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Bio-inspired kinematical control of redundant
robotic manipulators
Ali Leylavi Shoushtari and Stefano Mazzoleni
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Laboratory of Rehabilitation Bioengineering, Auxilium Vitae Rehabilitation Centre, Volterra, Italy, and

Paolo Dario
Institute of BioRobotics, Scuola Superiore Sant’Anna, Pontedara, Italy

Abstract
Purpose – This paper aims to propose an innovative kinematic control algorithm for redundant robotic manipulators. The algorithm takes advantage
of a bio-inspired approach.
Design/methodology/approach – A simplified two-degree-of-freedom model is presented to handle kinematic redundancy in the x-y plane; an
extension to three-dimensional tracking tasks is presented as well. A set of sample trajectories was used to evaluate the performances of the
proposed algorithm.
Findings – The results from the simulations confirm the continuity and accuracy of generated joint profiles for given end-effector trajectories as well
as algorithm robustness, singularity and self-collision avoidance.
Originality/value – This paper shows how to control a redundant robotic arm by applying human upper arm-inspired concept of inter-joint
dependency.

Keywords Robotics, Redundancy, Motion control, Geometric algorithm, Joint angles synergy, Motion planning

Paper type Research paper

1. Introduction
Numerous instances of redundancy can be found in biological
and artificial systems. One of the most significant is
represented by the musculoskeletal structure of human body
which can be modeled as a kinematic chain (Khatib et al.,
2009). Maneuverability is a consequential feature which
allows redundant systems to have dexterous behavior, e.g.
manipulation. Mechanisms with redundant degrees of
freedom (DOFs) are potentially able to perform dexterous
tasks. Although redundancy provides maneuverability in
terms of efficiency, on the other hand, it also raises problems
in the motion planning.

Over the past decades, a growing attention has been paid to
redundant robotic manipulators because of the several
advantages linked to the exploitation of redundancy, such as
safety and maneuverability. Despite them, redundancy is often
considered as a problem from the control point of view.
Several resolutions have been presented to deal with that in
position (Seraji, 1989; Chang, 1987), velocity (Whitney,
1969; Yoshikawa, 1985) and acceleration (Hollerbach and
Suh, 1987) levels. These solutions fall in three main
categories: linear algebra-based (LAB), soft computing-based
(SCB) and bio-inspired approaches (BIO).

The pseudo-inverse is a fundamental method in the LAB
category Siciliano (1990) which proposes to decouple the joint
velocities into two terms associated with the operational space
and the null space (Whitney, 1969, 1972). The second
component usually is subjected for optimizing a arbitrary
criterion. The main advantage of this method is to provide a
possibility to incorporate a biological-based defined criterion
as second term, e.g. collision avoidance(Maciejewski and
Klein, 1985), minimum joint torques (Chen et al., 1994) and
task priority (Chiaverini, 1997; Nakamura et al., 1987).

The SCB approaches including artificial neural networks
(pseudo-inverse network Wang, 1997 and linear programming
neural networks Xia, 1966), fuzzy logic (Ramos and Koivo,
2002) and genetic algorithms generally rely on linear algebraic
equations presented in the previous category; consequently,
the invertibility of the Jacobian matrix which occurs in
singular/near singular points represents an issue to be
considered.

The BIO methods are third category of redundancy
resolutions where the specific strategies that human central
nervous system (CNS) uses to control body movements are
considered as source of inspiration. The majority of human
imitation-based motions planning techniques are based on
directly mimicking the human arm posture Kim et al. (2005)
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and hand pose Pollard et al. (2002) (position and orientation).
In fact, these methods, known as bio-mimetic approaches, try
to imitate the human arm movement Potkonjak et al. (1998),
Caggiano et al. (2006) for robotic motion planning purposes.
The task-specification represents the main feature of these
approaches, restricting their motion planning capability on the
tasks where the data sets were recorded from. In other words,
in addition to the ability to generate human-like motion, the
generalization should also be considered as a mandatory
property of a kinematic control for anthropomorphic
manipulators.

Contrary to imitation-based approaches, the other BIO
methods put emphasis on human movement primitives (Abedi
and Leylavi Shoushtari, 2012). These methods try to solve
kinematic redundancy in human-like fashion by means of
satisfying biological-based defined constraints/cost functions
(Abedi and Leylavi Shoushtari, 2012). In particular, human
motion principles, e.g. metabolic energy consumption Cruse
et al. (1990) and postural stability Leylavi Shoushtari (2013),
are designed as cost functions which are subjected to be
minimized by an optimal motion planning algorithm.
Complexity and difficulty-to-generalization represent their
main deficiencies.

Visuo-motor coordination neural models of humans Asuni
et al. (2003) and specific learning ability are another motion
principles where Guglielmelli et al. (2006) represented a
neurocontroller to control a redundant manipulator. With
respect to the nature of the learning which occurs within an
action–perception cycle, the previously mentioned controller
was developed to a model-free learning-based framework to
control the pose of the end effector of a redundant robotic arm
(Asuni et al., 2006). The same work with capability of fast
response and learning ability through experiments was
proposed by Qiao et al. (2015).

The concept of synergy was implemented in analysis
complex motor behavior of human and animals (Santello
et al., 1998; Torres-Oviedo et al., 2006). Nowadays, joint
synergy-based approach is being considered as another BIO
redundancy solution aimed to identify a motion planning
algorithm that does not only relies on limited set of captured
data but also can be generalized to unknown motion. In
particular, the motor synergies have been proposed to deal
with redundancy in modeling human grasping Santello et al.
(1998) and human-liked motion planning for robotic

hands(Palli et al., 2014). Suarez et al. (2015) proposed a
synergy-based approach for dual-arm manipulation which is
capable to extract the human motion principles and
incorporate them in motion generation of a robotic system. To
approach human-like motion planning, generalization is a key
feature; accordingly, Artemiadis et al. (2010) tried to encode
the anthropomorphic characteristics of human upper arm
motion in a mathematical function and then incorporated the
model in an inverse kinematic resolution. In fact, they used a
Bayesian network to extract the inter-joint dependencies and
then they formulated the dependencies as an objective
function to be implemented in a closed-form inverse
kinematic algorithm. The algorithm was successful in
generating bio-mimetic motion, and it could also develop new
anthropomorphic motions, not previously seen in
captured-motions set. The main limitation of this method is
its reliability on the Jacobian-based inverse kinematic
resolution which would not work in singular/near singular
points.

The concept of postural synergies previously was used to
explain how the human CNS controls the complex/redundant

Figure 1 (a) Schematic configuration of the mechanism with n
DOFs and (b) simplified model of the redundant mechanism with 2
DOFs. q1, q2 are the generalized coordination of prismatic and
revolute joints, respectively

Figure 2 The unified computational framework for motion planning
of a 4 DOFs robot manipulator. The �r is real value of the
rotational variable calculated for the robot end-effector and �� is
the compensation term for the first joint

Figure 3 The morphology of the robot is considered as a second
order polynomial curve controlled by two main parameters k and R

Figure 4 The geometric algorithm as a control loop to calculate
the Cartesian position of the robot’s joints

Redundant robotic manipulators

Ali Leylavi Shoushtari, Stefano Mazzoleni and Paolo Dario

Assembly Automation

Volume 36 · Number 2 · 2016 · 200–215

201

D
ow

nl
oa

de
d 

by
 S

C
U

O
L

A
 S

U
PE

R
IO

R
E

 S
A

N
T

 A
N

N
A

 A
t 0

4:
43

 1
7 

Ju
ne

 2
01

6 
(P

T
)

http://www.emeraldinsight.com/action/showImage?doi=10.1108/AA-11-2015-116&iName=master.img-000.jpg&w=235&h=108
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AA-11-2015-116&iName=master.img-001.jpg&w=235&h=74
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AA-11-2015-116&iName=master.img-002.jpg&w=190&h=114
http://www.emeraldinsight.com/action/showImage?doi=10.1108/AA-11-2015-116&iName=master.img-003.jpg&w=233&h=83


kinematical structure of the human hand during grasping task
(Santello et al., 1998). In this study, we take advantage of this
biologically inspired concept to present a motion planning
approach for redundant manipulators. The proposed approach
takes advantage of a 2-DOF simplified model and a novel servo
mechanism (to be presented in Section 2, Subsection 2.1

Figure 5 The computational geometric algorithm designed to calculate the Cartesian position of the joints and the real radial distance Rr

based on input k together with the knot vector Xknot. Xknot is vector of five points evenly distributed between the two roots of the parabola
(it is illustrated in the top-left box of this figure)

Figure 6 The control algorithm designed to regulate the k value to
reach e � Ea

Table I RMSE, computation time and minimum acceptable error as
result of simulation with optimal step size and optimal MAE

Trajectory Optimal �
Optimal
MAE (m) RMSE (m) CTSP (ms)

Polynomial 3.75 � 10�4 4.50 � 10�4 0.0133 5.06 � 0.12
Circular 4.69 � 10�4 1.00 � 10�4 0.0012 18.02 � 0.68
P-shape 5.4 � 10�4 4.00 � 10�4 0.0019 4.93 � 0.41
Elliptic 4.06 � 10�4 3.20 � 10�4 0.0019 15.97 � 0.52
Oval spring 7.5 � 10�4 1.47 � 10�4 0.00006 19.53 � 0.13

Figure 7 The predicted postures of the redundant robot. Black line
represents the path of the end-effector, red square corresponds to
the position which is selected based on random values of k and �.
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Geometric algorithm) to generate motion for redundant robotic
manipulators. The main advantage of this algorithm is to be
Jacobian-free: singular/near singular points will not represent a
problem anymore. First, the redundant mechanism is modeled
as a system with two DOFs considering a prismatic and revolute

joint regardless of the numbers of DOFs. The geometry of the
robot’s workspace is formulated in polar coordination using
linear and rotational displacement. A joint synergy is designed in
a way that forms the configuration of robot as a parabola. So that,
the linear distance could be regulated by adjusting the curvature.

Figure 8 The predicted postures for three paths
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In the second section, the unified framework used for the motion
planning is introduced. Third section describes a geometric
algorithm which consists of two separate subparts: “control
algorithm” and “geometry of system”. As results, four sample
end-effector trajectories are designed, and their relevant joint
profiles are generated using the proposed geometric algorithm.
Then the three-dimensional extension of this approach will be
presented.

2. Unified motion planning framework
The simplified 2-DOF mechanism is presented as the model of
a planar redundant robot (q1 and q2 are the DOFs shown in
Figure 1(b)). The algorithm presented in Figure 2 uses xT and yT

as time-dependent variables of Cartesian position of end effector
and then it transforms these variables to polar coordination Rd

and �d. These parameters are equivalents of q1 and q2 represented
in Figure 2. Actually, Rd and �d are distance and angle of the
target point respect to the base of robot, respectively. Then, the
geometrical algorithm calculates the Cartesian positions of joints.
Joint positions are a set of the postures of robot to reach the target
point. The �X�j and �Y�j are vectors of joint positions defined
according to equation (1). The xi and yi are horizontal and
vertical position of ith joint, respectively.

The kinematical transformation translates the joint variable
from workspace into joints space. Finally, � is added to the
angle of the first joint to locate the end effector at the target
point position. The joint angles are regulated to adjust radial
distance Rd and after that the first joint angle is also adjusted
by adding �:

�X� j � �x1x2x3. . .xn�; �Y�j � �y1y2y3. . .yn� (1)

2.1 Geometric algorithm
The central part of this paper deals with the geometric-based
computational algorithm which calculates the Cartesian
positions of joints. The main idea of the proposed algorithm is
to control the robot posture to reach the target point.

Let us assume that a planar redundant robot is configured in
a parabolic posture. Given k as the coefficient of the
formulation of this curve and R as the distance between its
roots, an inverse relation between k and R can be found with
respect to the Figure 3. In fact, this figure shows that
increasing coefficient k causes the reduction of R. The main
idea is to regulate the coefficient k to reach to desired radial
distance R. The error signal e is computed as difference
between the real and the desired distances, Rr and Rd,
respectively.

The control algorithm uses the e to regulate the control
variable k to set the end effector on the target point. Then this
value is used by a computational algorithm to calculate the
vertical and horizontal position of joints. The closed loop
system is designed to regulate the posture of robot to reach to
desire distance Rd (Figure 4).

2.2 Geometry of system
A second-order polynomial function h�xknot, k� is implemented
to calculate the vertical position of the joints. In fact, the k
value would determine the curvature of the parabola, while the
knot vector of xknot provides preliminary horizontal position.
Later on, the resulted vertical position of joints �Y�J is
integrated in geometric model of a redundant planar robot
(illustrated in bottom right box of Figure 5) to calculate
horizontal position of joints �X�J. This geometry takes

Figure 9 The simulation results of P-shape trajectory tracking (4 DOFs). The predicted postures are shown in (a)–(e)
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advantage of the equation of a circle to describe the locus of the
tip of the each link. To understand it better, let us consider the
joint as located at the center of a circle, so the position of tip
of the link could be described by the equation of circle with
diameter as long as length of the link.

In equation (2), xi�1 and yi�1 are the horizontal and vertical
position of the end of the �i � 1�th link, respectively, ai and bi

are the horizontal and vertical position of joint of �i � 1�th link,
respectively. The Li�1 is the length of the �i � 1�th link. By
using this equation and considering a0 � 0, b0 � 0 (as the
position of the first joint) and using y1 which is calculated from
“control algorithm” section, x1 is calculated. Based on a
recursive method shown in Figure 5, the x2, x3, x4 are
obtained. Figure 5 also illustrates this recursive algorithm to
calculate the vertical and horizontal position of joints based on
a given k value:

(xi � 1 � ai)2 � (yi � 1 � bi)2 � Li � 1
2 (2)

2.3 Control algorithm
Figure 6 depicts how the control algorithm computes the k
value for a given error e. For a negative error, the k initiates
with a value greater than 1, and for the positive error, k
initiates with the value between 0 and 1. � denotes step size
used to increase or decrease the k value and the i is counter
variable of the loop. Ea is the acceptable error: it has a positive
value defined in Table I.

3. Simulation of planar task
The foregoing algorithm is used for point-to-point motion
planning, in fact, any given trajectory must be divided into
control points: the approach aims to predict the motion
between every two control points. A 4-DOF planar robot
manipulator is considered for point-to-point motion planning
task. Each of the four links is 1-m length. Three different
sample trajectories are used for validation purposes. For each

Figure 10 End-effector tracking error during polynomial, circular,P-shape and elliptic trajectory tracking (top to bottom)
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trajectory, the motion initiates from a random position
indicated by random values of k and �, and it continues till
reaching the starting point. The end effector starts motion
from initial point and locates at final position in times t � 0
and t � T, respectively.

Figure 7 shows the predicted path and postures from a
random initial position to the starting point and from the
starting point to the final position indicated by red squares and
red stars, respectively. The random initial points are generated
using the angle � and the desired radial distance Rd obtained
from parameter k (Figure 3).

The algorithm generates the end-effector path and joints
position of the robot to move the end effector between the
given initial and final points. Three continuous trajectories
have been simulated and tested to show the algorithm
performance for open or closed paths.

The first sample trajectory is represented by a fourth-order
polynomial curve for interval x�� � 2.4, 1.5� defined by (3).
The considered path of the end effector is digitized to control
points and then the algorithm is integrated to predict the path
and postures between every two points. Figure 7 shows
predicted postures of the 4-DOF redundant robot
manipulator. Four sample trajectories were selected to
validate the control algorithm: polynomial, elliptic, circular
and “P”-shape trajectory. Trajectory (1) (top row plots in
Figure 8) was computed as follows:

y � �2.7 � 0.27x � 1.5x2 � 0.07x3 � 0.09x4 (3)

The initial position is chosen randomly based on random k
and � values as mentioned before. Top row plots in Figure 8
illustrate the predicted motion of the robot following
polynomial trajectory. The elliptic trajectory (middle row plots
in Figure 8) was computed according to equation (4). It
represents a circle with 0.5-m radius whose center is located at
(2.2 m, �2.2 m):

(x � 1.5)2

0.09
�

(y � 2.5)2

0.36
� 1 (4)

The circular trajectory (bottom row plots in Figure 8)
corresponds to a circular path computed according to
equation (5) whose radius is 0.5 m and center located at (2.2
m, �2.2 m):

(x � 2.2)2 � (y � 2.2)2 � 0.25 (5)

The trajectory presented in Figure 9 corresponds to the shape
of the letter “P”. The trajectory consists of straight lines (B
and E), curves (C and D) and Section A positioning on start
point.

Figure 10 shows the tracking error for the mentioned paths.
The error is calculated as horizontal and vertical deviation of
the predicted position (xp, yp) from the desired trajectory
(xd, yd) according to equation (6):

Error � �(yd � yp)2 � (yd � yp)2 (6)

Here we introduce the “Optimal Point Analysis” method
which is used to find optimal value for the critical parameters
of the algorithm. These parameters are “Step Size” and

“Acceptable Error” which represent the performance
indicators for algorithm’s speed and accuracy, respectively. As
these factors have opposite trends, the maximum efficiency is
usually achieved just by finding a trade-off between speed and
accuracy. Accordingly, we define the algorithm’s optimal
point as an amount of step size and acceptable error which leads
to achieve highest computational speed and accuracy at the
same time. To reach this goal, we applied the algorithm to
analyze the optimal point illustrated by Figure 11.

The calculated normalized root mean square error
(NRMSE) and normalized computational time for single
point (NCTSP) are plotted against step size � (for the ten
values) and four trajectories (Figure 12). As expected,
decreasing the resolution of the algorithm (by increasing step
size) leads to the decreasing accuracy and increasing
computation speed. Hence, the optimal algorithm resolution �
is obtained through making a trade-off between NRMSE and
NCTSP. Accordingly, the intersection of these two graphs
gives optimal � which, by using the minimum acceptable error
(MAE) and � diagram (Figure 13), will also give�the optimal
MAE. The optimal values of MAE and � used to generate the
motion for the four trajectories are shown in Table I.

4. Spatial motion planning algorithm

4.1 End-effector 3D positioning
In this section, we discuss how to use the proposed algorithm
to control a 7-DOF anthropomorphic robotic manipulator
during a three-dimensional task. The presented motion
planning approach creates a single 2D arm flexion which has
effect on the planar motion of the end effector. To create a

Figure 11 Optimal point analysis flowchart
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Figure 12 Normalized RMSE (NRMSE) and normalized computational time for single point (NCTSP) on primary and secondary vertical axes
respectively, step size on the horizontal axis. The intersection points shown by stars indicate the optimal step size

Figure 13 MAE plotted versus algorithm step size
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spatial positioning (for end effector), we need more than one
planar motion so that we propose two separate joint synergies
in which each one creates a single planar motion.
Consequently, by the combination of two planar motions, we
would have a spatial motion of the end effector. Each synergy
is controlled by the planar motion planning algorithm
presented in the previous section.

The anatomy of human arm movements is described by
three pairs of terms: supination/pronation, felction/extension
and abduction/adduction. In this part, we present a pair of
synergies which allows the anthropomorphic robotic
manipulator to mimic the first two movements of the human
arm. In particular, the first synergy is in charge of controlling
the arm bending in the u-w plane (Figure 14 (b)) by means of
control over even joints which resemble human arm flexion/
extension. The second synergy is used to create an axial
torsion among whole arm in u-v plane (Figure 14 (c)) via
controlling the odd joints. This motion look likes human arm
supination/pronation (Figure 14 (c)). Consequently, the
combination of these two synergies will lead to achieve a
generic spatial positioning of the end effector (Figure 14 (d)).
A three-dimensional motion is achieved by combining two 2D
motions: the following section describes the control of the
three-dimensional motion.

4.2 Modeling and motion control
To control the end-effector position, a cylindrical coordination is
considered (Figure 15 (b)). The height of the cylinder is

controlled by a second joint, while the alpha angle would be
adjusted by the first joint.

The length r is regulated by the combination of two
synergies. The r value is regulated by changing the k value of
synergies and then the height of the target point is compared
with the height of the end effector. After this, the error angle
for the second joint is calculated (to compensate the distance
between the height of end effector and the height of the target
point) and then the error angle of the first joint is defined as
the difference between the alpha angle of the target point and
the end effector. In each iteration, by adding these two

Figure 14 The top row shows an anthropomorphic 7DOFs robotic manipulator controlled by joint synergies and lower row illustrates the
equivalent of the whole arm motion

Figure 15 The 3DOFs cylindrical model. XE is the position of the
end-effector described by �, h and r. The control variables � and h
are regulated respectively by the angles of first and second joint (�1

and �2) while the third control variable (r) is adjusted by rest of the
joints (�3-�7)
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compensation terms to the predicted joint angle, the end
effector may be aligned across the target point.

The entire control model consists of a controller and a
feedback/compensatory compartments (Figure 16). The
controller section includes a planar motion planning algorithm
which is cascaded with two set of synergies. The planar motion
planning block presented in Figure 16 is the same as the
geometric algorithm shown in Figure 4 where the inner
feedback is replaced by an external feedback loop. It generates
joint angles for a planar 3-DOF model then the synergies feed
the angles to odd and even joints (Figure 17). Considering red
dots on the top corner of bar in Figure 14 (b and c),
intuitively, we can see that the bending has a greater
contribution in red dot displacement than torsion. We can
apply the same observation to the robotic arm and conclude
that the joints which create bending have a higher contribution
in the end-effector motion. Hence, the even joints receive a
greater coefficient than odd joints.

The feedback/compensatory section is designed to correct
the first and second joint angle to regulate control variables �
and h (presented in Figure 15) and also provides a feedback
for the controller section. The feedback block also provides
the R�r value which represents the real position of the end
effector when it is aligned with target point. This value is
implemented to calculate the position error of the end effector
which is the input of planar motion planning block. The
compensatory part receives the predicted joint angles from
the output of synergies and calculates the required angles for
the first and second joint to locate end effector at the height hd

and angle �d (Figure 18, top).
To achieve this goal, we first assume that the joints are

fixed except of the second joint. In this situation, the
trajectory of the end effector is represented by a circle in the
xz plane (blue circle in Figure 18 (b)). Hence, by regulating
the �2, the height of the end effector would vary in xz plane.
Considering the block diagram in Figure 18, it first solves

the forward kinematic to obtain the current position of the
end effector Xr and then it exploits equations (7)-(11) for
calculating the angles 	d and 	r. Finally, by adding the
differential value 
	 to the current angle of the second joint,
the end effector is located at the desired height hd. The next
step is aimed to regulating the angle �1 to relocate the end
effector from �’r to �d where it would align with the target
point. The new position of the end effector X’r is obtained
by solving the forward kinematics for the current joint
angles (considering the updated value for second joint �2).
Assuming that all joints except for the first are fixed, the
trajectory of the end effector is represented by the circle
(violet line in Figure16 (c)). To be aligned with the target
point Xd, it just required to reach the green point which is
achieved by rotating the first joint as 
�. The new position
of the end effector X�r is closer to the target point. The next
step is to achieve the target point by increasing/decreasing

the length of AXr
¡ vector which is carried out by the

controller:

AXr
¡

� OXr
¡

� OA¡ (7)

AXd
¡

� OXd
¡

� OA¡ (8)

hr � zAXr

¡ (9)

hd � zAXd

¡ (10)

Rxz � �xAXr

¡2 � zAXr

¡2 (11)

4.3 Spatial motion simulation results
We designed an oval spring-form trajectory defined by (12) for
end effector and then analyzed the optimal point of the
algorithm for this trajectory (Figure 19). Figure 20 illustrates

Figure 16 Block-diagram representation of the spatial motion planning algorithm. It consisted of controller (on top) and a feedback/
compensatory part on bottom

Figure 17 Scheme of planar motion planning algorithm presented in figure 16. The parameters q1, q2 and q3 are the predicted angles and e
is the error signal of vector R (e � Rd � Rr

�)
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the predicted joint profiles for the given trajectory. In this
figure, four polynomial functions (of order 10) are fitted to the
predicted joint angles to provide an analytical formulation for
joint profiles. Equation (13) represents the analytical formula
of whole joint profiles:

�� � �0:�/180: 276 � ��/180��

x � [0.38: � 8.3333  10�4: 0.15]
y � �0.1Sin����

z � 0.45 � �0.2cos ����

(12)

�j(t) � �
i�0

9

Pi,jTi(t); j � �1, 2, 3, 4� (13)

To explore the effect of the synergy coefficient on
positioning the end effector, we ran the program for a range
of values for second synergy coefficient Kh � �0.1, 0.9�.
Meanwhile, the coefficient of first synergy is kept equal to 1

to assure that this synergy has a higher coefficient value
(because it feeds the even joints). The top graph in Figure
21 shows the RMSE values of each run plotted for various
Kh values; bottom graph shows the Kh value with highest
accuracy (lowest RMSE). The top graph in Figure 21
depicts the facts that by increasing the contribution of
second synergy, the accuracy of algorithm predictions will
decrease. Accordingly and also by considering Figure 14
(c), the torsion would endangered the positioning accuracy
of end effector. The lower graph shows the synergy
coefficients which results in minimum RMSE.

A 3D R letter-shape trajectory is designed to show that the
algorithm can work even in near singular positions. For this
purpose, we plotted the manipulability measure (14) – which
stands for Jacobian determinant of redundant robotic arms –
for this trajectory (Figure 22). The graph shows that the
algorithm works well in near singular points, and the image c
on top proves this fact by illustrating a fully stretched posture.

Figure 18 The top part shows the block �Compensation terms for first and second joints� presented in Figure 16. The algorithm receives joint
angles 	 and target position Xd as inputs and calculates the angles of first and second joints
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In Figure 22, the position error of the end effector is also
plotted together with manipulability index to present the
behavior of end effector among trajectory and specifically in
near singular point:

w � �det(J���J(�)T) (14)

5. Discussion and conclusion
The biomimetic motion planning approach is presented in two
episodes: the first was a planar motion planning approach and,
second, integration in a 3D motion generation algorithm. The
prior takes advantage of a 2-DOF simplified non-redundant
model of manipulator which is implemented in a feedback
control loop (Figure 4) to control the position of end effector
in a plane. In fact, the kinematic redundancy provides a
potential capability to create various robot structure

morphology, so the core idea is to exploit the meaningful
morphology which locates robot end effector in a given
position.

In the later episode, we took inspiration from the biological
concept of postural synergies to introduce two joint groups/
synergies that each one creates, i.e. an independent 2D
morphology. The human arm movements are considered to
design and combine the postural synergies in a way that each
synergy follows a anatomical motion. Consequently, the
superposition of these two postural synergies would create a
curvature which leads to a 3D positioning of end effector.
Since each synergy is controlled by an independent parabola,
so, just two variables (the curvature values of parabolas) are
required for controlling all of the 7 DOFs. In other words,
applying the joint synergy concept causes a simplification in
controlling the redundant manipulator.

Figure 19 Optimal point analysis for 3D oval-shape trajectory. The optimal step size and optimal MAE would be 7.5 � 10–4 and 1.47 � 10–4

respectively
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The spatial motion planning algorithm was used to predict the
joint angles for a 7-DOF anthropomorphic robotic
manipulator following a 3D oval spring. The resulted joint
angles presented in Figure 20 illustrate the continuity and

smoothness of joint profiles. Because of these two main
features, we were able to fit a set of polynomial equation of
order 10 over the predicted joint angles which result in an
analytical formulation for joint profiles (Table II).

Figure 20 Joint analytical angle profiles plotted for 3D oval-shaped trajectory

Figure 21 Top graph: RMSE plotted for tracking 3D oval-shape trajectory with different values of synergy coefficient Kh. Lower graph: zoom-in
for area Kh � [0.1, 0.4] which depicts Kh value with minimum RMSE value (Kh � 0.2)
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Furthermore, by designing time function T�t� in equation
(14), we can manage the velocity of predicted motion. It is
worth mentioning that the considered mechanism in planar
motion planning, given in Figure 17, has three DOFs with
equal length of linkages and it follows a parabolic curve, so,
inevitably, the predicted angles for second and third joints may
have been the same. Accordingly, the profiles of third and
fourth joints have the same trend of fifth, sixth and seventh
joints because those are commanded by q2 and q3 (Figure 17).

We designed a more complex trajectory for end effector to
analyze the algorithm in terms of singularity and tracking

behavior. The path is designed as “R” letter shaped to embed
both direct lines (vertical and diagonal) and curves and it is
positioned as far as possible from robot (in a way that a part of
trace would be on the boundary of robot’s workspace). The
manipulability measure in Figure 22 decreases as end
effector’s distance (from the origin) increases and in the point
c has its minimum value. The c is a point close to singularity,
as the value of manipulability measure is almost zero which
intuitively can be seen in snapshot c (whole joints are aligned).
The singularity at the point c also causes a change in sign of
end effector’s position error.

Figure 22 Upper graph: robot configurations during tracking an “R” letter-shaped trajectory: middle graph: position error of the end-effector;
lower graph: equivalent manipulability measure during the trajectory tracking

Table II. Values of polynomial coefficients for joint angle profiles

Joint no. P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

1 4.93E-21 �6.49E-18 3.55E-15 �1.04E-12 1.79E-10 �1.79E-08 1.07E-06 �6.00E-05 0.003425872 0.308168582
2 �9.87E-21 1.31E-17 �7.20E-15 2.14E-12 �3.74E-10 3.99E-08 �2.51E-06 6.86E-05 0.000495263 0.144486011
3, 5, 7 1.11E-23 2.79E-20 �4.11E-17 2.05E-14 �5.21E-12 7.67E-10 �7.89E-08 9.15E-06 �0.000967951 �0.016354665
4, 6 5.53E-23 1.40E-19 �2.05E-16 1.03E-13 �2.60E-11 3.83E-09 �3.94E-07 4.58E-05 �0.004839756 �0.081773326
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The simulation results (Figures 8 and 9 for planar robot and
Figure 20 for spatial manipulator) illustrate that the posture of
robot varies continuously with no self-collision, while the end
effector strictly follows the predefined planar trajectory.
Comparison of the resulting error magnitude (i.e. millimeter)
with the robot size (4 meters) convincingly demonstrates that
the position error is rather negligible (Figure 10) for planar
motion planning. The values of RMSE show the algorithm’s
stability (Table I). The low computational time for single
point (CTSP) values also show that the algorithm can be used
for a real-time motion planning (Table I).

The algorithm will not be endangered by kinematic
singularities, as it is not using the Jacobian-based solutions for
motion planning. The analytical angle–time equations of
joints are scalable which allowed us to design a desired velocity
for joints to achieve desired dynamic at end-effector level. As
the robot’s configuration follows a parabolic curve, the
self-collision will not happen ever. In summary, singularity
free, low computational burden, self-collision avoidance, joint
profiles scalability and algorithm stability are the main
advantages of the presented approach.
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