434 research outputs found

    Task-dependent synergies for motion planning of an anthropomorphic dual-arm system

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper deals with the problem of motion planning for anthropomorphic dual-arm robots. It introduces a measure of the similarity of the movements needed to solve two given tasks. Planning using this measure to select proper arm synergies for a given task improves the planning performance and the resulting plan.Peer ReviewedPostprint (author's final draft

    Planning hand-arm grasping motions with human-like appearance

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFinalista de l’IROS Best Application Paper Award a la 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, ICROS.This paper addresses the problem of obtaining human-like motions on hand-arm robotic systems performing pick-and-place actions. The focus is set on the coordinated movements of the robotic arm and the anthropomorphic mechanical hand, with which the arm is equipped. For this, human movements performing different grasps are captured and mapped to the robot in order to compute the human hand synergies. These synergies are used to reduce the complexity of the planning phase by reducing the dimension of the search space. In addition, the paper proposes a sampling-based planner, which guides the motion planning ollowing the synergies. The introduced approach is tested in an application example and thoroughly compared with other state-of-the-art planning algorithms, obtaining better results.Peer ReviewedAward-winningPostprint (author's final draft

    Modeling human-likeness in approaching motions of dual-arm autonomous robots

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper addresses the problem of obtaining human-like motions with an anthropomorphic dual-arm torso assembled on a mobile platform. The focus is set on the coordinated movements of the robotic arms and the robot base while approaching a table to subsequently perform a bimanual manipulation task. For this, human movements are captured and mapped to the robot in order to compute the human dual-arm synergies. Since the demonstrated synergies change depending on the robot position, a recursive Cartesian-space discretization is presented based on these differences. Thereby, different movements of the arms are assigned to different regions of the Cartesian space. As an application example, a motion-planning algorithm exploiting this information is proposed and used.Postprint (published version

    Motion planning using synergies : application to anthropomorphic dual-arm robots

    Get PDF
    Motion planning is a traditional field in robotics, but new problems are nevertheless incessantly appearing, due to continuous advances in the robot developments. In order to solve these new problems, as well as to improve the existing solutions to classical problems, new approaches are being proposed. A paradigmatic case is the humanoid robotics, since the advances done in this field require motion planners not only to look efficiently for an optimal solution in the classic way, i.e. optimizing consumed energy or time in the plan execution, but also looking for human-like solutions, i.e. requiring the robot movements to be similar to those of the human beings. This anthropomorphism in the robot motion is desired not only for aesthetical reasons, but it is also needed to allow a better and safer human-robot collaboration: humans can predict more easily anthropomorphic robot motions thus avoiding collisions and enhancing the collaboration with the robot. Nevertheless, obtaining a satisfactory performance of these anthropomorphic robotic systems requires the automatic planning of the movements, which is still an arduous and non-evident task since the complexity of the planning problem increases exponentially with the number of degrees of freedom of the robotic system. This doctoral thesis tackles the problem of planning the motions of dual-arm anthropomorphic robots (optionally with mobile base). The main objective is twofold: obtaining robot motions both in an efficient and in a human-like fashion at the same time. Trying to mimic the human movements while reducing the complexity of the search space for planning purposes leads to the concept of synergies, which could be conceptually defined as correlations (in the joint configuration space as well as in the joint velocity space) between the degrees of freedom of the system. This work proposes new sampling-based motion-planning procedures that exploit the concept of synergies, both in the configuration and velocity space, coordinating the movements of the arms, the hands and the mobile base of mobile anthropomorphic dual-arm robots.La planificación de movimientos es un campo tradicional de la robótica, sin embargo aparecen incesantemente nuevos problemas debido a los continuos avances en el desarrollo de los robots. Para resolver esos nuevos problemas, así como para mejorar las soluciones existentes a los problemas clásicos, se están proponiendo nuevos enfoques. Un caso paradigmático es la robótica humanoide, ya que los avances realizados en este campo requieren que los algoritmos planificadores de movimientos no sólo encuentren eficientemente una solución óptima en el sentido clásico, es decir, optimizar el consumo de energía o el tiempo de ejecución de la trayectoria; sino que también busquen soluciones con apariencia humana, es decir, que el movimiento del robot sea similar al del ser humano. Este antropomorfismo en el movimiento del robot se busca no sólo por razones estéticas, sino porque también es necesario para permitir una colaboración mejor y más segura entre el robot y el operario: el ser humano puede predecir con mayor facilidad los movimientos del robot si éstos son antropomórficos, evitando así las colisiones y mejorando la colaboración humano robot. Sin embargo, para obtener un desempeño satisfactorio de estos sistemas robóticos antropomórficos se requiere una planificación automática de sus movimientos, lo que sigue siendo una tarea ardua y poco evidente, ya que la complejidad del problema aumenta exponencialmente con el número de grados de libertad del sistema robótico. Esta tesis doctoral aborda el problema de la planificación de movimientos en robots antropomorfos bibrazo (opcionalmente con base móvil). El objetivo aquí es doble: obtener movimientos robóticos de forma eficiente y, a la vez, que tengan apariencia humana. Intentar imitar los movimientos humanos mientras a la vez se reduce la complejidad del espacio de búsqueda conduce al concepto de sinergias, que podrían definirse conceptualmente como correlaciones (tanto en el espacio de configuraciones como en el espacio de velocidades de las articulaciones) entre los distintos grados de libertad del sistema. Este trabajo propone nuevos procedimientos de planificación de movimientos que explotan el concepto de sinergias, tanto en el espacio de configuraciones como en el espacio de velocidades, coordinando así los movimientos de los brazos, las manos y la base móvil de robots móviles, bibrazo y antropomórficos.Postprint (published version

    Planning grasping motions for humanoid robots

    Get PDF
    This paper addresses the problem of obtaining the required motions for a humanoid robot to perform grasp actions trying to mimic the coordinated hand–arm movements humans do. The first step is the data acquisition and analysis, which consists in capturing human movements while grasping several everyday objects (covering four possible grasp types), mapping them to the robot and computing the hand motion synergies for the pre-grasp and grasp phases (per grasp type). Then, the grasp and motion synthesis step is done, which consists in generating potential grasps for a given object using the four family types, and planning the motions using a bi-directional multi-goal sampling-based planner, which efficiently guides the motion planning following the synergies in a reduced search space, resulting in paths with human-like appearance. The approach has been tested in simulation, thoroughly compared with other state-of-the-art planning algorithms obtaining better results, and also implemented in a real robot.Peer ReviewedPostprint (author's final draft

    Human-like arm motion generation: a review

    Get PDF
    In the last decade, the objectives outlined by the needs of personal robotics have led to the rise of new biologically-inspired techniques for arm motion planning. This paper presents a literature review of the most recent research on the generation of human-like arm movements in humanoid and manipulation robotic systems. Search methods and inclusion criteria are described. The studies are analyzed taking into consideration the sources of publication, the experimental settings, the type of movements, the technical approach, and the human motor principles that have been used to inspire and assess human-likeness. Results show that there is a strong focus on the generation of single-arm reaching movements and biomimetic-based methods. However, there has been poor attention to manipulation, obstacle-avoidance mechanisms, and dual-arm motion generation. For these reasons, human-like arm motion generation may not fully respect human behavioral and neurological key features and may result restricted to specific tasks of human-robot interaction. Limitations and challenges are discussed to provide meaningful directions for future investigations.FCT Project UID/MAT/00013/2013FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Bio-inspired kinematical control of redundant robotic manipulators

    Get PDF
    Purpose – This paper aims to propose an innovative kinematic control algorithm for redundant robotic manipulators. The algorithm takes advantage of a bio-inspired approach. Design/methodology/approach – A simplified two-degree-of-freedom model is presented to handle kinematic redundancy in the x-y plane; an extension to three-dimensional tracking tasks is presented as well. A set of sample trajectories was used to evaluate the performances of the proposed algorithm. Findings – The results from the simulations confirm the continuity and accuracy of generated joint profiles for given end-effector trajectories as well as algorithm robustness, singularity and self-collision avoidance. Originality/value – This paper shows how to control a redundant robotic arm by applying human upper arm-inspired concept of inter-joint dependency

    Motion planning by demonstration with human-likeness evaluation for dual-arm robots

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe paper presents a planning procedure that allows an anthropomorphic dual-arm robotic system to perform a manipulation task in a natural human-like way by using demonstrated human movements. The key idea of the proposal is to convert the demonstrated trajectories into attractive potential fields defined over the configuration space and then use an RRT*-based planning algorithm that minimizes a path-cost function designed to bias the tree growth towards the human-demonstrated configurations. The paper presents a description of the proposed approach as well as results from a conceptual and a real application example, the latter using a real anthropomorphic dual-arm robotic system. A path-quality measure, based on first-order synergies (correlations between joint velocities) obtained from real human movements, is also proposed and used for evaluation and comparison purposes. The obtained results show that the paths obtained with the proposed procedure are more human-like.Peer ReviewedPostprint (author's final draft
    corecore