356 research outputs found

    Differential modulation of performance in insight and divergent thinking tasks with tDCS

    Get PDF
    While both insight and divergent thinking tasks are used to study creativity, there are reasons to believe that the two may call upon very different mechanisms. To explore this hypothesis, we administered a verbal insight task (riddles) and a divergent thinking task (verbal fluency) to 16 native English speakers and 16 non-native English speakers after they underwent Transcranial Direct Current Stimulation (tDCS) of the left middle temporal gyrus and right temporo- parietal junction. We found that, in the case of the insight task the depolarization of right temporo-parietal junction and hyperpolarization of left middle temporal gyrus resulted in increased performance, relative to both the control condition and the reverse stimulation condition in both groups (non-native > native speakers). However, in the case of the divergent thinking task, the same pattern of stimulation resulted in a decrease in performance, compared to the reverse stimulation condition, in the non-native speakers. We explain this dissociation in terms of differing task demands of divergent thinking and insight tasks and speculate that the greater sensitivity of non-native speakers to tDCS stimulation may be a function of less entrenched neural networks for non-native languages

    Null Effects on Working Memory and Verbal Fluency Tasks When Applying Anodal tDCS to the Inferior Frontal Gyrus of Healthy Participants

    Get PDF
    Transcranial direct current stimulation (tDCS) is a technique used to modify cognition by modulating underlying cortical excitability via weak electric current applied through the scalp. Although many studies have reported positive effects with tDCS, a number of recent studies highlight that tDCS effects can be small and difficult to reproduce. This is especially the case when attempting to modulate performance using single applications of tDCS in healthy participants. Possible reasons may be that optimal stimulation parameters have yet to be identified, and that individual variation in cortical activity and/or level of ability confound outcomes. To address these points, we carried out a series of experiments in which we attempted to modulate performance in fluency and working memory probe tasks using stimulation parameters which have been associated with positive outcomes: we targeted the left inferior frontal gyrus and compared performance when applying a 1.5mA anodal current for 25 mins and with sham stimulation. There is evidence that LIFG plays a role in these tasks and previous studies have found positive effects of stimulation. We also compared our experimental group (N=19-20) with a control group receiving no stimulation (n = 24). More importantly, we also considered effects on subgroups subdivided according to memory span as well as to more direct measures of executive function abilities and motivational levels. We found no systematic effect of stimulation. Our findings are in line with a growing body of evidence that tDCS produces unreliable effects. We acknowledge that our findings speak to the conditions we investigated, and that alternative protocols (e.g., multiple sessions, clinical samples, and different stimulation polarities) may be more effective. We encourage further research to explore optimal conditions for tDCS efficacy, given the potential benefits that this technique poses for understanding and enhancing cognition

    Value and efficacy of transcranial direct current stimulation in the rehabilitation of neurocognitive disorders: A critical review since 2000.

    Get PDF
    open3siNon-invasive brain stimulation techniques, including transcranial direct current stimulation (t-DCS) have been used in the rehabilitation of cognitive function in a spectrum of neurological disorders. The present review outlines methodological communalities and differences of t-DCS procedures in neurocognitive rehabilitation. We consider the efficacy of tDCS for the management of specific cognitive deficits in four main neurological disorders by providing a critical analysis of recent studies that have used t-DCS to improve cognition in patients with Parkinson’s Disease, Alzheimer’s Disease, Hemi-spatial Neglect and Aphasia. The evidence from this innovative approach to cognitive rehabilitation suggests that tDCS can influence cognition. However, the results show a high variability between studies both on the methodological approach adopted and the cognitive functions aspects. The review also focuses both on methodological issues such as technical aspects of the stimulation ( electrodes position and dimension; current intensity; duration of protocol) and on the inclusion of appropriate assessment tools for cognition. A further aspect considered is the best timing to administer tDCS: before, during after cognitive rehabilitation. We conclude that more studies with shared methodology are needed to have a better understanding of the efficacy of tDCS as a new tool for rehabilitation of cognitive disorders in a range of neurological disordersopenCappon, D; Jahanshahi, M; Bisiacchi, PCappon, Davide; Jahanshahi, M; Bisiacchi, Patrizi

    Transcranial direct current stimulation for memory enhancement: from clinical research to animal models

    Get PDF
    There is a growing demand for new brain-enhancing technologies to improve mental performance, both for patients with cognitive disorders and for healthy individuals. Transcranial direct current stimulation (tDCS) is a non-invasive, painless, and easy to use neuromodulatory technique that can improve performance on a variety of cognitive tasks in humans despite its exact mode of action remains unclear. We have conducted a mini-review of the literature to first briefly summarize the growing amount of data from clinical trials assessing the efficacy of tDCS, focusing exclusively on learning and memory performances in healthy human subjects and in patients with depression, schizophrenia, and other neurological disorders. We then discuss these findings in the context of the strikingly few studies resulting from animal research. Finally, we highlight future directions and limitations in this field and emphasize the need to develop translational studies to better understand how tDCS improves memory, a necessary condition before it can be used as a therapeutic tool

    Neuromodulation of Spatial Associations: Evidence from Choice Reaction Tasks During Transcranial Direct Current Stimulation

    Get PDF
    Various portions of human behavior and cognition are influenced by covert implicit processes without being necessarily available to intentional planning. Implicit cognitive biases can be measured in behavioral tasks yielding SNARC effects for spatial associations of numerical and non-numerical sequences, or yielding the implicit association test effect for associations between insect-flower and negative-positive categories. By using concurrent neuromodulation with transcranial direct current stimulation (tDCS), subthreshold activity patterns in prefrontal cortical regions can be experimentally manipulated to reduce implicit processing. Thus, the application of tDCS can test neurocognitive hypotheses on a unique neurocognitive origin of implicit cognitive biases in different spatial-numerical and non-numerical domains. However, the effects of tDCS are not only determined by superimposed electric fields, but also by task characteristics. To outline the possibilities of task-specific targeting of tDCS, task characteristics and instructions can be varied systematically when combined with neuromodulation. In the present thesis, implicit cognitive processes are assessed in different paradigms concurrent to left-hemispheric prefrontal tDCS to investigate a verbal processing hypothesis for implicit associations in general. In psychological experiments, simple choice reaction tasks measure implicit SNARC and SNARC-like effects as relative left-hand vs. right-hand latency advantages for responding to smaller number or ordinal sequence targets. However, different combinations of polarity-dependent tDCS with stimuli and task procedures also reveal domain-specific involvements and dissociations. Discounting previous unified theories on the SNARC effect, polarity-specific neuromodulation effects dissociate numbers and weekday or month ordinal sequences. By considering also previous results and patient studies, I present a hybrid and augmented working memory account and elaborate the linguistic markedness correspondence principle as one critical verbal mechanism among competing covert coding mechanisms. Finally, a general stimulation rationale based on verbal working memory is tested in separate experiments extending also to non-spatial implicit association test effects. Regarding cognitive tDCS effects, the present studies show polarity asymmetry and task-induced activity dependence of state-dependent neuromodulation. At large, distinct combinations of the identical tDCS electrode configuration with different tasks influences behavioral outcomes tremendously, which will allow for improved task- and domain-specific targeting

    A systematic investigation into the effects ofnanodal tDCS on healthy populations across measures of language, working memory & novel language acquisition

    Get PDF
    Transcranial direct current stimulation (tDCS) is a technique thought to modify cognition via a weak electric current applied to the scalp. Several thousand papers have been published since its inception in the early 2000s, with positive effects observed across healthy and patient samples in terms of language, memory, attention and various other executive functions. However, evidence is emerging that reported effects are exaggerated, and difficult to reproduce, especially in studies using single applications of anodal tDCS on healthy individuals. This thesis documents several studies that aimed to verify whether tDCS can modify word production, working memory and novel language acquisition in healthy participants when using conventional stimulation parameters, whilst considering factors that have driven its unreliabilit

    Sex Mediates the Effects of High-Definition Transcranial Direct Current Stimulation on “Mind-Reading”

    Get PDF
    Sex differences in social cognitive ability are well established, including measures of Theory of Mind (ToM). The aim of this study was to investigate if sex mediates the effects of high-definition transcranial direct current stimulation (HD-tDCS) administered to a key hub of the social brain (i.e., the dorsomedial prefrontal cortex, dmPFC) on the Reading the Mind in the Eyes Test (RMET). Forty healthy young adults (18–35 years) were randomly allocated to receive either anodal or cathodal HD-tDCS in sham HD-tDCS controlled, double blind designs. In each of the two sessions, subjects completed the RMET. Anodal stimulation to the dmPFC increased accuracy on the RMET in females only. To assure regional specificity we performed a follow-up study stimulating the right temporoparietal junction and found no effect in either sex. The current study is the first to show improved performance on the RMET after tDCS to the dmPFC in females only. The polarity-specific effects and use of focal HD-tDCS provide evidence for sex-dependent differences in dmPFC function in relation to the RMET. Future studies using tDCS to study or improve ToM, need to consider sex
    • 

    corecore