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Motion Planning by Demonstration with

Human-Likeness Evaluation for Dual-Arm Robots
Néstor Garcı́a, Jan Rosell and Raúl Suárez

Abstract—The paper presents a planning procedure that allows
an anthropomorphic dual-arm robotic system to perform a
manipulation task in a natural human-like way by using
demonstrated human movements. The key idea of the proposal
is to convert the demonstrated trajectories into attractive
potential fields defined over the configuration space and then
use an RRT∗-based planning algorithm that minimizes a
path-cost function designed to bias the tree growth towards
the human-demonstrated configurations. The paper presents a
description of the proposed approach as well as results from a
conceptual and a real application example, the latter using a
real anthropomorphic dual-arm robotic system. A path-quality
measure, based on first-order synergies (correlations between
joint velocities) obtained from real human movements, is also
proposed and used for evaluation and comparison purposes.
The obtained results show that the paths obtained with the
proposed procedure are more human-like.

Index Terms—Path planning for manipulators, Humanoid
robots, Synergies, Human-Like motions.

I. INTRODUCTION

MOTION planning is a basic research issue in robotics,

particularly since the robots became an essential part

in many application fields like, for instance, the medical

and the electronic industries, or even in the computational

biology or computer animation fields. The importance of this

problem is more relevant for robotic systems with a high

number of degrees of freedom (DOFs), like those involving

mechanical hands or anthropomorphic structures. Moreover, a

path is sometimes required that, besides being collision-free,

also optimizes a quality measure like minimizing the traveled

distance [1] or the time required in the path execution [2].

In the case of humanoid robots, one of the needs is to find

robot movements that mimic those of human beings, since

human-robot collaboration is facilitated if the robot shows

human-like movements [3] because when humans are familiar

with the robot motions, they may adjust their motions to avoid

possible collisions or enhance the collaboration.

Different planning algorithms able to tackle the motion

planning of complex systems have been developed, being

the sampling-based planners the most outstanding [4].

Among them, the most commonly used are the Probabilistic

Roadmaps (PRM) [5] and the Rapidly-exploring Random

Trees (RRT) [6]. Diverse improvements have been proposed

to these planners to deal with constraints [7], to consider
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configuration-space costmaps [8], or to bias the sampling

towards better regions of the configuration space by using, for

instance, retraction-based methods [9] or Principal Component

Analysis (PCA) [10]. Since these algorithms are non-optimal,

other variants like the PRM∗ and RRT∗ algorithms have

been proposed [11]. Besides, recently, the RRT∗ planner

was combined with potential fields in order to improve its

efficiency [12] and guide the solution path [13]. In this line,

this paper proposes the use of a variant of the RRT∗ algorithm

that minimizes a path-cost function computed with a potential

field obtained from human demonstrations, thus resulting in

human-like motions. Potential functions learned from human

demonstrations have been also used in control policies [14].

Looking for human-like movements leads to the search of

the right coordination between the robot joint movements.

Towards this goal, the direct use of the real movements of a

human being as a reference is common [15]. On the one hand,

a usual assumption of many approaches analyzing human

motion is that humans try to minimize an unknown cost

function while doing everyday manipulation tasks, e.g. hand

jerk (i.e. the third time-derivative of the hand position) [16],

joint jerk [17], joint torque [18] or a convex combination

of several cost functions with weighting factors chosen to

describe an observed human motion [19]. Hence, minimizing

these cost functions, human-like motions can be obtained.

However, it can be complex to incorporate these functions in

the inverse kinematics of some manipulators. On the other

hand, new human-like movements can be obtained using

human motions previously registered, e.g. by properly modi-

fying these motions to fit a new scenario [20], by using these

known movement trajectories to train a neural network [21] or

to adjust the parameters of a non-linear dynamical system [22].

Other related advanced procedures include e.g. the generation

of cyclic motions for dual-arm robots using neural networks

and quadratic programing [23], the consideration of the robot

dynamics in the motion planning by transforming the problem

into an optimization of a non-linear fitness function [24] or the

use of movement primitives based on a model of the triangle

defined by the human upperarm and forearm [25].

In the motion planning of mechanical hands, several works

used “postural synergies” (i.e. correlations between DOFs) to

simplify the problem by reducing the dimension of the search

space as well as to mimic human postures. The correlations

of the human hand configurations while performing a grasp

were studied [26] and mapped into a robotic hand [27]. These

synergies were suggested to be an emergent consequence of

neuromuscular impedance [28]. The synergies existing in the

human hand [29] were also used for other objectives such as

the analysis and design of robotic hands in order to mimic
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Fig. 1. General schema of the proposed approach.

human grasps [30], the selection of grasping forces [31] and

the design of specific hand control systems [32]. Later, a

compliant model for synergies, called “soft synergies”, was

introduced and used in the selection of grasping forces, in

their control, and in the control of the motion of the grasped

object [33], [34]. The use of synergies was recently also

used in a dual-arm anthropomorphic system while performing

manipulation tasks [35], [36]. One of the main problems faced

when trying to obtain human synergies is the capture of the

human configurations in order to get proper information for

the search of the synergies. In the case of the hands mentioned

above, the problem was mainly addressed using: a) vision

systems (e.g. [37]), which have the frequent problem of visual

occlusions and usually require special marks on the hand to

facilitate the configuration identification, and b) sensorized

gloves (e.g. [38]). In the particular application of moving

a prosthetic hand, the analysis of forearm electromyogram

signals (EMG) was proposed (e.g. [39]) but this is not practical

in most general-purpose robotic applications.

The works mentioned above dealt with synergies involving

correlations between joint positions. Nevertheless, a recent

work extends the concept of synergies to the velocity space

(i.e. the space of the first derivative of the configuration

trajectories) calling them first-order synergies [40], [41] (in

contrast with the synergies in the configuration space, that

were called zero-order synergies). In this line, this paper

proposes a human-likeness index based on first-order synergies

and uses it to evaluate the paths obtained with the proposed

motion planner based on human demonstrations.

After this introduction, Section II presents the problem state-

ment and the approach overview, and Section III outlines the

required preliminaries. Then, Section IV details the proposal

of the planner and its performance analysis, and Section V

introduces the human-likeness index and uses it to evaluate the

proposed planner. Finally, Section VI presents the conclusions

and future work.

II. MOTIVATION AND APPROACH OVERVIEW

The first goal of this work is to introduce a plan-

ning procedure designed specifically for anthropomorphic

dual-arm robotic systems that solves manipulation tasks using

human-like paths. To this end, the movements of a human

operator are used as demonstration paths. The main features

of the proposed approach are the following (see Fig. 1):

1) The movements of a human operator solving manipula-

tion tasks are captured and then mapped to the anthropo-

morphic dual-arm robotic system.

2) The demonstration paths are used to generate attractive

potential fields over the configuration space C.

3) The captured movements are also used to select a region

of a lower-dimensional subspace of C, called Bk, that

contains a predefined high percentage of the sample

variance of the demonstration paths. By planning in this

subspace, a significant reduction of the computational

cost is expected.

4) Using the potential fields generated in C, a path cost is

defined to guide an RRT∗-based planner. The proposed

planning algorithm uses a stochastic gradient-descent

method to minimize the path cost and to bias the tree

growth towards the demonstrated human movements.

The second goal of the work is to define a quality index

to evaluate the human-likeness of a path by considering how

much aligned the path is with respect to certain reference

human movements. These movements, which can be different

to the ones used as demonstration paths to solve the task, are

characterized by using a set of first-order synergies defined

over the relevant configurations of C.

Note that, since the two goals are clearly independent,

we have addressed them separately in Section IV and Sec-

tion V respectively, each one with its own experimentation.

Thereby, first a path is obtained with the proposed planning

algorithm using demonstration paths (Section IV), and then the

human-likeness of the planned path is evaluated (Section V);

this human-likeness index can be used to evaluate the paths

obtained with the proposed planning procedure or with any

other motion planner.

III. PRELIMINARIES

This section presents some basic concepts and procedures

(introduced in previous works of the authors [13], [35], [40])

that are relevant to the present proposal.

A. Capturing and mapping human motions

Human movements are used to guide the motion planning

to find human-like paths for dual-arm systems and to evaluate

the human-likeness of the paths. Human movements can be

captured and mapped to the robot configuration space in

different ways, depending on the available sensors and on the

robot kinematics. In this work, human movements are captured

using magnetic trackers and sensorized gloves, as shown in the

top-left picture in Fig. 1, that take samples of the position and

orientation of the operator wrists while performing manipula-

tion tasks. Then, the captured data are mapped to the dual-arm
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robotic system by solving the inverse kinematics of the arms

for each sampled wrist configuration, obtaining in this way the

corresponding configurations of the dual-arm system. Inverse

kinematics of robotic arms usually have several solutions, or

even infinite in the case of redundant arms with more than

six DOFs, therefore some anthropomorphism criterion should

be used to solve it (e.g. controlling the position of the robot

elbows [42]).

In this way, for each task execution done by the operator,

a sequence of configuration samples is obtained in the robot

configuration space C, defining a sequence P i of rectilinear

segments connecting time-consecutive mapped configurations.

In our case, the dual-arm system used is composed of two

UR5 6-DOF robotic arms from Universal Robots, assembled

emulating the human arm configuration as shown in the

top-right picture in Fig. 1, each arm being equipped with

a 16-DOF Allegro Hand from Simlab (although the present

paper is only focused in the motions of the arms).

B. Zero- and first-order synergies

The postural synergies are correlations between the joint

positions of an articulated system [30]. This widely used

concept was called zero-order synergies in [40], where the

extension to the joint velocity space was proposed and the

correlations between velocities was called first-order synergies.

The zero-order synergies are obtained from the Principal

Component Analysis (PCA) of a set of captured configuration

samples. This returns a new basis of C, called zero-order

basis 0S, with the axes ordered according to the sample disper-

sions along them. Each axis represents a zero-order synergy

and the movement along it, equivalent to a single DOF, implies

the correlated movement of several (or all) the actual DOFs of

the system. The procedure to obtain the first-order synergies is

exactly the same as the one to obtain zero-order synergies, but

in this case using velocity samples. Thereby, the new bases of

the velocity space, defined by a barycenter µ and a covariance

matrix Σ of velocity samples, are called first-order bases, 1S.

Each axis of a basis 1S is called a first-order synergy.

The linear approximation of the PCA is enough to represent

the subspace where the demonstrated motions lie. In fact,

it has been demonstrated to be useful and implementable

by a drive mechanism [43] or a real-time algorithm [44].

However, nonlinear approaches to obtain synergies have been

also proposed, such as the Gaussian process latent variable

model [26] and the unsupervised kernel regression [45].

The zero-order synergies are used to detect the relevant

region of C, called box B(0SG), where the captured motions

take place. Notice that the directions of the human motions

depend on the region of the configuration space where it takes

place. Therefore, to take this into account, the box B(0SG) is

divided into subregions where the 1S bases are significantly

different, as introduced in [40]. As an example, Fig. 2 shows

the box B(0SG) and its resulting partition based on differences

of first-order synergies for the samples of a motion that follows

a ray shape and for the samples of another motion that follows

an elliptic trajectory in clock-wise sense. For the ray-shaped

motion, B(0SG) is split into two parts, where the motion

Fig. 2. A ray-shaped motion (left) and an elliptic motion (right), shown
in red, with the resulting cell-decomposition of C based on the first-order
synergy differences. Boxes B(0SG) have been split into two and eight cells,
respectively, with planes aligned with the 0SG axes (i.e. u1 and u2).

directions differ significantly from each other; and for the

elliptic motion, B(0SG) is split into eight cells.

Note that first-order synergies always exist if the sampled

joint values are not homogeneously distributed, which is quite

unlike in real human movements (that is why the first-order

synergies are useful in the analysis of human movements).

In the present work:

• The 0S basis is used to define the lower-dimensional

subspace where the planning will be done (Section IV).

• The 1S bases are used to define a human-likeness index to

evaluate the solution paths found for the dual-arm robotic

systems (Section V).

C. Motion-cost function

An RRT∗-based planner recently proposed allows the user

to guide the tree growth in a simple and transparent way [13];

this is done by defining attractive and repulsive points and

segments in the workspace that generate a potential field V (q)

in the configuration space C. Then, the planner constructs

low-cost paths following the resulting valleys and saddle

points in C. Considering piece-wise linear paths in C, the

path cost is computed by adding the costs of the rectilinear

segments (called motions). The cost of a motion between two

configurations qi and qf is defined as the linear combination of

three other costs cP, cI and cD with respective positive weights

ωP, ωI and ωD:

c(qi, qf) = ωP‖qf−qi‖
︸ ︷︷ ︸

cP(qi, qf)

+ ωI

∫ qf

qi

V (q)dq

︸ ︷︷ ︸

cI(qi, qf)

+ ωD

∫ qf

qi

∣
∣
∣
∣

∂V (q)

∂q

∣
∣
∣
∣
dq

︸ ︷︷ ︸

cD(qi, qf)

(1)

where cP calculates the motion length, cI measures the motion

effort, computed as the product of the average value of V (q)

and the motion length, and cD evaluates the variations of

V (q) along the motion. Therefore, the path minimizing this

motion-cost function connects the start and the goal configura-

tions in the shortest way that avoids the areas with high V (q)

values (i.e. with repulsive potential fields) and, at the same

time, keeps V (q) as monotonic as possible along the path

(i.e. avoiding unneeded motions from repulsive to attractive

potential fields and vice versa).
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In the present work, the potential field is generated using

real human movements and the motion-cost function guides

the solution path towards these demonstrated human motions.

IV. PROPOSED MOTION PLANNING PROCEDURE

A. Generating potential fields from demonstrations

The proposed planning algorithm tries to follow the de-

monstrated human movements by minimizing the cost of the

path over the configuration space C, where several potential

fields are defined to guide the tree growth. For this, the

demonstration paths generate attractive potential fields. In

addition, the goal configuration qgoal acts also as an attractor.

On the other hand the obstacles generate potential fields that

repulse the robotic arms while the arms also repel each other.

To compute the potential-field value V (q), let first:

λ ≥ 0 and σ ≥ 0 be, respectively, the strength and the dif-

fusion parameters of each potential field;

Pi ∈ P be the i-th path of the set of demonstration paths P ,

obtained from the mapping of the human movements and

projected onto C;

Oj ∈ O be the j-th obstacle of the set of obstacles O with

which the dual-arm system can collide;

d(q,Pi) be the minimum distance in C, between the confi-

guration q and the demonstration path Pi;

d(Lq,Rq) be the minimum distance in the workspace be-

tween both arms of the robotic system, when the dual-arm

robot configuration is q ;

d(Lq,Oj) and d(Rq,Oj) be the minimum distances in the

workspace between the obstacle Oj and the left arm

and the right arm, respectively, when the dual-arm robot

configuration is q .

Then, the resultant potential-field value V (q) at a collision-free

configuration q is defined as the sum of four potential fields

values:

V(q) = Vgoal(q) + Vpaths(q) + Varms(q) + Vobs(q) (2)

where:

Vgoal(q) = λgoal

(

1− e−σgoal‖q−qgoal‖
2
)

(3)

is the potential-field value of the configuration q regarding the

attractive potential field of the goal configuration qgoal (i.e. the

closer are q and qgoal, the smaller is Vgoal);

Vpaths(q) =

|P |
∑

i

λi

|P |

(

1− e−σid(q,Pi)
2

)

(4)

is the potential-field value of the configuration q regarding the

attractive potential fields generated by all the demonstration

paths Pi ∈ P , i.e. Vpaths decreases when q gets closer to P
(it must be noted that, since Pi and q are both expressed

in C, d(q,Pi) is simply the minimum Euclidean distance in C
between q and the rectilinear segments representing Pi);

Varms(q) = λarmse
−σarmsd(Lq,Rq)

2

(5)

is the potential-field value of the configuration q regarding

the repulsive potential field between the arms of the robotic

system, i.e. Varms grows if the arms get closer; and

Vobs(q) =

|O|
∑

j=1

λj

|O|

(

e−σjd(Lq,Oj)
2

+ e−σjd(Rq,Oj)
2
)

(6)

is the potential-field value of the configuration q regarding the

repulsive potential fields of all the obstacles Oj ∈ O, if either

the left arm or the right arm of the robotic system gets close

to any Oj , then Vobs increases.

To speed up the computation of V (q), the distances between

the robotic arms and the obstacles (i.e. d(Lq,Rq), d(Lq,Oj) and

d(Rq,Oj)) are computed using a simplified model of the robot

and the obstacles based on planes, spheres and capsules).

Note that as opposed to the potential-field function pre-

sented in [13], which was valid only for the motion planning of

a free-flying robot with only translation DOFs, in this work the

potential field has been extended to scenarios with a dual-arm

robotic system (with more and different DOF types), and it

could be extended easily to problems with several dual-arm

mobile manipulators (i.e. parallel articulated systems with

many DOFs of any type).

B. The HD-RRT∗ Planner

The proposed planning algorithm, called Human Demons-

trated RRT∗ (HD-RRT∗), is based on the RRT∗ planner [11]

that has as parameters the sampling bias α towards the goal

configuration and the advance step ǫ used in the extend

function to grow the tree.

In order to cope with the limitations of the standard RRT∗

for high-dimensional configuration spaces, a modified version

was proposed with the following changes [46]:

• A sampling bias: Once a solution has been found, the

sampling is biased, with a given probability β, towards

configurations around it. This guides the paths towards

local optimal solutions.

• A node-rejection criteria: Those samples that may not be

useful in finding a better solution than the current one

are discarded. This keeps the tree as reduced as possible,

thus reducing the computational cost.

The HD-RRT∗ planner proposed here introduces the next

additional changes with respect to the modified RRT∗:

• The optimization function: The minimization of this func-

tion, computed using Eq. (1)-(6), guides the solution

towards short paths that follow as much as possible

the demonstrated movements and that move away from

obstacles and from self-collisions.

• The extension procedure: In the standard RRT∗ growth of

the tree, the selected node is steered towards the sampled

configuration. Here, this is modified to steer the node

with a probability γ towards low-cost directions (with

a stochastic gradient-descent method) using the function

CSTEER detailed below.

The proposed HD-RRT∗ planning algorithm uses the pro-

cedure CSTEER to extend the tree from a given configura-

tion qnear. The pseudocode and the flowchart of CSTEER are

shown in Fig. 3, where the following functions are used:
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Algorithm 1: CSTEER

Input : Configurations qnear, qrand

Output: Configuration qnew

1: if RAND01( ) ≥ γ then
2: return qnear+min(ǫ, ‖qrand− qnear‖)UNIT(qrand− qnear)

3: ω ← (ωP+ωI+ωD)RAND01( )

4: if ω < ωP then
5: return qnear+min(ǫ, ‖qgoal− qnear‖)UNIT(qgoal− qnear)

6: else if ω ∈ [ωP, ωP +ωI] then

7: return qnear−ǫUNIT
(

▽V (qnear)
)

8: else
9: return qnear+ǫRANDORTHNORM

(

▽V (qnear)
)

Fig. 3. Pseudocode and flowchart of the CSTEER algorithm.

• RAND01( ) returns a value uniformly chosen at random

from the interval [0, 1].
• UNIT(v) returns

v

‖v‖ if ‖v‖ 6= 0, and v otherwise.

• RANDORTHNORM(v) returns a random, unitary vector

orthogonal to v if ‖v‖ 6= 0, and v otherwise.

• V (q) is the potential-field value computed using Eq. (2).

• ▽V (qnear) denotes the gradient of V (q) evaluated at qnear.

The extension is performed towards qrand with an incre-

mental step ǫ (Line 2), as it is done in the standard RRT

algorithm. However, with a probability γ < 1, a stochastic

gradient-descent method minimizing the motion cost is applied

instead. Note that the gradient-descent method can be trapped

in local minima of the motion cost. Nevertheless, since the

gradient descent is not applied always in all the iterations, the

RRT∗ exploration properties are preserved and the possible

local minimum traps are avoided (assuming γ < 1). The

extension direction is chosen randomly (Line 3) between the

directions that minimize each component of the motion cost,

i.e. cP, cI and cD (see Eq. (1)). Each of these cost components

is chosen to be minimized with a probability proportional to

its weight value ωP, ωI and ωD respectively (e.g. the greater

Fig. 4. 2-link planar manipulator problem: demonstrated paths (left) and
obtained solution path (right).

ωP regarding ωI and ωD, the greater the probability that the

tree grows in the direction that minimizes cP). Then:

• Since cP measures the path length, the direction pointing

from qnear towards qgoal minimizes cP (Line 5).

• Since cI measures the average value of the potential field

along the path, and the gradient ▽V (q) of the potential

field points in the direction of the local greatest growth

of V (q), then the direction that minimizes cI points in the

opposite direction of ▽V (q), i.e. the direction in which

V (q) locally decreases (Line 7).

• Since cD measures the variations of V (q) along the

motion, then any direction orthogonal to ▽V (q) mini-

mizes cD because V (q) does not locally grow in any

direction perpendicular to ▽V (q) (Line 9).

After testing for different tasks, the parameters of the

HD-RRT∗ algorithm have been empirically set to α = 0.05,

β = 0.1, and γ = 0.1, being ǫ dependant on the problem.

Regarding the motion-cost function, the motion connect-

ing straightly qstart and qgoal has been used to set each

weight of the motion-cost function: ωΓ = cΓ(qstart, qgoal)
−1

for Γ ∈ {P, I,D} (see Eq. (1)). Besides, the parameters of

the potential fields have been empirically set to: λgoal = 0.1,

σgoal = 0.1; λi = 0.1, σi = 7 ∀i; λarms = 0.3, σarms = 10; and

λj = 0.3, σj = 10 ∀j (see Eq. (3)-(6)). In fact, the same

values of the parameters are used in the conceptual and the real

examples presented in the next subsection, with the exception

of the parameter ǫ that is the unique task-dependant parameter.

The sensibility of the system performance with respect to the

planner parameters is not high, thus determining them is not

a critical issue.

C. Validation and performance analysis

The approach has been implemented within The Kautham

Project [47], a motion planning and simulation framework for

teaching and research. The experiments described below were

obtained running the planner in a 2.13-GHz Intel 2, 4-GB

RAM PC.

First, for illustrative purposes, a simple example has been

set up. It consists of a 2D scenario where a 2-link planar

manipulator must go from the start configuration qstart to

the goal configuration qgoal avoiding collisions with circular

obstacles (see Fig. 4). Three demonstration paths and qgoal
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Fig. 5. Tridimensional and top views of the potential field V (q ) over the
configuration space C for the example in Fig. 4 (brighter colors represent
lower values of V (q )), with the demonstrated paths (left), and the obtained
solution path and sample tree (right).

were used to generate the attractive potential field, while

the circular obstacles generate repulsive potential fields. The

combination of these attractive and repulsive potential fields

forms the potential-field function V (q). Fig. 4-left shows the

three demonstration paths in the problem space and Fig. 4-

right shows the obtained solution. Fig. 5 shows resulting

potential-field function V (q) in the configuration space, in-

cluding the three demonstration paths in Fig. 5-left and the

resulting tree of samples and the obtained solution Fig. 5-right.

Note that V (q) is shaped like a plateau in the regions of

C where the manipulator is in collision with the obstacles

(depicted in black in Fig. 5), while, on the other hand, the

demonstration paths originate valleys (bright colored in Fig. 5).

Therefore, the use of V (q) in the cI and cD cost components in

Eq. (1) enforce the solution path to follow the demonstrations

as close as possible, while cP tries to shorten the path.

The planning procedure assures that a solution path avoiding

obstacles and self-collisions is found (if one exists) due to

the asymptotic completeness of any RRT-based planning al-

gorithm, even if the demonstration paths are not collision-free

(as it actually happens in this example, see Fig. 4 and Fig. 5).

It must be also remarked that the fact that the demonstration

paths provides relevant information on a given task is more

significant than the number of demonstration paths used, and

that the method works well even with a single demonstration

(in this case the valleys are sharper, and they become wider

when there are several different demonstration paths, with the

valley width growing when the dispersion of the demonstration

paths grows). On the other hand, the computation time of the

motion-cost function grows when the number of demonstration

paths increases (as it is expected according to Eq. (4), but it

does not produce any other negative consequence.

Numerical results of the 2-link planar manipulation problem

TABLE I
AVERAGE RESULTS OF THE CONCEPTUAL EXAMPLE MOTION PLANNING.

Time first solution Path length Total cost cP Unit cost ĉP
0.26 s 10.825 rad 1.195 0.111

TABLE II
AVERAGE RESULTS OF THE ASSEMBLY EXAMPLE MOTION PLANNING.

Planning space / Dimension C / 12 Bk / 2

Used time [s] 100 10

Time first solution [s] 1.35 0.33

Solution length [rad] 5.513 5.141

Total cost cP 1.095 1.186

Unit cost ĉP 0.199 0.231

Tree growing success [%] 73.49 94.56

using three demonstration paths are summarized in Table I

where the average values after 100 executions are shown

(remind that the sampling-based planners rely on a random

process and therefore generate a different solution each exe-

cution). A maximum time of 10 s was allowed for each

execution, this was enough to get a 100% of success rate,

i.e. the system finds always a collision-free path avoiding

self-collisions and collisions with the obstacles. The collected

data include:

• The final solution length L (measured in C as the sum-

mation of joint movements in radians).

• The final path cost cP (defined as the sum of the motion

costs of all the segments that form the path).

• The unit path cost ĉP (computed as cP divided by L).

After this simple example, the planning of the motions for

an assembly task is used as a real example of the proposed

planning procedure (see Fig. 1). This task consists in holding

a cylindrical box with one hand and a soda can with the

other, and then move both objects to a pre-assembly pose that

allows the insertion of the can into the box. Note that the

start and the goal dual-arm configurations are given and that

the proposed algorithm plans the path of the whole dual-arm

robotic system. For this example, the movements of a human

operator were captured while solving the task (see Fig. 1), and

then these movements were mapped to the dual-arm system

(see Subsection III-A). These human movements were used as

demonstration paths to generate the attractive potential fields

as well as to obtain the zero-order basis 0S of the demonstrated

task. The axes of 0S are sorted in decreasing order of the

associated sample dispersions, then the subspace Bk spanned

by the first k axes has a dimension lower than the complete

C space and, at the same time, contains a high percentage of

the sample variance. In this work, k has been chosen so that

the accumulated sample variance of the first k axes surpasses

the 95% of the total sample variance, i.e. k depends on the

human demonstrations of the task and it may vary from task to

task. Following this criterion, for this example, only two axes

were needed (the bottom-right picture of Fig. 1 shows the dis-

tribution of the accumulated sample variance of the captured

motion as a function of the number of synergies). The potential

field was generated using five demonstration paths, and the
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Fig. 6. Snapshots of a solution path for the assembly example planned in the reduced subspace Bk .

planning of the robot motions has been done using the whole

configuration space C and also using the reduced planning

subspace Bk, with maximum allowed planning times of 100 s

and 10 s, respectively, assuring a 100% of success rate.

Fig. 6 shows snapshots of an instance of the solution path

for the assembly task obtained using the reduced subspace Bk.

Videos of each step of the experiment for the assembly task are

available in [48]. Table II shows the average results obtained

after 100 executions for each case using five demonstration

paths. The table includes, as tree growing success, the percent-

age of times that the CSTEER function returned a collision-free

motion (i.e. the percentage of iterations in which no collisions

occur and the tree actually grows).

As expected, the best paths (the ones with the lowest cost)

are obtained when the whole C space was used. Nevertheless,

planning in Bk allows a much shorter planning time (due to

the reduced dimension of the subspace) without incrementing

excessively the cost of the path. In addition, the use of Bk

increases the probability of obtaining collision-free configu-

rations (see the tree growing success in Table II) because

fewer self-collisions occur, and therefore the efficiency of the

planning procedure increases.

V. HUMAN-LIKENESS EVALUATION

A. Definition of a human-likeness index

The proposed planning algorithm tries to mimic the human

demonstrations (which does not mean “following a specific

human path”) as long as it does not imply that the arms

are dangerously close to each other or to the obstacles. In

addition, the goal configuration acts as an attractive point

for the planned path. Therefore, the planned path does not

follow strictly the human demonstrated motion and then the

human-likeness of the planned path may be somehow spoiled.

In order to evaluate the human-likeness of different paths

(obtained with the proposed planning procedure or with any

other), this paper introduces a human-likeness index QP . This

index computes the misalignment of a path with respect to the

first-order bases 1S obtained from human movements. Since

as detailed in Section III-B, the configuration space is split

into cells, each one having an associated 1S basis, the value

QP of a path P is computed as

QP = 1−
1

L

∫

P

MISALIGNMENT(q ,v) dq (7)

where L is the path length, v = q̇, and MISALIGNMENT(q ,v)

is the function that returns the misalignment η of the direc-

tion v with respect to the basis 1S(µ,Σ) of the cell where q

lies. This misalignment η is measured as

η =
1

π
acos

(
(1−ρ)Φµ + ρΦΣ

)
(8)

where:

• ρ ∈ [0, 1] is a weighting variable that represents the

proximity of the basis 1S(µ,Σ) to the origin of the

velocity space, i.e. ρ increases as the origin of 1S gets

closer to the origin of the velocity space.

ρ is computed as two times the probability P that a

random vector x obtained from the normal multivariate

distribution N (µ,Σ) (i.e. with barycenter µ and covari-

ance matrix Σ) satisfies µ · x < 0. The probability P is

given by:

P
(
µ ·x<0 |x∼N(µ,Σ)

)
=

1

2
−
1

2
erf

(
µ ·µ

√
2µ⊺Σµ

)

(9)

where erf(x) is the error function. Then,

ρ = 1−erf

(
µ ·µ

√
2µ⊺Σµ

)

(10)

Therefore, when the first-order basis 1S is exactly cen-

tered at the origin (i.e. ‖µ‖ = 0), half of the distri-

bution N satisfies the inequality and, hence, ρ = 1.

As the first-order basis 1S gets away from the origin

(i.e. ‖µ‖→∞), only a reduced region of N satisfies the

inequality and, therefore, ρ → 0.

• Φµ ∈ [−1, 1] is a measure that represents the alignment

between v and µ (see Fig. 7-left).

Φµ is computed as

Φµ = sgn(v ·µ)e−
1

2
(w−µ)

⊺

Σ−1(w−µ) (11)

where sgn(x) is the sign function. Φµ is positive if

(v · µ) > 0, and negative otherwise. Besides, |Φµ| is

proportional to the value of the probability density func-

tion of N (µ,Σ) evaluated at w, which is a scaled version

of v so that the projection of w into µ is µ itself (see

Fig. 7-left), i.e. w = µ·µ
v·µ v. Therefore, |Φµ| = 1 when

v and µ are parallel and |Φµ| = 0 when v and µ are

orthogonal.

ΦΣ ∈ [−1, 1] is a measure that represents the alignment

of v and the direction u1 of largest variance of Σ (see

Fig. 7-right).

ΦΣ is computed as

ΦΣ = 2 v̂
⊺
Σv̂

u
⊺

1Σu1

− 1 with v̂ = v

‖v‖
(12)

where v̂
⊺
Σv̂ is the variance of Σ in the direction of v,

and u
⊺

1Σu1 is the variance of Σ in the direction of u1.

The quotient of these two variances takes the maximum

value 1 when v and u1 are parallel, and the minimum

value 0 when v is parallel to um, the direction of

smallest variance of Σ. To obtain ΦΣ, this quotient is then
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Fig. 7. Misalignment of each direction v= [ẋ1, ẋ2], when the first-order
basis 1S(µ,Σ) is far from the origin, i.e. Φ ≈ Φµ (left), and when 1S is
exactly centered at the origin, i.e. Φ = ΦΣ (right). Brighter colors denote
better alignments. Σ is represented by an ellipse oriented according to the
eigenvectors ui of Σ and with semiaxes proportional to the square roots of
the eigenvalues of Σ. A sample of the velocities v and w is also shown.

expanded from the interval [0, 1] to the interval [−1, 1]
with a linear transformation.

Note that the misalignment value η ∈ [0, 1] and it is

small when the advance direction v is similar to the synergy

directions. When the difference between v and the synergy

directions increases, the misalignment increases.

The pseudocode and the flowchart of the MISALIGNMENT

function are shown in Fig. 8. First, the first-order synergy ba-

sis 1S(µ,Σ) of the cell where q lies is obtained with the func-

tion FOSBASIS(q ) (Line 1) which returns ∅ if no first-order

basis is available, i.e. q is outside B(0SG) and therefore it

does not belong to any cell (see Subsection III-B). If 1S = ∅
the misalignment η is set to the maximum value 1 (Line 2);

otherwise, ρ is computed following Eq. (10) (Line 4), Φµ is

computed according to Eq. (11) (Line 5), and ΦΣ is com-

puted according to Eq. (12) (Line 6). Finally, η is computed

according to Eq. (8) (Line 7).

Now, since the path P is composed of a sequence of n con-

secutive configurations qi connected by rectilinear motions,

QP from Eq. (7) can be approximated as

QP ≈ 1−
n−1∑

i=1

MISALIGNMENT
(
qi, qi+1−qi

)
w
wqi+1−qi

w
w

L
(13)

Therefore a path with a high QP value, is highly aligned in

C with the human movements. Then, if the robot kinematic

structure is anthropomorphic (and the similar to the human

operator, the better), the position and velocity of the robot

wrists and the human wrists are similar.

The human-likeness index QP depends on the 1S bases

used. QP can be tailored to any given particular task by using

the corresponding 1S bases, and used for the evaluation of

the human-likeness of the execution of that particular task.

Note that the 1S bases depend on the mapping of the human

movements to the robot configuration space, thus a mapping

preserving the human-likeness should be used to make 1S
really represent the human-like movements.

In this paper, we propose the use of 1S obtained from natural

free-movements of the operator while he/she freely moves both

arms and hands in an unconstrained way (i.e. without perfor-

ming any specific task) trying to cover the whole workspace

Algorithm 2: MISALIGNMENT function

Input : Configuration q and advance direction v

Output: Misalignment value η of moving from q in the
direction v

1:
1S(µ,Σ)← FOSBASIS(q)

2: if 1S = ∅ then η ← 1
3: else
4: Compute ρ according to Eq. (10)
5: Compute Φµ according to Eq. (11)
6: Compute ΦΣ according to Eq. (12)
7: Compute η according to Eq. (8)

8: return η

Fig. 8. Pseudocode and flowchart of the MISALIGNMENT function.

in front of the body. There is no guarantee that the operator

actually covers the whole workspace, but it is expected that

he/she performs his/her most natural and evident movements.

B. Evaluation

Zero- and first-order synergy bases were computed using

the free-movements described above. The configuration space

C was split into 64 cells based on the synergy differences, i.e. a

first-order basis 1S was assigned to each cell of C. These bases

were used for the computation of QP , which was applied to

the evaluation of the human-likeness of the solutions found

for the assembly example defined in Section III-A using:

a) The HD-RRT∗ planner with several demonstrations, plan-

ning in the whole configuration space C.

b) The HD-RRT∗ planner with several demonstrations, plan-

ning in the lower-dimensional subspace Bk.

c) The planner introduced in [35], that simply computes

zero-order synergies for different tasks and uses them to

reduce the dimension of the search space, thus reducing

the computational cost.
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TABLE III
AVERAGE HUMAN-LIKENESS VALUE OF THE ASSEMBLY EXAMPLE USING

THE PRESENTED APPROACH WITH SEVERAL DEMONSTRATIONS (a, b),
A SIMILAR APPROACH (c), THE RRT (d, e) AND AN ARTIFICIAL PATH (f).

Case Planning dim. Used time [s] Path length [rad] Quality QP

a) 12 100 5.513 0.594

b) 2 10 5.141 0.573

c) 4 0.35 4.990 0.465

d) 12 32.39 6.647 0.433

e) 2 18.38 5.965 0.428

f) - - 17.452 0.045

d) The standard RRT planner [6], planning in the whole

configuration space C.

e) The standard RRT planner, planning in the lower-

dimensional subspace Bk.

f) Two rectilinear segments in C connecting the start and

the goal configurations through an empirically selected

configuration qm /∈ B(0SG), i.e. qm is not in the subspace

of the sampled configurations of the free-movements.

Note that in this case no motion planning is performed

but even so the path is checked to be free of collisions,

either involving the obstacles or both robotic arms.

Table III shows the average results obtained, for each

case, after 100 executions. It can be noted that the proposed

planner obtains paths with a significant better QP quality (even

though the presented approach needs a longer planning time),

i.e. the proposed procedure finds solution paths that are better

aligned with the natural movements of the human operator and

that therefore are more human-like. Note that the approach

presented in this work obtains a better QP even though the

human movements used in the motion planning are different

to the ones used to compute QP . The path with the greatest

quality is obtained when the motions are planned in the whole

C space. However, the use of the subspace Bk is the best option

since it reduces significantly the computational cost without

penalizing considerably QP . Case (c) is very fast since it is

not based in any optimization method and hence ends as soon

as a solution is found, and has a relative good QP . The poorest

quality is obtained with the manually-set path, denoting that

this path is not much human-like. The planner used in cases

(d) and (e) does not consider human-likeness nor path length

as a quality index. Hence, bad results are obtained for both

measures.

Videos of paths obtained for the assembly task with the

considered approaches are available in [48].

VI. DISCUSSION AND FUTURE WORK

This paper has introduced a motion planning procedure,

designed for anthropomorphic dual-arm robotic systems, that

allows to solve manipulation tasks in a human-like fashion.

To this end, the movements of a human operator have

been used to generate attractive potential fields over the

configuration space. The motion planning has been solved

with an RRT∗-based algorithm, with a stochastic gradient

descent method to minimize a motion cost. The algorithm

navigates through the potential fields and biases the tree

growth towards the human-like movements. In addition, the

synergies (couplings between DOFs) of the demonstration

movements have been computed to find a lower-dimensional

subspace where the motion planning can be solved more

efficiently, basically due to the fact that the sampling procedure

produces in fewer self-collision configurations. The proposed

approach has been illustrated with a conceptual example and

a real example executed with a physical dual-arm robotic

system. A human-likeness index, based on first-order synergies

(correlations between joint velocities) obtained from human

movements, has been also proposed and used for comparisons.

The obtained results show that the proposed procedure obtains

paths that are more human-like.

As a conclusion, this paper has presented a simple yet

efficient way to compute paths for dual-arm robotic systems

with human-like appearance, and it opens interesting potential

research lines, such as the use of demonstration paths in

the joint-velocity space and their first-order synergies during

the motion planning. Another interesting research direction

concerns the optimization of the presented human-likeness

index while solving the motion planning in order to better

mimic human task executions.
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