% 76.41% 93.41% 95.79% 93.31% 45.69% 23.54% 19.86%
8 -17.13% 101.44% 57.85% 77.85% 79.91% 32.59% 18.54% 17.28%
9 -9.17% 62.41% 55.82% 56.97% 76.96% 40.23% 17.14% 20.07%

10 -30.08% 50.36% 36.10% 62.09% 60.25% 36.89% 15.06% 19.21%

70% FEF
# Fails 1 2 3 4 5 7 9 10

3 201.68% 368.87% 329.41% 239.06% 181.08% 141.07% 113.42% 126.15%
4 83.23% 198.90% 159.43% 122.32% 88.43% 52.57% 40.69% 50.75%
5 30.84% 130.01% 122.05% 78.24% 93.37% 42.21% 19.27% 23.36%
6 15.19% 94.11% 81.56% 98.80% 96.16% 35.18% 20.86% 20.95%
7 -3.66% 53.79% 71.13% 76.86% 79.51% 38.91% 19.51% 16.46%
8 -19.96% 72.73% 37.13% 61.28% 65.15% 27.07% 14.25% 13.62%
9 -12.15% 35.33% 39.32% 41.70% 60.61% 32.92% 12.91% 16.04%

10 -22.87% 29.06% 24.16% 47.34% 46.90% 29.98% 11.12% 14.86%
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Figure 3.5: Standard Deviation in Differences Across Parameter Sets - 60% FEF
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Figure 3.6: Standard Deviation in Differences Across Parameter Sets - 70% FEF
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3.5 Conclusions and Future Work

In this paper, we have proposed the modified GM(1,1) model for continuous reliability growth

modeling when dealing with limited failure data. To compare its effectiveness, Monte-Carlo sim-

ulation was conducted to compare prediction accuracy with the AMSAA model when handling

a system whose failures follow a poly-Weibull distribution. Results of simulation across the re-

sponse surface indicates that, on average, the GM(1,1) model performs better than the AMSAA

model for modeling reliability growth. These results, however, validate continued usage of the

AMSAA model for component level testing when ample failures are observed, but when failures

are sparse and constraints, be they budgetary or time, limit the quantity of observed failures, the

GM(1,1) model provides growth parameter estimates that are statistically better than the AMSAA

model and are more in line with true system reliability growth. Since the GM(1,1) model is capa-

ble of handling as few as three observed failures and is easily implemented, it shows itself to be a

viable alternative to the AMSAA model for modeling the reliability growth of complex systems.

Future work will seek to establish confidence bounds on the GM(1,1) estimates and expand the

GM(1,1) model to small sample reliability growth modeling in the discrete case.
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Appendix

3.A Confidence Bounds for Difference Between GM(1,1) and AMSAA Monte Carlo Simula-
tion

Table 3.A.1: Terminating Condition: 3 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 141.43% 168.50% 107.45% 148.24% 90.48% 120.86% 578.21% 669.73%
60% 137.03% 162.73% 100.08% 139.64% 93.67% 124.21% 542.63% 628.92%
70% 133.04% 157.46% 93.54% 132.35% 96.38% 127.61% 511.70% 593.51%
80% 129.30% 152.57% 87.70% 125.33% 97.92% 128.82% 484.52% 562.43%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 191.97% 237.10% 79.03% 104.27% 188.46% 239.72% 184.99% 238.16%
60% 183.98% 227.41% 77.09% 101.81% 182.89% 232.56% 179.81% 231.37%
70% 177.22% 219.21% 75.55% 99.95% 178.08% 226.40% 175.34% 225.53%
80% 170.97% 211.31% 74.15% 98.27% 173.91% 221.06% 171.46% 220.45%

Table 3.A.2: Terminating Condition: 4 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 54.17% 73.30% 23.82% 52.60% 21.66% 36.38% 397.34% 447.84%
60% 31.41% 49.45% 9.29% 37.53% 22.13% 36.55% 362.85% 410.16%
70% 27.56% 44.59% 9.07% 35.72% 22.75% 36.60% 332.88% 377.43%
80% 28.46% 44.54% 8.63% 34.15% 22.56% 36.42% 306.59% 348.76%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 69.73% 95.07% 20.13% 37.44% 71.12% 101.22% 83.31% 116.20%
60% 58.47% 82.58% 19.75% 36.69% 64.35% 93.32% 76.64% 108.39%
70% 54.92% 77.83% 19.41% 36.11% 58.60% 86.60% 70.94% 101.70%
80% 52.95% 75.10% 19.08% 35.60% 53.65% 80.83% 65.99% 95.91%
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Table 3.A.3: Terminating Condition: 5 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 22.74% 40.34% 21.55% 47.58% 5.79% 16.37% 315.85% 350.71%
60% 0.45% 17.06% -2.70% 22.66% 5.02% 15.39% 276.08% 308.58%
70% -6.34% 9.32% -18.82% 5.53% 4.52% 14.97% 242.69% 273.19%
80% -3.80% 10.96% -23.66% 0.59% 3.97% 14.02% 213.86% 242.78%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 27.58% 45.81% 1.73% 14.95% 57.95% 77.33% 92.55% 115.90%
60% 19.25% 36.46% 1.71% 14.57% 48.72% 67.30% 83.25% 105.69%
70% 18.38% 34.70% 1.55% 14.23% 41.11% 58.99% 75.36% 97.01%
80% 17.42% 33.16% 1.41% 13.87% 34.60% 51.89% 68.59% 89.57%

Table 3.A.4: Terminating Condition: 6 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 2.38% 17.75% 29.45% 55.37% -1.30% 6.94% 243.77% 270.38%
60% -19.09% -4.50% 5.36% 29.76% -3.32% 5.32% 200.88% 226.18%
70% -24.99% -11.19% -14.26% 9.78% -4.77% 4.54% 164.62% 188.75%
80% -21.72% -8.69% -29.44% -5.77% -6.62% 3.60% 134.61% 157.63%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 6.66% 22.65% -5.86% 3.61% 40.33% 52.68% 69.32% 84.28%
60% 1.04% 16.05% -5.22% 3.85% 29.95% 41.85% 58.81% 72.99%
70% 0.55% 14.89% -5.00% 3.88% 21.46% 32.94% 49.92% 63.44%
80% -0.13% 13.84% -4.53% 4.04% 14.35% 25.49% 42.33% 55.28%
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Table 3.A.5: Terminating Condition: 7 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -7.08% 7.45% 5.92% 30.89% -1.65% 5.53% 203.42% 228.26%
60% -29.62% -15.80% -20.02% 4.56% -2.56% 4.56% 161.21% 185.26%
70% -37.82% -24.26% -38.84% -14.11% -4.00% 3.28% 125.53% 149.05%
80% -34.00% -21.53% -48.99% -23.81% -5.48% 2.06% 96.20% 119.30%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -4.78% 6.84% -4.67% 1.44% 1.67% 10.04% 25.68% 36.92%
60% -4.82% 6.21% -4.05% 1.87% -7.87% -0.09% 15.67% 26.17%
70% -4.84% 5.81% -3.31% 2.39% -8.07% -0.79% 7.32% 17.22%
80% -5.03% 5.43% -2.99% 2.55% -6.97% -0.14% 0.24% 9.63%

Table 3.A.6: Terminating Condition: 8 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% 24.40% -10.12% 14.71% 32.29% -3.54% 2.44% 182.25% 202.34%
60% -44.25% -30.54% -9.54% 8.23% -3.75% 2.03% 141.88% 161.62%
70% -50.29% -37.09% -29.97% -9.92% -4.73% 1.53% 108.64% 128.13%
80% -46.36% -33.59% -41.65% -21.79% -6.64% 0.63% 80.62% 100.09%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -10.80% -0.50% -3.72% 0.23% -16.39% -10.10% 0.52% 8.57%
60% -9.79% 0.06% -3.23% 0.78% -14.38% -8.55% -9.45% -1.98%
70% -9.05% 0.61% -2.93% 1.23% -12.55% -7.09% -15.00% -8.07%
80% -8.98% 0.71% -3.29% 1.25% -10.76% -5.64% -13.52% -7.06%
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Table 3.A.7: Terminating Condition: 9 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -29.19% -15.72% 3.56% 21.18% -3.21% 1.94% 159.80% 177.70%
60% -47.80% -34.77% -20.12% -1.51% -6.07% 0.10% 121.77% 139.43%
70% -55.51% -42.83% -35.48% -15.90% -6.11% -0.18% 91.82% 108.91%
80% -49.77% -37.45% -44.29% -24.38% -7.62% 0.63% 66.12% 83.04%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -13.37% -5.63% -1.84% 1.57% -18.91% -13.78% -13.43% -7.44%
60% -12.53% -4.89% -0.95% 2.32% -15.95% -11.22% -19.29% -13.80%
70% -11.64% -3.93% 0.24% 3.41% -13.34% -8.98% -17.37% -12.31%
80% -11.43% -3.78% 0.40% 3.59% -10.88% -6.83% -15.60% -10.92%

Table 3.A.8: Terminating Condition: 10 Failures

Number of Failure Modes
1 2 3 4

FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -37.10% -23.66% -7.81% 12.21% -0.16% 4.54% 142.54% 157.95%
60% -52.70% -39.55% -28.88% -8.19% -3.16% 2.49% 104.62% 120.04%
70% -59.43% -46.74% -38.29% -19.49% -6.45% 0.35% 74.05% 89.33%
80% -39.66% -27.88% -45.05% -25.86% -8.67% -1.29% 48.89% 64.13%

5 7 9 10
FEF Lower Upper Lower Upper Lower Upper Lower Upper
50% -13.72% -7.52% -0.57% 2.26% -21.26% -16.71% -26.09% -20.71%
60% -11.61% -5.73% 0.39% 3.34% -17.91% -13.74% -23.33% -18.47%
70% -10.87% -4.63% 0.97% 3.95% -14.76% -10.86% -20.49% -16.04%
80% -10.16% -3.76% 1.32% 4.35% -12.11% -8.40% -17.69% -13.55%
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4. Small Sample Discrete Reliability Growth Modeling Using a Grey Systems Model

Thomas P. Talafuse Edward A. Pohl

Abstract: When performing system-level developmental testing, time and expenses generally

warrant a small sample size for failure data. Upon failure discovery, redesigns and/or correc-

tive actions can be implemented to improve system reliability. Current methods for estimating

discrete (one-shot) reliability growth, namely the Crow (AMSAA) growth model, stipulate that

parameter estimates have a great level of uncertainty when dealing with small sample sizes. For

purposes of handling limited failure data, we propose the use of a modified GM(1,1) model to

predict system reliability growth parameters and investigate how parameter estimates are affected

by systems whose failures follow a poly-Weibull distribution. It is shown that with small sample

sizes and multiple failure modes, the modified GM(1,1) model is more accurate than the AMSAA

model for prediction of growth model parameters.

4.1 Introduction

Reliability growth is the progressive improvement of reliability performance measures over time

through the discovery of failure modes via testing and implementation of solutions to mitigate

these failure modes (IEC 61014, 2003). During developmental testing of a complex system, there

is considerable interest in assessing how system reliability grows to ensure the finished product

meets user reliability requirements. Developmental testing is typically limited by cost, schedule,

resource, and other constraints, often resulting in small data samples and making it imperative to

identify failure modes and correct reliability deficiencies via corrective action and/or redesign.

A number of models are available for systems undergoing testing in both the continuous

and discrete (one-shot) cases. These models include both parametric and non-parametric methods

for modeling reliability growth. Discrete models include (but are not limited to): AMSAA (Crow,

1983), Lloyd Lipow (Lloyd and Lipow, 1984), Gompertz (Virene, 1968), and Duane (Duane,
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1964). With small samples, however, it proves difficult for these models to confidently obtain ac-

curate parametric estimators and reliability growth prediction results. For system-level testing,

it is reasonable to assume that a system contains an unknown number of independent compet-

ing failure modes whose respective failure times follow Weibull failure rates, resulting in failure

data following a poly-Weibull distribution (Freels, 2013). Furthermore, the AMSAA model, one

of the most popular models, assumes failures occur according to a non-homogeneous Poisson

process (NHPP) with a Weibull intensity function, expressed as λ(T ) = λβT β−1. To date, little

investigation has been conducted on how this assumption impacts reliability growth modeling on

system-level testing for systems following a poly-Weibull failure distribution.

In this paper we present a new reliability growth model for discrete systems based on a

modified GM(1,1) model. The model may not be suitable for application to all discrete develop-

ment programs but it is useful in cases where budgetary and/or time constraints result in a small

set of failure data. This model can obtain better prediction results, especially for data of small

sample sizes. We focus on developmental testing at the system level, as schedule and cost con-

straints often preclude sufficient testing to generate a meaningful reliability estimate from the

data obtained in these tests.

The remainder of this paper is organized as follows: an introduction to Grey systems the-

ory, the original GM(1,1) model and the modified GM(1,1) model will be presented in section

4.2. Section 4.3 tailors the modified GM(1,1) model for reliability growth modeling, with section

4.4 applying the GM(1,1) model to one-shot reliability growth testing with a varying number of

failure modes, different assumed fix effectiveness factor (FEF) levels, and the number of failures

observed for test termination. Conclusions and future work are provided in section 4.5.

4.2 Grey Model for Reliability Growth

4.2.1 Grey Systems Background

In systems theory, a system can be defined with a color that represents the amount of clear infor-

mation about that system. For instance, a system can be called a black box system if its internal
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characteristics or mathematical equations that describe its dynamics are completely unknown. On

the other hand if the description of the system is, completely known, it can be named as a white

system. Similarly, a system that has both known and unknown information is defined as a grey

system (Liu and Lin, 2006). In real life, every system can be considered as a grey system because

there are always some uncertainties. Information that can be obtained from a system is always

uncertain and limited in scope due to noise from both inside and outside of the system of concern

(Liu and Lin, 2006). Systems achieving reliability growth in developmental testing are no excep-

tion, making investigation of modeling reliability growth using grey models warranted.

First proposed by Deng (1982), Grey systems theory has become increasingly popular with

its ability to deal with systems that have partially unknown parameters. Unlike conventional sta-

tistical models, grey models require only a limited amount of data to estimate the behavior of an

unknown system (Deng, 1989), and has been widely applied to a broad spectrum of fields, in-

cluding social, economic, agricultural, industrial, ecological, and biological arenas (Wang, 2002;

Chang et al., 2007; Hsu, 2003; Hsu and Chen, 2003; Jović et al., 2005; Mao and Chirwa, 2006;

Huang and Jane, 2009). These previous studies have shown that grey system theory-based ap-

proaches can achieve good performance characteristics when applied to real-time systems, since

grey predictors adapt their parameters to new conditions as new outputs become available. Be-

cause of this reason, grey predictors are more robust with respect to noise and lack of modeling

information when compared to conventional methods.

The main task of grey system theory is to extract realistic governing laws of the system

using available data. This process is known as the generation of the grey sequence. It is argued

that even though the available data of the system, which are generally white numbers, is too com-

plex or chaotic, they always contain some governing laws. If the randomness of the data obtained

from a grey system is somehow smoothed, it is easier to derive any special characteristics of that

system. (Liu and Lin, 2006). Grey models predict the future values of a time series based only on

a set of the most recent data depending on the window size of the predictor. It is assumed that all

data values to be used in grey models are positive, and the sampling frequency of the time series
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is fixed (Kayacan et al., 2010).

In grey systems theory, GM(n,m) denotes a grey model, where n is the order of the differ-

ence equation and m is the number of variables. Although various types of grey models can be

studied, most research has focused attention on GM(1,1) models because of its computational

efficiency. This is mainly due to most applications valuing computational efforts second only to

model performance (Kayacan et al., 2010).

4.2.2 The GM(1,1) Model

The Grey Model First Order, One Variable, or GM(1,1), has been the most widely model dis-

cussed in literature. This model is a time series forecasting model in which the differential equa-

tions of the GM(1,1) model have time-varying coefficients, meaning that the model is renewed

as new data become available to the prediction model. The GM(1,1) model can only be used in

positive data sequences (Deng, 1989). In this paper, system failure times are used as the raw data

points and are positive, allowing grey models to be used to forecast the future values of the raw

data points. In order to smooth the randomness, the raw data obtained from the system to form

the GM(1,1) is subjected to an operator, named the Accumulating Generation Operator (AGO)

(Deng, 1989). The differential equation (i.e. GM(1,1)) is solved to obtain the n-step ahead pre-

dicted value of the system. Finally, using the predicted value, the Inverse Accumulating Genera-

tion Operator (IAGO) is applied to find the predicted values of the original data sequence. Given

that

X (0) = (x(0)(1),x(0)(2), ...,x(0)(n)) (4.1)

is a non-negative sequence of raw data, then

X (1) = (x(1)(1),x(1)(2), ...,x(1)(n)) (4.2)
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is a sequence generated from applying the first-order AGO to X(0), where,

X (1)(k) =
k

∑
i=1

x(0)(i), k = 1,2, ...,n. (4.3)

The least square estimate sequence of the grey differential equation of GM(1,1) is defined

as follows (Deng, 1989):

X (0)(k)+az(1)(k) = b, (4.4)

where the generated mean sequence of X (1) is defined as:

Z(1) = (z(1)(1),z(1)(2), ...,z(1)(n)) (4.5)

and z(1)(k) is the generated mean value of adjacent data, calculated as:

z(1)(k) = 0.5x(1)(k)+0.5x(1)(k−1), k = 2,3, ...,n. (4.6)

The GM(1,1) whitening equation is then given by:

dx(1)

dt
+ax(1) = b. (4.7)

Least squares estimators can be derived using:

û = [a,b]T = (BT B)−1BTY, (4.8)

where

Y =



x(0)(2)

x(0)(3)
...

x(0)(n)


,B =



−z(1)(2) 1

−z(1)(3) 1
...

−z(1)(n) 1


, (4.9)
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and parametric estimators can be obtained as follows (Liu and Lin, 2006):


a =

n
∑

k=2
x(0)(k) ·

n
∑

k=2
z(1)(k)−(n−1) ·

n
∑

k=2
x(0)(k) ·z(1)(k)

(n−1)
n
∑

k=2

[
z(1)(k)

]2
−
[ n

∑
k=2

z(1)(k)
]2

b = 1
(n−1) ·

[ n
∑

k=2
x(0)(k)+a ·

n
∑

k=2
z(1)(k)

]2
. (4.10)

By equation 4.7, the time response solution can be expressed as:

x̂(1)(k+1) =
(

x(0)(1)− b
a

)
e−ak +

b
a
. (4.11)

Predicted values of the original raw data sequence can then be obtained by applying the IAGO,

resulting in:

x̂(0)(k+1) = x̂(1)(k+1)− x̂(1)(k)

= (1− ea)

(
x(0)(1)− b

a

)
e−ak. (4.12)

4.2.3 Modification of GM(1,1) Model

Wang et al. (2010) introduced a modification to the original GM(1,1) model to take better advan-

tage of new pieces of information in the raw data sequence. The time response solution of the

whitened equation is expressed as:

x(1)(k) = ce−ak +
b
a

t = 1,2, ...n (4.13)

where c is a constant, and parameters a and b are derived according to equation 4.8. For equation

4.13, if k = 1, then

x(1)(1) = ce−a +
b
a

(4.14)

and for k = n

x(1)(n) = ce−an +
b
a
. (4.15)
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In order to fully use new information in the raw data sequence while also maintaining the

initial conditions of the original GM(1,1) model, a new initial condition is set to

0.5
(

x(1)(1)+ x(1)(n)
)

(4.16)

and c is derived to be:

c = 2(e−a + e−an)−1

(
x(1)(1)+ x(1)(n)

2
− b

a

)
. (4.17)

This results in a new time response solution of

x(1)(k) =
2

1+ e−a(n−1)

(
x(1)(1)+ x(1)(n)

2
− b

a

)
e−a(k−1)+

b
a

(4.18)

and predicted raw data values as:

x̂(0)(k) = 2(1− ea)(1+ e−a(n−1))−1× (
x(1)(1)+ x(1)(n)

2
− b

a
)e−a(k−1). (4.19)

The new initial condition derived in equation 4.19 from the first and last observations in the raw

data sequence preserve the format of the initial condition for the original GM(1,1) model and

make full use of new observations and can be utilized to more accurately predict raw observation

values.

4.3 Application to Reliability Growth

It was desired to see how the modified GM(1,1) model performed when applied to discrete relia-

bility growth modeling. Some assumptions are made regarding testing and evaluation:

• Each system undergoing test is identical and has a fixed number of independent competing

failure modes whose respective failure times follow Weibull failure rates.

• Failure of any one failure mode results in system failure.
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• There are n system configurations being tested.

• Testing of configuration i is comprised of Ni trials to determine success/failure for a mis-

sion length L.

• For systems that failed during a stage of testing, discovery of the causal failure mode is

known with certainty.

• Corrective actions on all identified causal failure modes are implemented after completion

of a stage of testing and improves the characteristic life, ηi, by an assumed constant FEF.

For purposes of assessment, system reliability for the configuration undergoing testing,

Ri(M), is calculated upon completion of a stage of testing and implementation of corrective ac-

tions. It is assumed that after implementation of corrective actions that the system is as good

as new. The CDF for a poly-Weibull distribtion with J failure modes that each follow a unique

Weibull distribution, is expressed as:

F(t,η,β) = 1−

{
exp

[
−

J

∑
j=1

(
t

η j

)β j
]}

, η j,β j > 0, t ≥ 0. (4.20)

Then the true system reliability for mission length L is calculated as:

Ri(L) = exp

[
−

J

∑
j=1

(
L
η j

)β j
]
, (4.21)

and can be used as the basis of comparison to measure the accuracy of the reliability estimates

derived from the AMSAA model and the GM(1,1) model.

To derive AMSAA parameter values, we let Ni be the number of trials during configuration

i, with Mi failures in each configuration. The cumulative number of trials, Ti, and failures, Ki, are
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expressed as:

Ti = ∑Ni (4.22)

Ki = ∑Mi (4.23)

The expected number of failures for configuration i can be expressed as E[Ki]. Applying

the learning curve property from the AMSAA model implies:

E[Ki] = λT β

i (4.24)

The probability of failure for configuration 1, denoted as f1, can be expressed in terms of T and

N as:

E[K1] = λT β

1 = f1N1 (4.25)

and the failure rate therefore, is:

f1 =
λT β

1
N1

. (4.26)

The expected number of failures by the end of configuration 2 is the sum of the expected

number of failures in configuration 1 and the expected number of failures in configuration 2 is:

E[K2] = λT β

2 (4.27)

= f1N1 + f2N2, (4.28)

resulting in a probability of failure of:

f2 =
λT β

2 −λT β

1
N2

. (4.29)
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By inductive reasoning, we can express the probability of failure for configuration i as:

fi =
λT β

i −λT β

i−1

Ni
. (4.30)

The reliability for configuration i is then expressed as:

RAMSAAi = 1− fi. (4.31)

Using this formulation, AMSAA parameter values can then be derived via maximization of

the likelihood function:

n

∏
i=1

(
Ni

Mi

)(
λT β

i −λT β

i−1

Ni

)Mi(
Ni−λT β

i +λT β

i−1

Ni

)Ni−Mi

. (4.32)

Exact maximum likelihood estimators for λ and β are then values that satisfy the following two

equations:

n

∑
i=1

Hi×Si = 0 (4.33)

n

∑
i=1

Ui×Si = 0, (4.34)

where

Hi = T β

i lnTi−T β

i−1 lnTi−1 (4.35)

Si =
Mi

λT β

i −λT β

i−1

− Ni−Mi

Ni−λT β

i +λT β

i−1

(4.36)

Ui = T β

i −T β

i−1. (4.37)

Following paremeter derivation, AMSAA reliability estimates for each configuration can be de-

rived via equations 4.30 and 4.31 and compared to the true system reliability calculated in equa-

tion 4.21.
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For the modified GM(1,1) model, the raw data sequence, X (0), is the point estimate of the

reliability for configuration i:

X (0) =

(
x(0)(1) = 1−M1

N1
, ...,x(0)(n) = 1−Mn

Nn

)
. (4.38)

The modified GM(1,1) model discussed in sections 4.2.2 and 4.2.3, is applied to obtain X̂ (0) =

(RGMi, ...,RGMn), or the predicted reliability for each configuration. Reliability estimates can then

be compared to the true system reliability, allowing for model performance, relative to the AM-

SAA model, to be assessed.

4.4 Numerical Experimentation

The quality of modeling reliability growth via the GM(1,1) model was explored to determine if it

provided more accurate estimates than the AMSAA model. Via Monte-Carlo simulation, failure

data were generated for a hypothetical system undergoing discrete developmental testing with

a fixed number of independent competing failure modes whose respective failure times follow

Weibull failure rates. The number of failure modes in the system ranged from five to as many as

20 failure modes.

Failure mode parameters were randomly generated with each βi drawn from a uniform

distribution in the range (1, 3.5) and each ηi from a uniform distribution in the range (1,000,

10,000). These values were chosen to reflect parameters that may be seen in real-world failure

modes undergoing developmental testing. Table 4.1 lists the parameter values for the failure

modes initially investigated. The impact of assuming a constant level of corrective action was

also investigated by assuming FEF values of 50%, 60%, 70%, and 80%.

A total of n = 5 configurations were considered, with each progressive configuration incor-

porating the corrective actions introduced from failure mode discovery in the previous configu-

ration. Each test configuration consisted of Ni = 10, i = 1, ...,5, systems undergoing testing to

determine success/failure for mission length L = 1000.
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Table 4.1: Failure Mode (FM) Parameter Data

FM(i) βi ηi
1 2.3585 3505.3245
2 2.0613 8602.9852
3 1.0118 2094.1221
4 2.6769 8432.6748
5 1.3418 6175.8400
6 3.2283 2882.8191
7 1.4633 1975.3920
8 1.5492 9807.6141
9 3.0292 2547.4691
10 3.0406 3466.6637
11 2.0793 9460.2684
12 3.0441 4025.0076
13 1.4385 4355.4884
14 1.0142 3271.8372
15 2.9892 1137.2947
16 2.4971 6434.2409
17 1.2629 4437.4910
18 1.0912 9013.7041
19 3.4523 1539.4779
20 3.2264 6192.1135

Test instances were developed for all possible combinations of failure modes and correc-

tive action levels. To account for the stochastic nature of failure times and its impact on relia-

bility estimates, each test instance was replicated r = 500 times. Both the AMSAA model and

the GM(1,1) model were evaluated using the absolute error between the true reliability and their

respective estimate for reliability, with no preference being shown for either conservative or opti-

mistic estimates, and are expressed as:

δAMSAAi = |Ri−RAMSAAi| , i = 1, ...,r (4.39)

δGMk = |Ri−RGMi| , i = 1, ...,r (4.40)
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From these replications, we derive sample means and standard deviations:

δ̄AMSAA =
1
r

r

∑
i=1

δAMSAAi (4.41)

SAMSAA =

√
1

r−1

r

∑
i=1

(
δAMSAAi− δ̄AMSAAi

)
(4.42)

δ̄GM =
1
r

r

∑
i=1

δGMi (4.43)

SGM =

√
1

r−1

r

∑
i=1

(
δGMi− δ̄GMi

)
(4.44)

Using the values calculated in equations 4.41 through 4.44, confidence intervals were con-

structed to assess if any statistical difference existed between the AMSAA and modified GM(1,1)

when estimating the true system reliability. Because of the large number of replications, the cen-

tral limit theorem permits use of the z-statistic for computing interval half-widths. The confidence

interval is then calculated as:(δ̄AMSAA− δ̄GM
)
± z1−α/2×

√(
SAMSAA√

r

)2

+

(
SGM√

r

)2
 , (4.45)

with intervals strictly above zero indicating superiority of the GM(1,1) model, and intervals strictly

below zero indicating superiority of the AMSAA model. To convey the instances where the GM(1,1)

model outperforms the AMSAA model, figures 4.1 through 4.4 show the lower confidence bounds

for the various combinations of assumed FEF and number of failure modes, with results above

zero indicating the statistically superior performance of the GM(1,1) model. The complete list of

the lower and upper confidence bounds can be found in the tables of Appendix 4.A.
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Figure 4.1: Lower Bounds for Difference Between GM(1,1) and AMSAA - 50% FEF
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Figure 4.2: Lower Bounds for Difference Between GM(1,1) and AMSAA - 60% FEF

65



‐0.0800

‐0.0600

‐0.0400

‐0.0200

0.0000

0.0200

0.0400

0.0600

0 1 2 3 4 5

D
if
fe
re
n
ce
 in

 D
ev
ia
ti
o
n
 B
et
w
e
en

 A
M
SA

A
 a
n
d
 

G
M
(1
,1
)

Configuration

5

6

7

8

9

10

15

20

Figure 4.3: Lower Bounds for Difference Between GM(1,1) and AMSAA - 70% FEF
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Figure 4.4: Lower Bounds for Difference Between GM(1,1) and AMSAA - 80% FEF

Analysis of the randomly generated set of failure mode parameters indicates the assumed

FEF level has insignificant impact on the relative performance of the GM(1,1) model, as results

are fairly consistent across all assumed FEF levels. From the confidence bounds, we see the trend

of the GM(1,1) model outperforming the AMSAA model as the number of failure modes in-

creases. We observe that the GM(1,1) model’s predicted reliability for the first few configurations

is inferior to that of the AMSAA, but improves in the later configurations.

If model accuracy across all testing configurations is desired, then, in general, the AMSAA
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model outperforms the GM(1,1) model. However, if more accuracy in later stages of testing is

desired, the GM(1,1) model provides a better estimate of the true reliability, especially for sys-

tems with a larger number of failure modes, as seen in the plots of the average true system relia-

bility and the average of each model’s estimate of reliability in Figure 4.B.27. Plots for all simu-

lation instances can be found in Appendix 4.B. We also note that across replications, the average

reliability estimate for both the AMSAA and GM(1,1) models are conservative estimates to the

system’s true reliability for virtually all simulated instances.
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Figure 4.5: Reliability Across Configurations - 7 Failure Modes and 50% FEF

4.5 Conclusions and Future Work

In this paper, we have proposed the modified GM(1,1) model for discrete reliability growth mod-

eling when dealing with limited failure data. To compare its effectiveness, Monte-Carlo simu-

lation was conducted to compare prediction accuracy with the AMSAA model when handling a

system whose failures follow a poly-Weibull distribution. Results of simulation indicate that the

GM(1,1) model is capable of providing more accurate estimates of system reliability for complex

systems with larger numbers of failure modes. While the AMSAA model’s predicted reliability

values in early test configurations is more accurate, the GM(1,1) model is capable of providing

more accurate estimates in later stages of testing configurations, resulting in more precise esti-
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mates of reliability at the end of a test program. While beneficial that the GM(1,1) model is ca-

pable of handling as few as three cofigurations for discrete reliability growth testing, the major

appeal of the GM(1,1) model stems from the relative ease of deriving parameter values via least

squares, while the AMSAA model requires the more complex maximum likelihood estimation.

This, combined with results showing that the GM(1,1) model is on par or superior to the AMSAA

model when failure data are sparse, makes the GM(1,1) model a viable alternative to the AMSAA

model for modeling the reliability growth of discrete, complex systems. Future work will seek

to establish confidence bounds on the GM(1,1) estimates and investigate a larger area of the re-

sponse surface to determine if more general conclusions can be drawn on the performance of the

GM(1,1) model.
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Jović, F., Krmpotić, D., Jović, A., and Jukić, M. (2005). Evaluation of grey prediction method of
energy consumption. In MIPRO 28th International Convention.

Kayacan, E., Ulutas, B., and Kaynak, O. (2010). ”Grey System Theory-based Models in Time
Series Prediction”. Expert Systems with Applications, 37(2):1784–1789.

Liu, S. and Lin, Y. (2006). Grey Information: Theory and Practical Applications. Springer Verlag
London.

Lloyd, D. K. and Lipow, M. (1984). Reliability: Management, Methods, and Mathematics, 2nd
ed. ASQC.

Mao, M. and Chirwa, E. C. (2006). Application of grey model gm(1, 1) to vehicle fatality risk
estimation. Technological Forecasting and Social Change, 73(5):588–605.

Virene, E. P. (1968). Reliability growth and its upper limit. In Annual Symposium on Reliability
Proceedings, pages 265–270.

69



Wang, Y., Dang, Y., and Liu, S. (2010). ”Reliability Growth Prediction Based on an Improved
Grey Prediction Model”. International Journal of Computational Intelligence Systems,
3(3):266–273.

Wang, Y. F. (2002). Predicting stock price using fuzzy grey prediction system. Expert Systems
with Applications, 22(1):33–38.

70



Appendix

4.A Confidence Bounds for Difference Between AMSAA and GM(1,1) Monte Carlo Simula-
tion

4.A.1 Lower Confidence Bounds

Table 4.A.1: Assumed 50% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.0566 -0.0518 -0.0691 -0.0599 -0.0623 -0.0641 -0.0007 0.0879
2 -0.0488 -0.0467 -0.0675 -0.0565 -0.0615 -0.0613 -0.0409 0.0125
3 -0.0226 -0.0226 -0.0347 -0.0299 -0.0323 -0.0325 -0.0272 0.0005
4 0.0044 0.0053 0.0113 0.0060 0.0084 0.0070 0.0157 0.0289
5 -0.0044 -0.0012 0.0091 0.0020 0.0063 -0.0007 0.0286 0.0364

Table 4.A.2: Assumed 60% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.0604 -0.0525 -0.0667 -0.0600 -0.0641 -0.0648 -0.0147 0.0619
2 -0.0546 -0.0476 -0.0669 -0.0576 -0.0629 -0.0633 -0.0489 -0.0077
3 -0.0285 -0.0221 -0.0337 -0.0299 -0.0328 -0.0330 -0.0297 -0.0114
4 0.0011 0.0062 0.0113 0.0042 0.0096 0.0084 0.0189 0.0262
5 -0.0070 -0.0014 0.0085 -0.0026 0.0086 0.0008 0.0306 0.0376

Table 4.A.3: Assumed 70% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.0547 -0.0546 -0.0671 -0.0584 -0.0657 -0.0672 -0.0291 0.0473
2 -0.0488 -0.0486 -0.0675 -0.0575 -0.0631 -0.0662 -0.0556 -0.0198
3 -0.0226 -0.0224 -0.0346 -0.0293 -0.0328 -0.0341 -0.0317 -0.0170
4 0.0054 0.0074 0.0098 0.0037 0.0085 0.0077 0.0214 0.0295
5 -0.0052 -0.0008 0.0028 -0.0057 0.0058 -0.0010 0.0341 0.0502
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Table 4.A.4: Assumed 80% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.0565 -0.0552 -0.0666 -0.0586 -0.0674 -0.0681 -0.0337 0.0295
2 -0.0495 -0.0478 -0.0681 -0.0577 -0.0653 -0.0659 -0.0573 -0.0299
3 -0.0229 -0.0218 -0.0341 -0.0287 -0.0344 -0.0342 -0.0307 -0.0224
4 0.0058 0.0064 0.0103 0.0041 0.0067 0.0069 0.0235 0.0290
5 -0.0064 -0.0033 0.0036 -0.0031 0.0052 -0.0025 0.0377 0.0505

4.A.2 Upper Confidence Bounds

Table 4.A.5: Assumed 50% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.1061 -0.0965 -0.1304 -0.1122 -0.1171 -0.1203 0.0084 0.1866
2 -0.0910 -0.0867 -0.1273 -0.1053 -0.1151 -0.1145 -0.0724 0.0361
3 -0.0392 -0.0392 -0.0621 -0.0525 -0.0572 -0.0574 -0.0452 0.0120
4 0.0147 0.0166 0.0295 0.0192 0.0241 0.0217 0.0405 0.0689
5 -0.0022 0.0043 0.0258 0.0121 0.0209 0.0074 0.0673 0.0844

Table 4.A.6: Assumed 60% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.1129 -0.0979 -0.1256 -0.1124 -0.1206 -0.1217 -0.0199 0.1340
2 -0.1015 -0.0887 -0.1261 -0.1075 -0.1177 -0.1185 -0.0882 -0.0047
3 -0.0497 -0.0383 -0.0602 -0.0527 -0.0580 -0.0584 -0.0495 -0.0121
4 0.0095 0.0181 0.0293 0.0155 0.0266 0.0242 0.0472 0.0629
5 -0.0064 0.0035 0.0244 0.0028 0.0255 0.0100 0.0714 0.0865

Table 4.A.7: Assumed 70% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.1024 -0.1024 -0.1263 -0.1091 -0.1235 -0.1263 -0.0490 0.1046
2 -0.0912 -0.0907 -0.1270 -0.1074 -0.1181 -0.1240 -0.1016 -0.0290
3 -0.0397 -0.0391 -0.0619 -0.0514 -0.0580 -0.0604 -0.0537 -0.0235
4 0.0161 0.0201 0.0267 0.0142 0.0240 0.0230 0.0519 0.0695
5 -0.0046 0.0042 0.0131 -0.0037 0.0197 0.0064 0.0779 0.1113
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Table 4.A.8: Assumed 80% FEF

Number of Failure Modes
Configuration 5 6 7 8 9 10 15 20

1 -0.1062 -0.1035 -0.1249 -0.1096 -0.1266 -0.1277 -0.0579 0.0689
2 -0.0925 -0.0891 -0.1281 -0.1077 -0.1219 -0.1231 -0.1049 -0.0494
3 -0.0404 -0.0382 -0.0608 -0.0503 -0.0609 -0.0604 -0.0518 -0.0346
4 0.0167 0.0180 0.0274 0.0147 0.0208 0.0214 0.0560 0.0682
5 -0.0074 -0.0008 0.0147 0.0010 0.0187 0.0033 0.0850 0.1115
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4.B Reliability Growth Plots Across Configurations

4.B.1 Assumed 50% FEF Growth Curves
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Figure 4.B.1: Reliability Across Configurations - 5 Failure Modes and 50% FEF
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Figure 4.B.2: Reliability Across Configurations - 6 Failure Modes and 50% FEF
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Figure 4.B.3: Reliability Across Configurations - 7 Failure Modes and 50% FEF
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Figure 4.B.4: Reliability Across Configurations - 8 Failure Modes and 50% FEF
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Figure 4.B.5: Reliability Across Configurations - 9 Failure Modes and 50% FEF
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Figure 4.B.6: Reliability Across Configurations - 10 Failure Modes and 50% FEF
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Figure 4.B.7: Reliability Across Configurations - 15 Failure Modes and 50% FEF
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Figure 4.B.8: Reliability Across Configurations - 20 Failure Modes and 50% FEF
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4.B.2 Assumed 60% FEF Growth Curves
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Figure 4.B.9: Reliability Across Configurations - 5 Failure Modes and 60% FEF
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Figure 4.B.10: Reliability Across Configurations - 6 Failure Modes and 60% FEF
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Figure 4.B.11: Reliability Across Configurations - 7 Failure Modes and 60% FEF
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Figure 4.B.12: Reliability Across Configurations - 8 Failure Modes and 60% FEF
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Figure 4.B.13: Reliability Across Configurations - 9 Failure Modes and 60% FEF
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Figure 4.B.14: Reliability Across Configurations - 10 Failure Modes and 60% FEF
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Figure 4.B.15: Reliability Across Configurations - 15 Failure Modes and 60% FEF
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Figure 4.B.16: Reliability Across Configurations - 20 Failure Modes and 60% FEF
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4.B.3 Assumed 70% FEF Growth Curves
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Figure 4.B.17: Reliability Across Configurations - 5 Failure Modes and 70% FEF
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Figure 4.B.18: Reliability Across Configurations - 6 Failure Modes and 70% FEF
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Figure 4.B.19: Reliability Across Configurations - 7 Failure Modes and 70% FEF
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Figure 4.B.20: Reliability Across Configurations - 8 Failure Modes and 70% FEF
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Figure 4.B.21: Reliability Across Configurations - 9 Failure Modes and 70% FEF
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Figure 4.B.22: Reliability Across Configurations - 10 Failure Modes and 70% FEF
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Figure 4.B.23: Reliability Across Configurations - 15 Failure Modes and 70% FEF
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Figure 4.B.24: Reliability Across Configurations - 20 Failure Modes and 70% FEF
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4.B.4 Assumed 80% FEF Growth Curves
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Figure 4.B.25: Reliability Across Configurations - 5 Failure Modes and 80% FEF
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Figure 4.B.26: Reliability Across Configurations - 6 Failure Modes and 80% FEF
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Figure 4.B.27: Reliability Across Configurations - 7 Failure Modes and 80% FEF
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Figure 4.B.28: Reliability Across Configurations - 8 Failure Modes and 80% FEF
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Figure 4.B.29: Reliability Across Configurations - 9 Failure Modes and 80% FEF
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Figure 4.B.30: Reliability Across Configurations - 10 Failure Modes and 80% FEF
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Figure 4.B.31: Reliability Across Configurations - 15 Failure Modes and 80% FEF
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Figure 4.B.32: Reliability Across Configurations - 20 Failure Modes and 80% FEF
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5. A Markov Decision Process Approach for Optimizing Reliability Growth According to Re-
liability Growth Planning Curves

Thomas P. Talafuse Edward A. Pohl Shengfan Zhang

Abstract: This research effort develops methodologies to apply Markov Decision Process con-

cepts to the field of reliability growth. In particular, we introduce a methodology for determining

cost frontier policies that capture the level of corrective actions necessary to mitigate deviations

from a given reliability growth planning curve. Identification of frontier policies derived from

test data provides decision makers the ability to assess tradeoffs between reliability growth and

corrective action expenditures. Furthermore, it provides the ability to forecast if a test program

will fall short of the stated system reliability goal, as well as prevent over-designing of systems to

minimize resource waste. Results demonstrate that this methodology is broadly applicable to test

plan development for any system seeking to mature reliability through developmental testing.

5.1 Introduction

To mature the reliability of a complex system under development, it is important to formulate a

detailed reliability growth plan. One aspect of this plan is a depiction of how the systems relia-

bility is expected to increase over the developmental test period. The depicted growth path serves

as a baseline against which reliability assessments can be compared. Baseline planning curves

have frequently been developed by utilizing the assumed reliability growth pattern specified in

Military Handbook 189 (MIL-HDBK-189) (Department of Defense, 2011), which employs the

Crow-AMSAA planning model.

The purpose of the Crow-AMSAA planning model is to construct idealized system relia-

bility growth curves, identify test time and growth rate required to improve system reliability, and

aid in demonstrating the system reliability requirement as a point estimate. Through a series of

Test-Analyze-and-Fix (TAAF) processes, system failure modes are deliberately sought out and
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improved/eliminated prior to full-rate production, thereby growing system reliability. Should re-

liability fail to grow at a rate consistent with planning curves, then additional time, resources, and

testing efforts beyond those budgeted must be incorporated to meet the desired reliability objec-

tive, and is therefore undesirable. Reliability growth exceeding that which is planned may seem-

ingly appear desirable, as it reduces the time needed to field a system, but could result in unnec-

essary testing, over-designing the system, and expenditure of resources that may not be needed

to meet specified reliability levels within the anticipated time frame. Thus, it can be considered

desirable to adhere to planned growth curves as closely as possible to ensure that a fielded sys-

tem meets specified reliability requirements and a dependable system is available for the end-user

without over-expenditure of resources.

Research has been done to update reliability growth planning curves based upon failure

data obtained via testing (Crow, 2015). In this case, corrective action levels are assumed and are

held constant, resulting in additional testing requirements should system reliability fall short of

the desired level. While a beneficial approach, we propose an alternative methodology, hold-

ing the reliability growth planning curve constant and adjusting the level of corrective actions

taken to improve failure modes as they are discovered. Assuming that a greater expenditure of

effort and resources to reduce the effects of a discovered failure mode positively correlates with a

greater Fix Effectiveness Factor (FEF), we employ Markov Decision Process (MDP) concepts to

identify policies along a cost frontier for minimizing the deviation from a planned growth curve.

System testing provides estimates of system failure intensity rates and an estimate of system reli-

ability, which can be assessed with respect to the interim milestone levels of reliability identified

from the idealized growth curve, allowing decisions to be made on the appropriate expenditure

of resources for corrective actions to ensure system reliability is growing as planned. The proba-

bilistic nature surrounding failure rate parameters makes this problem suitable for MDP method-

ologies, ensuring that optimal decisions are employed to adhere to the idealized growth plan as

closely as possible and systems are more likely to meet requirements and fielded on schedule.
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5.2 Background Literature

While there has been significant research done on constructing reliability growth planning curves

and on tracking reliability growth, a dynamic approach focusing on the appropriate level of cor-

rective action to take in order to adhere to a planning curve is a novel concept. Many reliability

growth models have been developed to help decision makers in planning, tracking, and projecting

the reliability improvement of a system. A highly detailed and comprehensive review of relia-

bility growth planning models, tracking models, and projection models, for both continuous and

discrete (one-shot) systems was recently provided by Hall (2008). His review comprises a syn-

opsis of over 80 papers covering planning models, tracking and projection model, in addition to

numerous reliability growth surveys/handbooks and 36 other papers covering theoretical results,

simulation studies, real-world applications, personal perspectives, international standards, and

related statistical procedures. In addition to Hall’s review, we highlight pertinent literature on

reliability growth planning models, along with recent work on planning considerations and modi-

fication of reliability growth planning curves.

5.2.1 MIL-HDBK-189 Planning Model

The MIL-HDBK-189 model (Department of Defense, 2011) provides decision makers with a

reliability growth planning curve for developmental testing. The planning curve serves as a base-

line for comparison of reliability assessments from failure data. The model is based on the Duane

Postulate and consists of an idealized system reliability growth curve that portrays the profile

for reliability growth throughout the developmental test period and has a constant MTBF dur-

ing the initial test phase. The planning parameters that define the idealized growth curve include:

(1) the initial MTBF, (2) length of the initial test phase (i.e., reliability demonstration test for the

initial MTBF), (3) the final MTBF requirement, (4) the growth rate and (5) the duration of the en-

tire growth program. The model also gives a set of expected MTBF steps during each test phase

in the growth program. Corrective action periods are scheduled between each of the test phases
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where fixes are applied to previously observed failure modes. These improvements increase sys-

tem reliability iteratively and result in an increasing sequence of MTBF steps.

5.2.2 AMSAA System-Level Planning Model

A variant of the MIL-HDBK 189 model, the system-level planning model (Ellner et al., 2000)

can be used to construct system reliability growth test plans and associated idealized system re-

liability growth curves. The model can also prescribe the required test duration to achieve a de-

sired point estimate for system reliability. This model provides several additional options beyond

the MIL-HDBK 189 model for determining various planning parameters, which is convenient

for conducting sensitivity analyses. Most often, the initial MTBF, final MTBF, growth rate, and

length of the initial test phase are provided to determine the test duration required in a given de-

velopment program.

5.2.3 Ellner-Hall PM2 Model

The PM2 model (Ellner and Hall, 2006) takes into consideration the lag-time due to implemen-

tation of corrective actions when constructing a reliability growth planning curve. Exact expres-

sions are presented for the expected number of discovered failure modes and system failure inten-

sity as functions of test time. Simulation results show that derived approximations can adequately

represent the expected reliability growth for a variety of distributions for the system’s initial fail-

ure rate. The main difference of this model compared to other planning models is that it is inde-

pendent of the NHPP assumption and utilizes parameters directly influenced by decision makers,

such as: 1) initial MTBF; 2) management strategy; 3) goal MTBF; 4) average lag-time associ-

ated with fix implementation; 5) total test time; 6) average FEF; 7) the number and placement of

corrective actions, and 8) the planned test hours.
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5.2.4 Other Pertinent Literature

Crow (2011) discusses how significant patterns and key parameters are used to provide a basis

for general guidelines used to establish a realistic reliability growth testing program. If goals are

unrealistic and set too high, assessments of progress may incorrectly indicate the program will be

unsuccessful. Likewise, if the goals are set too low, problems and issues may not be uncovered

in a timely manner. Crow uses historical information to assist in developing a growth plan and

to evaluate the realism of a proposed reliability growth test program, enabling programs to set

realistic interim reliability goals to be attained during testing to indicate that sufficient progress is

being made in order to reach the final goal or requirement.

Crow (2015) also introduced a methodology to progressively update the planned reliability

growth curve across future test phases based on actual test data and give projections for the ex-

pected reliability over multiple future test phases. Parameter values derived during testing are of-

ten different than the values input into the initial planning model, leading to differences between

a system’s reliability milestone targets on the reliability growth curve and the value assessed from

testing data. The methodology proposed can be used to provide confidence that a program is on

track.

Zheng (2002) discusses the optimal release time for computer software, where a condi-

tional non-homogeneous Poisson process model is used to describe the software reliability growth

behavior. A Markov decision programming formulation is used to determine a threshold-type op-

timal release policy, with the objective of minimizing the total discounted cost, subject to a con-

straint on system reliability.

5.3 Methodology

We design our MDP model with the intent of minimizing the deviation of a system’s demon-

strated MTBF from that of an idealized reliability growth curve. Under this construct, we make

the following assumptions on the system’s behavior:
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• Each system is comprised of j competing failure modes whose respective fail times follow

a constant failure rate (CFR).

• Failure modes are considered to be independent and in series. Thus, the system fails upon

failure of any failure mode.

• Testing is conducted over k time-terminated test stages.

• Each test stage has a duration of time T .

• In each stage of testing, there are N identical systems concurrently undergoing testing.

• Upon system failure, the causal failure mode is known with certainty. The time needed for

root cause analysis and corrective action is negligible compared to testing durations.

• Corrective actions reduce the hazard rate of the discovered failure mode with a known FEF

that is proportional to the resources allocated (i.e. greater investment in corrective action

results in greater improvement).

• Corrective actions are completed prior to the start of the next stage of testing, as described

in the MIL-HDBK 189 planning model, and are always performed on the observed failure

modes.

• A realistic growth plan has been established using any one of the planning models found in

the reliability growth planning literature.

5.3.1 Model Formulation

The general structure of the problem is to conduct testing, derive a belief vector for system re-

liability from the failure data, implement a specified level of corrective action and calculate its

respective expected reward, and proceed to the next stage of testing. We consider each decision

epoch, t, to correspond to a stage of testing, with decisions being made following completion of a

stage of testing.
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To characterize the state space for decision epoch, t, we consider n discretized levels of a

percent deviation from the desired MTBF, βt . As such, the exact bounds for each state are depen-

dent on βt , with state st(1) having a lower bound of zero for all decision epochs.

The action space, at consists of a finite set of FEF values corresponding to the level of ef-

fort invested into corrective action, and its respective cost, ct . A decision of no corrective action

has a cost of zero, while a decision of the maximum level of corrective action has a cost of one.

The levels of FEF and their respective costs are constant across all decision epochs.

Since we assume failures for each failure mode follow a CFR, the system also fails accord-

ing to a CFR. Then, for each stage of testing, a point estimate β̂ can be derived from the observed

failure data using maximum likelihood estimation, with a likelihood equation of

LN(β̂) =
N

∑
i=1

(δi(− log β̂− β̂
−1Yi)− (1−δi)β̂

−1Yi), (5.1)

where Yi is the corresponding failure time, with Yi = T for those systems that did not fail dur-

ing testing, δi = 1 if the observation is censored, and δi = 0 if the exact failure time is observed.

Since there is uncertainty surrounding β̂, we derive a belief vector πt on its true value. Under the

assumption of CFR, β∼ χ2, we calculate the belief that the true MTBF is in state s ∈ st via:

Pr(β ∈ st(i)) = 1−χ
2

(
2Nβ̂

sL(i+1)
,2N

)
, i = 1,

Pr(β ∈ st(i)) = 1−
i−1

∑
j=1

χ
2

(
2Nβ̂

sL( j+1)
,2N

)
, i = 2, ...,n,

(5.2)

where sL(i+1) is the lower bound on the MTBF for state st(i+1).

Transition probabilities are non-stationary, due to the nature of the state space and are de-

fined as:

Pr(st+1|β ∈ st ,at) =
∫ sU

sL

f (t)dt =
∫ sU

sL

λk+1etλk+1dt, (5.3)

where sL and sU are the lower and upper bounds on β for each state s ∈ st+1, respectively. Since

there is a belief vector associated with the true value of β and not a point estimate, we consider
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the midpoint for each state st when deriving the transition probabilities. For purposes of deriving

the midpoint for state st(n), we consider SU(n) = 2×βt .

Rewards associated with each action are based upon the expected deviation from the de-

sired MTBF in the next stage, βt+1, after implementation of the corrective action. Rewards can

be given a weight, wt , for each decision epoch, to allow increasing weight to be given to later

stages of testing. Each state can also be assigned weight wd , to capture the reliability metric’s

value compared to the desired MTBF, allowing greater weight to be assigned to deviations falling

below the desired MTBF than those surpassing it, giving us a reward structure of:

Rt(at) = πt×wt×
(

Pr(st+1|β ∈ st ,at)×wd×|E(β̂t+1|at)−βt+1|
)
, ∀d ∈ st . (5.4)

Under this construct, it is possible to evaluate a policy’s impact on cost and deviation from

the desired MTBF, providing decision makers with a structured methodology for determining an

appropriate level of corrective action to take on identified failure modes, as well as producing a

system that meets reliability requirements without being over-designed.

5.4 Numerical Experimentation and Results

Modeling corrective action decisions via MDP was explored to determine if it provided reliability

growth that followed a desired growth curve effectively. For this effort, failure data for a notional

system were generated, with reliability estimated at each decision epoch and compared to a no-

tional idealized growth curve. Using enumerative policy evaluation, a cost frontier was generated,

identifying those policies that produced minimal deviation from the idealized growth curve.

We consider a system undergoing k = 5 stages of testing and improvements. Initial MTBF

is estimated to be 100, with each stage of testing having a duration of T = 1000, and a desired

MTBF of 1028.39 upon completion of the fifth stage of testing and corrective action. The ideal-

ized growth curve with interim MTBF goals can be seen in Figure 5.1.
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Figure 5.1: Notional Idealized Growth Curve

We discretize the state space into nine states for each decision epoch, defining

st = {0,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.3} as the lower bound percentage of the desired

MTBF for each state. Six levels of corrective action are considered, with at = {0,0.3,0.5,0.6,0.7,0.8}

representing the FEF, and respective costs for each action are ct = {0,0.2,0.35,0.5,0.8,1.0}.

Costs do not have a linear relationship with corrective action levels and were notionally gener-

ated to follow an S-curve to reflect a marginally increasing rate of return at lower costs, and a

marginally decreasing rate of return at higher costs. With five decision epochs and six possible

actions for each decision epoch, there is a total of 65 = 7,776 possible policies, each of which

was evaluated and replicated 100 times to identify frontier policies.

The combinations of wt and wd investigate different combinations of weighting the de-

cision epochs, and weighting the deviations above and below the desired MTBF level for each

decision epoch, respectively and can be found in Table 5.1.

99



Table 5.1: Weights for Decision Epoch and Deviation From Goal MTBF

Instance wt wd
1 1.0 ∀ t 1 ∀ st(d)
2 1.0 ∀ t 1 ∀st(d)< βt ,0.5 ∀ st(d)> βt
3 1.0 ∀ t 1 ∀st(d)< βt ,0.1 ∀ st(d)> βt
4 {0.333,0.5,0.667,0.833,1.0} 1 ∀ st(d)
5 {0.333,0.5,0.667,0.833,1.0} 1 ∀st(d)< βt ,0.5 ∀ st(d)> βt
6 {0.333,0.5,0.667,0.833,1.0} 1 ∀st(d)< βt ,0.1 ∀ st(d)> βt
7 {0,0,0,0,1} 1 ∀ st(d)
8 {0,0,0,0,1} 1 ∀st(d)< βt ,0.5 ∀ st(d)> βt
9 {0,0,0,0,1} 1 ∀st(d)< βt ,0.1 ∀ st(d)> βt

In order to investigate the effects of the accuracy of the initial MTBF estimate of 100 on

frontier policies, each instance was simulated with MTBF values that were lower, on par, and

above the initial MTBF estimate. Table 5.2 lists the true system MTBF values at the start of test-

ing.

Table 5.2: True System MTBF at Start of Testing Efforts

True System MTBF
1 25
2 50
3 105
4 205

We illustrate the effectiveness of the MDP approach with the results from instance 5, where

a decision maker is increasingly concerned with deviations from the desired reliability as testing

progresses and moderately favors system over-development over a shortfall. Furthermore, to cap-

ture the idea that this MDP approach is capable of producing smaller deviations from the desired

growth at a lesser cost than a constant FEF, the policies with a constant FEF are also plotted in

the graph. The full tables of frontier policies and their corresponding graphs for all instances can

be found in Appendix 5.A.

Table 5.3: Frontier Policies: β = 25

Reward Cost Policy

2337.8653 0 1 1 1 1 1

2271.8899 0.2 1 1 1 1 2
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Table 5.3 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy

2227.9063 0.35 1 1 1 1 3

2205.9145 0.5 1 1 1 1 4

2205.9143 0.7 2 1 1 1 4

2183.9227 0.8 1 1 1 1 5

2161.9309 1 1 1 1 1 6

2161.9307 1.2 2 1 1 1 6

2161.9301 1.35 3 1 1 1 6

2161.9295 1.5 4 1 1 1 6

2161.9291 1.7 4 2 1 1 6

2161.9285 1.75 3 2 2 1 6

2161.9281 1.85 4 3 1 1 6

2161.9247 1.9 3 3 2 1 6

2161.9239 1.95 3 2 2 2 6

2161.9126 2.05 3 3 3 1 6

2161.9092 2.1 3 3 2 2 6

2161.8996 2.2 4 3 3 1 6

2161.8626 2.25 3 3 3 2 6

2161.7418 2.4 3 3 3 3 6

2161.6177 2.55 4 3 3 3 6

2161.4176 2.7 4 4 3 3 6

2161.0984 2.85 4 4 4 3 6

2160.6263 3 4 4 4 4 6

2159.9120 3.3 5 4 4 4 6

2158.9104 3.5 6 4 4 4 6

2158.8393 3.6 5 5 4 4 6

2157.3536 3.8 6 5 4 4 6

2157.2470 3.9 5 5 5 4 6

2155.2211 4 6 6 4 4 6

2155.0643 4.1 6 5 5 4 6

2155.0266 4.2 5 5 5 5 6
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Table 5.3 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy

2151.9810 4.3 6 6 5 4 6

2151.9319 4.4 6 5 5 5 6

2147.6661 4.5 6 6 6 4 6

2147.6046 4.6 6 6 5 5 6

2141.6382 4.8 6 6 6 5 6

2133.9013 5 6 6 6 6 6
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Figure 5.2: Constant FEF Policies and Policy Frontier: β = 25

Table 5.4: Frontier Policies: β = 50

Reward Cost Policy

2328.9275 0 1 1 1 1 1

2262.9520 0.2 1 1 1 1 2

2218.9684 0.35 1 1 1 1 3

2196.9766 0.5 1 1 1 1 4

2196.9185 0.7 2 1 1 1 4

2174.9848 0.8 1 1 1 1 5
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Table 5.4 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy

2152.9930 1 1 1 1 1 6

2152.9349 1.2 2 1 1 1 6

2152.8124 1.35 3 1 1 1 6

2152.7041 1.5 4 1 1 1 6

2152.5625 1.7 3 3 1 1 6

2152.3531 1.75 3 2 2 1 6

2152.2950 1.85 4 3 1 1 6

2151.4686 1.9 3 3 2 1 6

2151.2294 1.95 3 2 2 2 6

2149.2702 2.05 3 3 3 1 6

2148.4349 2.1 3 3 2 2 6

2147.2335 2.2 4 3 3 1 6

2141.6060 2.25 3 3 3 2 6

2128.4810 2.35 4 4 4 3 4

2105.1483 2.5 4 4 4 4 4

2098.8893 2.65 5 4 4 4 3

2098.8377 2.7 6 4 4 3 3

2074.2225 2.8 5 4 4 4 4

2063.1919 2.85 6 4 4 4 3

2061.0310 2.95 5 5 4 4 3

2037.9547 3 6 4 4 4 4

2035.7590 3.1 5 5 4 4 4

2017.2551 3.15 6 5 4 4 3

2016.6661 3.2 6 6 4 3 3

2014.8825 3.25 5 5 5 4 3

1991.4017 3.3 6 5 4 4 4

1965.5649 3.35 6 6 4 4 3

1962.6803 3.45 6 5 5 4 3

1939.1774 3.5 6 6 4 4 4

1936.2650 3.6 6 5 5 4 4

103



Table 5.4 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy

1884.1401 3.65 6 6 5 4 3

1878.7290 3.7 6 6 6 4 2

1857.3225 3.8 6 6 5 4 4

1817.8770 3.85 6 6 6 4 3

1790.8867 4 6 6 6 4 4

1749.2372 4.15 6 6 6 5 3

1743.3200 4.2 6 6 6 6 2

1722.4460 4.3 6 6 6 5 4

1680.2655 4.35 6 6 6 6 3

1654.1634 4.5 6 6 6 6 4

1632.9587 4.8 6 6 6 6 5

1611.9322 5 6 6 6 6 6
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Figure 5.3: Constant FEF Policies and Policy Frontier: β = 50
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Table 5.5: Frontier Policies: β = 105

Reward Cost Policy

2318.3282 0 1 1 1 1 1

2252.3486 0.2 1 1 1 1 2

2208.3622 0.35 1 1 1 1 3

2186.3692 0.5 1 1 1 1 4

2180.4073 0.7 2 1 1 1 4

2164.3762 0.8 1 1 1 1 5

2142.3833 1 1 1 1 1 6

2111.7473 1.05 3 3 3 1 1

2070.1541 1.1 3 3 2 2 1

2058.4056 1.2 4 3 3 1 1

1931.8182 1.25 3 3 3 2 1

1781.5834 1.4 3 3 3 3 1

1555.5744 1.55 4 3 3 3 1

1339.8700 1.7 4 4 3 3 1

1282.2412 1.85 4 4 4 3 1

1225.2108 1.9 4 4 3 3 2

1132.9605 2 4 4 4 4 1

1108.2523 2.15 5 4 4 3 1

1074.0065 2.2 4 4 4 4 2

1048.6155 2.35 5 4 4 3 2

1041.0673 2.5 5 4 4 4 2

1014.7188 2.55 6 4 4 3 2

1007.6559 2.7 6 5 3 3 2

1006.0715 2.8 6 5 4 4 1

981.6667 2.85 6 6 4 3 1

965.7721 2.9 6 6 4 2 2

936.4994 3 6 6 4 4 1

918.7939 3.15 6 6 5 3 1

918.4003 3.3 6 6 5 4 1

901.7039 3.35 6 6 6 3 1
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Figure 5.4: Constant FEF Policies and Policy Frontier: β = 105

Table 5.6: Frontier Policies: β = 205

Reward Cost Policy

2275.7787 0 1 1 1 1 1

2196.1387 0.2 2 1 1 1 1

2102.3432 0.35 3 1 1 1 1

2038.6166 0.4 2 2 1 1 1

1888.7813 0.55 3 2 1 1 1

1810.2995 0.6 2 2 2 1 1

1682.8013 0.7 3 3 1 1 1

1581.6180 0.75 3 2 2 1 1

1403.2485 0.8 2 2 2 2 1

1062.2164 0.9 3 3 2 1 1

823.7092 1.05 3 3 3 1 1

773.0630 1.2 4 3 3 1 1

733.2781 1.25 3 3 3 2 1

707.0833 1.35 4 4 3 1 1

701.6087 1.4 4 3 3 2 1
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Table 5.6 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy

637.5921 1.5 4 4 4 1 1

624.8224 1.65 5 4 3 1 1

623.4904 1.8 5 4 4 1 1

612.7617 1.85 6 4 3 1 1

599.9045 2.2 6 6 2 1 1
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Figure 5.5: Constant FEF Policies and Policy Frontier: β = 205

As can be seen from figures 5.2-5.5, the policies along the cost frontier are capable of

minimizing deviation from the desired MTBF for the specified cost. This dynamic approach for

choosing levels of corrective action provide policies that dominate the deviation from any of the

assumed constant FEF policies, and holds true for all other instances. Decision makers can then

assess the risk of the test program meeting its stated objectives, make corrective action decisions

accordingly, and determine if additional resources are needed beyond the current test plan. Ad-

ditionally, for a constrained budget, the cost frontier curves identify policies that minimize de-

viation from the desired growth curve, while also providing justification for funding levels. We
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see in Figures 5.2 and 5.3 that when true system reliability is initially overestimated, a more ag-

gressive level of corrective action at all stages is necessary to minimize the deviation from the

planned growth curve. Likewise, when system reliability is initially underestimated, as seen in

Figure 5.5, it is still beneficial to aggressively fix the failure modes that are discovered early in

the test program, but to avoid system over-development, little or no corrective action is necessary

in later stages of testing.

5.5 Conclusions and Future Work

In this effort, we proposed use of Markov Decision Process concepts to develop cost frontier poli-

cies that capture the levels of corrective actions necessary to mitigate deviations from a reliability

growth planning curve. Identification of these frontier policies provides decision makers the abil-

ity to assess tradeoffs between reliability growth and corrective action expenditures. With the

ability to weight rewards by each stage of testing, and by an excess or shortfall from the desired

reliability metric values, this process can be utilized to support the preferences of any decision

maker and can make recommendations on how aggressively corrective actions should be pursued.

Furthermore, it provides the ability to forecast if a test program will fall short of the stated sys-

tem reliability goal, as well as prevent over-designing of systems to minimize resource waste, and

adhere to the idealized growth plan as closely as possible to meet test program requirements.

This effort also highlights the importance of developing a realistic reliability growth plan-

ning curve. A planning curve that assumes a growth rate smaller than what is achievable will re-

sult in an over-allocation of testing resources, while a planning curve that is too aggressive in its

assumed level of reliability growth will fall short of achieving the desired level of demonstrated

reliability, requiring additional time and resources than initially planned. An accurate initial es-

timate of a system’s reliability is also important, but our MDP approach illustrates that a more

conservative estimate of the system’s initial reliability is preferred, as it is possible to not perform

a corrective action if the demonstrated reliability exceeds the desired level.

Discretization of the state space with more states provides better estimates for the true de-
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viation from the desired level of reliability, but comes at a computational cost. Since enumerative

policy evaluation was used in this effort, it is essential to identify the appropriate number of states

in each stage, as well as the levels of corrective action for each state, to prevent the number of

possible policies from rapidly growing. Future work will investigate the sensitivity and robust-

ness of the state space and action space to changes in their respective dimensionality. We also

plan on investigating how those states should be distributed throughout the state space.

Future work also includes incorporation of a probabilistic nature to the success of a cor-

rective action, as corrective actions are not deterministic in nature and may not always achieve

the desired FEF. We also plan on relaxing the assumption that failure modes have constant failure

rates, in favor of a more general Weibull distribution assumption. We also seek to identify any

optimal threshold policies that may exist.
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Appendix

5.A Frontier Policies by Instance

5.A.1 Instance 1: Epochs Weighted Equally, Deviations Weighted Equally

5.A.1.1 System MTBF=25

Table 5.A.1: Frontier Policies: β = 25

Reward Cost Policy
2736.8966 0 1 1 1 1 1
2670.9212 0.2 1 1 1 1 2
2626.9376 0.35 1 1 1 1 3
2604.9458 0.5 1 1 1 1 4
2604.9454 0.7 2 1 1 1 4
2582.9540 0.8 1 1 1 1 5
2560.9622 1 1 1 1 1 6
2560.9618 1.2 2 1 1 1 6
2560.9606 1.35 3 1 1 1 6
2560.9594 1.5 4 1 1 1 6
2560.9590 1.7 4 2 1 1 6
2560.9588 1.75 3 2 2 1 6
2560.9576 1.8 5 1 1 1 6
2560.9544 1.9 3 3 2 1 6
2560.9543 1.95 3 2 2 2 6
2560.9409 2.05 3 3 3 1 6
2560.9391 2.1 3 3 2 2 6
2560.9258 2.2 4 3 3 1 6
2560.8913 2.25 3 3 3 2 6
2560.7718 2.4 3 3 3 3 6
2560.6468 2.55 4 3 3 3 6
2560.4463 2.7 4 4 3 3 6
2560.1268 2.85 4 4 4 3 6
2559.6610 3 4 4 4 4 6
2559.6552 3.15 5 4 4 3 6
2558.9491 3.3 5 4 4 4 6
2558.9410 3.45 5 5 4 3 6
2557.9514 3.5 6 4 4 4 6
2557.8820 3.6 5 5 4 4 6
2557.8684 3.75 5 5 5 3 6
2556.4034 3.8 6 5 4 4 6
2556.2996 3.9 5 5 5 4 6
2554.2845 4 6 6 4 4 6
2533.3587 5 6 6 6 6 6
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Table 5.A.1 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
2554.1301 4.1 6 5 5 4 6
2554.1189 4.2 5 5 5 5 6
2551.0697 4.3 6 6 5 4 6
2551.0580 4.4 6 5 5 5 6
2546.7926 4.5 6 6 6 4 6
2546.7847 4.6 6 6 5 5 6
2540.9019 4.8 6 6 6 5 6
2533.3587 5 6 6 6 6 6
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Figure 5.A.1: Constant FEF Policies and Policy Frontier: β = 25

5.A.1.2 System MTBF=50

Table 5.A.2: Frontier Policies: β = 50

Reward Cost Policy
2710.7087 0 1 1 1 1 1
2644.7333 0.2 1 1 1 1 2
2600.7497 0.35 1 1 1 1 3
2578.7579 0.5 1 1 1 1 4
2578.6436 0.7 2 1 1 1 4
2556.7661 0.8 1 1 1 1 5
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Table 5.A.2 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2534.7743 1 1 1 1 1 6
2534.6600 1.2 2 1 1 1 6
2534.4203 1.35 3 1 1 1 6
2534.2093 1.5 4 1 1 1 6
2534.0555 1.7 4 2 1 1 6
2533.8994 1.75 3 2 2 1 6
2533.7036 1.85 4 3 1 1 6
2532.8984 1.9 3 3 2 1 6
2532.7902 1.95 3 2 2 2 6
2530.4780 2.05 3 3 3 1 6
2529.9097 2.1 3 3 2 2 6
2528.1331 2.2 4 3 3 1 6
2522.9482 2.25 3 3 3 2 6
2509.4944 2.35 4 4 4 3 4
2486.6506 2.5 4 4 4 4 4
2479.7200 2.65 5 4 4 4 3
2478.6708 2.7 6 4 4 3 3
2455.6885 2.8 5 4 4 4 4
2443.7623 2.85 6 4 4 4 3
2441.7895 2.95 5 5 4 4 3
2419.4235 3 6 4 4 4 4
2417.4342 3.1 5 5 4 4 4
2397.8136 3.15 6 5 4 4 3
2395.8008 3.2 6 6 4 3 3
2395.7620 3.25 5 5 5 4 3
2373.2410 3.3 6 5 4 4 4
2346.2250 3.35 6 6 4 4 3
2343.5309 3.45 6 5 5 4 3
2317.8537 3.5 6 6 5 4 2
2316.2944 3.55 6 6 6 3 2
2261.9841 3.65 6 6 5 4 3
2253.6539 3.7 6 6 6 4 2
2237.6163 3.8 6 6 5 4 4
2197.0889 3.85 6 6 6 4 3
2173.3873 4 6 6 6 4 4
2132.3823 4.15 6 6 6 5 3
2123.5490 4.2 6 6 6 6 2
2110.0188 4.3 6 6 6 5 4
2068.4333 4.35 6 6 6 6 3
2048.1090 4.5 6 6 6 6 4
2034.3147 4.8 6 6 6 6 5
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Table 5.A.2 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2020.7578 5 6 6 6 6 6
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Figure 5.A.2: Constant FEF Policies and Policy Frontier: β = 50

5.A.1.3 System MTBF=105

Table 5.A.3: Frontier Policies: β = 105

Reward Cost Policy
2695.2437 0 1 1 1 1 1
2629.2640 0.2 1 1 1 1 2
2585.2777 0.35 1 1 1 1 3
2563.2847 0.5 1 1 1 1 4
2552.1271 0.7 2 1 1 1 4
2541.2919 0.8 1 1 1 1 5
2537.7065 0.85 3 1 1 1 4
2534.5269 0.9 3 3 2 1 1
2519.2991 1 1 1 1 1 6
2456.6329 1.05 3 3 3 1 1
2419.8841 1.1 3 3 2 2 1
2395.5478 1.2 4 3 3 1 1
2278.4623 1.25 3 3 3 2 1
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Table 5.A.3 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
2131.4150 1.4 3 3 3 3 1
1906.6531 1.55 4 3 3 3 1
1706.5149 1.7 4 4 3 3 1
1653.7497 1.85 4 4 4 3 1
1622.3755 1.9 4 4 3 3 2
1552.7024 2 4 4 4 4 1
1517.8385 2.15 5 4 4 3 1
1509.8942 2.3 5 4 4 4 1
1473.5506 2.35 6 4 4 3 1
1462.5548 2.5 6 5 3 3 1
1436.2381 2.65 6 5 4 3 1
1411.8798 2.7 6 6 4 2 1
1401.5522 2.85 6 6 4 3 1
1386.1285 3 6 6 5 2 1
1364.7712 3.2 6 6 6 2 1
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Figure 5.A.3: Constant FEF Policies and Policy Frontier: β = 105

5.A.1.4 System MTBF=205
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Table 5.A.4: Frontier Policies: β = 205

Reward Cost Policy
2643.8432 0 1 1 1 1 1
2528.6963 0.2 2 1 1 1 1
2410.3923 0.35 3 1 1 1 1
2344.2074 0.4 2 2 1 1 1
2166.2439 0.55 3 2 1 1 1
2107.4617 0.6 2 2 2 1 1
1933.5881 0.7 3 3 1 1 1
1852.4956 0.75 3 2 2 1 1
1715.2703 0.8 2 2 2 2 1
1336.1674 0.9 3 3 2 1 1
1154.1041 1.05 3 3 3 1 1
1110.4905 1.2 4 3 3 1 1
1067.9597 1.35 4 4 3 1 1
1063.8921 1.5 5 3 3 1 1
1044.3964 1.7 6 4 2 1 1
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Figure 5.A.4: Constant FEF Policies and Policy Frontier: β = 205
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5.A.2 Instance 2: Epoch Weights Equal, Deviations Above Curve Weighted at 0.5

5.A.2.1 System MTBF=25

Table 5.A.5: Frontier Policies: β = 25

Reward Cost Policy
2736.8916 0 1 1 1 1 1
2670.9162 0.2 1 1 1 1 2
2626.9326 0.35 1 1 1 1 3
2604.9408 0.5 1 1 1 1 4
2604.9403 0.7 2 1 1 1 4
2582.9490 0.8 1 1 1 1 5
2560.9572 1 1 1 1 1 6
2560.9567 1.2 2 1 1 1 6
2560.9556 1.35 3 1 1 1 6
2560.9544 1.5 4 1 1 1 6
2560.9540 1.7 4 2 1 1 6
2560.9538 1.75 3 2 2 1 6
2560.9526 1.8 5 1 1 1 6
2560.9494 1.9 3 3 2 1 6
2560.9492 1.95 3 2 2 2 6
2560.9358 2.05 3 3 3 1 6
2560.9339 2.1 3 3 2 2 6
2560.9206 2.2 4 3 3 1 6
2560.8858 2.25 3 3 3 2 6
2560.7650 2.4 3 3 3 3 6
2560.6387 2.55 4 3 3 3 6
2560.4359 2.7 4 4 3 3 6
2560.1126 2.85 4 4 4 3 6
2559.6404 3 4 4 4 4 6
2559.6351 3.15 5 4 4 3 6
2558.9187 3.3 5 4 4 4 6
2558.9113 3.45 5 5 4 3 6
2557.9062 3.5 6 4 4 4 6
2557.8358 3.6 5 5 4 4 6
2557.8234 3.75 5 5 5 3 6
2556.3338 3.8 6 5 4 4 6
2556.2283 3.9 5 5 5 4 6
2554.1789 4 6 6 4 4 6
2554.0217 4.1 6 5 5 4 6
2554.0079 4.2 5 5 5 5 6
2550.9050 4.3 6 6 5 4 6
2550.8893 4.4 6 5 5 5 6
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Table 5.A.5 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
2546.5426 4.5 6 6 6 4 6
2546.5286 4.6 6 6 5 5 6
2540.5146 4.8 6 6 6 5 6
2532.7778 5 6 6 6 6 6
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Figure 5.A.5: Constant FEF Policies and Policy Frontier: β = 25

5.A.2.2 System MTBF=50

Table 5.A.6: Frontier Policies: β = 50

Reward Cost Policy
2710.0871 0 1 1 1 1 1
2644.1117 0.2 1 1 1 1 2
2600.1281 0.35 1 1 1 1 3
2578.1363 0.5 1 1 1 1 4
2578.0219 0.7 2 1 1 1 4
2556.1445 0.8 1 1 1 1 5
2534.1527 1 1 1 1 1 6
2534.0382 1.2 2 1 1 1 6
2533.7983 1.35 3 1 1 1 6
2533.5869 1.5 4 1 1 1 6
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Table 5.A.6 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2533.4328 1.7 4 2 1 1 6
2533.2753 1.75 3 2 2 1 6
2533.0798 1.85 4 3 1 1 6
2532.2692 1.9 3 3 2 1 6
2532.1516 1.95 3 2 2 2 6
2529.8329 2.05 3 3 3 1 6
2529.2355 2.1 3 3 2 2 6
2527.4718 2.2 4 3 3 1 6
2522.1686 2.25 3 3 3 2 6
2507.9824 2.35 4 4 4 3 4
2484.6497 2.5 4 4 4 4 4
2477.6582 2.65 5 4 4 4 3
2476.6622 2.7 6 4 4 3 3
2452.9914 2.8 5 4 4 4 4
2441.0165 2.85 6 4 4 4 3
2438.9951 2.95 5 5 4 4 3
2415.7792 3 6 4 4 4 4
2413.7231 3.1 5 5 4 4 4
2394.0177 3.15 6 5 4 4 3
2392.1154 3.2 6 6 4 3 3
2391.8968 3.25 5 5 5 4 3
2368.1643 3.3 6 5 4 4 4
2341.0141 3.35 6 6 4 4 3
2338.2239 3.45 6 5 5 4 3
2313.4541 3.5 6 6 5 4 2
2311.9670 3.55 6 6 6 3 2
2311.8086 3.6 6 5 5 4 4
2254.4684 3.65 6 6 5 4 3
2247.6309 3.7 6 6 6 4 2
2227.6508 3.8 6 6 5 4 4
2186.7789 3.85 6 6 6 4 3
2159.7886 4 6 6 6 4 4
2118.1391 4.15 6 6 6 5 3
2112.2220 4.2 6 6 6 6 2
2091.3479 4.3 6 6 6 5 4
2049.1674 4.35 6 6 6 6 3
2023.0653 4.5 6 6 6 6 4
2001.8606 4.8 6 6 6 6 5
1980.8341 5 6 6 6 6 6
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Figure 5.A.6: Constant FEF Policies and Policy Frontier: β = 50

5.A.2.3 System MTBF=105

Table 5.A.7: Frontier Policies: β = 105

Reward Cost Policy
2680.1247 0 1 1 1 1 1
2614.1450 0.2 1 1 1 1 2
2570.1587 0.35 1 1 1 1 3
2548.1657 0.5 1 1 1 1 4
2536.9614 0.7 2 1 1 1 4
2526.1727 0.8 1 1 1 1 5
2522.4402 0.85 3 1 1 1 4
2518.5641 0.9 3 3 2 1 1
2504.1798 1 1 1 1 1 6
2439.9950 1.05 3 3 3 1 1
2403.2560 1.1 3 3 2 2 1
2378.2758 1.2 4 3 3 1 1
2260.0660 1.25 3 3 3 2 1
2109.8311 1.4 3 3 3 3 1
1875.4446 1.55 4 3 3 3 1
1654.3391 1.7 4 4 3 3 1
1593.5860 1.85 4 4 4 3 1
1539.6798 1.9 4 4 3 3 2
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Table 5.A.7 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
1444.3053 2 4 4 4 4 1
1409.2190 2.15 5 4 4 3 1
1385.3513 2.2 4 4 4 4 2
1349.5822 2.35 5 4 4 3 2
1336.4492 2.5 6 4 4 4 1
1304.5605 2.55 6 4 4 3 2
1304.0140 2.65 6 5 4 3 1
1293.4437 2.7 6 5 3 3 2
1288.2006 2.8 6 5 4 4 1
1255.7978 2.85 6 6 4 3 1
1239.9032 2.9 6 6 4 2 2
1210.6305 3 6 6 4 4 1
1189.3713 3.15 6 6 5 3 1
1188.9777 3.3 6 6 5 4 1
1168.9438 3.35 6 6 6 3 1
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Figure 5.A.7: Constant FEF Policies and Policy Frontier: β = 105

5.A.2.4 System MTBF=205
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Table 5.A.8: Frontier Policies: β = 205

Reward Cost Policy
2610.9207 0 1 1 1 1 1
2492.2974 0.2 2 1 1 1 1
2368.8360 0.35 3 1 1 1 1
2306.1327 0.4 2 2 1 1 1
2121.2796 0.55 3 2 1 1 1
2065.9637 0.6 2 2 2 1 1
1880.2144 0.7 3 3 1 1 1
1800.2468 0.75 3 2 2 1 1
1658.9126 0.8 2 2 2 2 1
1244.5618 0.9 3 3 2 1 1
998.0103 1.05 3 3 3 1 1
933.6237 1.2 4 3 3 1 1
907.5792 1.25 3 3 3 2 1
854.9776 1.35 4 4 3 1 1
782.3127 1.5 4 4 4 1 1
760.9314 1.65 5 4 3 1 1
759.5319 1.8 5 4 4 1 1
741.7732 1.85 6 4 3 1 1
722.3070 2.2 6 6 2 1 1
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Figure 5.A.8: Constant FEF Policies and Policy Frontier: β = 205
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5.A.3 Instance 3: Epoch Weights Equal, Deviations Above Curve Weighted at 0.1

5.A.3.1 System MTBF=25

Table 5.A.9: Frontier Policies: β = 25

Reward Cost Policy
2736.8875 0 1 1 1 1 1
2670.9121 0.2 1 1 1 1 2
2626.9285 0.35 1 1 1 1 3
2604.9367 0.5 1 1 1 1 4
2604.9363 0.7 2 1 1 1 4
2582.9449 0.8 1 1 1 1 5
2560.9531 1 1 1 1 1 6
2560.9527 1.2 2 1 1 1 6
2560.9516 1.35 3 1 1 1 2
2560.9504 1.5 4 1 1 1 6
2560.9499 1.7 4 2 1 1 3
2560.9498 1.75 3 2 2 1 2
2560.9486 1.8 5 1 1 1 2
2560.9454 1.9 3 3 2 1 2
2560.9451 1.95 3 2 2 2 3
2560.9317 2.05 3 3 3 1 6
2560.9298 2.1 3 3 2 2 4
2560.9165 2.2 4 3 3 1 3
2560.8813 2.25 3 3 3 2 6
2560.7595 2.4 3 3 3 3 6
2560.6322 2.55 4 3 3 3 6
2560.4276 2.7 4 4 3 3 3
2560.1012 2.85 4 4 4 3 5
2559.6240 3 4 4 4 4 6
2559.6190 3.15 5 4 4 3 5
2558.8943 3.3 5 4 4 4 6
2558.8876 3.45 5 5 4 3 3
2557.8701 3.5 6 4 4 4 6
2557.7988 3.6 5 5 4 4 5
2557.7873 3.75 5 5 5 3 6
2556.2781 3.8 6 5 4 4 6
2556.1712 3.9 5 5 5 4 5
2554.0945 4 6 6 4 4 6
2553.9350 4.1 6 5 5 4 6
2553.9191 4.2 5 5 5 5 6
2550.7732 4.3 6 6 5 4 6
2550.7543 4.4 6 5 5 5 5
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Table 5.A.9 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
2546.3426 4.5 6 6 6 4 6
2546.3237 4.6 6 6 5 5 6
2540.2048 4.8 6 6 6 5 6
2532.3130 5 6 6 6 6 6
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Figure 5.A.9: Constant FEF Policies and Policy Frontier: β = 25

5.A.3.2 System MTBF=50

Table 5.A.10: Frontier Policies: β = 50

Reward Cost Policy
2709.5897 0 1 1 1 1 1
2643.6143 0.2 1 1 1 1 2
2599.6307 0.35 1 1 1 1 3
2577.6389 0.5 1 1 1 1 4
2577.5244 0.7 2 1 1 1 4
2555.6471 0.8 1 1 1 1 5
2533.6553 1 1 1 1 1 6
2533.5408 1.2 2 1 1 1 6
2533.3006 1.35 3 1 1 1 6
2533.0890 1.5 4 1 1 1 6
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Table 5.A.10 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2532.9345 1.7 4 2 1 1 6
2532.7759 1.75 3 2 2 1 6
2532.5807 1.85 4 3 1 1 6
2531.7658 1.9 3 3 2 1 6
2531.6407 1.95 3 2 2 2 6
2529.3167 2.05 3 3 3 1 6
2528.6961 2.1 3 3 2 2 6
2526.9427 2.2 4 3 3 1 6
2521.5450 2.25 3 3 3 2 6
2506.7728 2.35 4 4 4 3 4
2483.0489 2.5 4 4 4 4 4
2476.0088 2.65 5 4 4 4 3
2475.0553 2.7 6 4 4 3 3
2450.8338 2.8 5 4 4 4 4
2438.8197 2.85 6 4 4 4 3
2436.7597 2.95 5 5 4 4 3
2412.8638 3 6 4 4 4 4
2410.7542 3.1 5 5 4 4 4
2390.9809 3.15 6 5 4 4 3
2389.1671 3.2 6 6 4 3 3
2388.8046 3.25 5 5 5 4 3
2364.1029 3.3 6 5 4 4 4
2336.8454 3.35 6 6 4 4 3
2333.9782 3.45 6 5 5 4 3
2309.0448 3.5 6 6 4 4 4
2308.5051 3.55 6 6 6 3 2
2306.1239 3.6 6 5 5 4 4
2248.4557 3.65 6 6 5 4 3
2242.8124 3.7 6 6 6 4 2
2219.6783 3.8 6 6 5 4 4
2178.5308 3.85 6 6 6 4 3
2148.9096 4 6 6 6 4 4
2106.7444 4.15 6 6 6 5 3
2103.1603 4.2 6 6 6 6 2
2076.4112 4.3 6 6 6 5 4
2033.7546 4.35 6 6 6 6 3
2003.0303 4.5 6 6 6 6 4
1975.8973 4.8 6 6 6 6 5
1948.8951 5 6 6 6 6 6
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Figure 5.A.10: Constant FEF Policies and Policy Frontier: β = 50

5.A.3.3 System MTBF=105

Table 5.A.11: Frontier Policies: β = 105

Reward Cost Policy
2668.0295 0 1 1 1 1 1
2602.0498 0.2 1 1 1 1 2
2558.0635 0.35 1 1 1 1 3
2536.0704 0.5 1 1 1 1 4
2524.8288 0.7 2 1 1 1 4
2514.0773 0.8 1 1 1 1 5
2510.2271 0.85 3 1 1 1 4
2505.7938 0.9 3 3 2 1 1
2492.0843 1 1 1 1 1 6
2426.6847 1.05 3 3 3 1 1
2389.9535 1.1 3 3 2 2 1
2364.4581 1.2 4 3 3 1 1
2245.3488 1.25 3 3 3 2 1
2092.5640 1.4 3 3 3 3 1
1850.4777 1.55 4 3 3 3 1
1612.5984 1.7 4 4 3 3 1
1545.4550 1.85 4 4 4 3 1
1473.5233 1.9 4 4 3 3 2
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Table 5.A.11 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
1357.5876 2 4 4 4 4 1
1322.3233 2.15 5 4 4 3 1
1245.0322 2.2 4 4 4 4 2
1209.3952 2.35 5 4 4 3 2
1175.0183 2.5 5 4 4 3 3
1151.0310 2.55 6 4 4 3 2
1120.7815 2.7 6 4 4 3 3
1097.4519 2.85 6 5 4 3 2
1088.3754 2.9 6 6 3 3 2
1019.4935 3 6 6 4 4 1
997.5421 3.15 6 6 5 3 1
974.9818 3.2 6 6 4 4 2
952.5872 3.35 6 6 5 3 2
947.9767 3.5 6 6 5 4 2
926.7269 3.55 6 6 6 3 2
922.7447 3.7 6 6 6 4 2
919.5656 4 6 6 6 5 2
917.1069 4.2 6 6 6 6 2
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Figure 5.A.11: Constant FEF Policies and Policy Frontier: β = 105

5.A.3.4 System MTBF=205
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Table 5.A.12: Frontier Policies: β = 205

Reward Cost Policy
2584.5826 0 1 1 1 1 1
2463.1783 0.2 2 1 1 1 1
2335.5910 0.35 3 1 1 1 1
2275.6730 0.4 2 2 1 1 1
2085.3081 0.55 3 2 1 1 1
2032.7653 0.6 2 2 2 1 1
1837.5154 0.7 3 3 1 1 1
1758.4478 0.75 3 2 2 1 1
1613.8264 0.8 2 2 2 2 1
1171.2774 0.9 3 3 2 1 1
873.1352 1.05 3 3 3 1 1
792.1303 1.2 4 3 3 1 1
678.0219 1.25 3 3 3 2 1
613.9385 1.4 4 3 3 2 1
510.6119 1.5 4 4 4 1 1
485.1978 1.65 5 4 3 1 1
462.5652 1.7 4 4 4 1 2
423.4059 1.85 4 4 4 3 1
393.3258 2 5 4 4 2 1
370.6575 2.05 6 4 3 2 1
345.1827 2.2 6 4 4 2 1
331.3737 2.35 6 5 3 2 1
328.7227 2.5 6 5 3 3 1
316.5751 2.55 6 6 3 2 1
314.2435 2.7 6 6 3 3 1
312.0941 2.85 6 6 4 3 1
311.2379 3.15 6 6 5 3 1
310.2424 3.2 6 6 6 2 1
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Figure 5.A.12: Constant FEF Policies and Policy Frontier: β = 205
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5.A.4 Instance 4: Epoch Progressively Weighted, Deviations Weighted Equally

5.A.4.1 System MTBF=25

Table 5.A.13: Frontier Policies: β = 25

Reward Cost Policy
2337.8670 0 1 1 1 1 1
2271.8916 0.2 1 1 1 1 2
2227.9080 0.35 1 1 1 1 3
2205.9162 0.5 1 1 1 1 4
2205.9159 0.7 2 1 1 1 4
2183.9244 0.8 1 1 1 1 5
2161.9326 1 1 1 1 1 6
2161.9323 1.2 2 1 1 1 6
2161.9318 1.35 3 1 1 1 6
2161.9312 1.5 4 1 1 1 6
2161.9308 1.7 4 2 1 1 6
2161.9302 1.75 3 2 2 1 6
2161.9298 1.85 4 3 1 1 6
2161.9264 1.9 3 3 2 1 6
2161.9256 1.95 3 2 2 2 6
2161.9143 2.05 3 3 3 1 6
2161.9111 2.1 3 3 2 2 6
2161.9014 2.2 4 3 3 1 6
2161.8648 2.25 3 3 3 2 6
2161.7453 2.4 3 3 3 3 6
2161.6225 2.55 4 3 3 3 6
2161.4247 2.7 4 4 3 3 6
2161.1093 2.85 4 4 4 3 6
2160.6435 3 4 4 4 4 6
2159.9390 3.3 5 4 4 4 6
2158.9522 3.5 6 4 4 4 6
2158.8822 3.6 5 5 4 4 6
2157.4198 3.8 6 5 4 4 6
2157.3150 3.9 5 5 5 4 6
2155.3233 4 6 6 4 4 6
2155.1693 4.1 6 5 5 4 6
2155.1343 4.2 5 5 5 5 6
2152.1422 4.3 6 6 5 4 6
2152.0972 4.4 6 5 5 5 6
2147.9126 4.5 6 6 6 4 6
2147.8573 4.6 6 6 5 5 6
2142.0219 4.8 6 6 6 5 6
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Table 5.A.13 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
2134.4787 5 6 6 6 6 6
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Figure 5.A.13: Constant FEF Policies and Policy Frontier: β = 25

5.A.4.2 System MTBF=50

Table 5.A.14: Frontier Policies: β = 50

Reward Cost Policy
2329.1347 0 1 1 1 1 1
2263.1593 0.2 1 1 1 1 2
2219.1757 0.35 1 1 1 1 3
2197.1839 0.5 1 1 1 1 4
2197.1258 0.7 2 1 1 1 4
2175.1921 0.8 1 1 1 1 5
2153.2003 1 1 1 1 1 6
2153.1422 1.2 2 1 1 1 6
2153.0198 1.35 3 1 1 1 6
2152.9117 1.5 4 1 1 1 6
2152.7707 1.7 3 3 1 1 6
2152.5626 1.75 3 2 2 1 6
2152.5040 1.85 4 3 1 1 6
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Table 5.A.14 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2151.6830 1.9 3 3 2 1 6
2151.4533 1.95 3 2 2 2 6
2149.5002 2.05 3 3 3 1 6
2148.6943 2.1 3 3 2 2 6
2147.4791 2.2 4 3 3 1 6
2141.9704 2.25 3 3 3 2 6
2129.5754 2.35 4 4 4 3 4
2129.3204 2.4 3 3 3 3 6
2106.7316 2.5 4 4 4 4 4
2100.5315 2.65 5 4 4 4 3
2100.4237 2.7 6 4 4 3 3
2076.5000 2.8 5 4 4 4 4
2065.5152 2.85 6 4 4 4 3
2063.4030 2.95 5 5 4 4 3
2041.1764 3 6 4 4 4 4
2039.0477 3.1 5 5 4 4 4
2020.6241 3.15 6 5 4 4 3
2019.9183 3.2 6 6 4 3 3
2018.3211 3.25 5 5 5 4 3
1996.0515 3.3 6 5 4 4 4
1970.3425 3.35 6 6 4 4 3
1967.5540 3.45 6 5 5 4 3
1945.7216 3.5 6 6 4 4 4
1942.9375 3.6 6 5 5 4 4
1891.1820 3.65 6 6 5 4 3
1884.2628 3.7 6 6 6 4 2
1866.8143 3.8 6 6 5 4 4
1827.6977 3.85 6 6 6 4 3
1803.9962 4 6 6 6 4 4
1762.9911 4.15 6 6 6 5 3
1754.1578 4.2 6 6 6 6 2
1740.6276 4.3 6 6 6 5 4
1699.0421 4.35 6 6 6 6 3
1678.7179 4.5 6 6 6 6 4
1664.9235 4.8 6 6 6 6 5
1651.3666 5 6 6 6 6 6
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Figure 5.A.14: Constant FEF Policies and Policy Frontier: β = 50

5.A.4.3 System MTBF=105

Table 5.A.15: Frontier Policies: β = 105

Reward Cost Policy
2323.3690 0 1 1 1 1 1
2257.3894 0.2 1 1 1 1 2
2213.4031 0.35 1 1 1 1 3
2191.4101 0.5 1 1 1 1 4
2185.4725 0.7 2 1 1 1 4
2169.4173 0.8 1 1 1 1 5
2147.4245 1 1 1 1 1 6
2118.0538 1.05 3 3 3 1 1
2076.5274 1.1 3 3 2 2 1
2065.2404 1.2 4 3 3 1 1
1939.8832 1.25 3 3 3 2 1
1792.8358 1.4 3 3 3 3 1
1576.3456 1.55 4 3 3 3 1
1381.5211 1.7 4 4 3 3 1
1331.7868 1.85 4 4 4 3 1
1297.3817 1.9 4 4 3 3 2
1230.7395 2 4 4 4 4 1
1206.0556 2.15 5 4 4 3 1
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Table 5.A.15 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
1198.1113 2.3 5 4 4 4 1
1172.6392 2.35 6 4 4 3 1
1165.6544 2.5 6 5 3 3 1
1142.7994 2.65 6 5 4 3 1
1126.1432 2.7 6 6 4 2 1
1115.8156 2.85 6 6 4 3 1
1103.6487 3 6 6 5 2 1
1085.2781 3.2 6 6 6 2 1
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Figure 5.A.15: Constant FEF Policies and Policy Frontier: β = 105

5.A.4.4 System MTBF=205

Table 5.A.16: Frontier Policies: β = 205

Reward Cost Policy
2286.9140 0 1 1 1 1 1
2209.0823 0.2 2 1 1 1 1
2118.0806 0.35 3 1 1 1 1
2052.8883 0.4 2 2 1 1 1
1907.2044 0.55 3 2 1 1 1
1827.6765 0.6 2 2 2 1 1
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Table 5.A.16 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
1707.5087 0.7 3 3 1 1 1
1606.7436 0.75 3 2 2 1 1
1435.4852 0.8 2 2 2 2 1
1124.1188 0.9 3 3 2 1 1
948.9158 1.05 3 3 3 1 1
916.1170 1.2 4 3 3 1 1
881.9114 1.35 4 4 3 1 1
880.1334 1.5 5 3 3 1 1
868.0933 1.7 6 4 2 1 1
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Figure 5.A.16: Constant FEF Policies and Policy Frontier: β = 205
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5.A.5 Instance 6: Epoch Progressively Weighted, Deviations Above Curve Weighted at 0.1

5.A.5.1 System MTBF=25

Table 5.A.17: Frontier Policies: β = 25

Reward Cost Policy
2337.8639 0 1 1 1 1 1
2271.8885 0.2 1 1 1 1 2
2227.9049 0.35 1 1 1 1 3
2205.9131 0.5 1 1 1 1 4
2205.9129 0.7 2 1 1 1 4
2183.9213 0.8 1 1 1 1 5
2161.9295 1 1 1 1 1 6
2161.9293 1.2 2 1 1 1 6
2161.9287 1.35 3 1 1 1 6
2161.9282 1.5 4 1 1 1 6
2161.9278 1.7 4 2 1 1 6
2161.9272 1.75 3 2 2 1 6
2161.9268 1.85 4 3 1 1 6
2161.9233 1.9 3 3 2 1 6
2161.9226 1.95 3 2 2 2 6
2161.9112 2.05 3 3 3 1 6
2161.9078 2.1 3 3 2 2 6
2161.8982 2.2 4 3 3 1 6
2161.8608 2.25 3 3 3 2 6
2161.7390 2.4 3 3 3 3 6
2161.6139 2.55 4 3 3 3 6
2161.4120 2.7 4 4 3 3 6
2161.0898 2.85 4 4 4 3 6
2160.6125 3 4 4 4 4 6
2159.8903 3.3 5 4 4 4 6
2158.8770 3.5 6 4 4 4 6
2158.8050 3.6 5 5 4 4 6
2157.3006 3.8 6 5 4 4 6
2157.1926 3.9 5 5 5 4 6
2155.1393 4 6 6 4 4 6
2154.9803 4.1 6 5 5 4 6
2154.9406 4.2 5 5 5 5 6
2151.8520 4.3 6 6 5 4 6
2151.7996 4.4 6 5 5 5 6
2147.4690 4.5 6 6 6 4 6
2147.4025 4.6 6 6 5 5 6
2141.3312 4.8 6 6 6 5 6
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Table 5.A.17 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
2133.4394 5 6 6 6 6 6
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Figure 5.A.17: Constant FEF Policies and Policy Frontier: β = 25

5.A.5.2 System MTBF=50

Table 5.A.18: Frontier Policies: β = 50

Reward Cost Policy
2328.7617 0 1 1 1 1 1
2262.7863 0.2 1 1 1 1 2
2218.8027 0.35 1 1 1 1 3
2196.8109 0.5 1 1 1 1 4
2196.7527 0.7 2 1 1 1 4
2174.8191 0.8 1 1 1 1 5
2152.8272 1 1 1 1 1 6
2152.7690 1.2 2 1 1 1 6
2152.6464 1.35 3 1 1 1 6
2152.5380 1.5 4 1 1 1 6
2152.3959 1.7 3 3 1 1 6
2152.1855 1.75 3 2 2 1 6
2152.1279 1.85 4 3 1 1 6
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Table 5.A.18 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
2151.2970 1.9 3 3 2 1 6
2151.0503 1.95 3 2 2 2 6
2149.0863 2.05 3 3 3 1 6
2148.2274 2.1 3 3 2 2 6
2147.0371 2.2 4 3 3 1 6
2141.3145 2.25 3 3 3 2 6
2127.6055 2.35 4 4 4 3 4
2103.8817 2.5 4 4 4 4 4
2097.5756 2.65 5 4 4 4 3
2097.5688 2.7 6 4 4 3 3
2072.4006 2.8 5 4 4 4 4
2061.3332 2.85 6 4 4 4 3
2059.1335 2.95 5 5 4 4 3
2035.3773 3 6 4 4 4 4
2033.1281 3.1 5 5 4 4 4
2014.5598 3.15 6 5 4 4 3
2014.0644 3.2 6 6 4 3 3
2012.1317 3.25 5 5 5 4 3
1987.6819 3.3 6 5 4 4 4
1961.7427 3.35 6 6 4 4 3
1958.7814 3.45 6 5 5 4 3
1933.9421 3.5 6 6 4 4 4
1930.9271 3.6 6 5 5 4 4
1878.5065 3.65 6 6 5 4 3
1874.3019 3.7 6 6 6 4 2
1849.7291 3.8 6 6 5 4 4
1810.0204 3.85 6 6 6 4 3
1780.3992 4 6 6 6 4 4
1738.2340 4.15 6 6 6 5 3
1734.6498 4.2 6 6 6 6 2
1707.9008 4.3 6 6 6 5 4
1665.2442 4.35 6 6 6 6 3
1634.5198 4.5 6 6 6 6 4
1607.3869 4.8 6 6 6 6 5
1580.3846 5 6 6 6 6 6
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Figure 5.A.18: Constant FEF Policies and Policy Frontier: β = 50

5.A.5.3 System MTBF=105

Table 5.A.19: Frontier Policies: β = 105

Reward Cost Policy
2314.2956 0 1 1 1 1 1
2248.3159 0.2 1 1 1 1 2
2204.3295 0.35 1 1 1 1 3
2182.3364 0.5 1 1 1 1 4
2176.3552 0.7 2 1 1 1 4
2160.3434 0.8 1 1 1 1 5
2138.3504 1 1 1 1 1 6
2106.7021 1.05 3 3 3 1 1
2065.0555 1.1 3 3 2 2 1
2052.9378 1.2 4 3 3 1 1
1925.3663 1.25 3 3 3 2 1
1772.5814 1.4 3 3 3 3 1
1538.9575 1.55 4 3 3 3 1
1306.5492 1.7 4 4 3 3 1
1242.6048 1.85 4 4 4 3 1
1167.4740 1.9 4 4 3 3 2
1054.7374 2 4 4 4 4 1
1030.0097 2.15 5 4 4 3 1
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Table 5.A.19 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
942.1819 2.2 4 4 4 4 2
908.0878 2.35 4 4 4 4 3
882.7047 2.5 5 4 4 3 3
870.0451 2.55 6 4 4 3 2
865.7842 2.65 5 4 4 4 3
839.7956 2.7 6 4 4 3 3
824.2642 2.85 6 4 4 4 3
819.5861 2.9 6 6 3 3 2
754.6468 3 6 6 4 4 1
736.4866 3.15 6 6 5 3 1
710.1351 3.2 6 6 4 4 2
691.5317 3.35 6 6 5 3 2
686.9212 3.5 6 6 5 4 2
669.2898 3.55 6 6 6 3 2
665.3076 3.7 6 6 6 4 2
662.1284 4 6 6 6 5 2
659.6697 4.2 6 6 6 6 2
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Figure 5.A.19: Constant FEF Policies and Policy Frontier: β = 105

5.A.5.4 System MTBF=205
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Table 5.A.20: Frontier Policies: β = 205

Reward Cost Policy
2266.8704 0 1 1 1 1 1
2185.7839 0.2 2 1 1 1 1
2089.7532 0.35 3 1 1 1 1
2027.1992 0.4 2 2 1 1 1
1874.0428 0.55 3 2 1 1 1
1796.3980 0.6 2 2 2 1 1
1663.0353 0.7 3 3 1 1 1
1561.5175 0.75 3 2 2 1 1
1377.4591 0.8 2 2 2 2 1
1012.6944 0.9 3 3 2 1 1
723.5440 1.05 3 3 3 1 1
717.5372 1.1 3 3 2 2 1
658.6198 1.2 4 3 3 1 1
528.4307 1.25 3 3 3 2 1
480.4280 1.4 4 3 3 2 1
400.7889 1.5 4 4 4 1 1
386.0955 1.65 5 4 3 1 1
352.7422 1.7 4 4 4 1 2
313.5829 1.85 4 4 4 3 1
295.1669 2 5 4 4 2 1
281.8635 2.05 6 4 3 2 1
260.3888 2.2 6 4 4 2 1
251.2301 2.35 6 5 3 2 1
248.5791 2.5 6 5 3 3 1
240.8003 2.55 6 6 3 2 1
238.4687 2.7 6 6 3 3 1
236.5124 2.85 6 6 4 3 1
235.8199 3.15 6 6 5 3 1
234.9616 3.2 6 6 6 2 1
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Figure 5.A.20: Constant FEF Policies and Policy Frontier: β = 205
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5.A.6 Instance 7: Only Last Epoch Weighted, Deviations Weighted Equally

5.A.6.1 System MTBF=25

Table 5.A.21: Frontier Policies: β = 25

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5376 1.2 1 1 1 2 6
632.5376 1.35 1 1 1 3 6
632.5376 1.5 1 1 1 4 6
632.5376 1.8 1 1 1 5 6
632.5376 2 1 1 1 6 6
632.5376 1.55 1 1 2 3 6
632.5375 1.7 1 1 2 4 6
632.5375 2 1 1 2 5 6
632.5374 2.2 1 1 2 6 6
632.5374 1.85 1 1 3 4 6
632.5373 2.15 1 1 3 5 6
632.5370 2.35 1 1 3 6 6
632.5370 2.3 1 1 4 5 6
632.5366 2.5 1 1 4 6 6
632.5366 2.6 1 1 5 5 6
632.5359 2.8 1 1 5 6 6
632.5359 2.8 1 1 6 5 6
632.5348 3 1 1 6 6 6
632.5342 2.35 1 2 3 5 6
632.5321 2.55 1 2 3 6 6
632.5317 2.5 1 2 4 5 6
632.5281 2.7 1 2 4 6 6
632.5278 2.8 1 2 5 5 6
632.5219 3 1 2 5 6 6
632.5219 3 1 2 6 5 6
632.5124 3.2 1 2 6 6 6
632.5066 2.85 1 3 4 6 6
632.5057 2.95 1 3 5 5 6
632.4870 3.15 1 3 5 6 6
632.4870 3.15 1 3 6 5 6
632.4577 3.35 1 3 6 6 6
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Table 5.A.29 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
632.4529 3.3 1 4 5 6 6
632.4529 3.3 1 4 6 5 6
632.4049 3.5 1 4 6 6 6
632.4012 3.6 1 5 5 6 6
632.4012 3.6 1 5 6 5 6
632.3256 3.8 1 5 6 6 6
632.3256 3.8 1 6 5 6 6
632.3256 3.8 1 6 6 5 6
632.2105 4 1 6 6 6 6
632.1491 3.35 2 3 5 6 6
632.1491 3.35 2 3 6 5 6
631.9449 3.55 2 3 6 6 6
631.9118 3.5 2 4 5 6 6
631.9118 3.5 2 4 6 5 6
631.5919 3.7 2 4 6 6 6
631.5683 3.8 2 5 5 6 6
631.5683 3.8 2 5 6 5 6
631.0865 4 2 5 6 6 6
631.0865 4 2 6 5 6 6
631.0865 4 2 6 6 5 6
630.3864 4.2 2 6 6 6 6
629.9843 3.85 3 4 6 6 6
629.9240 3.95 3 5 5 6 6
629.9240 3.95 3 5 6 5 6
628.7197 4.15 3 5 6 6 6
628.7197 4.15 3 6 5 6 6
628.7197 4.15 3 6 6 5 6
627.0259 4.35 3 6 6 6 6
626.7623 4.3 4 5 6 6 6
626.7623 4.3 4 6 5 6 6
626.7623 4.3 4 6 6 5 6
624.3040 4.5 4 6 6 6 6
624.1241 4.6 5 5 6 6 6
624.1241 4.6 5 6 5 6 6
624.1241 4.6 5 6 6 5 6
620.6908 4.8 5 6 6 6 6
620.6908 4.8 6 5 6 6 6
620.6908 4.8 6 6 5 6 6
620.6908 4.8 6 6 6 5 6
616.0847 5 6 6 6 6 6
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Figure 5.A.21: Constant FEF Policies and Policy Frontier: β = 25

5.A.6.2 System MTBF=50

Table 5.A.22: Frontier Policies: β = 50

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
676.5208 0.7 1 1 1 2 4
676.5208 0.7 1 1 2 1 4
676.5208 0.7 1 2 1 1 4
676.5208 0.7 2 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5372 1.2 1 1 1 2 6
632.5372 1.2 1 1 2 1 6
632.5372 1.2 1 2 1 1 6
632.5372 1.2 2 1 1 1 6
632.5362 1.35 1 1 1 3 6
632.5362 1.35 1 1 3 1 6
632.5362 1.35 1 3 1 1 6
632.5362 1.35 3 1 1 1 6
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Table 5.A.22 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.5336 1.4 1 1 2 2 6
632.5336 1.4 1 2 1 2 6
632.5336 1.4 1 2 2 1 6
632.5336 1.4 2 1 1 2 6
632.5336 1.4 2 1 2 1 6
632.5336 1.4 2 2 1 1 6
632.5243 1.55 1 1 2 3 6
632.5243 1.55 1 1 3 2 6
632.5243 1.55 1 2 1 3 6
632.5243 1.55 1 2 3 1 6
632.5243 1.55 1 3 1 2 6
632.5243 1.55 1 3 2 1 6
632.5243 1.55 2 1 1 3 6
632.5243 1.55 2 1 3 1 6
632.5243 1.55 2 3 1 1 6
632.5243 1.55 3 1 1 2 6
632.5243 1.55 3 1 2 1 6
632.5243 1.55 3 2 1 1 6
632.5020 1.6 1 2 2 2 6
632.5020 1.6 2 1 2 2 6
632.5020 1.6 2 2 1 2 6
632.5020 1.6 2 2 2 1 6
632.4944 1.7 1 1 3 3 6
632.4944 1.7 1 3 1 3 6
632.4944 1.7 1 3 3 1 6
632.4944 1.7 3 1 1 3 6
632.4944 1.7 3 1 3 1 6
632.4944 1.7 3 3 1 1 6
632.4261 1.75 1 2 2 3 6
632.4261 1.75 1 2 3 2 6
632.4261 1.75 1 3 2 2 6
632.4261 1.75 2 1 2 3 6
632.4261 1.75 2 1 3 2 6
632.4261 1.75 2 2 1 3 6
632.4261 1.75 2 2 3 1 6
632.4261 1.75 2 3 1 2 6
632.4261 1.75 2 3 2 1 6
632.4261 1.75 3 1 2 2 6
632.4261 1.75 3 2 1 2 6
632.4261 1.75 3 2 2 1 6
632.2580 1.8 2 2 2 2 6
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Table 5.A.22 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.2029 1.9 1 2 3 3 6
632.2029 1.9 1 3 2 3 6
632.2029 1.9 1 3 3 2 6
632.2029 1.9 2 1 3 3 6
632.2029 1.9 2 3 1 3 6
632.2029 1.9 2 3 3 1 6
632.2029 1.9 3 1 2 3 6
632.2029 1.9 3 1 3 2 6
632.2029 1.9 3 2 1 3 6
632.2029 1.9 3 2 3 1 6
632.2029 1.9 3 3 1 2 6
632.2029 1.9 3 3 2 1 6
631.7319 1.95 2 2 2 3 6
631.7319 1.95 2 2 3 2 6
631.7319 1.95 2 3 2 2 6
631.7319 1.95 3 2 2 2 6
631.5813 2.05 1 3 3 3 6
631.5813 2.05 3 1 3 3 6
631.5813 2.05 3 3 1 3 6
631.5813 2.05 3 3 3 1 6
630.3401 2.1 2 2 3 3 6
630.3401 2.1 2 3 2 3 6
630.3401 2.1 2 3 3 2 6
630.3401 2.1 3 2 2 3 6
630.3401 2.1 3 2 3 2 6
630.3401 2.1 3 3 2 2 6
626.9138 2.25 2 3 3 3 6
626.9138 2.25 3 2 3 3 6
626.9138 2.25 3 3 2 3 6
626.9138 2.25 3 3 3 2 6
619.1486 2.4 3 3 3 3 6
613.2519 2.55 3 3 3 4 6
613.2519 2.55 3 3 4 3 6
613.2519 2.55 3 4 3 3 6
613.2519 2.55 4 3 3 3 6
605.2319 2.7 3 3 4 4 6
605.2319 2.7 3 4 3 4 6
605.2319 2.7 3 4 4 3 6
605.2319 2.7 4 3 3 4 6
605.2319 2.7 4 3 4 3 6
605.2319 2.7 4 4 3 3 6
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Table 5.A.22 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
603.7378 2.8 4 4 4 4 5
594.5910 2.85 3 4 4 4 6
594.5910 2.85 4 3 4 4 6
594.5910 2.85 4 4 3 4 6
594.5910 2.85 4 4 4 3 6
580.8515 3 4 4 4 4 6
564.7175 3.3 4 4 4 5 6
564.7175 3.3 4 4 5 4 6
564.7175 3.3 4 5 4 4 6
564.7175 3.3 5 4 4 4 6
543.5815 3.5 4 4 6 6 4
543.5815 3.5 4 6 4 6 4
543.5815 3.5 4 6 6 4 4
543.5815 3.5 6 4 4 6 4
543.5815 3.5 6 4 6 4 4
543.5815 3.5 6 6 4 4 4
542.0280 3.6 4 5 5 6 4
542.0280 3.6 4 5 6 5 4
542.0280 3.6 4 6 5 5 4
542.0280 3.6 5 4 5 6 4
542.0280 3.6 5 4 6 5 4
542.0280 3.6 5 5 4 6 4
542.0280 3.6 5 5 6 4 4
542.0280 3.6 5 6 4 5 4
542.0280 3.6 5 6 5 4 4
542.0280 3.6 6 4 5 5 4
542.0280 3.6 6 5 4 5 4
542.0280 3.6 6 5 5 4 4
537.8008 3.65 4 5 6 6 3
537.8008 3.65 4 6 5 6 3
537.8008 3.65 4 6 6 5 3
537.8008 3.65 5 4 6 6 3
537.8008 3.65 5 6 4 6 3
537.8008 3.65 5 6 6 4 3
537.8008 3.65 6 4 5 6 3
537.8008 3.65 6 4 6 5 3
537.8008 3.65 6 5 4 6 3
537.8008 3.65 6 5 6 4 3
537.8008 3.65 6 6 4 5 3
537.8008 3.65 6 6 5 4 3
535.9461 3.75 5 5 5 6 3
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Table 5.A.22 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
535.9461 3.75 5 5 6 5 3
535.9461 3.75 5 6 5 5 3
535.9461 3.75 6 5 5 5 3
513.4330 3.8 4 5 6 6 4
513.4330 3.8 4 6 5 6 4
513.4330 3.8 4 6 6 5 4
513.4330 3.8 5 4 6 6 4
513.4330 3.8 5 6 4 6 4
513.4330 3.8 5 6 6 4 4
513.4330 3.8 6 4 5 6 4
513.4330 3.8 6 4 6 5 4
513.4330 3.8 6 5 4 6 4
513.4330 3.8 6 5 6 4 4
513.4330 3.8 6 6 4 5 4
513.4330 3.8 6 6 5 4 4
506.2937 3.85 4 6 6 6 3
506.2937 3.85 6 4 6 6 3
506.2937 3.85 6 6 4 6 3
506.2937 3.85 6 6 6 4 3
504.3522 3.95 5 5 6 6 3
504.3522 3.95 5 6 5 6 3
504.3522 3.95 5 6 6 5 3
504.3522 3.95 6 5 5 6 3
504.3522 3.95 6 5 6 5 3
504.3522 3.95 6 6 5 5 3
482.5922 4 4 6 6 6 4
482.5922 4 6 4 6 6 4
482.5922 4 6 6 4 6 4
482.5922 4 6 6 6 4 4
480.7066 4.1 5 5 6 6 4
480.7066 4.1 5 6 5 6 4
480.7066 4.1 5 6 6 5 4
480.7066 4.1 6 5 5 6 4
480.7066 4.1 6 5 6 5 4
480.7066 4.1 6 6 5 5 4
470.7709 4.15 5 6 6 6 3
470.7709 4.15 6 5 6 6 3
470.7709 4.15 6 6 5 6 3
470.7709 4.15 6 6 6 5 3
448.4075 4.3 5 6 6 6 4
448.4075 4.3 6 5 6 6 4
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Table 5.A.22 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
448.4075 4.3 6 6 5 6 4
448.4075 4.3 6 6 6 5 4
436.4524 4.35 6 6 6 6 3
416.1282 4.5 6 6 6 6 4
402.3338 4.8 6 6 6 6 5
388.7769 5 6 6 6 6 6
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Figure 5.A.22: Constant FEF Policies and Policy Frontier: β = 50

5.A.6.3 System MTBF=105

Table 5.A.23: Frontier Policies: β = 105

Reward Cost Policy
808.4576 0 1 1 1 1 1
742.4779 0.2 1 1 1 1 2
698.4916 0.35 1 1 1 1 3
676.4987 0.5 1 1 1 1 4
676.3388 0.7 1 1 1 2 4
676.3388 0.7 1 1 2 1 4
676.3388 0.7 1 2 1 1 4
676.3388 0.7 2 1 1 1 4
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Table 5.A.23 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
654.5058 0.8 1 1 1 1 5
632.5130 1 1 1 1 1 6
632.3394 1.2 1 1 1 2 6
632.3394 1.2 1 1 2 1 6
632.3394 1.2 1 2 1 1 6
632.3394 1.2 2 1 1 1 6
631.9570 1.35 1 1 1 3 6
631.9570 1.35 1 1 3 1 6
631.9570 1.35 1 3 1 1 6
631.9570 1.35 3 1 1 1 6
593.0880 1.4 3 3 3 3 1
570.0474 1.45 2 3 3 3 2
570.0474 1.45 3 2 3 3 2
570.0474 1.45 3 3 2 3 2
570.0474 1.45 3 3 3 2 2
489.3254 1.55 3 3 3 4 1
489.3254 1.55 3 3 4 3 1
489.3254 1.55 3 4 3 3 1
489.3254 1.55 4 3 3 3 1
483.5967 1.6 3 3 3 3 2
390.0044 1.7 3 3 4 4 1
390.0044 1.7 3 4 3 4 1
390.0044 1.7 3 4 4 3 1
390.0044 1.7 4 3 3 4 1
390.0044 1.7 4 3 4 3 1
390.0044 1.7 4 4 3 3 1
378.6796 1.75 3 3 3 4 2
378.6796 1.75 3 3 4 3 2
378.6796 1.75 3 4 3 3 2
378.6796 1.75 4 3 3 3 2
368.8638 1.85 3 4 4 4 1
368.8638 1.85 4 3 4 4 1
368.8638 1.85 4 4 3 4 1
368.8638 1.85 4 4 4 3 1
305.8650 1.9 3 3 4 4 2
305.8650 1.9 3 4 3 4 2
305.8650 1.9 3 4 4 3 2
305.8650 1.9 4 3 3 4 2
305.8650 1.9 4 3 4 3 2
305.8650 1.9 4 4 3 3 2
295.8045 2 4 4 4 4 1
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Table 5.A.23 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
287.7024 2.3 4 4 4 5 1
287.7024 2.3 4 4 5 4 1
287.7024 2.3 4 5 4 4 1
287.7024 2.3 5 4 4 4 1
280.8541 2.5 4 4 4 6 1
280.8541 2.5 4 4 6 4 1
280.8541 2.5 4 6 4 4 1
280.8541 2.5 6 4 4 4 1
280.5588 2.6 4 4 5 5 1
280.5588 2.6 4 5 4 5 1
280.5588 2.6 4 5 5 4 1
280.5588 2.6 5 4 4 5 1
280.5588 2.6 5 4 5 4 1
280.5588 2.6 5 5 4 4 1
274.7531 2.8 4 4 5 6 1
274.7531 2.8 4 4 6 5 1
274.7531 2.8 4 5 4 6 1
274.7531 2.8 4 5 6 4 1
274.7531 2.8 4 6 4 5 1
274.7531 2.8 4 6 5 4 1
274.7531 2.8 5 4 4 6 1
274.7531 2.8 5 4 6 4 1
274.7531 2.8 5 6 4 4 1
274.7531 2.8 6 4 4 5 1
274.7531 2.8 6 4 5 4 1
274.7531 2.8 6 5 4 4 1
274.3885 2.9 4 5 5 5 1
274.3885 2.9 5 4 5 5 1
274.3885 2.9 5 5 4 5 1
274.3885 2.9 5 5 5 4 1
266.8586 3 4 4 6 6 1
266.8586 3 4 6 4 6 1
266.8586 3 4 6 6 4 1
266.8586 3 6 4 4 6 1
266.8586 3 6 4 6 4 1
266.8586 3 6 6 4 4 1
266.7153 3.15 3 5 6 6 1
266.7153 3.15 3 6 5 6 1
266.7153 3.15 3 6 6 5 1
266.7153 3.15 5 3 6 6 1
266.7153 3.15 5 6 3 6 1
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Table 5.A.23 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
266.7153 3.15 5 6 6 3 1
266.7153 3.15 6 3 5 6 1
266.7153 3.15 6 3 6 5 1
266.7153 3.15 6 5 3 6 1
266.7153 3.15 6 5 6 3 1
266.7153 3.15 6 6 3 5 1
266.7153 3.15 6 6 5 3 1
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Figure 5.A.23: Constant FEF Policies and Policy Frontier: β = 105

5.A.6.4 System MTBF=205

Table 5.A.24: Frontier Policies: β = 205

Reward Cost Policy
806.2611 0 1 1 1 1 1
739.6480 0.2 1 1 1 1 2
695.2842 0.35 1 1 1 1 3
673.1345 0.5 1 1 1 1 4
659.5490 0.7 1 1 1 2 4
659.5490 0.7 1 1 2 1 4
659.5490 0.7 1 2 1 1 4
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Table 5.A.24 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
659.5490 0.7 2 1 1 1 4
606.0077 0.75 1 2 2 3 1
606.0077 0.75 1 2 3 2 1
606.0077 0.75 1 3 2 2 1
606.0077 0.75 2 1 2 3 1
606.0077 0.75 2 1 3 2 1
606.0077 0.75 2 2 1 3 1
606.0077 0.75 2 2 3 1 1
606.0077 0.75 2 3 1 2 1
606.0077 0.75 2 3 2 1 1
606.0077 0.75 3 1 2 2 1
606.0077 0.75 3 2 1 2 1
606.0077 0.75 3 2 2 1 1
473.6156 0.8 2 2 2 2 1
392.7100 0.9 1 2 3 3 1
392.7100 0.9 1 3 2 3 1
392.7100 0.9 1 3 3 2 1
392.7100 0.9 2 1 3 3 1
392.7100 0.9 2 3 1 3 1
392.7100 0.9 2 3 3 1 1
392.7100 0.9 3 1 2 3 1
392.7100 0.9 3 1 3 2 1
392.7100 0.9 3 2 1 3 1
392.7100 0.9 3 2 3 1 1
392.7100 0.9 3 3 1 2 1
392.7100 0.9 3 3 2 1 1
354.2483 0.95 2 2 2 3 1
354.2483 0.95 2 2 3 2 1
354.2483 0.95 2 3 2 2 1
354.2483 0.95 3 2 2 2 1
295.0488 1.05 1 3 3 3 1
295.0488 1.05 3 1 3 3 1
295.0488 1.05 3 3 1 3 1
295.0488 1.05 3 3 3 1 1
280.1199 1.1 2 2 3 3 1
280.1199 1.1 2 3 2 3 1
280.1199 1.1 2 3 3 2 1
280.1199 1.1 3 2 2 3 1
280.1199 1.1 3 2 3 2 1
280.1199 1.1 3 3 2 2 1
267.8837 1.25 2 3 3 3 1
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Table 5.A.24 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
267.8837 1.25 3 2 3 3 1
267.8837 1.25 3 3 2 3 1
267.8837 1.25 3 3 3 2 1
267.3903 1.4 2 2 4 4 1
267.3903 1.4 2 4 2 4 1
267.3903 1.4 2 4 4 2 1
267.3903 1.4 4 2 2 4 1
267.3903 1.4 4 2 4 2 1
267.3903 1.4 4 4 2 2 1
265.8197 1.5 1 4 4 4 1
265.8197 1.5 4 1 4 4 1
265.8197 1.5 4 4 1 4 1
265.8197 1.5 4 4 4 1 1
265.7070 1.65 1 3 4 5 1
265.7070 1.65 1 3 5 4 1
265.7070 1.65 1 4 3 5 1
265.7070 1.65 1 4 5 3 1
265.7070 1.65 1 5 3 4 1
265.7070 1.65 1 5 4 3 1
265.7070 1.65 3 1 4 5 1
265.7070 1.65 3 1 5 4 1
265.7070 1.65 3 4 1 5 1
265.7070 1.65 3 4 5 1 1
265.7070 1.65 3 5 1 4 1
265.7070 1.65 3 5 4 1 1
265.7070 1.65 4 1 3 5 1
265.7070 1.65 4 1 5 3 1
265.7070 1.65 4 3 1 5 1
265.7070 1.65 4 3 5 1 1
265.7070 1.65 4 5 1 3 1
265.7070 1.65 4 5 3 1 1
265.7070 1.65 5 1 3 4 1
265.7070 1.65 5 1 4 3 1
265.7070 1.65 5 3 1 4 1
265.7070 1.65 5 3 4 1 1
265.7070 1.65 5 4 1 3 1
265.7070 1.65 5 4 3 1 1
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Figure 5.A.24: Constant FEF Policies and Policy Frontier: β = 205
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5.A.7 Instance 8: Only Last Epoch Weighted, Deviations Above Curve Weighted at 0.5

5.A.7.1 System MTBF=25

Table 5.A.25: Frontier Policies: β = 25

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
676.5212 0.7 1 1 1 2 4
676.5212 0.7 1 1 2 1 4
676.5212 0.7 1 2 1 1 4
676.5212 0.7 2 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5376 1.2 1 1 1 2 6
632.5376 1.2 1 1 2 1 6
632.5376 1.2 1 2 1 1 6
632.5376 1.2 2 1 1 1 6
632.5376 1.35 1 1 1 3 6
632.5376 1.35 1 1 3 1 6
632.5376 1.35 1 3 1 1 6
632.5376 1.35 3 1 1 1 6
632.5376 1.4 1 1 2 2 6
632.5376 1.4 1 2 1 2 6
632.5376 1.4 1 2 2 1 6
632.5376 1.4 2 1 1 2 6
632.5376 1.4 2 1 2 1 6
632.5376 1.4 2 2 1 1 6
632.5376 1.55 1 1 2 3 6
632.5376 1.55 1 1 3 2 6
632.5376 1.55 1 2 1 3 6
632.5376 1.55 1 2 3 1 6
632.5376 1.55 1 3 1 2 6
632.5376 1.55 1 3 2 1 6
632.5376 1.55 2 1 1 3 6
632.5376 1.55 2 1 3 1 6
632.5376 1.55 2 3 1 1 6
632.5376 1.55 3 1 1 2 6
632.5376 1.55 3 1 2 1 6
632.5376 1.55 3 2 1 1 6
632.5375 1.6 1 2 2 2 6
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Table 5.A.25 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
632.5375 1.6 2 1 2 2 6
632.5375 1.6 2 2 1 2 6
632.5375 1.6 2 2 2 1 6
632.5375 1.7 1 1 3 3 6
632.5375 1.7 1 3 1 3 6
632.5375 1.7 1 3 3 1 6
632.5375 1.7 3 1 1 3 6
632.5375 1.7 3 1 3 1 6
632.5375 1.7 3 3 1 1 6
632.5373 1.75 1 2 2 3 6
632.5373 1.75 1 2 3 2 6
632.5373 1.75 1 3 2 2 6
632.5373 1.75 2 1 2 3 6
632.5373 1.75 2 1 3 2 6
632.5373 1.75 2 2 1 3 6
632.5373 1.75 2 2 3 1 6
632.5373 1.75 2 3 1 2 6
632.5373 1.75 2 3 2 1 6
632.5373 1.75 3 1 2 2 6
632.5373 1.75 3 2 1 2 6
632.5373 1.75 3 2 2 1 6
632.5367 1.8 2 2 2 2 6
632.5364 1.9 1 2 3 3 6
632.5364 1.9 1 3 2 3 6
632.5364 1.9 1 3 3 2 6
632.5364 1.9 2 1 3 3 6
632.5364 1.9 2 3 1 3 6
632.5364 1.9 2 3 3 1 6
632.5364 1.9 3 1 2 3 6
632.5364 1.9 3 1 3 2 6
632.5364 1.9 3 2 1 3 6
632.5364 1.9 3 2 3 1 6
632.5364 1.9 3 3 1 2 6
632.5364 1.9 3 3 2 1 6
632.5344 1.95 2 2 3 2 6
632.5344 1.95 2 3 2 2 6
632.5344 1.95 3 2 2 2 6
632.5344 1.95 2 2 2 3 6
632.5336 2.05 1 3 3 3 6
632.5336 2.05 3 1 3 3 6
632.5336 2.05 3 3 1 3 6
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Table 5.A.25 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
632.5336 2.05 3 3 3 1 6
632.5320 2.1 2 4 2 2 6
632.5267 2.1 3 3 2 2 6
632.5267 2.1 2 2 3 3 6
632.5267 2.1 2 3 2 3 6
632.5267 2.1 2 3 3 2 6
632.5267 2.1 3 2 2 3 6
632.5267 2.1 3 2 3 2 6
632.5189 2.25 2 2 3 4 6
632.5189 2.25 2 2 4 3 6
632.5189 2.25 2 3 2 4 6
632.5019 2.25 2 3 3 3 6
632.5019 2.25 3 2 3 3 6
632.5019 2.25 3 3 2 3 6
632.5019 2.25 3 3 3 2 6
632.4775 2.4 2 3 3 4 6
632.4775 2.4 2 3 4 3 6
632.4775 2.4 2 4 3 3 6
632.4775 2.4 3 2 3 4 6
632.4775 2.4 3 2 4 3 6
632.4775 2.4 3 3 2 4 6
632.4255 2.4 3 3 3 3 6
632.3525 2.55 3 3 3 4 6
632.3525 2.55 3 3 4 3 6
632.3525 2.55 3 4 3 3 6
632.3525 2.55 4 3 3 3 6
632.2344 2.7 3 3 4 4 6
632.2344 2.7 3 4 3 4 6
632.2344 2.7 3 4 4 3 6
632.2344 2.7 4 3 3 4 6
632.2344 2.7 4 3 4 3 6
632.2344 2.7 4 4 3 3 6
632.0462 2.85 3 4 4 4 6
632.0462 2.85 4 3 4 4 6
632.0462 2.85 4 4 3 4 6
632.0462 2.85 4 4 4 3 6
631.7489 3 4 4 4 4 6
631.3204 3.3 4 4 4 5 6
631.3204 3.3 4 4 5 4 6
631.3204 3.3 4 5 4 4 6
631.3204 3.3 5 4 4 4 6
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Table 5.A.25 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
630.7215 3.5 4 4 4 6 6
630.7215 3.5 4 4 6 4 6
630.7215 3.5 4 6 4 4 6
630.7215 3.5 6 4 4 4 6
630.6782 3.6 4 4 5 5 6
630.6782 3.6 4 5 4 5 6
630.6782 3.6 4 5 5 4 6
630.6782 3.6 5 4 4 5 6
630.6782 3.6 5 4 5 4 6
630.6782 3.6 5 5 4 4 6
629.7929 3.8 4 4 5 6 6
629.7929 3.8 4 4 6 5 6
629.7929 3.8 4 5 4 6 6
629.7929 3.8 4 5 6 4 6
629.7929 3.8 4 6 4 5 6
629.7929 3.8 4 6 5 4 6
629.7929 3.8 5 4 4 6 6
629.7929 3.8 5 4 6 4 6
629.7929 3.8 5 6 4 4 6
629.7929 3.8 6 4 4 5 6
629.7929 3.8 6 4 5 4 6
629.7929 3.8 6 5 4 4 6
629.7277 3.9 4 5 5 5 6
629.7277 3.9 5 4 5 5 6
629.7277 3.9 5 5 4 5 6
629.7277 3.9 5 5 5 4 6
628.5264 4 4 4 6 6 6
628.5264 4 4 6 4 6 6
628.5264 4 4 6 6 4 6
628.5264 4 6 4 4 6 6
628.5264 4 6 4 6 4 6
628.5264 4 6 6 4 4 6
628.4318 4.1 4 5 5 6 6
628.4318 4.1 4 5 6 5 6
628.4318 4.1 4 6 5 5 6
628.4318 4.1 5 4 5 6 6
628.4318 4.1 5 4 6 5 6
628.4318 4.1 5 5 4 6 6
628.4318 4.1 5 5 6 4 6
628.4318 4.1 5 6 4 5 6
628.4318 4.1 5 6 5 4 6
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Table 5.A.25 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
628.4318 4.1 6 4 5 5 6
628.4318 4.1 6 5 4 5 6
628.4318 4.1 6 5 5 4 6
628.3386 4.2 5 5 5 5 6
626.6087 4.3 4 5 6 6 6
626.6087 4.3 4 6 5 6 6
626.6087 4.3 4 6 6 5 6
626.6087 4.3 5 4 6 6 6
626.6087 4.3 5 6 4 6 6
626.6087 4.3 5 6 6 4 6
626.6087 4.3 6 4 5 6 6
626.6087 4.3 6 4 6 5 6
626.6087 4.3 6 5 4 6 6
626.6087 4.3 6 5 6 4 6
626.6087 4.3 6 6 4 5 6
626.6087 4.3 6 6 5 4 6
626.4760 4.4 5 5 5 6 6
626.4760 4.4 5 5 6 5 6
626.4760 4.4 5 6 5 5 6
626.4760 4.4 6 5 5 5 6
624.0688 4.5 4 6 6 6 6
624.0688 4.5 6 4 6 6 6
624.0688 4.5 6 6 4 6 6
624.0688 4.5 6 6 6 4 6
623.8826 4.6 5 5 6 6 6
623.8826 4.6 5 6 5 6 6
623.8826 4.6 5 6 6 5 6
623.8826 4.6 6 5 5 6 6
623.8826 4.6 6 5 6 5 6
623.8826 4.6 6 6 5 5 6
620.3239 4.8 5 6 6 6 6
620.3239 4.8 6 5 6 6 6
620.3239 4.8 6 6 5 6 6
620.3239 4.8 6 6 6 5 6
615.5326 5 6 6 6 6 6
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Figure 5.A.25: Constant FEF Policies and Policy Frontier: β = 25

5.A.7.2 System MTBF=50

Table 5.A.26: Frontier Policies: β = 50

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
676.5208 0.7 1 1 1 2 4
676.5208 0.7 1 1 2 1 4
676.5208 0.7 1 2 1 1 4
676.5208 0.7 2 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5372 1.2 1 1 1 2 6
632.5372 1.2 1 1 2 1 6
632.5372 1.2 1 2 1 1 6
632.5372 1.2 2 1 1 1 6
632.5362 1.35 1 1 1 3 6
632.5362 1.35 1 1 3 1 6
632.5362 1.35 1 3 1 1 6
632.5362 1.35 3 1 1 1 6
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.5336 1.4 1 1 2 2 6
632.5336 1.4 1 2 1 2 6
632.5336 1.4 1 2 2 1 6
632.5336 1.4 2 1 1 2 6
632.5336 1.4 2 1 2 1 6
632.5336 1.4 2 2 1 1 6
632.5241 1.55 1 1 2 3 6
632.5241 1.55 1 1 3 2 6
632.5241 1.55 1 2 1 3 6
632.5241 1.55 1 2 3 1 6
632.5241 1.55 1 3 1 2 6
632.5241 1.55 1 3 2 1 6
632.5241 1.55 2 1 1 3 6
632.5241 1.55 2 1 3 1 6
632.5241 1.55 2 3 1 1 6
632.5241 1.55 3 1 1 2 6
632.5241 1.55 3 1 2 1 6
632.5241 1.55 3 2 1 1 6
632.5015 1.6 1 2 2 2 6
632.5015 1.6 2 1 2 2 6
632.5015 1.6 2 2 1 2 6
632.5015 1.6 2 2 2 1 6
632.4938 1.7 1 1 3 3 6
632.4938 1.7 1 3 1 3 6
632.4938 1.7 1 3 3 1 6
632.4938 1.7 3 1 1 3 6
632.4938 1.7 3 1 3 1 6
632.4938 1.7 3 3 1 1 6
632.4243 1.75 1 2 2 3 6
632.4243 1.75 1 2 3 2 6
632.4243 1.75 1 3 2 2 6
632.4243 1.75 2 1 2 3 6
632.4243 1.75 2 1 3 2 6
632.4243 1.75 2 2 1 3 6
632.4243 1.75 2 2 3 1 6
632.4243 1.75 2 3 1 2 6
632.4243 1.75 2 3 2 1 6
632.4243 1.75 3 1 2 2 6
632.4243 1.75 3 2 1 2 6
632.4243 1.75 3 2 2 1 6
632.2531 1.8 2 2 2 2 6
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.1969 1.9 1 2 3 3 6
632.1969 1.9 1 3 2 3 6
632.1969 1.9 1 3 3 2 6
632.1969 1.9 2 1 3 3 6
632.1969 1.9 2 3 1 3 6
632.1969 1.9 2 3 3 1 6
632.1969 1.9 3 1 2 3 6
632.1969 1.9 3 1 3 2 6
632.1969 1.9 3 2 1 3 6
632.1969 1.9 3 2 3 1 6
632.1969 1.9 3 3 1 2 6
632.1969 1.9 3 3 2 1 6
631.7161 1.95 2 2 3 2 6
631.7161 1.95 2 3 2 2 6
631.7161 1.95 3 2 2 2 6
631.7161 1.95 2 2 2 3 6
631.5621 2.05 1 3 3 3 6
631.5621 2.05 3 1 3 3 6
631.5621 2.05 3 3 1 3 6
631.5621 2.05 3 3 3 1 6
630.2907 2.1 3 3 2 2 6
630.2907 2.1 2 2 3 3 6
630.2907 2.1 2 3 2 3 6
630.2907 2.1 2 3 3 2 6
630.2907 2.1 3 2 2 3 6
630.2907 2.1 3 2 3 2 6
626.7650 2.25 2 3 3 3 6
626.7650 2.25 3 2 3 3 6
626.7650 2.25 3 3 2 3 6
626.7650 2.25 3 3 3 2 6
618.7217 2.4 3 3 3 3 6
612.5770 2.55 3 3 3 4 6
612.5770 2.55 3 3 4 3 6
612.5770 2.55 3 4 3 3 6
612.5770 2.55 4 3 3 3 6
604.1763 2.7 3 3 4 4 6
604.1763 2.7 3 4 3 4 6
604.1763 2.7 3 4 4 3 6
604.1763 2.7 4 3 3 4 6
604.1763 2.7 4 3 4 3 6
604.1763 2.7 4 4 3 3 6
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
601.8816 2.8 4 4 4 4 5
592.9596 2.85 3 4 4 4 6
592.9596 2.85 4 3 4 4 6
592.9596 2.85 4 4 3 4 6
592.9596 2.85 4 4 4 3 6
578.3627 3 4 4 4 4 6
561.0591 3.3 4 4 4 5 6
561.0591 3.3 4 4 5 4 6
561.0591 3.3 4 5 4 4 6
561.0591 3.3 5 4 4 4 6
538.0363 3.5 4 4 6 6 4
538.0363 3.5 4 6 4 6 4
538.0363 3.5 4 6 6 4 4
538.0363 3.5 6 4 4 6 4
538.0363 3.5 6 4 6 4 4
538.0363 3.5 6 6 4 4 4
536.3724 3.6 4 5 6 5 4
536.3724 3.6 4 6 5 5 4
536.3724 3.6 5 4 6 5 4
536.3724 3.6 5 6 4 5 4
536.3724 3.6 6 4 5 5 4
536.3724 3.6 6 5 4 5 4
536.3724 3.6 4 5 5 6 4
536.3724 3.6 5 4 5 6 4
536.3724 3.6 5 5 4 6 4
536.3724 3.6 5 5 6 4 4
536.3724 3.6 5 6 5 4 4
536.3724 3.6 6 5 5 4 4
532.3219 3.65 4 5 6 6 3
532.3219 3.65 4 6 5 6 3
532.3219 3.65 4 6 6 5 3
532.3219 3.65 5 4 6 6 3
532.3219 3.65 5 6 4 6 3
532.3219 3.65 5 6 6 4 3
532.3219 3.65 6 4 5 6 3
532.3219 3.65 6 4 6 5 3
532.3219 3.65 6 5 4 6 3
532.3219 3.65 6 5 6 4 3
532.3219 3.65 6 6 4 5 3
532.3219 3.65 6 6 5 4 3
530.3507 3.75 5 5 5 6 3
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
530.3507 3.75 5 5 6 5 3
530.3507 3.75 5 6 5 5 3
530.3507 3.75 6 5 5 5 3
505.5043 3.8 4 5 6 6 4
505.5043 3.8 4 6 5 6 4
505.5043 3.8 4 6 6 5 4
505.5043 3.8 5 4 6 6 4
505.5043 3.8 5 6 4 6 4
505.5043 3.8 5 6 6 4 4
505.5043 3.8 6 4 5 6 4
505.5043 3.8 6 4 6 5 4
505.5043 3.8 6 5 4 6 4
505.5043 3.8 6 5 6 4 4
505.5043 3.8 6 6 4 5 4
505.5043 3.8 6 6 5 4 4
498.6063 3.85 4 6 6 6 3
498.6063 3.85 6 4 6 6 3
498.6063 3.85 6 6 4 6 3
498.6063 3.85 6 6 6 4 3
496.5114 3.95 5 6 6 5 3
496.5114 3.95 6 5 6 5 3
496.5114 3.95 6 6 5 5 3
496.5114 3.95 5 5 6 6 3
496.5114 3.95 5 6 5 6 3
496.5114 3.95 6 5 5 6 3
471.6160 4 4 6 6 6 4
471.6160 4 6 4 6 6 4
471.6160 4 6 6 4 6 4
471.6160 4 6 6 6 4 4
469.5206 4.1 5 5 6 6 4
469.5206 4.1 5 6 5 6 4
469.5206 4.1 5 6 6 5 4
469.5206 4.1 6 5 5 6 4
469.5206 4.1 6 5 6 5 4
469.5206 4.1 6 6 5 5 4
459.8983 4.15 5 6 6 6 3
459.8983 4.15 6 5 6 6 3
459.8983 4.15 6 6 5 6 3
459.8983 4.15 6 6 6 5 3
433.1072 4.3 5 6 6 6 4
433.1072 4.3 6 5 6 6 4
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
433.1072 4.3 6 6 5 6 4
433.1072 4.3 6 6 6 5 4
421.5534 4.35 6 6 6 6 3
395.4514 4.5 6 6 6 6 4
374.2467 4.8 6 6 6 6 5
353.2201 5 6 6 6 6 6
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Figure 5.A.26: Constant FEF Policies and Policy Frontier: β = 50

5.A.7.3 System MTBF=105

Table 5.A.27: Frontier Policies: β = 105

Reward Cost Policy
808.4576 0 1 1 1 1 1
742.4779 0.2 1 1 1 1 2
698.4916 0.35 1 1 1 1 3
676.4985 0.5 1 1 1 1 4
676.3374 0.7 1 1 1 2 4
676.3374 0.7 1 1 2 1 4
676.3374 0.7 1 2 1 1 4
676.3374 0.7 2 1 1 1 4
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Table 5.A.27 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
654.5056 0.8 1 1 1 1 5
632.5126 1 1 1 1 1 6
632.3361 1.2 1 1 1 2 6
632.3361 1.2 1 1 2 1 6
632.3361 1.2 1 2 1 1 6
632.3361 1.2 2 1 1 1 6
631.9461 1.35 1 1 1 3 6
631.9461 1.35 1 1 3 1 6
631.9461 1.35 1 3 1 1 6
631.9461 1.35 3 1 1 1 6
591.3836 1.4 3 3 3 3 1
566.9113 1.45 3 3 3 2 2
566.9113 1.45 2 3 3 3 2
566.9113 1.45 3 2 3 3 2
566.9113 1.45 3 3 2 3 2
484.4600 1.55 3 3 3 4 1
484.4600 1.55 3 3 4 3 1
484.4600 1.55 3 4 3 3 1
484.4600 1.55 4 3 3 3 1
476.1062 1.6 3 3 3 3 2
377.7519 1.7 3 3 4 4 1
377.7519 1.7 3 4 3 4 1
377.7519 1.7 4 3 3 4 1
377.7519 1.7 3 4 4 3 1
377.7519 1.7 4 3 4 3 1
377.7519 1.7 4 4 3 3 1
359.5862 1.75 3 3 3 4 2
359.5862 1.75 3 3 4 3 2
359.5862 1.75 3 4 3 3 2
359.5862 1.75 4 3 3 3 2
353.8602 1.85 3 4 4 4 1
353.8602 1.85 4 3 4 4 1
353.8602 1.85 4 4 3 4 1
353.8602 1.85 4 4 4 3 1
263.0926 1.9 3 3 4 4 2
263.0926 1.9 3 4 3 4 2
263.0926 1.9 4 3 3 4 2
263.0926 1.9 3 4 4 3 2
263.0926 1.9 4 3 4 3 2
263.0926 1.9 4 4 3 3 2
262.3181 2 4 4 4 4 1
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Table 5.A.27 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
228.6033 2.05 3 3 4 4 3
228.6033 2.05 3 4 3 4 3
228.6033 2.05 4 3 3 4 3
228.6033 2.05 3 4 4 3 3
228.6033 2.05 4 3 4 3 3
228.6033 2.05 4 4 3 3 3
203.3641 2.2 4 4 4 4 2
201.9374 2.5 4 4 4 5 2
201.9374 2.5 4 4 5 4 2
201.9374 2.5 4 5 4 4 2
201.9374 2.5 5 4 4 4 2
201.9112 2.85 3 4 5 6 2
201.9112 2.85 3 5 4 6 2
201.9112 2.85 3 5 6 4 2
201.9112 2.85 4 3 5 6 2
201.9112 2.85 4 5 3 6 2
201.9112 2.85 4 5 6 3 2
201.9112 2.85 4 6 5 3 2
201.9112 2.85 5 3 4 6 2
201.9112 2.85 5 3 6 4 2
201.9112 2.85 5 4 3 6 2
201.9112 2.85 5 4 6 3 2
201.9112 2.85 5 6 3 4 2
201.9112 2.85 5 6 4 3 2
201.9112 2.85 6 4 5 3 2
201.9112 2.85 6 5 3 4 2
201.9112 2.85 6 5 4 3 2
201.9112 2.85 3 4 6 5 2
201.9112 2.85 3 6 4 5 2
201.9112 2.85 3 6 5 4 2
201.9112 2.85 4 3 6 5 2
201.9112 2.85 4 6 3 5 2
201.9112 2.85 6 3 4 5 2
201.9112 2.85 6 3 5 4 2
201.9112 2.85 6 4 3 5 2
201.8380 2.9 3 3 6 6 2
201.8380 2.9 3 6 3 6 2
201.8380 2.9 3 6 6 3 2
201.8380 2.9 6 3 3 6 2
201.8380 2.9 6 3 6 3 2
201.8380 2.9 6 6 3 3 2
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Table 5.A.27 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
181.9913 3 4 4 6 6 1
181.9913 3 4 6 4 6 1
181.9913 3 4 6 6 4 1
181.9913 3 6 4 4 6 1
181.9913 3 6 4 6 4 1
181.9913 3 6 6 4 4 1
181.8703 3.1 4 5 6 5 1
181.8703 3.1 4 6 5 5 1
181.8703 3.1 5 4 6 5 1
181.8703 3.1 5 6 4 5 1
181.8703 3.1 6 4 5 5 1
181.8703 3.1 6 5 4 5 1
181.8703 3.1 4 5 5 6 1
181.8703 3.1 5 4 5 6 1
181.8703 3.1 5 5 4 6 1
181.8703 3.1 5 5 6 4 1
181.8703 3.1 5 6 5 4 1
181.8703 3.1 6 5 5 4 1
181.6302 3.2 5 5 5 5 1
179.0577 3.3 4 5 6 6 1
179.0577 3.3 4 6 5 6 1
179.0577 3.3 4 6 6 5 1
179.0577 3.3 5 4 6 6 1
179.0577 3.3 5 6 4 6 1
179.0577 3.3 5 6 6 4 1
179.0577 3.3 6 4 5 6 1
179.0577 3.3 6 4 6 5 1
179.0577 3.3 6 5 4 6 1
179.0577 3.3 6 5 6 4 1
179.0577 3.3 6 6 4 5 1
179.0577 3.3 6 6 5 4 1
178.9538 3.4 5 5 5 6 1
178.9538 3.4 5 5 6 5 1
178.9538 3.4 5 6 5 5 1
178.9538 3.4 6 5 5 5 1
176.6644 3.5 4 6 6 6 1
176.6644 3.5 6 4 6 6 1
176.6644 3.5 6 6 4 6 1
176.6644 3.5 6 6 6 4 1
176.4915 3.6 5 6 6 5 1
176.4915 3.6 6 5 6 5 1
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Table 5.A.27 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
176.4915 3.6 6 6 5 5 1
176.4915 3.6 5 5 6 6 1
176.4915 3.6 5 6 5 6 1
176.4915 3.6 6 5 5 6 1
174.5663 3.8 5 6 6 6 1
174.5663 3.8 6 5 6 6 1
174.5663 3.8 6 6 5 6 1
174.5663 3.8 6 6 6 5 1
173.0357 4 6 6 6 6 1
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Figure 5.A.27: Constant FEF Policies and Policy Frontier: β = 105

5.A.7.4 System MTBF=205

Table 5.A.28: Frontier Policies: β = 205

Reward Cost Policy
806.2600 0 1 1 1 1 1
739.6401 0.2 1 1 1 1 2
695.2606 0.35 1 1 1 1 3
673.0950 0.5 1 1 1 1 4
659.2598 0.7 1 1 1 2 4
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Table 5.A.28 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
659.2598 0.7 1 1 2 1 4
659.2598 0.7 1 2 1 1 4
659.2598 0.7 2 1 1 1 4
604.5359 0.75 1 2 2 3 1
604.5359 0.75 1 2 3 2 1
604.5359 0.75 1 3 2 2 1
604.5359 0.75 2 1 2 3 1
604.5359 0.75 2 1 3 2 1
604.5359 0.75 2 2 1 3 1
604.5359 0.75 2 2 3 1 1
604.5359 0.75 2 3 1 2 1
604.5359 0.75 2 3 2 1 1
604.5359 0.75 3 1 2 2 1
604.5359 0.75 3 2 1 2 1
604.5359 0.75 3 2 2 1 1
467.9788 0.8 2 2 2 2 1
380.7665 0.9 1 3 3 2 1
380.7665 0.9 3 1 3 2 1
380.7665 0.9 3 3 1 2 1
380.7665 0.9 3 3 2 1 1
380.7665 0.9 1 2 3 3 1
380.7665 0.9 1 3 2 3 1
380.7665 0.9 2 1 3 3 1
380.7665 0.9 2 3 1 3 1
380.7665 0.9 2 3 3 1 1
380.7665 0.9 3 1 2 3 1
380.7665 0.9 3 2 1 3 1
380.7665 0.9 3 2 3 1 1
336.9166 0.95 2 2 3 2 1
336.9166 0.95 2 3 2 2 1
336.9166 0.95 3 2 2 2 1
336.9166 0.95 2 2 2 3 1
261.2164 1.05 1 3 3 3 1
261.2164 1.05 3 1 3 3 1
261.2164 1.05 3 3 1 3 1
261.2164 1.05 3 3 3 1 1
237.6435 1.1 3 3 2 2 1
237.6435 1.1 2 2 3 3 1
237.6435 1.1 2 3 2 3 1
237.6435 1.1 2 3 3 2 1
237.6435 1.1 3 2 2 3 1
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Table 5.A.28 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
237.6435 1.1 3 2 3 2 1
234.7086 1.15 2 2 3 2 2
234.7086 1.15 2 3 2 2 2
234.7086 1.15 3 2 2 2 2
234.7086 1.15 2 2 2 3 2
180.4689 1.25 3 3 3 2 1
180.4689 1.25 2 3 3 3 1
180.4689 1.25 3 2 3 3 1
180.4689 1.25 3 3 2 3 1
174.6348 1.4 3 3 3 3 1
172.9381 1.55 3 3 3 4 1
172.9381 1.55 3 3 4 3 1
172.9381 1.55 3 4 3 3 1
172.9381 1.55 4 3 3 3 1
172.6194 2.4 2 2 6 6 1
172.6194 2.4 2 6 2 6 1
172.6194 2.4 6 2 2 6 1
172.6194 2.4 2 6 6 2 1
172.6194 2.4 6 2 6 2 1
172.6194 2.4 6 6 2 2 1
172.5348 2.8 1 5 6 6 1
172.5348 2.8 1 6 5 6 1
172.5348 2.8 1 6 6 5 1
172.5348 2.8 5 1 6 6 1
172.5348 2.8 5 6 1 6 1
172.5348 2.8 5 6 6 1 1
172.5348 2.8 6 1 5 6 1
172.5348 2.8 6 1 6 5 1
172.5348 2.8 6 5 1 6 1
172.5348 2.8 6 5 6 1 1
172.5348 2.8 6 6 1 5 1
172.5348 2.8 6 6 5 1 1
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Figure 5.A.28: Constant FEF Policies and Policy Frontier: β = 205
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5.A.8 Instance 9: Only Last Epoch Weighted, Deviations Above Curve Weighted at 0.1

5.A.8.1 System MTBF=25

Table 5.A.29: Frontier Policies: β = 25

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
676.5212 0.7 1 1 1 2 4
676.5212 0.7 1 1 2 1 4
676.5212 0.7 1 2 1 1 4
676.5212 0.7 2 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5376 1.2 1 1 1 2 6
632.5376 1.2 1 1 2 1 6
632.5376 1.2 1 2 1 1 6
632.5376 1.2 2 1 1 1 6
632.5376 1.35 1 1 1 3 6
632.5376 1.35 1 1 3 1 6
632.5376 1.35 1 3 1 1 6
632.5376 1.35 3 1 1 1 6
632.5376 1.4 1 1 2 2 6
632.5376 1.4 1 2 1 2 6
632.5376 1.4 1 2 2 1 6
632.5376 1.4 2 1 1 2 6
632.5376 1.4 2 1 2 1 6
632.5376 1.4 2 2 1 1 6
632.5376 1.55 1 1 2 3 6
632.5376 1.55 1 1 3 2 6
632.5376 1.55 1 2 1 3 6
632.5376 1.55 1 2 3 1 6
632.5376 1.55 1 3 1 2 6
632.5376 1.55 1 3 2 1 6
632.5376 1.55 2 1 1 3 6
632.5376 1.55 2 1 3 1 6
632.5376 1.55 2 3 1 1 6
632.5376 1.55 3 1 1 2 6
632.5376 1.55 3 1 2 1 6
632.5376 1.55 3 2 1 1 6
632.5375 1.6 1 2 2 2 6
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Table 5.A.29 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
632.5375 1.6 2 1 2 2 6
632.5375 1.6 2 2 1 2 6
632.5375 1.6 2 2 2 1 6
632.5375 1.7 1 1 3 3 6
632.5375 1.7 1 3 1 3 6
632.5375 1.7 1 3 3 1 6
632.5375 1.7 3 1 1 3 6
632.5375 1.7 3 1 3 1 6
632.5375 1.7 3 3 1 1 6
632.5373 1.75 1 2 2 3 6
632.5373 1.75 1 2 3 2 6
632.5373 1.75 1 3 2 2 6
632.5373 1.75 2 1 2 3 6
632.5373 1.75 2 1 3 2 6
632.5373 1.75 2 2 1 3 6
632.5373 1.75 2 2 3 1 6
632.5373 1.75 2 3 1 2 6
632.5373 1.75 2 3 2 1 6
632.5373 1.75 3 1 2 2 6
632.5373 1.75 3 2 1 2 6
632.5373 1.75 3 2 2 1 6
632.5367 1.8 2 2 2 2 6
632.5364 1.9 1 2 3 3 6
632.5364 1.9 1 3 2 3 6
632.5364 1.9 1 3 3 2 6
632.5364 1.9 2 1 3 3 6
632.5364 1.9 2 3 1 3 6
632.5364 1.9 2 3 3 1 6
632.5364 1.9 3 1 2 3 6
632.5364 1.9 3 1 3 2 6
632.5364 1.9 3 2 1 3 6
632.5364 1.9 3 2 3 1 6
632.5364 1.9 3 3 1 2 6
632.5364 1.9 3 3 2 1 6
632.5343 1.95 2 2 3 2 6
632.5343 1.95 2 3 2 2 6
632.5343 1.95 3 2 2 2 6
632.5343 1.95 2 2 2 3 6
632.5336 2.05 1 3 3 3 6
632.5336 2.05 3 1 3 3 6
632.5336 2.05 3 3 1 3 6
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Table 5.A.29 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
632.5336 2.05 3 3 3 1 6
632.5265 2.1 3 3 2 2 6
632.5265 2.1 2 2 3 3 6
632.5265 2.1 2 3 2 3 6
632.5265 2.1 2 3 3 2 6
632.5265 2.1 3 2 2 3 6
632.5265 2.1 3 2 3 2 6
632.5015 2.25 2 3 3 3 6
632.5015 2.25 3 2 3 3 6
632.5015 2.25 3 3 2 3 6
632.5015 2.25 3 3 3 2 6
632.4241 2.4 3 3 3 3 6
632.3500 2.55 3 3 3 4 6
632.3500 2.55 3 3 4 3 6
632.3500 2.55 3 4 3 3 6
632.3500 2.55 4 3 3 3 6
632.2302 2.7 3 3 4 4 6
632.2302 2.7 3 4 3 4 6
632.2302 2.7 3 4 4 3 6
632.2302 2.7 4 3 3 4 6
632.2302 2.7 4 3 4 3 6
632.2302 2.7 4 4 3 3 6
632.0391 2.85 3 4 4 4 6
632.0391 2.85 4 3 4 4 6
632.0391 2.85 4 4 3 4 6
632.0391 2.85 4 4 4 3 6
631.7369 3 4 4 4 4 6
631.3007 3.3 4 4 4 5 6
631.3007 3.3 4 4 5 4 6
631.3007 3.3 4 5 4 4 6
631.3007 3.3 5 4 4 4 6
630.6905 3.5 4 4 4 6 6
630.6905 3.5 4 4 6 4 6
630.6905 3.5 4 6 4 4 6
630.6905 3.5 6 4 4 4 6
630.6463 3.6 4 4 5 5 6
630.6463 3.6 4 5 4 5 6
630.6463 3.6 4 5 5 4 6
630.6463 3.6 5 4 4 5 6
630.6463 3.6 5 4 5 4 6
630.6463 3.6 5 5 4 4 6
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Table 5.A.29 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
629.7431 3.8 4 4 5 6 6
629.7431 3.8 4 4 6 5 6
629.7431 3.8 4 5 4 6 6
629.7431 3.8 4 5 6 4 6
629.7431 3.8 4 6 4 5 6
629.7431 3.8 4 6 5 4 6
629.7431 3.8 5 4 4 6 6
629.7431 3.8 5 4 6 4 6
629.7431 3.8 5 6 4 4 6
629.7431 3.8 6 4 4 5 6
629.7431 3.8 6 4 5 4 6
629.7431 3.8 6 5 4 4 6
629.6765 3.9 4 5 5 5 6
629.6765 3.9 5 4 5 5 6
629.6765 3.9 5 5 4 5 6
629.6765 3.9 5 5 5 4 6
628.4488 4 4 4 6 6 6
628.4488 4 4 6 4 6 6
628.4488 4 4 6 6 4 6
628.4488 4 6 4 4 6 6
628.4488 4 6 4 6 4 6
628.4488 4 6 6 4 4 6
628.3521 4.1 4 5 5 6 6
628.3521 4.1 4 5 6 5 6
628.3521 4.1 4 6 5 5 6
628.3521 4.1 5 4 5 6 6
628.3521 4.1 5 4 6 5 6
628.3521 4.1 5 5 4 6 6
628.3521 4.1 5 5 6 4 6
628.3521 4.1 5 6 4 5 6
628.3521 4.1 5 6 5 4 6
628.3521 4.1 6 4 5 5 6
628.3521 4.1 6 5 4 5 6
628.3521 4.1 6 5 5 4 6
628.2568 4.2 5 5 5 5 6
626.4859 4.3 4 5 6 6 6
626.4859 4.3 4 6 5 6 6
626.4859 4.3 4 6 6 5 6
626.4859 4.3 5 4 6 6 6
626.4859 4.3 5 6 4 6 6
626.4859 4.3 5 6 6 4 6
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Table 5.A.29 Frontier Policies: β = 25 (Cont.)

Reward Cost Policy
626.4859 4.3 6 4 5 6 6
626.4859 4.3 6 4 6 5 6
626.4859 4.3 6 5 4 6 6
626.4859 4.3 6 5 6 4 6
626.4859 4.3 6 6 4 5 6
626.4859 4.3 6 6 5 4 6
626.3499 4.4 5 5 5 6 6
626.3499 4.4 5 5 6 5 6
626.3499 4.4 5 6 5 5 6
626.3499 4.4 6 5 5 5 6
623.8807 4.5 4 6 6 6 6
623.8807 4.5 6 4 6 6 6
623.8807 4.5 6 6 4 6 6
623.8807 4.5 6 6 6 4 6
623.6895 4.6 5 5 6 6 6
623.6895 4.6 5 6 5 6 6
623.6895 4.6 5 6 6 5 6
623.6895 4.6 6 5 5 6 6
623.6895 4.6 6 5 6 5 6
623.6895 4.6 6 6 5 5 6
620.0304 4.8 5 6 6 6 6
620.0304 4.8 6 5 6 6 6
620.0304 4.8 6 6 5 6 6
620.0304 4.8 6 6 6 5 6
615.0908 5 6 6 6 6 6
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Figure 5.A.29: Constant FEF Policies and Policy Frontier: β = 25

5.A.8.2 System MTBF=50

Table 5.A.30: Frontier Policies: β = 50

Reward Cost Policy
808.4720 0 1 1 1 1 1
742.4966 0.2 1 1 1 1 2
698.5130 0.35 1 1 1 1 3
676.5212 0.5 1 1 1 1 4
676.5208 0.7 1 1 1 2 4
676.5208 0.7 1 1 2 1 4
676.5208 0.7 1 2 1 1 4
676.5208 0.7 2 1 1 1 4
654.5294 0.8 1 1 1 1 5
632.5376 1 1 1 1 1 6
632.5372 1.2 1 1 1 2 6
632.5372 1.2 1 1 2 1 6
632.5372 1.2 1 2 1 1 6
632.5372 1.2 2 1 1 1 6
632.5361 1.35 1 1 1 3 6
632.5361 1.35 1 1 3 1 6
632.5361 1.35 1 3 1 1 6
632.5361 1.35 3 1 1 1 6
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.5335 1.4 1 1 2 2 6
632.5335 1.4 1 2 1 2 6
632.5335 1.4 1 2 2 1 6
632.5335 1.4 2 1 1 2 6
632.5335 1.4 2 1 2 1 6
632.5335 1.4 2 2 1 1 6
632.5239 1.55 1 1 2 3 6
632.5239 1.55 1 1 3 2 6
632.5239 1.55 1 2 1 3 6
632.5239 1.55 1 2 3 1 6
632.5239 1.55 1 3 1 2 6
632.5239 1.55 1 3 2 1 6
632.5239 1.55 2 1 1 3 6
632.5239 1.55 2 1 3 1 6
632.5239 1.55 2 3 1 1 6
632.5239 1.55 3 1 1 2 6
632.5239 1.55 3 1 2 1 6
632.5239 1.55 3 2 1 1 6
632.5011 1.6 1 2 2 2 6
632.5011 1.6 2 1 2 2 6
632.5011 1.6 2 2 1 2 6
632.5011 1.6 2 2 2 1 6
632.4933 1.7 1 1 3 3 6
632.4933 1.7 1 3 1 3 6
632.4933 1.7 1 3 3 1 6
632.4933 1.7 3 1 1 3 6
632.4933 1.7 3 1 3 1 6
632.4933 1.7 3 3 1 1 6
632.4229 1.75 1 2 2 3 6
632.4229 1.75 1 2 3 2 6
632.4229 1.75 1 3 2 2 6
632.4229 1.75 2 1 2 3 6
632.4229 1.75 2 1 3 2 6
632.4229 1.75 2 2 1 3 6
632.4229 1.75 2 2 3 1 6
632.4229 1.75 2 3 1 2 6
632.4229 1.75 2 3 2 1 6
632.4229 1.75 3 1 2 2 6
632.4229 1.75 3 2 1 2 6
632.4229 1.75 3 2 2 1 6
632.2492 1.8 2 2 2 2 6
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
632.1922 1.9 1 2 3 3 6
632.1922 1.9 1 3 2 3 6
632.1922 1.9 1 3 3 2 6
632.1922 1.9 2 1 3 3 6
632.1922 1.9 2 3 1 3 6
632.1922 1.9 2 3 3 1 6
632.1922 1.9 3 1 2 3 6
632.1922 1.9 3 1 3 2 6
632.1922 1.9 3 2 1 3 6
632.1922 1.9 3 2 3 1 6
632.1922 1.9 3 3 1 2 6
632.1922 1.9 3 3 2 1 6
631.7035 1.95 2 2 3 2 6
631.7035 1.95 2 3 2 2 6
631.7035 1.95 3 2 2 2 6
631.7035 1.95 2 2 2 3 6
631.5468 2.05 1 3 3 3 6
631.5468 2.05 3 1 3 3 6
631.5468 2.05 3 3 1 3 6
631.5468 2.05 3 3 3 1 6
630.2511 2.1 3 3 2 2 6
630.2511 2.1 2 2 3 3 6
630.2511 2.1 2 3 2 3 6
630.2511 2.1 2 3 3 2 6
630.2511 2.1 3 2 2 3 6
630.2511 2.1 3 2 3 2 6
626.6459 2.25 2 3 3 3 6
626.6459 2.25 3 2 3 3 6
626.6459 2.25 3 3 2 3 6
626.6459 2.25 3 3 3 2 6
618.3803 2.4 3 3 3 3 6
612.0371 2.55 3 3 3 4 6
612.0371 2.55 3 3 4 3 6
612.0371 2.55 3 4 3 3 6
612.0371 2.55 4 3 3 3 6
603.3318 2.7 3 3 4 4 6
603.3318 2.7 3 4 3 4 6
603.3318 2.7 3 4 4 3 6
603.3318 2.7 4 3 3 4 6
603.3318 2.7 4 3 4 3 6
603.3318 2.7 4 4 3 3 6

182



Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
600.3965 2.8 4 4 4 4 5
591.6544 2.85 3 4 4 4 6
591.6544 2.85 4 3 4 4 6
591.6544 2.85 4 4 3 4 6
591.6544 2.85 4 4 4 3 6
576.3717 3 4 4 4 4 6
558.1324 3.3 4 4 4 5 6
558.1324 3.3 4 4 5 4 6
558.1324 3.3 4 5 4 4 6
558.1324 3.3 5 4 4 4 6
533.6001 3.5 4 4 6 6 4
533.6001 3.5 4 6 4 6 4
533.6001 3.5 4 6 6 4 4
533.6001 3.5 6 4 4 6 4
533.6001 3.5 6 4 6 4 4
533.6001 3.5 6 6 4 4 4
531.8479 3.6 4 5 6 5 4
531.8479 3.6 4 6 5 5 4
531.8479 3.6 5 4 6 5 4
531.8479 3.6 5 6 4 5 4
531.8479 3.6 6 4 5 5 4
531.8479 3.6 6 5 4 5 4
531.8479 3.6 4 5 5 6 4
531.8479 3.6 5 4 5 6 4
531.8479 3.6 5 5 4 6 4
531.8479 3.6 5 5 6 4 4
531.8479 3.6 5 6 5 4 4
531.8479 3.6 6 5 5 4 4
527.9387 3.65 4 5 6 6 3
527.9387 3.65 4 6 5 6 3
527.9387 3.65 4 6 6 5 3
527.9387 3.65 5 4 6 6 3
527.9387 3.65 5 6 4 6 3
527.9387 3.65 5 6 6 4 3
527.9387 3.65 6 4 5 6 3
527.9387 3.65 6 4 6 5 3
527.9387 3.65 6 5 4 6 3
527.9387 3.65 6 5 6 4 3
527.9387 3.65 6 6 4 5 3
527.9387 3.65 6 6 5 4 3
525.8743 3.75 5 5 5 6 3
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
525.8743 3.75 5 5 6 5 3
525.8743 3.75 5 6 5 5 3
525.8743 3.75 6 5 5 5 3
499.1612 3.8 4 5 6 6 4
499.1612 3.8 4 6 5 6 4
499.1612 3.8 4 6 6 5 4
499.1612 3.8 5 4 6 6 4
499.1612 3.8 5 6 4 6 4
499.1612 3.8 5 6 6 4 4
499.1612 3.8 6 4 5 6 4
499.1612 3.8 6 4 6 5 4
499.1612 3.8 6 5 4 6 4
499.1612 3.8 6 5 6 4 4
499.1612 3.8 6 6 4 5 4
499.1612 3.8 6 6 5 4 4
492.4563 3.85 4 6 6 6 3
492.4563 3.85 6 4 6 6 3
492.4563 3.85 6 6 4 6 3
492.4563 3.85 6 6 6 4 3
490.2388 3.95 5 6 6 5 3
490.2388 3.95 6 5 6 5 3
490.2388 3.95 6 6 5 5 3
490.2388 3.95 5 5 6 6 3
490.2388 3.95 5 6 5 6 3
490.2388 3.95 6 5 5 6 3
462.8351 4 4 6 6 6 4
462.8351 4 6 4 6 6 4
462.8351 4 6 6 4 6 4
462.8351 4 6 6 6 4 4
460.5717 4.1 5 5 6 6 4
460.5717 4.1 5 6 5 6 4
460.5717 4.1 5 6 6 5 4
460.5717 4.1 6 5 5 6 4
460.5717 4.1 6 5 6 5 4
460.5717 4.1 6 6 5 5 4
451.2001 4.15 5 6 6 6 3
451.2001 4.15 6 5 6 6 3
451.2001 4.15 6 6 5 6 3
451.2001 4.15 6 6 6 5 3
420.8669 4.3 5 6 6 6 4
420.8669 4.3 6 5 6 6 4
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Table 5.A.30 Frontier Policies: β = 50 (Cont.)

Reward Cost Policy
420.8669 4.3 6 6 5 6 4
420.8669 4.3 6 6 6 5 4
409.6342 4.35 6 6 6 6 3
378.9099 4.5 6 6 6 6 4
351.7770 4.8 6 6 6 6 5
324.7747 5 6 6 6 6 6
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Figure 5.A.30: Constant FEF Policies and Policy Frontier: β = 50

5.A.8.3 System MTBF=105

Table 5.A.31: Frontier Policies: β = 105

Reward Cost Policy
808.4576 0 1 1 1 1 1
742.4779 0.2 1 1 1 1 2
698.4915 0.35 1 1 1 1 3
676.4984 0.5 1 1 1 1 4
676.3363 0.7 1 1 1 2 4
676.3363 0.7 1 1 2 1 4
676.3363 0.7 1 2 1 1 4
676.3363 0.7 2 1 1 1 4
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Table 5.A.31 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
654.5054 0.8 1 1 1 1 5
632.5124 1 1 1 1 1 6
632.3334 1.2 1 1 1 2 6
632.3334 1.2 1 1 2 1 6
632.3334 1.2 1 2 1 1 6
632.3334 1.2 2 1 1 1 6
631.9373 1.35 1 1 1 3 6
631.9373 1.35 1 1 3 1 6
631.9373 1.35 1 3 1 1 6
631.9373 1.35 3 1 1 1 6
631.1217 1.4 1 1 2 2 6
631.1217 1.4 1 2 1 2 6
631.1217 1.4 1 2 2 1 6
626.9618 1.4 1 3 3 3 3
626.9618 1.4 3 1 3 3 3
626.9618 1.4 3 3 1 3 3
626.9618 1.4 3 3 3 1 3
590.0201 1.4 3 3 3 3 1
580.0939 1.45 3 3 2 2 3
564.4024 1.45 3 3 3 2 2
564.4024 1.45 2 3 3 3 2
564.4024 1.45 3 2 3 3 2
564.4024 1.45 3 3 2 3 2
480.5676 1.55 3 3 3 4 1
480.5676 1.55 3 3 4 3 1
480.5676 1.55 3 4 3 3 1
480.5676 1.55 4 3 3 3 1
470.1138 1.6 3 3 3 3 2
367.9499 1.7 3 3 4 4 1
367.9499 1.7 3 4 3 4 1
367.9499 1.7 4 3 3 4 1
367.9499 1.7 3 4 4 3 1
367.9499 1.7 4 3 4 3 1
367.9499 1.7 4 4 3 3 1
344.3114 1.75 3 3 3 4 2
344.3114 1.75 3 3 4 3 2
344.3114 1.75 3 4 3 3 2
344.3114 1.75 4 3 3 3 2
341.8574 1.85 3 4 4 4 1
341.8574 1.85 4 3 4 4 1
341.8574 1.85 4 4 3 4 1
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Table 5.A.31 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
341.8574 1.85 4 4 4 3 1
272.8683 1.9 3 3 3 4 3
272.8683 1.9 3 3 4 3 3
228.8747 1.9 3 3 4 4 2
228.8747 1.9 3 4 3 4 2
228.8747 1.9 4 3 3 4 2
228.8747 1.9 3 4 4 3 2
228.8747 1.9 4 3 4 3 2
228.8747 1.9 4 4 3 3 2
166.9215 2.05 3 3 4 4 3
166.9215 2.05 3 4 3 4 3
166.9215 2.05 4 3 3 4 3
166.9215 2.05 3 4 4 3 3
166.9215 2.05 4 3 4 3 3
166.9215 2.05 4 4 3 3 3
144.8160 2.2 3 3 4 4 4
144.8160 2.2 3 4 3 4 4
144.8160 2.2 3 4 4 3 4
144.8160 2.2 4 3 3 4 4
144.8160 2.2 4 3 4 3 4
144.8160 2.2 4 4 3 3 4
122.9736 2.2 4 4 4 4 2
88.8795 2.35 4 4 4 4 3
80.6312 2.5 4 4 4 4 4
78.5006 2.8 4 4 4 4 5
77.3021 2.8 4 4 4 5 4
77.3021 2.8 4 4 5 4 4
77.3021 2.8 4 5 4 4 4
77.3021 2.8 5 4 4 4 4
76.4728 3 4 4 4 4 6
74.9778 3 4 4 4 6 4
74.9778 3 4 4 6 4 4
74.9778 3 4 6 4 4 4
74.9778 3 6 4 4 4 4
74.8900 3.1 4 4 5 5 4
74.8900 3.1 4 5 4 5 4
74.8900 3.1 4 5 5 4 4
74.8900 3.1 5 4 4 5 4
74.8900 3.1 5 4 5 4 4
74.8900 3.1 5 5 4 4 4
69.5857 3.2 4 4 6 6 2
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Table 5.A.31 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
69.5857 3.2 4 6 4 6 2
69.5857 3.2 4 6 6 4 2
69.5857 3.2 6 4 4 6 2
69.5857 3.2 6 4 6 4 2
69.5857 3.2 6 6 4 4 2
69.5312 3.3 4 5 6 5 2
69.5312 3.3 4 6 5 5 2
69.5312 3.3 5 4 6 5 2
69.5312 3.3 5 6 4 5 2
69.5312 3.3 6 4 5 5 2
69.5312 3.3 6 5 4 5 2
69.5312 3.3 4 5 5 6 2
69.5312 3.3 5 4 5 6 2
69.5312 3.3 5 5 4 6 2
69.5312 3.3 5 5 6 4 2
69.5312 3.3 5 6 5 4 2
69.5312 3.3 6 5 5 4 2
69.4235 3.4 5 5 5 5 2
68.3197 3.5 4 5 6 6 2
68.3197 3.5 4 6 5 6 2
68.3197 3.5 4 6 6 5 2
68.3197 3.5 5 4 6 6 2
68.3197 3.5 5 6 4 6 2
68.3197 3.5 5 6 6 4 2
68.3197 3.5 6 4 5 6 2
68.3197 3.5 6 4 6 5 2
68.3197 3.5 6 5 4 6 2
68.3197 3.5 6 5 6 4 2
68.3197 3.5 6 6 4 5 2
68.3197 3.5 6 6 5 4 2
68.2773 3.6 5 5 5 6 2
68.2773 3.6 5 5 6 5 2
68.2773 3.6 5 6 5 5 2
68.2773 3.6 6 5 5 5 2
67.3975 3.7 4 6 6 6 2
67.3975 3.7 6 4 6 6 2
67.3975 3.7 6 6 4 6 2
67.3975 3.7 6 6 6 4 2
67.3360 3.8 5 6 6 5 2
67.3360 3.8 6 5 6 5 2
67.3360 3.8 6 6 5 5 2
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Table 5.A.31 Frontier Policies: β = 105 (Cont.)

Reward Cost Policy
67.3360 3.8 5 5 6 6 2
67.3360 3.8 5 6 5 6 2
67.3360 3.8 6 5 5 6 2
66.7177 4 5 6 6 6 2
66.7177 4 6 5 6 6 2
66.7177 4 6 6 5 6 2
66.7177 4 6 6 6 5 2
66.3618 4.2 6 6 6 6 2
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Figure 5.A.31: Constant FEF Policies and Policy Frontier: β = 105

5.A.8.4 System MTBF=205

Table 5.A.32: Frontier Policies: β = 205

Reward Cost Policy
806.2591 0 1 1 1 1 1
739.6338 0.2 1 1 1 1 2
695.2418 0.35 1 1 1 1 3
673.0634 0.5 1 1 1 1 4
659.0284 0.7 1 1 1 1 4
659.0284 0.7 1 1 2 2 4
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Table 5.A.32 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
659.0284 0.7 1 2 1 1 4
659.0284 0.7 2 1 1 1 4
603.3585 0.75 1 2 2 2 1
603.3585 0.75 1 2 3 3 1
603.3585 0.75 1 3 2 2 1
603.3585 0.75 2 1 2 2 1
603.3585 0.75 2 1 3 3 1
603.3585 0.75 2 2 1 1 1
603.3585 0.75 2 2 3 3 1
603.3585 0.75 2 3 1 1 1
603.3585 0.75 2 3 2 2 1
603.3585 0.75 3 1 2 2 1
603.3585 0.75 3 2 1 1 1
603.3585 0.75 3 2 2 2 1
463.4694 0.8 2 2 2 2 1
371.2117 0.9 1 3 3 3 1
371.2117 0.9 3 1 3 3 1
371.2117 0.9 3 3 1 1 1
371.2117 0.9 3 3 2 2 1
371.2117 0.9 1 2 3 3 1
371.2117 0.9 1 3 2 2 1
371.2117 0.9 2 1 3 3 1
371.2117 0.9 2 3 1 1 1
371.2117 0.9 2 3 3 3 1
371.2117 0.9 3 1 2 2 1
371.2117 0.9 3 2 1 1 1
371.2117 0.9 3 2 3 3 1
323.0513 0.95 2 2 3 3 1
323.0513 0.95 2 3 2 2 1
323.0513 0.95 3 2 2 2 1
323.0513 0.95 2 2 2 2 1
234.1504 1.05 1 3 3 3 1
234.1504 1.05 3 1 3 3 1
234.1504 1.05 3 3 1 1 1
234.1504 1.05 3 3 3 3 1
203.6624 1.1 3 3 2 2 1
203.6624 1.1 2 2 3 3 1
203.6624 1.1 2 3 2 2 1
203.6624 1.1 2 3 3 3 1
203.6624 1.1 3 2 2 2 1
203.6624 1.1 3 2 3 3 1
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Table 5.A.32 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
188.6213 1.15 2 2 3 3 2
188.6213 1.15 2 3 2 2 2
188.6213 1.15 3 2 2 2 2
188.6213 1.15 2 2 2 2 2
110.5370 1.25 3 3 3 3 1
110.5370 1.25 2 3 3 3 1
110.5370 1.25 3 2 3 3 1
110.5370 1.25 3 3 2 2 1
104.1079 1.3 3 3 2 2 2
104.1079 1.3 2 2 3 3 2
104.1079 1.3 2 3 2 2 2
104.1079 1.3 2 3 3 3 2
104.1079 1.3 3 2 2 2 2
104.1079 1.3 3 2 3 3 2
88.3806 1.4 1 3 3 3 3
88.3806 1.4 3 1 3 3 3
88.3806 1.4 3 3 1 1 3
88.3806 1.4 3 3 3 3 3
68.9131 1.45 3 3 3 3 2
68.9131 1.45 2 3 3 3 2
68.9131 1.45 3 2 3 3 2
68.9131 1.45 3 3 2 2 2
66.7371 1.6 3 3 3 3 2
51.8175 1.7 3 3 4 4 1
51.8175 1.7 3 4 3 3 1
51.8175 1.7 4 3 3 3 1
51.8175 1.7 3 4 4 4 1
51.8175 1.7 4 3 4 4 1
51.8175 1.7 4 4 3 3 1
50.2666 1.85 3 4 4 4 1
50.2666 1.85 4 3 4 4 1
50.2666 1.85 4 4 3 3 1
50.2666 1.85 4 4 4 4 1
48.8751 2 4 4 4 4 1
47.6732 2.3 4 4 4 4 1
47.6732 2.3 4 4 5 5 1
47.6732 2.3 4 5 4 4 1
47.6732 2.3 5 4 4 4 1
46.6421 2.5 4 4 4 4 1
46.6421 2.5 4 4 6 6 1
46.6421 2.5 4 6 4 4 1
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Table 5.A.32 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
46.6421 2.5 6 4 4 4 1
46.5799 2.6 4 4 5 5 1
46.5799 2.6 4 5 4 4 1
46.5799 2.6 4 5 5 5 1
46.5799 2.6 5 4 4 4 1
46.5799 2.6 5 4 5 5 1
46.5799 2.6 5 5 4 4 1
41.8954 2.8 4 4 5 5 1
41.8954 2.8 4 4 6 6 1
41.8954 2.8 4 5 4 4 1
41.8954 2.8 4 5 6 6 1
41.8954 2.8 4 6 4 4 1
41.8954 2.8 4 6 5 5 1
41.8954 2.8 5 4 4 4 1
41.8954 2.8 5 4 6 6 1
41.8954 2.8 5 6 4 4 1
41.8954 2.8 6 4 4 4 1
41.8954 2.8 6 4 5 5 1
41.8954 2.8 6 5 4 4 1
41.8938 2.9 4 5 5 5 1
41.8938 2.9 5 4 5 5 1
41.8938 2.9 5 5 4 4 1
41.8938 2.9 5 5 5 5 1
41.8865 3 4 4 6 6 1
41.8865 3 4 6 4 4 1
41.8865 3 4 6 6 6 1
41.8865 3 6 4 4 4 1
41.8865 3 6 4 6 6 1
41.8865 3 6 6 4 4 1
41.8857 3.1 4 5 6 6 1
41.8857 3.1 4 6 5 5 1
41.8857 3.1 5 4 6 6 1
41.8857 3.1 5 6 4 4 1
41.8857 3.1 6 4 5 5 1
41.8857 3.1 6 5 4 4 1
41.8857 3.1 4 5 5 5 1
41.8857 3.1 5 4 5 5 1
41.8857 3.1 5 5 4 4 1
41.8857 3.1 5 5 6 6 1
41.8857 3.1 5 6 5 5 1
41.8857 3.1 6 5 5 5 1
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Table 5.A.32 Frontier Policies: β = 205 (Cont.)

Reward Cost Policy
41.8857 3.2 5 5 5 5 1
41.8829 3.3 4 5 6 6 1
41.8829 3.3 4 6 5 5 1
41.8829 3.3 4 6 6 6 1
41.8829 3.3 5 4 6 6 1
41.8829 3.3 5 6 4 4 1
41.8829 3.3 5 6 6 6 1
41.8829 3.3 6 4 5 5 1
41.8829 3.3 6 4 6 6 1
41.8829 3.3 6 5 4 4 1
41.8829 3.3 6 5 6 6 1
41.8829 3.3 6 6 4 4 1
41.8829 3.3 6 6 5 5 1
41.8829 3.4 5 5 5 5 1
41.8829 3.4 5 5 6 6 1
41.8829 3.4 5 6 5 5 1
41.8829 3.4 6 5 5 5 1
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Figure 5.A.32: Constant FEF Policies and Policy Frontier: β = 205
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6. Conclusions and Future Work

In this dissertation, we propose novel approaches for designing a complex systems, modeling

the reliability growth of these systems throughout testing, and determining optimal levels of cor-

rective action taken to improve reliability. We first introduced a meta-heuristic for determining

optimal design for the redundancy allocation problem with components having deterministic re-

liabilities in Chapter 2. The Bat Algorithm (BA) meta-heuristic leverages the benefits of several

other heuristic approaches to problems, combining them to provide optimal or near-optimal sys-

tem reliability levels. Originally designed for continuous functions, we adapted the BA to handle

the discrete nature of the redundancy allocation problem through manipulation of how the virtual

bats flew throughout the search space. We exploited the use of a penalty function to allow search

of the infeasible region to allow and encourage exploration of the feasible boundary of the search

space. These efforts led to a powerful meta-heuristic, that, when applied to well known set of re-

dundancy allocation problems, provided solutions on par or better than those found in literature.

The BA can be generalized as a suitable meta-heuristic for any type of complex combinatorial

problem whose solution cannot be analytically derived.

In chapters 3 and 4, we investigated a reliability growth tracking model capable of han-

dling small sized sets of failure data. While there are many reliability growth tracking models

discussed in the literature, use of these models leads to high levels of uncertainty surrounding

the derived point estimates of the growth parameters when failure data are sparse. We proposed

the GM(1,1) model that uses least squares approaches to derive reliability growth parameters to

model a system’s reliability growth, as it is more adequate for handling small sample sizes. Chap-

ter 3 focuses on the GM(1,1) model for continuous reliability growth testing, while chapter 4 de-

tails the model for the discrete (one-shot) case. We tailored the input vectors for the GM(1,1)

model to make it applicable to reliability growth testing. For complex systems whose failures

follow a poly-Weibull distribution, our numerical experimentation demonstrated the superiority

of the GM(1,1) model over the AMSAA model in its ability to model a system’s true reliability

growth.
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Finally, in chapter 5, we proposed a Markov Decision Process model for modifying the

level of corrective action taken to improve failure modes discovered during testing. From the fail-

ure data in each stage of testing, we derived a belief vector for the true system reliability and the

expected reliability after incorporation of the corrective actions being considered. The expected

reliability was then compared to the planning curve’s desired level of reliability to determine the

reward associated with each corrective action being considered. With a cost associated with each

action, a cost frontier was established to identify those policies that minimized deviation from

the desired levels taken from the reliability growth planning curve. With the ability to weight re-

wards by decision epoch and by a positive or negative deviation from the desired level, our MDP

approach is capable of being tailored to the preferences of the decision maker(s) and can provide

insights on the likelihood of a test program’s success.

6.1 Future Work

Postdoctoral work relating to chapters 3 and 4 includes, but is not limited to, development of con-

fidence intervals for parameters derived via the GM(1,1) model, for both the continuous and the

discrete case. We also seek to simulate larger areas of the response surface to validate the robust-

ness of the GM(1,1) model. We also plan on relaxing the assumption of a deterministic FEF, in-

corporating a probabilistic nature for the FEF level.

Future work relating to chapter 5 involves investigating the sensitivity and robustness of

the state space and action space to changes in their respective dimensionality. We also plan on

investigating how those states should be distributed throughout the state space. We wish to in-

corporate a probabilistic nature on the success of a corrective action, as corrective actions are not

deterministic in nature and may not always achieve the desired FEF. We also plan on relaxing the

assumption that failure modes have constant failure rates, in favor of a more general Weibull dis-

tribution assumption. Additionally we hope to identify any optimal threshold policies that may

exist to reduce the action space and computational efforts.
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