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Abstract— This paper addresses the problem of obtaining
human-like motions with an anthropomorphic dual-arm torso
assembled on a mobile platform. The focus is set on the
coordinated movements of the robotic arms and the robot base
while approaching a table to subsequently perform a bimanual
manipulation task. For this, human movements are captured
and mapped to the robot in order to compute the human
dual-arm synergies. Since the demonstrated synergies change
depending on the robot position, a recursive Cartesian-space
discretization is presented based on these differences. Thereby,
different movements of the arms are assigned to different
regions of the Cartesian space. As an application example,

a motion-planning algorithm exploiting this information is
proposed and used.

I. INTRODUCTION

Robotic systems in which a mobile platform is com-

bined with a robotic arm are commonly known as mobile

manipulators. Such combined systems are able to perform

dexterous manipulation tasks in larger and more cluttered

workspaces than a fixed-base manipulator due to its re-

dundancy and translating degrees of freedom (DOFs). This

versatility is augmented when two robotic arms are mounted

on the mobile platform (e.g. the mobile anthropomorphic

dual-arm robot shown in Fig. 1). In general, dual-arm robotic

systems are used to perform coordinated manipulation tasks

including regrasping [1], either arriving to a closed kinematic

chain (e.g. assembling a nut and a bolt [2]), or cooperating

with open chain coordinated movements (e.g. a dual-arm

system using both hands to remove potential obstacles in

order to obtain free access to a desired object [3]). Even

though dual-arm robot manipulation has been widely inves-

tigated, it still belongs to the most demanding challenges in

robotics [4]. However, to fully use the advantages offered

by a mobile manipulator, it is necessary to understand how

to properly and effectively plan its motions.

Nowadays, robots are getting more and more DOFs,

making the motion-planning harder to solve since the di-

mension of problem also increases. These problems are typi-

cally solved using sampling-based planning algorithms, with

the Probabilistic Road Map (PRM) and Rapidly-exploring

Random Tree (RRT) being two of the most commonly

used [5]. These algorithms have been researched extensively.

Hence, several variants exist to deal with constraints [6], to
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Fig. 1. Mobile anthropomorphic dual-arm robot approaching a table to
perform a dual-arm manipulation task.

consider configuration-space cost-maps [7], or to bias the

sampling towards better regions of the configuration space

by using, potential fields [8] or retraction-based methods [9].

The approaches dealing with the coordinated motion of

mobile manipulators attempted first the motion planning in

two levels: first, the pose of the end effector of the manipu-

lator was obtained and then the pose of the mobile platform

was selected to optimize a specific performance function

(e.g. maximizing the manipulability of the robotic arm [10]).

However, in order to use the full redundancy of the robotic

system, other works used a whole body planner to solve the

motion planning in the complete configuration space of the

robot. For instance, the RRT path planning approach was

adapted and combined with inverse kinematics algorithms

for motion planning along given end-effector paths [11].

The PRM algorithm was also adapted to plan task-consistent

collision-free motions for mobile manipulators [12].

Other well-known approaches are based on the imitation

of human motions, which is mainly formulated as non-linear

optimization problems [13]. This faces another important

issue: in the last decade, robots have been getting closer to

humans, introducing consequently the necessity for anthro-

pomorphic movements to allow better and safer human-robot

interactions (i.e. humans can predict more easily anthropo-

morphic robot motions thus avoiding collisions and enhan-

cing the collaboration with the robot [14]).

So as to obtain human-like motions, relevant works dealt

with the grasping problem studying the correlations of the

finger joints when the human was grasping objects [15].

These correlations were called hand postural synergies.

There exist other approaches that compute the synergies

from hand movements when trying to cover the whole hand



configuration space in an unconstrained way [16]. These

synergies can be used then to simplify the motion planning

by reducing the dimension of the search space as well as

to mimic human postures [17]. More recently, a compliant

model, called soft synergies, was also introduced and used

in the selection of grasping forces to control the motion of

grasped objects [18]. In addition, the synergies were used in

a dual-arm anthropomorphic system while performing mani-

pulation tasks [19], [20]. All these works dealt with synergies

involving correlations between joint positions but the concept

of postural synergies was also extended to the space of the

first derivative of the configuration trajectories [21]. These

synergies, called first-order synergies, were recently also

applied in dual-arm manipulation tasks [22] and used for

human-likeness evaluation purposes [23].

The human arm movements have been studied in hand-

pointing motions [24] and hand-reaching motions [25], [26].

Nevertheless, the movements of the arms have not been

investigated yet in dual-arm tasks neither used in the motion

planning of bimanual tasks using a mobile base. Hence, this

opens a completely new field of research that is addressed

in this work.

After this introduction, the paper is structured as follows.

First, the problem statement and the approach overview

are introduced in Section II. Then, the proposal is detailed

through Sections III, IV and V. Finally, Section VI presents

the experimentation and Section VII concludes the paper

with the conclusions and the future work.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

This work studies how the position and the orientation of

the robot base affects the dual-arm synergies of a mobile

anthropomorphic dual-arm robot. The final goal is to find

a human-like coordination of the robot translational move-

ments and the arms movements while approaching a table to

perform a dual-arm manipulation task. This coordination can

then be exploited in the motion-planning process, e.g. to im-

prove its performance or to obtain human-like motions. The

main features of the proposed approach are the following:

1) Human movements are captured and then mapped to the

robotic system while a human operator walks towards

a table and solves manipulation tasks there (see Sec-

tion III). Note that this work is not focused on biped

motions, but only on the upper-limb movements.

2) The captured movements are analyzed to extract the

correlations between the robot position, its orientation

and the configuration of the arms. The variations of

these correlations are studied and the dual-arm synergies

are computed from the mapped robot configurations.

Then, the Cartesian space is discretized into different

regions based on the changes in the computed synergies

and the observed correlations (see Section IV).

3) As an application example, a motion-planning algorithm

is introduced that takes profit of the synergies in the

different regions of the Cartesian space, such that the

coordinated movements of the arms is similar to the

ones of a human being (see Section V).

Fig. 2. Experiment performed to capture the human movements: Top view
of the start time (left) and front view of the end time (right). The layout of
the start positions and orientations is also shown (but not in scale).

III. MOTION CAPTURE AND MAPPING

A. Experimental setup

The setup used in the experimentation consists of:

• A mobile anthropomorphic dual-arm robot composed

of two 6-DOF robotic arms UR5 (see Fig. 1). The

arms are assembled, emulating the human-arm confi-

guration, on a custom-designed omnidirectional mobile

platform with three spherical wheels. In turn, each arm

is equipped with a 16-DOF Allegro Hand.

• An optical motion-capture system formed by reflective

tracking markers and 16 infrared OptiTrack cameras,

allowing a 3D localization of the markers with sub-

millimeter accuracy with a rate of 100 Hz.

• A simulation tool, called The Kautham Project [27],

with capabilities for collision checking, motion planning

and graphical visualization of the whole system.

B. Motion capture

In this work, human motions are used as a reference to ob-

tain human-like motions for mobile dual-arm manipulators.

The focus is set on the approaching movements previous to

the execution of bimanual manipulation tasks. For this pur-

pose, the movements of a human operator walking towards

a table and grasping two cylinders placed on pedestals have

been captured. The human operator starts the experiment

standing in a position and orientation parametrized by the

distance ρ, the azimuth angle φ and the torso angle θt; and

the positions of the cylinders are determined by the heights hl
and hr and the angle ψ (see Fig. 2). Note that the final

position and orientation of the human operator is not fixed,

it is only required to face the table and grasp both cylinders

at the same time. Since it is not computationally feasible to

cover the whole parameter space, the following illustrative

values have been independently used in the experiments:

ρ ∈ {2, 3} m, φ ∈ {−π
6 , 0,

π
6 } rad, θt ∈ {−π

4 , 0,
π
4 } rad,

ψ ∈ {−π
6 , 0,

π
6 } rad and hl, hr ∈ {1, 1.5} m. This makes

a total of 216 different experiments in which the 3D position

of the shoulders, elbows and wrists have been recorded using

markers placed on the human arms (see Fig. 3). In addition,

two more markers have been attached to each palm to help

in the computation of the wrist orientations.



C. Motion mapping

Once the human movements have been captured, they must

be mapped to the robotic system taking into account:

1) functional constraints, i.e. the robotic wrists should be

positioned and oriented similarly as the human wrists.

2) anthropomorphic requirements, i.e. the complete pose

of the robot should look similar to the human pose.

For manipulation tasks, the exact reproduction of the wrist

positions is more important than the human-likeness of the

robot configuration. Thereby, the mapping of the human

movements is formulated here as a constrained optimization

problem where the second observation above is subordinated

to the first one. For this, let first:

• χ = (x, y) ∈ R
2 be a given position of the robot base,

expressed in a given world reference system (see Fig. 3).

• θ = [θt, θl, θr]
⊺ ∈ R

1+2n be a torso configuration,

i.e. the concatenation of the value of the torso angle θt
(see Fig. 2) and the joint values θl and θr of the left

and right arms (where n is the number of DOFs of each

robotic arm, which is 6 for the used robot).

• C ⊆ R
3+2n be the whole robot configuration space and

q = [χ, θ]
⊺ ∈ C be a configuration of the robot.

• Cfree ⊆ C be the subspace of the configurations q ∈ C
in which the robot is not in collision (neither with itself

nor with the environment).

In addition, for each arm i ∈ {l, r}, with l and r standing

for the left and right arms respectively, let:

• ph
Wi
, pWi

∈ R
3 be, respectively, the positions of the

human and robotic wrists, with respect to a given world

reference frame (see Fig. 3).

• Rh
Wi
, RWi

∈ SO(3) be, respectively, the rotation matri-

ces of the human and robotic wrists, expressed in a

common reference system. Note that Rh
Wi

is computed

from the three markers in the human palm and wrist.

• Ei ≥ 0 be the tracking error of the robotic wrist, con-

sidering both position and orientation differences with

respect to the human wrist (see Fig. 3 and 4). Given a

weight λ ∈ (0, 1) balancing the relative importance of

the position and orientation errors, Ei is computed as

Ei = λ
∥

∥ph
Wi
− pWi

∥

∥

2
+ (1−λ)

∥

∥ln
(

R
⊺

Wi
Rh

Wi

)∥

∥

2

F
(1)

Note that the more similar the poses of the robotic and

human wrists are, the lower Ei is (reaching its minimum

value 0 if both pWi
= ph

Wi
and RWi

= Rh
Wi

hold [28]).

• Ai ≥ 0 be the anthropomorphic dissimilarity between

the poses of the robotic arm and the human arm (i.e. the

whole kinematic chains and not only the wrist poses).

For this, a given number m of points pji
are selected

along the robotic arm (from the shoulder to the wrist)

and also their kinematically equivalent points ph
ji

on the

human arm (see Fig. 3 and 4). Then, Ai is computed as

the weighted sum of the squared distances between the

paired ph
ji

and pji
, i.e. given some positive weights ωj

Ai =
∑m

j=1 ωj

∥

∥ph
ji
− pji

∥

∥

2
(2)

Hence, as Ai decreases, the human-likeness of the robot

configuration improves. Here, m = 9 points pji
were

Fig. 3. Human operator and mobile anthropomorphic dual-arm robot:

markers on the human arm; points pji
on the robotic arm with their

equivalent points p
h
ji

on the human arm; wrist positions pWi
and p

h
Wi

;

wrist orientations RWi
and Rh

Wi
; and position χ of the robot base.

Fig. 4. Position and orientation differences in the tracking error Ei (left),
and distances involved in the anthropomorphic dissimilarity Ai (right).
Despite showing the robotic arms free-flying, Ei and Ai are computed
for both arms with the robot assembled and sharing the same base pose χ.

chosen matching them up with the intersections of the

cylinders forming the robotic arm (see Fig. 3). Note that

only the shoulder, elbow and wrist points are actually

captured from the human arm. The other points ph
ji

have

been selected along the shoulder-elbow and elbow-wrist

rectilinear segments such that, in each segment, the ratio
‖pj+1i

−pji
‖/‖ph

j+1i
−ph

ji
‖ is constant at each sampling

time.

Notice that the dependence on time and q in the above

descriptions has been omitted to simplify the used notation.

Then, given the position in 3D space of the markers on

the human operator, the mapping problem involves finding

a configuration q∗∈Cfree (i.e. collision-free) that minimizes

the anthropomorphic dissimilarity while guaranteeing at the

same time the minimum tracking error between the human

and the robot. This can be formalized as follows

q∗ = argmin
q ∈ Cfree

Al(q)+Ar(q)

s.t. El(q)+Er(q) ≤ El(q̃)+Er(q̃) ∀q̃ ∈ Cfree

(3)

Note that finding local minima is good enough for the

considered purposes and that, in most cases, a perfect

tracking is feasible (i.e. El=Er=0). In addition to this, if



closed-form solutions are available for the inverse kinematics

of the robotic arms, then the dimension of the optimization

error is reduced by 12, with the consequent speed up.

Moreover, to speed up the collision checking, simplified

models of the robot and the environment (based on boxes,

spheres and capsules) have been used. Thereby, the pro-

posed mapping procedure ensures the correct placement of

the robotic wrists and, simultaneously, it handles the robot

redundancy by maximizing its human-likeness. Nevertheless,

the human-likeness is dependent on the differences in size

and kinematic structure of the robot with respect the human

(i.e. smaller robots, for instance, may have to extend the arms

more than the human does to reach the desired wrist poses,

leading to maybe not so human-like arm configurations).

IV. MOTION ANALYSIS

The dual-arm synergies (i.e. couplings between DOFs) are

obtained running a Principal Component Analysis over the

set of torso configurations mapped from the human. This

returns a new basis of the torso configuration space, whose

axes are sorted in decreasing order of the associated sample

variance (i.e. the first axis marks the direction with maximum

sample variance and so on). Each axis is called a synergy

and the motion along it, equivalent to a single DOF, implies

the movement of several (or all) joints. This simple linear

approximation is enough to capture the subspace where the

demonstrated motions lie. It has been demonstrated to be

useful and implementable by a drive mechanism [29] or a

real-time algorithm [30]. However, nonlinear approaches to

obtain synergies have been also proposed (e.g. [15]).

The dual-arm synergies depend on the robot position χ.

Therefore, the Cartesian space is recursively partitioned into

sectors of annuli centered on the table. The splitting radii ρ
and angles φ are chosen such that the dual-arm synergies

associated to each annular sector are significantly different to

the ones from the neighboring sectors (see below). Thereby,

given the parent set Q of robot configurations q lying within

a given annular sector being partitioned, let:

• Q−

ρ={q∈Q|x2+y2≤ρ2} and Q+
ρ={q∈Q|x2+y2>ρ2}

be the descendant sets of Q (if splitting the sector

by ρ) in which the robot is respectively closer/farther

to the table than a given distance ρ.

• Q−

φ ={q∈Q|y≤x tanφ} and Q+
φ ={q∈Q|y>x tan φ}

be the descendant sets of Q (if splitting the sector by φ)

in which the robot is seen from the table more on the

right/left than a given azimuth angle φ, respectively.

Let a partition dividing a sector be valid if each descendant

sector contains at least 5000 configurations of Q and has an

aspect ratio less than 1:5, i.e. the longer side of the resulting

sector measures in the ρ− φ space measures at most five

times the shorter side. These values have been empirically

chosen. Nevertheless, the sensibility of the procedure with

respect to these parameters is not high, thus their values are

not a critical issue. In addition, let the likeness L of two sets

QA and QB, taking into account only the torso configura-

tions, be defined as the overlapping of the distributions of

the configurations in the sets [20]. L can be computed as

Algorithm 1: SYNERGYTREE

Input : Set of configurations Q
Output: Synergy tree T

1: ρ∗ ← argmin max
(

L(Q,Q−

ρ ),L(Q,Q+
ρ )

)

2: φ∗ ← argmin max
(

L(Q,Q−

φ ),L(Q,Q+

φ )
)

3: if partitioning by ρ∗ is valid and better than by φ∗ then
4: T.LOCATION←ρ∗

5: T.SUBTREES←
(

SYNERGYTREE(Q−

ρ∗),SYNERGYTREE(Q+

ρ∗)
)

6: else if partitioning by φ∗ is valid and better than by ρ∗

then
7: T.LOCATION←φ∗

8: T.SUBTREES←
(

SYNERGYTREE(Q−

φ∗),SYNERGYTREE(Q+

φ∗)
)

9: else
10: T.SYNERGIES← SYNERGIES(Q)
11: return T

L(QA, QB) =
e−

1

2
(µ

A
−µ

B
)
⊺

(ΣA+ΣB)−1(µ
A
−µ

B
)

√

(2π)1+2n |ΣA +ΣB|
(4)

where µA and µB are the barycenters and ΣA and ΣB are

the covariance matrices of the torso configurations in QA and

QB, respectively. Then, the best position to divide a sector

is the one that minimizes the objective function f defined

as the maximum likeness between the parent set Q and

its descendant sets (i.e. f = max(L(Q,Q−

ρ ),L(Q,Q+
ρ )) if

splitting by ρ, or f = max(L(Q,Q−

φ ),L(Q,Q+
φ )) if splitting

by φ). Therefore, a given partition is better than others, if

the others are non-valid or have a greater value of f .

The proposed Cartesian-space discretization is stored into

a synergy tree, which is a k-d tree structure containing:

a) non-leaf nodes, with the partition location (i.e. whether

the sector is split by ρ or by φ and at which value) and

the synergy subtrees before and after the partition.

b) leaf nodes, composed of the dual-arm synergies of the

mapped movements lying in the corresponding sector.

The synergy tree is built by recursively applying the next

procedure (outlined in Algorithm 1). First, the best partition

distance ρ∗ and angle φ∗ are computed (Lines 1-2). Then,

the sector is split up by the best valid partition, among the

ones defined by ρ∗ (Lines 3-5) and φ∗ (Lines 6-8), if a valid

partition exists. This procedure is recursively self-invoked

until no valid partitions are found (Lines 9-10).

The introduced partition procedure has been applied to

the set of configurations containing the data captured in

Section III together with this same data reflected in the

y-axis of the world frame, see Fig. 2, in order to artificially

increase the number of samples. Thereby, the partition of

the Cartesian-space shown in Fig. 5 is obtained, which

is formed by 10 symmetrically-distributed annular sectors.

Notice that the synergies are similar in regions far from

the table independently of φ (i.e. one big sector exists in

which the arms are mostly at resting). While getting closer

to the table, the dual-arm synergies differ and are grouped

into different sectors, remarking the gradual transition from

the free-walk to the grasping phase (i.e. the arms get ready

to reach the goal pose). Finally, when the robot is in front

of the table grasping the cylinders, a unique set of synergies

exists.



Fig. 5. Resulting Cartesian-space partitions based on the differences of the
dual-arm synergies computed from the captured human movements.

V. MOTION PLANNING

The dual-arm synergies define a k-dimensional box cen-

tered at the barycenter of the configurations used to obtain

the synergies and with each side aligned with a synergy [20],

where k is the number of DOFs of the robot torso (i.e. with-

out considering the translational DOFs of the robot base).

In order for the box to contain the (100−α)% of the

configuration distribution for a given α (i.e. any torso confi-

guration inside the box would be then similar to the ones

used to compute the synergies), each side of the box is set

to 2
√
2 erf −1(k

√
1−α ) times the standard deviation of the

configurations in the corresponding direction (synergy). The

box dimension can be decreased by using only p<k syner-

gies (picking them in order) such that p is the minimum value

making the accumulated variance be above a confidence level

of (100− β)% for a given β. Here, k = 13 due to the

hardware and we use α = β = 5%. Despite this simplifica-

tion, the resulting lower-dimensional box Bp still represents

accurately the mapped torso configurations. Note that since

the Cartesian space is partitioned in sectors based on the

synergies, each sector may have a different Bp. Thereby, if

the planning of the dual-arm motions is performed in the

corresponding Bp, the planning complexity is reduced and

the obtained motions are similar to the movements mapped

from the human operator.

The RRT-Connect algorithm [31] has been widely used

in motion planning since it obtains good results even in

problems with cluttered environments and robots with a lot of

DOFs. It maintains two trees of configurations, one rooted

at the start configuration qstart and the other rooted at the

goal configuration qgoal. In each iteration, one of the trees

is steered towards a random configuration qrand by taking a

single step of length ǫ from the closest configuration qnear in

the tree, reaching a new configuration qnew. If the rectilinear

segment connecting qnear and qnew is collision-free, the

segment is added to the tree and the other tree takes then

successive steps towards qnew until either a collision or qnew

is reached. If the latter occurs, the planning process stops

since a collision-free path connecting qstart and qgoal already

exists trough the trees. Otherwise, the trees swap their roles

and this process is repeated until a solution is found or some

termination condition is satisfied.

Algorithm 2: NEWCONF

Input : Configurations qnear =[χnear, θnear]
⊺

, qrand =[χrand,θrand]
⊺

Output: Configuration qnew =[χnew, θnew]
⊺

1: χnew ← χnear +min(ǫχ, ‖χrand−χnear‖) (χrand−χnear)

2: ∆θ← PROJECT
(

θrand, Bp(χnew)
)

− θnear

3: θnew ← θnear +min(ǫθ, ‖∆θ‖)∆θ

4: return [χnew,θnew]
⊺

In order to integrate the obtained dual-arm synergies and

the Cartesian-space discretization into the motion planning,

a modification of the RRT-Connect is proposed. In this work,

the standard function used to grow a tree from a given qnear to

some qnew is replaced by the function NEWCONF described

in Algorithm 2. In this function, the robot position χ and

the torso configuration θ are treated differently following

the next procedure. A step, with a maximum length ǫχ, is

taken from the robot position χnear towards χrand, reaching

a new robot position χnew (Line 1). Then, a step, with a

maximum length ǫθ , is taken from the torso configuration

θnear not towards θrand (as it would be done in the standard

procedure) but towards its projection onto Bp(χnew) (i.e. the

lower-dimensional box Bp spanned by the synergies of the

Cartesian-space region containing χnew), reaching a new

torso configuration θnew (Lines 2-3). Finally, the computed

χnew and θnew are joined to compose qnew (Line 4).

VI. APPROACH VALIDATION

For illustrative purposes, the motions of a mobile anthro-

pomorphic dual-arm robot have been planned using the

synergies computed from the captured human movements

and the planner introduced above. The robot must go from

a start configuration in the neighborhood of a table to a

goal configuration in which the robot is pre-grasping two

cylinders lying on the table (see Fig. 6). The robot must

avoid the collisions and perform human-like motions, which

do not have to be exactly the movements used to calculate the

synergies. The robot motions have been planned with (a) the

proposed planner and (b) the standard RRT-Connect, both

implemented within the planning and simulation environment

The Kautham Project [27] and run in a 2.13-GHz Intel 2,

4-GB RAM PC. A maximum planning time of 30 s is

allowed and if a path is not found within this time, the exe-

cution is marked as a failure. After 100 executions, Table I

shows the average values of the success rate, the planning

time, the number of iterations and collision checks, the rate

of valid segments (i.e. the ratio of iterations in which the

trees actually grow) and the path length (measured in C as the

weighted sum of accumulated rotated angles of the wheels

and the arm joints along the path). A representative solution

path obtained with the proposed planner is shown in Fig. 6.

VII. CONCLUSIONS AND FUTURE WORK

This paper has proposed a procedure to obtain dual-arm

synergies and to discretize the Cartesian space into different

annular sectors based on the differences of the synergies

associated to each robot position, for a given task. The focus



Fig. 6. Snapshots of a planned path for the mobile anthropomorphic dual-arm robot.

TABLE I

AVERAGE RESULTS OF THE MOTION PLANNING USING THE PROPOSED

APPROACH (a) AND THE STANDARD RRT-CONNECT (b).

C
as

e Success
rate

Planning
time

# of
iterations

# of collision
checks

Valid
segments

Path
length

a 100 % 2.923 s 290 2156 74.09 % 4.378 rad

b 100 % 11.378 s 1940 6532 63.32 % 4.731 rad

has been set on the approaching movements of a mobile

anthropomorphic dual-arm robot previous to a bimanual

manipulation task, but the approach is valid for other kind of

movements. Thereby, human movements have been captured

and mapped to the robot to compute the dual-arm synergies.

A likeness function between sets of robot configurations

has been used to detect the changes of the synergies and

split the Cartesian space accordingly. This Cartesian-space

discretization clearly identifies the regions of the free-walk

and grasping task phases, as well as their associated syner-

gies. The gradual transition between these two phases is

also visible in the discretization. Finally, a motion planner

profiting from the synergies and the Cartesian-space partition

has been presented as an example.

In the future we plan to extend the proposal to the velocity

space while coordinating the robot base, arms and hands all

at the same time is an interesting research topic.
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