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Abstract— This paper addresses the problem of obtaining
human-like motions on hand-arm robotic systems performing
pick-and-place actions. The focus is set on the coordinated
movements of the robotic arm and the anthropomorphic
mechanical hand, with which the arm is equipped. For this,
human movements performing different grasps are captured
and mapped to the robot in order to compute the human hand
synergies. These synergies are used to reduce the complexity
of the planning phase by reducing the dimension of the search
space. In addition, the paper proposes a sampling-based plan-
ner, which guides the motion planning following the synergies.
The introduced approach is tested in an application example
and thoroughly compared with other state-of-the-art planning
algorithms, obtaining better results.

I. INTRODUCTION

Nowadays, robots are turning essential in more fields and

applications, thanks to becoming adapted to different tasks

and environments but also getting more sophisticated and

complex. The humanoid robots equipped with anthropomor-

phic dexterous hands are one of the most representative

examples. In fact, these mechanical hands are devices that

concentrate in a compact volume a high number of sensors

and degrees of freedom (DOFs), ranging usually from 12

to 25 DOFs. In addition, despite all these advanced fea-

tures, the automatic planning of their movements must be

solved to obtain a satisfactory performance, which is still

an arduous and non-evident task since the complexity of the

problem increases exponentially with the number of DOFs.

Furthermore, sometimes not only a feasible path is required

but also the one that optimizes some path quality metric

(e.g. minimizing the path length, the execution time or the

energy consumption). Regarding the humanoid robotics, for

instance, the motion planning must not only focus on the

efficient search of a valid solution, but also on the search

of robot movements that mimic the motions of the human

beings. Pursuing this goal, the human-robot collaboration is

facilitated because, thereby, the humans can adjust their mo-

tions to avoid possible injuries or enhance the collaboration

since they are familiar with the robot motions [1].

On the one hand, the motion planning of complex systems

has been typically addressed with different planning algo-

rithms, being the sampling-based planners [2] and, especially

among them, the Probabilistic Roadmap planners, PRM [3],

and the Rapidly-exploring Random Trees, RRT [4], the most

The authors are with the Institute of Industrial and Control Engi-
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commonly used. These algorithms have been researched

extensively and, hence, several variants exist, for instance

to deal with constraints [5], or to bias the sampling towards

better regions of the configuration space by using, potential

fields [6] or retraction-based methods [7].

On the other hand, the robot joints must be properly coor-

dinated in order to obtain human-like motions. Thereby, real

human movements are commonly used as a reference [8],

either pursuing a direct on-line teleoperation of the robot [9],

or with the aim of analyzing these movements and getting

some valuable information to be applied later in a planning

phase [10]. Some relevant pioneering works dealt with the

grasping problem analyzing the correlations of the finger

joints when the human hand was grasping objects [11].

These correlations were called hand postural synergies and

mapped into a mechanical hand [12]. The synergies existing

in the human hand were also used for other objectives

such as the analysis and design of robotic hands in order

to mimic human grasps [13], the design of specific hand

control systems [14], or the identification of the hand pose

using low-cost gloves [15]. Nevertheless, there exist other

approaches that, instead of studying the hand synergies

while grasping an object, compute the synergies from hand

movements when the human tries to cover the whole hand

configuration space in an unconstrained way [16]. More

recently, a compliant model, called soft synergies, was also

introduced and used in the selection of grasping forces, in

their control, and in the control of the motion of the grasped

object [17], [18]. In addition, the synergies were used in a

dual-arm anthropomorphic system while performing manipu-

lation tasks [10], [19]. The works mentioned above dealt with

synergies involving correlations between joint positions. Ne-

vertheless, a recent work extended the concept of synergies

to the velocity space (i.e. the space of the first derivative

of the configuration trajectories) calling them first-order

synergies [20], [21] (in contrast with the synergies in the

configuration space, that were called zero-order synergies).

This work proposes to characterize the synergies existing

in the human grasping motion, considering the different

grasp types and grasp phases, and then use a sampling-based

motion planner, especially designed to use these synergies,

in order reduce the planning complexity and at the same time

look for hand-arm movements with human-like appearance.

After this introduction, Section II presents the problem

statement and gives an overview of the proposed approach,

Section III details the proposal, the approach is validated in

Section IV and finally Section V presents the conclusions

and future work.



Fig. 1. Human operator wearing the measurement equipment (left), set of grasped objects in the experiments (middle), and dual-arm robot (right).

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

The goal of this work is to plan the motions of a

hand-arm robotic system robot trying to mimic the hand-arm

movements that a human does to pick an object performing

different grasps. To this end, a sampling-based planning al-

gorithm is designed and the movements of a human operator

are used to guide the motion planning. The main features of

the proposed approach are the following:

1) The motions of a human operator performing different

grasps on several objects are captured, and then mapped

to the robot whose motions are aimed to be planned (see

Fig. 1). Thereby, the synergies existing in the human

motions when a given grasp is done are computed.

2) The computed synergies are used to guide the motion

planning and to reduce the complexity of the planning

phase through a reduction of the dimension of the

search space, being this dimension-reduction process

dependent on the grasp type to perform.

3) A bidirectional sampling-based planner is designed to

use the proposed dimension-reduction method and to

bias the tree growth towards the directions of the

computed synergies. Hence, human-like movements are

obtained with a low computational load.

III. PLANNING PROCEDURE

A. Motion capture and mapping

In this work, human motions are used as a reference to

obtain human-like movements of a hand-arm robotic system

picking a given object. Many types of common human grasps

are gathered in the grasp taxonomy of M.R. Cutkosky [22],

which classifies the grasps depending on the object size and

on the dexterity of the task to perform with the grasped

object. Although this classification is not complete, and

there exists more extensive grasp classifications (e.g. [23]),

it is detailed enough for the considered purposes. Besides,

W. Dai, Y. Sun and X. Qian [24] updated the taxonomy

of Cutkosky and analyzed, from a different perspective,

the entire grasping trajectory and not only the grasping

configuration (i.e. the final snapshot), proving that the grasp

types can be grouped naturally into consistent grasp families

(see Fig. 2). This family-grouping is used here to adapt the

planning process according to the grasp being performed

(even though several potential grasp types are considered

simultaneously).

Thereby, using a Cyberglove sensorized glove with a 50 Hz

sampling frequency, the motions of a human operator are

recorded performing 15 different grasp types on 9 objects,

with 12 repetitions per grasp type and starting off from a

comfortable stand position in front of the object (see Fig. 1

and 2). This implies 180 demonstrations and more than

15000 configuration samples (where each sample contains

22 measurements describing the positions of the finger joints

read from the glove). Once the samples have been captured,

they are mapped to the robotic hand. This mapping depends

on the kinematic structure and particularities of the used

robotic system. In this work, a robotic hand-arm system

composed of a 6-DOF UR5 robotic arm equipped with a

16-DOF Allegro Hand is used (see Fig. 1). On the one hand,

the information regarding the little finger is discarded and a

joint-to-joint mapping is used for the flexion/extension joints

of the other three fingers and the thumb. On the other hand,

a fingertip-position mapping is used to compute the mapped

values of the abduction/adduction joints of the fingers and

the thumb, and also the value of the thumb opposition joint.

B. Motion analysis

The synergies (i.e. couplings between DOFs) are obtained

running a Principal Component Analysis (PCA) over the set

of hand configurations mapped from the human movements.

This returns a new basis of the hand configuration space,

with the axes sorted in decreasing order of the associated

sample variance (i.e. the first axis marks the direction with

maximum sample variance and so on). Each axis is called a

synergy and the motion along it, equivalent to a single DOF,

implies the movement of several (or all) joints. Although

nonlinear approaches to obtain synergies have been also

proposed (e.g. [25]), the simple linear approximation of the

PCA is enough to capture the subspace where the demons-

trated motions lie, having been proved to be useful and

implementable by a drive mechanism [26] and a real-time

algorithm [14].

Two phases are observed in the mapped grasping motions

(see Fig. 3). During the first phase, called pre-grasp phase,

the trajectories of the hand joints are common motions

opening the hand similarly in all the executions, regardless of

the grasp type performed. Then, there is a certain moment

in which the demonstrated trajectories begin to differ and

specialize according to the type of grasp being carried out.

This is the grasp phase itself. Nevertheless, the transition

from one phase to the other is diffuse and does not occur at



Fig. 2. The 15 force-closure grasps whose movements have been in this paper captured, classified, in a tree structure, adapting the grasp taxonomy of
M.R. Cutkosky [22], and grouped into grasp families, 1 to 4, according to W. Dai, Y. Sun and X. Qian [24].

Fig. 3. Hypothetical mapped trajectories on the hand-configuration space,
divided into pre-grasp and grasp phases, to obtain the common pre-grasp
synergies (0) and the grasp synergies of each family (1 to 4).

the same time for all the demonstrations. Hence, the transi-

tion time is computed as follows. Let Q be the set of hand

configurations mapped from a given grasping demonstration,

and, for a given time instant t, let Q−

t and Q+
t be the sets of

configurations in Q captured before and after t, respectively.

In addition, let the likeness of the two given sets QA and QB

of hand configurations be defined as the overlapping between

the distributions of the configurations in the sets, which is

a measure of the similarity between QA and QB [19]. This

index can be computed as

L(QA, QB) =
e−

1

2
(µ

A
−µ

B
)
⊺

(ΣA+ΣB)−1(µ
A
−µ

B
)

√

(2π)1+2n |ΣA +ΣB|
(1)

where µA and µB are the barycenters and ΣA and ΣB

are the covariance matrices of the configurations in QA

and QB , respectively. Then, the time instant t indicating

the transition between the two phases is defined as the one

minimizing L(Q−

t , Q
+
t ). Thereby, the pre-grasp and grasp

phases have been identified in the 180 mapped trajectories.

On the one hand, all the pre-grasp phases have been grouped

and used to compute the pre-grasp synergies. On the other

hand, the grasp phases have been grouped according the

grasp family which each demonstrated grasp belongs to,

and, then, a set of grasp synergies has been computed for

each grasp family (see Fig. 2). In this way, the pre-grasp

synergies explain the hand motions in the pre-grasp phase in

all the grasps, and each set of grasp synergies model the hand

motions of each grasp family (Table I shows the accumulated

sample variance for the obtained set of synergies).

TABLE I

ACCUMULATED SAMPLE VARIANCE AS A FUNCTION OF THE NUMBER k

OF CHOSEN SYNERGIES, FOR THE COMMON PRE-GRASP PHASE AND

THE GRASP PHASE OF EACH OF THE DEMONSTRATED GRASP FAMILIES.

k Pre-Grasp
Grasp Family

1 2 3 4

1 65.575 % 79.474 % 64.234 % 63.280 % 88.568 %

2 77.795 % 86.125 % 81.877 % 84.238 % 91.955 %

3 84.586 % 91.442 % 88.091 % 91.428 % 94.921 %

4 90.316 % 94.015 % 92.225 % 94.377 % 96.606 %

5 93.260 % 96.229 % 95.108 % 96.394 % 97.676 %

6 95.996 % 97.665 % 96.781 % 97.664 % 98.685 %

7 97.262 % 98.315 % 97.850 % 98.569 % 99.160 %

8 98.165 % 98.802 % 98.834 % 99.027 % 99.449 %

9 98.901 % 99.218 % 99.241 % 99.467 % 99.624 %
...

...
...

...
...

...
16 100 % 100 % 100 % 100 % 100 %

For a robotic hand with n DOFs, the synergies define

an n-dimensional box centered at the barycenter of the

configurations used to obtain the synergies and with each

side aligned with a synergy [27]. So that the box contains

the (100−α)% of the configuration distribution (i.e. any

hand configuration inside the box would be then similar to

the ones used to compute the synergies), each side of this

box measures 2
√
2 erf −1(n

√
1−α ) times the standard de-

viation of the configurations in the corresponding direction.

The dimension of the box can be reduced by using only

k<n synergies (picking them in order) such that k is the

minimum value making the accumulated variance be above

a confidence level of (100− β)%. In this work, n is 16 and

α = β = 5% is considered. Thus, the dimension k of the

resulting lower-dimensional boxes, called Bk, is 4 or 5 for

the grasp phase, depending on the grasp family (see bold

values in Table I). For the pre-grasp phase, 6 synergies are

needed (a little bit greater, as it was expected, since the

movements of all the grasp families are explained in this

case). Despite the simplification, the Bk still represent accu-

rately the mapped hand motions. Thereby, if the planning of

the hand motions is performed in the corresponding Bk, the

planning complexity is reduced and the obtained motions are

similar to the movements mapped from the human operator.



Fig. 4. Motion planning representation in C-space: sample trees rooted at
the start configuration qstart and the grasps G1 and G2, growing close the
associated synergy lower-dimensional boxes (0 to 2), while steering a given
configuration qnear towards a random qrand and reaching qnew. Note that
the sample trees rooted at G1 and G2 belong to the same graph structure.

C. Motion planning

The proposed planner is based on the RRT-Connect [28],

which is widely used in motion planning since it obtains

good results even on robots with a high number of DOFs and

with cluttered environments. However, it has been modified

here to a) deal with multigoal queries, b) extend the sample

trees following the synergies obtained above and, c) connect

the sample trees in a less greedy fashion.

Let C be the robot configuration space, let q ∈ C be a robot

configuration, defined as an arm configuration q
a concate-

nated with a hand configuration q
h, and let G = (qh,χh

o )
be a grasp, composed of the hand configuration q

h and the

object pose χ
h
o relative to the hand at the grasping time.

Thereby, the introduced planner, outlined in Algorithm 1, is

supplied with a collision-free start configuration qstart of the

whole robot, the object pose χ
r
o relative to the robot, and a

set {Gi} of grasps. The planner maintains two sample graphs,

each one denoted by a pair formed by a set of edges E

and a set of vertices V . One of this graphs represents a

sample tree rooted at the start configuration qstart (Line 1),

and the other one contains the sample trees rooted each one

at a grasp configuration (Lines 2-6), see Fig. 4. These grasp

configurations are computed by, first, solving the arm inverse

kinematics (IK) given the grasps Gi to perform and the object

pose χ
r
o (Line 4) and, then, rejecting those cases which do

not have an IK-solution or which imply collisions (Line 5).

Thus, in each iteration, one of the graphs is steered towards a

random configuration qrand (uniformly sampled in C), reach-

ing a configuration qnew (Lines 7-8). Note that the STEER

method, explained below, returns ∅ if the sample graph could

not be extended, i.e. a collision is found. Next, the connection

between the graphs is attempted. Notice that, in the classic

RRT-Connect, the sample trees are connected greedily by

extending one of trees directly until reaching the other tree

or a collision. However, here in order to obtain an smoother

connection, both graphs are, in alternation and successively,

extended towards the last added configuration in the other

graph (Lines 12-13), until the graphs are connected and,

then, the found solution path is returned (Line 10). In case

the steering process fails (Line 9), the sample graphs swap

their roles (Line 14) and the whole process is repeated

until a solution is found or some termination condition is

satisfied (Line 6), e.g. surpassing a maximum planning time,

number of iterations or memory allocation.

Algorithm 1: PLANNER

Input : Start configuration qstart ∈ C, object pose χ
r

o
, and

set of grasps {Gi}
Output: Collision-free path P connecting qstart and one Gi

1: (Ea, Va)← (∅, qstart)
2: (Eb , Vb)← (∅, ∅)
3: forall Gi do
4: q

i

goal ← INVKIN(Gi,χ
r

o
)

5: if qi

goal 6= ∅ and COLLISIONFREE(qi

goal) then Vb←Vb∪q
i

goal

6: while not ENDCONDITION( ) do
7: qrand ← RANDCONF( )
8: qnew ← STEER

(

(Ea, Va), qrand

)

9: while qnew 6= ∅ do

10: if Va ∩ Vb 6= ∅ then return PATH
(

(Ea, Va), (Eb, Vb)
)

11: else
12: SWAP

(

(Ea, Va), (Eb, Vb)
)

13: qnew ← STEER
(

(Ea, Va), qnew

)

14: SWAP
(

(Ea, Va), (Eb, Vb)
)

15: return ∅

Algorithm 2: STEER

Input : Sample graph (E,V ) and configuration qtarget

Output: Configuration qnew

1: qnear ← NEARESTCONF(V, qtarget)
2: if ‖qtarget − qnear‖ ≤ ǫ then qnew ← qtarget

3: else
4: qproj ← PROJECT

(

qtarget, (E, V )
)

5: qnew ← qnear+min
(

ǫ ‖qproj−qnear‖
−1, 1

)(

qproj−qnear

)

6: if COLLISIONFREE(qnear, qnew) then

7: (E, V )←
(

E ∪ (qnear, qnew), V ∪ qnew

)

8: return qnew

9: else return ∅

In order to integrate the synergies into the motion plan-

ning, the standard function extending the sample tree in

RRT-based planners is replaced here by the function STEER,

described in Algorithm 2. As in the classic method, a single

step is performed from qnear, the configuration in the graph

closest to the desired target configuration qtarget (Line 1),

reaching a new configuration qnew. If the segment connect-

ing qnear and qnew is collision-free, the segment is added to

the graph and qnew is returned (Lines 6-8). Otherwise, ∅ is

returned (Line 9). However, here, qnew is computed diffe-

rently, i.e. following the synergies instead. Thereby, if qtarget

is close to qnear, qnew is qtarget (Line 2), so that in the event

that the two sample graphs are close to be connected, the

guideline to follow the synergies may be relaxed. Otherwise,

a step, with a maximum length ǫ, is taken not towards the

desired qtarget (as it would be done in the standard procedure)

but towards its projection qproj onto the lower-dimensional

box spanned by the synergies (Lines 4-5), see Fig. 4. Note

that, in the PROJECT procedure, the arm component of qtarget

remains the same and the hand component is projected onto

the lower-dimensional box Bk of synergies associated with

the root of the sample tree containing qnear (i.e. if qnear

belongs to the sample tree rooted at qstart, qtarget is projected

onto the box of pre-grasp synergies; otherwise, qnear belongs

to a sample tree rooted at a certain Gi and, hence, qtarget is

projected onto the box of synergies associated with Gi).



Fig. 5. Snapshots of paths obtained with an standard RRT-Connect (top), and the proposed procedure using the proper synergies for each grasp type (bottom).

Fig. 6. Examples of different grasp types used within the motion planning,
each one of a different grasp family: Thumb-2 Finger, Thumb-3 Finger,
Medium Wrap and Lateral Pinch (from left to right, respectively).

IV. VALIDATION OF THE APPROACH

For illustrative purposes, the motions of an anthro-

pomorphic dual-arm robot have been planned (see Fig. 1),

with the robot located in front of a bookshelf and, starting off

from a natural standing pose, must grasp a cylinder standing

on one of the shelves (see Fig. 5). Besides, the robot must

perform human-like motions while avoiding the collisions

with itself, the bookshelf and the cylinder. For this, the

planning algorithm is provided with the exact position of the

cylinder and with a set of different force-closure grasps Gi

(from different grasp types and grasp families, see Fig. 6).

This information can be obtained, for instance, from the vi-

sion system on the robot and a grasp generator, respectively.

In order to evaluate and compare the performance of the

proposed approach, three planners have been benchmarked:

a) A standard RRT-Connect, modified to tackle multi-goal

queries, planning without using synergies.

b) The proposed approach, planning using the proper grasp

synergies in relation of the grasp type to be performed.

c) The proposed approach, but in this case the grasp

synergies and the grasp families have been intentionally

mismatched (i.e. each grasp family has been randomly

associated with the synergies of another grasp family).

Note that, at every planner execution, the orientation and

position of the robot are lightly modified at random and that a

different set of 8 grasps Gi are randomly selected from the set

of precomputed grasps. Thereby, the planners are provided

with a single start configuration and a set of 8 different goal

configurations, i.e. one per each of the selected grasps.

TABLE II

AVERAGE RESULTS OF THE MOTION PLANNING WHEN RUNNING THE

CLASSIC RRT-CONNECT (a) AND THE PROPOSED APPROACH WITH

THE PROPER (b) AND WITH MISMATCHED GRASP SYNERGIES (c).

C
as

e Success
rate

Planning
time

# ite-
rations

# collision
checks

Valid
segments

Path
length

Human-
likeness

a 97 % 51.80 s 1834 32231 68.3 % 14.18 rad 73.6 %

b 100 % 6.21 s 274 10649 80.0 % 7.79 rad 83.1 %

c 100 % 11.79 s 484 13667 75.3 % 8.35 rad 81.9 %

The experiments introduced above have been implemented

within the environment The Kautham Project [29], a mo-

tion planning and simulation environment developed at the

Institute of Industrial and Control Engineering (IOC-UPC)

for teaching and research purposes, and run in a 2.13-GHz

Intel 2, 4-GB RAM PC. A maximum planning time of 100 s

is considered for each planner instance. Thereby, if a path

is not found within this time, the execution is marked as

a failure. After 100 executions, Table II shows the average

values of the success rate, the planning time, the number

of iterations and collision checks, the rate of valid segments

(i.e. the ratio of iterations in which the sample trees actually

grow), the path length (measured in C as the weighted sum of

accumulated joint movements along the path), and the path

human-likeness. The human-likeness index computes the

misalignment of a path with respect to some given reference

human movements [27]. Here, natural free-movements of the

operator while moving freely the fingers in an unconstrained

way (i.e. without performing any specific task), trying to

cover the whole hand workspace, are used as a reference.

On the one hand, it can be noticed from the simulation

results that effectively the proposed planning approach is

several times faster than the standard RRT-Connect algorithm

(up to an order of magnitude). In fact, the motion planning

can be solved within the time restrictions for the 100 % of

the executions only when the proposed approach is used,

either when the grasp synergies are properly associated

with the selected grasps or when they are mismatched. It

can be stated that the use of synergies clearly reduces the

planning time since the solution is enforced to lie close to

the lower-dimensional boxes Bk. This focuses the search



efforts close to the demonstrated movements (which belong

to a set of demonstrated feasible solutions), thus accelerating

the connection of the sample trees and, thereby, reducing

the needed number of iterations and collision checks to

find a solution. In addition, since the grasp synergies are

obtained from feasible movements, the probability of obtain-

ing collision-free robot configurations increases when using

synergies (see valid segments rate in Table II), reducing

greatly the computation time. The results also show that even

when not the correct grasping synergies are used, i.e. case c,

the benefits of using synergies are still evident. In this case,

the planning time is slightly penalized, however, it is still a

better option than not using synergies at all.

On the other hand, the proposed planning procedure pro-

duces movements of the robotic system that look more natu-

ral and human-like (see human-likeness in Table II), since the

grasp synergies are obtained from human demonstrations and

the human-likeness is preserved within the planning process.

Besides of the numerical results, the higher human-likeness

of the proposed approach can be noticed in Fig. 5, which

shows representative solution paths for cases a and b.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed a procedure to efficiently obtain

human-like hand-arm movements to grasp a given object. To

this end, the movements of a human operator performing

different grasps on different objects have been captured and

mapped to the robot. These grasp movements have been

classified according to a grasp taxonomy, and for each grasp

family a set of human-demonstrated synergies (couplings

between DOFs) have been computed. In addition, a pre-grasp

set of synergies has also been computed, common for all

the grasp families. Finally, a motion planner profiting from

these synergies has been presented and compared against

other state-of-the-art planners planning the motions of a real

anthropomorphic dual-arm robot. The effect of using the

grasp synergies, even when they are not the ones associated

with the grasp being performed, has been also investigated,

producing good results in both cases.

In the future we plan to supplement the current results

by incorporating into the study the movements of several

human operator, to understand if the behavior is any dif-

ferent depending on age, gender, etc. Besides, the proposal

opens several interesting potential research lines, such as its

extension to the velocity space and the coordination of the

robot base, arms and hands all at the same time.
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[16] S. Sun, C. Rosales, and R. Suárez. Study of coordinated motions of
the human hand for robotic applications. In Proc. IEEE Int. Conf.

Information and Automation, pages 776–781, June 2010.

[17] M. Gabiccini, A. Bicchi, D. Prattichizzo, and M. Malvezzi. On
the role of hand synergies in the optimal choice of grasping forces.
Autonomous Robots, 31:235–252, July 2011.

[18] D. Prattichizzo, M. Malvezzi, and A. Bicchi M. Gabiccini. On motion
and force controllability of precision grasps with hands actuated by
soft synergies. IEEE Trans. Robotics, 29(6):1440–1456, Dec. 2013.
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[21] N. Garcı́a, R. Suárez, and J. Rosell. First-Order synergies for motion
planning of anthropomorphic dual-arm robots. In Proc. IFAC World

Congress, pages 2283–2290, July 2017.

[22] M.R. Cutkosky. On grasp choice, grasp models, and the design of
hands for manufacturing tasks. IEEE Trans. Robotics and Automation,
5(3):269–279, June 1989.

[23] T. Feix, J. Romero, H. B. Schmiedmayer, A. M. Dollar, and D. Kragic.
The GRASP taxonomy of human grasp types. IEEE Trans. Human-

Machine Systems, 46(1):66–77, Feb. 2016.

[24] W. Dai, Y. Sun, and X. Qian. Functional analysis of grasping motion.
In IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pages 3507–
3513, Nov. 2013.

[25] J. Romero, T. Feix, C.H. Ek, H. Kjellström, and D. Kragic. Extract-
ing postural synergies for robotic grasping. IEEE Trans. Robotics,
29(6):1342–1352, Dec. 2013.

[26] W. Chen, C. Xiong, and S. Yue. Mechanical Implementation of Kine-
matic Synergy for Continual Grasping Generation of Anthropomorphic
Hand. IEEE/ASME Trans. Mechatronics, 20(3):1249–1263, June 2015.

[27] N. Garcı́a, J. Rosell, and R. Suárez. Motion planning by demonstration
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